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THE SPARSE BASIS PROBLEM AND MULTILINEAR ALGEBRA*

RICHARD A. BRUALDIt, SHMUEL FRIEDLAND$, AND ALEX POTHEN

Abstract. Let A be a k n underdetermined matrix. The sparse basis problem for the row
space W of A is to find a basis of W with the fewest number of nonzeros. Suppose that all the
entries of A are nonzero, and that they are algebraically independent over the rational number field.
Then every nonzero vector in W has at least n- k + 1 nonzero entries. Those vectors in W with
exactly n- k -t- 1 nonzero entries are the elementary vectors of W. A simple combinatorial condition
that is both necessary and sufficient for a set of k elementary vectors of W to form a basis of W is
presented here. A similar result holds for the null space of A where the elementary vectors now have
exactly k nonzero entries. These results follow from a theorem about nonzero minors of order
m of the (m- 1)st compound of an m n matrix with algebraically independent entries, which is
proved using multilinear algebra techniques. This combinatorial condition for linear independence is
a first step towards the design of algorithms that compute sparse bases for the row and null space
without imposing artificial structure constraints to ensure linear independence.

Key words, elementary vector, matrix compound, null-space basis, row-space basis, sparse
matrix, wedge product
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1. Introduction. Many situations in computational linear algebra and numer-
ical optimization require the computation of a sparse basis for the row space or the
null space of a sparse, underdetermined matrix A. The sparse row-space basis problem
(hereafter the row-space problem) is to compute a basis for the row space of A with the
fewest number of nonzeros. Similarly, the sparse null-space basis problem (hereafter
the null-space problem) is to compute a basis for the null space of A with the fewest
number of nonzeros. It turns out that both of these problems are computationally
intractable: they are NP-hard [1], [8], [9]. Under a nondegeneracy assumption called
the matching property, Hoffman and McCormick [5], [8] designed polynomial time
algorithms to solve the row space problem. Sparsest null bases can be characterized
by means of a matroid greedy algorithm [1], [9], yet the null space problem turned
out to be harder than the row-space problem; heuristic algorithms to compute sparse
null bases were designed and implemented in [2] and [4].

All algorithms known to us for computing sparse null bases have two components:
a method to compute a sparse vector in the null space of the given matrix and a
mechanism for ensuring linear independence when previously computed null vectors
are augmented with the new null vector. To keep the time complexity of null basis
algorithms low, the latter is achieved by insisting that the null basis be a trapezoidal
matrix; that is, a matrix of the form B1 L where L is either an identity matrix
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or a lower triangular matrix with nonzero diagonal elements. However, this might be
a severe restriction on the structure of the null basis since there may be sparser null
bases that are not trapezoidal.

The fundamental question that we consider is the following: Given an underde-
termined matrix A whose nonzero elements are algebraically independent, is there
a combinatorial condition that characterizes a set of linearly independent vectors in
the row space (or null space) of A? By a combinatorial condition we mean a con-
dition that uses only the zero-nonzero structure of the set of vectors. This question
was raised as an unsolved problem in [9]. A solution to this problem will enable us
to design algorithms for computing sparse bases for the row and null space without
imposing artificial structure constraints to ensure linear independence.

Since we are concerned only with sparse bases, we can restrict our attention to
elementary vectors of the subspace (Fulkerson [3], aockafellar [10], and Tutte [12]).
(This restriction is necessary to obtain a nontrivial solution of the problem.) Accord-
ingly we now turn to a discussion of elementary vectors. Let x (xl,x2,... ,xn) be
a vector in the n-dimensional real vector space Rn. The support of x is the subset of
{1, 2,..., n} given by supp(x) {i: xi = 0}. Now let W be a subspace of dimension
k of R’. An elementary vector of W is a nonzero vector of W whose support is min-
imal, that is, does not properly contain the support of any nonzero vector of W. It
is easy to verify that two elementary vectors of W with the same support are scalar
multiples of each other and hence, up to scalar multiples, W has only finitely many
elementary vectors. It is also easy to verify that the elementary vectors of W span
W. It follows that a sparsest basis of W contains only elementary vectors. Thus it is
natural to look for a basis of W among its elementary vectors.

Hence a more precise statement of the problem is to combinatorially characterize
a set of linearly independent elementary vectors in the row space or the null space
of an underdetermined matrix whose nonzero elements are algebraically independent.
This problem turns out to be quite difficult, since the set of supports of the elementary
vectors of a subspace W can have an intricate structure. However, we now consider a
situation in which the set of supports of the elementary vectors has a simple structure,
and in this case, we provide a combinatorial characterization of linear independence.
Our proof of this result uses techniques from multilinear algebra.

Let A be a k n matrix that is nondegenerate in the sense that every submatrix
of A of order k is nonsingular. Then the support of each elementary vector in the
row space of A has cardinality n k + 1 and each subset of { 1, 2,..., n} of cardinality
n- k + 1 is the support of some elementary vector (see the next section). Similarly
the support of each elementary vector in the null space of W has cardinality k + 1
and each subset of {1, 2,..., n} of cardinality k + 1 is the support of some elementary
vector. Even in the restrictive case in which W is the row space or null space of a

nondegenerate matrix, it seems difficult to determine if a set of elementary vectors
of W is linearly independent. The linear independence of elementary vectors of such
subspaces W does not generally depend only on the supports of the elementary vectors.
Thus we need a more restrictive assumption than nondegeneracy.

A k n matrix A is generic if all of its kn elements are nonzero and they form an
algebraically independent set over the rational number field Q. If A is generic over
Q, then obviously every submatrix of A of order k has a nonzero determinant. Hence,
generic matrices are nondegenerate.

We thank Steve Vavasis for rekindling our interest in this problem by raising it during the open
problem session at the IMA workshop on Sparse Matrix Computations in October 1991.
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In this paper we identify a necessary and sufficient condition that must be satisfied
by the supports of the elementary vectors of the row space (respectively, null space)
of a generic matrix in order that the elementary vectors be linearly independent. This
condition leads to a polynomial algorithm for determining whether a set of elementary
vectors in one of these two subspaces is a basis.

Let {Jl,.J2,...,Jt} be t subsets of {1,2,...,n} each of cardinality rn- 1.
Then satisfies the m-intersection property provided

(1.1) NePJl_<m-IPI (VPC_{1,2,...,t},P

The main results of this paper, as they apply to the row space and null space problems,
are the following two theorems.

THEOREM 1.1. Let A be a k n matrix that is generic over Q, and {I, I2,..., It}
denote a collection of t <_ k subsets of {1, 2,..., n} each of cardinality n- k + 1. Then
the elementary vectors x(I1), x(I2),..., x(It) with supports I, I2,...,/t, respectively,
of the row space of A are linearly independent if and only if the set {I,I2,... ,It}
consisting of the complements of their supports satisfies the k-intersection property,
that is,

[f,ePI, l<-k-]PI (VPC_{1,2,...,t},PO).

THEOREM 1.2. Let A be a k n matrix that is generic over Q and {I, I2,..., It}
denote a collection of t <_ n- k subsets of {1, 2,..., n} each of cardinality k + 1. Then
the elementary vectors y(I), y(I2),..., y(It) with supports I, I2,..., It, respectively,
of the null space of A are linearly independent if and only if the set {I,I2,... ,It}
consisting of the complements of their supports satisfies the (n- k)-intersection prop-
erty, that is,

Iepl<-n-k-IPI (VPC_{1,2,...,t},P=/-

The combinatorial conditions given in these two theorems can be used to test the
linear independence of a set of elementary vectors in polynomial time. We now show
how this can be accomplished for the row space.

Let P be a nonempty subset of {1,..., k}. The condition in Theorem 1.1 can be
restated as

since Iliep Iil--I[-JieP il n. Without loss of generality, assume that the rows in
P are numbered P {1,...,p}. The last inequality yields

If we let X denote the k n matrix with rows x(I1),x(I2) ..,x(Ik) then this is
the set of Philip Hall conditions for the submatrix X[{1,...,p- 1},Ip] to have a

row-perfect matching.
We can use the above condition to test the linear independence of a set of ele-

mentary vectors in the row space when a partial basis of p- 1 rows is augmented
by a newly computed row p. We assume inductively that the partial basis satisfies
the k-interection property. Now when the pth row is added to the partial basis, we
check whether the submatrix in the preceding paragraph has a row-perfect matching.
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If it does, then clearly every set P C_ P that includes p satisfies the k-intersection
property. Also, every set P c_ P that does not include p satisfies the k-intersection
property by the inductive hypothesis. Hence the k-intersection property for row space
bases can be checked by solving k maximum matching problems. The matchings can
be computed in (9(kl"5e) time, where e is the number of nonzeros in the sparse row
basis.

Theorems 1.1 and 1.2 are consequences of a theorem (Theorem 2.1) about com-
pound matrices, and we briefly review this matrix construction. Let X be a p q
matrix and let r be a positive integer with r _< p, q. Let Sr,p denote the sequence
of all subsets of {1, 2,...,p} of cardinality r ordered lexicographically. Similarly, let
$r,q denote the sequence of all subsets of {1, 2,..., q} of cardinality r ordered lexico-
graphically. The rth-compound of X is the (P) (q) matrix C(X) with r,ows indexed
by Sr,p and columns indexed by Sr,q whose entry in the position corresponding to K
in S,p and L in Sr,q is the determinant det X[K, L] of the submatrix of X with row
indices in K and column indices in L. An important fact about compounds is that the
multiplicative property Cr(XY) C(X)Cr(Y) holds. In particular, if X is a square
nonsingular matrix of order n and Y X-1, then Cr(Z)Cr(Z-1) Cr(_n) IN,
where N =_ (), and hence C(X) is nonsingular. Notice that if X is a square matrix
of order n, then C-I(X) is, up to multiplication of some of its rows and columns by
-1, the adjoint of X.

The rest of this paper is organized as follows. In 2, first we show that the problem
of linear independence of a set of elementary vectors (of the row space and null space)
of a k n nondegenerate matrix A is equivalent to the problem of determining whether
the determinant of a certain submatrix of the (k- 1)th compound matrix C_1 (A) of
A is not zero. The entries of C-I(A) are the determinants of all the submatrices of A
of order k- 1 arranged in lexicographical order of their set of row indices and of their
set of column indices. If the determinant of this submatrix of Ck-I(A) is nonzero,
then we show that k-intersection property must be satisfied. However, to prove the
converse for generic matrices, we must show that the k-intersection property implies
that this determinant is not identically zero. Since the determinant of a submatrix of
Ck-1 (A) is an expression involving determinants of submatrices of A of order k 1,
we are faced with the task of showing that it is not a determinantal identity.2 We
conclude 2 by stating our main result (Theorem 2.1) about compound matrices.
In 3 we discuss certain concepts in multilinear algebra, namely, tensor spaces and
exterior vector spaces that are needed to obtain our results. In 4 we state our main
theorem (Theorem 4.1) in multilinear algebra, and in 5 we apply this theorem to
prove Theorem 2.1. In 6 we give the proof of the main theorem. In 7 we make a
few concluding remarks and state a conjecture.

2. Elementary vectors and matrix compounds. Let A be a k n nonde-
generate, real matrix and let W be the row space of A. Then each elementary vector
of W contains exactly k- 1 zeros and n- k + 1 nonzeros. Moreover, given any subset
I of {1, 2,..., n} of cardinality n- k + 1, there is an elementary vector x(I) of W

2 One could argue that our task would have been a lot simpler if we had only to verify that a
certain expression involving determinants of submatrices of A was a determinantal identity, that is,
was equal to zero no matter what real values were substituted for the indeterminate entries of A.
To show that an expression is not a determinantal identity, one must verify that one can choose real
values for the indeterminate entries in order that the expression is not zero. One cannot expect to
be able to construct these real values, but only to show that they must exist.
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whose support equals I. The nonzero coordinates of the vector x(I) are given by

(2.1) x(I)j (-1)p+l det A[:, k){j}] (j e I),

where pj equals the number of integers r in I that are less than j. Here I is the
complement of I in {1, 2,..., n} and A[:, I U {j}] denotes the full-rowed submatrix of
A of order k determined by the columns indexed by the integers in i U {j}. To see
that this defines a vector in the row space of A whose support is I, we expand the
determinant in (2.1) by column j of A and obtain

k

(2.2) X(I)y E(--1)idetA[,]aij (j e I),
i--1

where denotes the complement of {i} in {1, 2,..., k} and A[, ]is the submatrix of
A determined by the rows and columns indexed by the integers in and I, respectively.
For j in I, x(I)y is a linear combination of the elements in column j of A by (2.2).
For j in I, x(I) is zero by (2.1), since it is the determinant of a matrix in which
column j of A occurs twice. Thus x(I) is a linear combination of the rows of A and
hence belongs to the row space of A.

Let x(I1),x(I2),...,x(It) be t elementary vectors of W. For each vector x(/)
there exists a unique vector y(Ij) in Rk such that

x(Ij) y(Ij)A.

Moreover, since the rank of A is k, x(I1),x(I2),...,x(It) are linearly independent
vectors in Rn if and only y(I1),y(I2),...,y(It) are linearly independent vectors in
Rk. Since x(/) 0 for in , the vector y(/) is the unique (up to scalar multiples)
nontrivial solution z in Rk of the k 1 equations

zA[:, b] =0.

Thus by Cramer’s rule

(2.3) y(I) (-1)detA[,] (i 1,2,...,k),

where, as before, is the complement of {i} in {1, 2,..., k}. Hence

is a k t submatrix of the (k- 1)st compound Ck-1 (A) of A. (More precisely, it is a
k t submatrix of Ck-1 (A) with row multiplied by (-1) for 1, 2,..., k.) Note
that Ck-I(A) is a k (k_l) matrix. Summarizing, we have what follows.

(i) The elementary vectors x(I1),x(I2),... ,x(It) of the row space W of the k n
nondegenerate matrix A are linearly independent if and only if the k t subma-
trix C-l(A)[:,{Ii,I2,...,It}] of C_l(d) determined by its columns indexed by
11, I2,..., It has rank equal to t. Equivalently, the elementary vectors x(I1), x(I2),...,
x(It) are linearly independent if and only if not all of the determinants

det Ck-1 (A)[{il, i2,..., i-}, {I1, I2,..., }],
(1 < il < i2 <’" < it <_ k)

vanish.
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If we assume that the matrix A is generic over Q, then by taking t k we see that
the problem of determining whether a set of k elementary vectors of the subspace W
(the row space of the k n generic matrix A over Q) is a basis of W is equivalent to
the problem of determining whether the determinant of a submatrix of order k of the
(k- 1)st compound Ck-I(A) does not vanish identically (that is, is not an identity
satisfied by the determinants of the submatrices of order k- 1 of k n real matrices).

Considerations similar to the above apply to the null space U of the matrix A.
Assume again that A is nondegenerate. Then the supports of elementary vectors of
U are exactly the subsets I of {1, 2,..., n} of cardinality k + 1. Indeed by Cramer’s
rule again, it follows that for each subset I of {1, 2,..., n} of cardinality k + 1 the
elementary vector y(I) of U with support I satisfies

y(I)i (-1)idetA[:,I\ {i}] (i e I).

Let y(I1),y(I2),... ,y(It) be t elementary vectors of U. There exists an n- k n
matrix B with rank equal to n- k such that the row space of B equals U. Suppose
that some submatrix of B of order n- k has a zero determinant. Then after ele-
mentary row operations we may assume that some row of B has at least n- k zeros.
Since ABT O this implies that some set of k columns of A is linearly dependent
contradicting the nondegeneracy of A. We conclude that the matrix B is also nonde-
generate. Let z(I) be the unique vector in Rn-k such that y(I) z(I)B. The vectors
y(I1), y(I2),..., y(It) are linearly independent if and only if z(I1),z(I2),... ,z(It) are
linearly independent. The vector z(Ij) is the unique (up to scalar multiples) nontrivial
solution v of

vB[:, Ij] =0.

Using Cramer’s rule as above we make the following conclusion.
(ii) The elementary vectors y(I), y(I2),..., y(It) of the null space U of the k by n

nondegenerate matrix A are linearly independent if and only if the n- k t submatrix
of C,-k-1 (B) determined by its columns indexed by {I, I2,..., It} has rank equal to
t. Equivalently, the elementary vectors y(I1), y(I2),..., y(It) are linearly independent
if and only if not all of the determinants

det Cn-k-1 (B)[{il, i2,..., i-}, {I, I2,..., }],
(1 < il < i2 <.’. < it <_ n- k)

vanish.
If A is generic over Q, then by taking t n- k, we see that the problem of

determining whether a set of n- k elementary vectors of the null space U of A is a
basis of U is equivalent to the problem of determining whether the determinant of a
full-rowed submatrix of order n- k of the (n- k- 1)st compound of the matrix B
does not vanish identically.

Now let A denote an m n real matrix. Let J1, J2,..., Jt be t < m subsets of
{ 1, 2,..., n} each of cardinality m- 1. We consider the m t (full-rowed) submatrix

(2.4) C,_1 (A)[:, {J1, J2,..., Jt}]

of the (m- 1)st compound of A. If for some i j we have Ji Jj, then two columns
of (2.4) are identical and hence the matrix has linearly dependent columns. If t > m
then (2.4) has more columns than rows and hence has linearly dependent columns.
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We generalize these observations by showing that if the t sets J1, J2,..., Jt do not
satisfy the m-intersection property, then the columns of (2.4) are linearly dependent.

Assume that p > 2 of the sets, say J1, J2,..., Jp, satisfy

J r J2 r r Jp J wherelJI-q>_m-p+l.

First suppose that the columns of A with index in J are linearly dependent.
Then the matrix A[:, J] has linearly dependent columns and hence its rank is at most
m- 2. We may multiply A with nonsingular matrices corresponding to elementary
row operations without changing linearly independent sets of columns of A. By the
multiplicative property of compounds, the same observation can be made for com-
pound matrices of A. Hence we may assume that the last two rows of A[:, J1] are zero
rows. This implies that the column of Cm-(A) with index J is a zero column and
hence (2.4) has linearly dependent columns.

Now suppose that the columns of A with index in J are linearly independent.
Using the multiplicative property of compounds again we may assume that

where Iq is the identity matrix of order q, O is an m q q zero matrix, and F is
an m-q n-q matrix. Let Z be the m p submatrix of (2.4) corresponding to
the index sets J, J2,..., Jp. Let J Ji \ J (i 1, 2,...,p). The submatrix of Z
determined by its last m-q rows equals

era-1 (A)[{q + 1,..., }, {J1, J2,..., Jp}] Cm-q- (F)[:, {J[, J,..., J}l.
By the Laplace expansion for determinants along a set of rows, it follows that for each
j between 1 and q, the row of Z indexed by j is a linear combination of its last m-q
rows. Hence the rank of Z is at most

m-q <_ re-(m-p+ 1)=p- 1.

Thus the columns of Z, and hence the columns of (2.4), are linearly dependent if
J, J2,..., Jt do not satisfy the m-intersection property.

Our main result about compound matrices asserts that for generic matrices, the
converse holds as well.

THEOREM 2.1. Let A be an m x n matrix that is generic over Q. Let J1, J2,..., Jt
be t subsets of {1, 2,..., n} each of cardinality m- 1. Then the rank of the m x t
submatrix of the (m 1) st compound Cm- (A) given by

Cm_ (A)[:, {J, J2,..., Jt}]

equals t if and only if J, J2,..., Jt satisfy the m-intersection property.
In the next section we discuss the multilinear algebra that we use to show that if

A is generic over Q and J, J2,..., Jt are subsets of cardinality m- 1 that satisfy the
m-intersection property

(2.6) & m-IPI (P C_ {1,2,... ,t}),

then the columns of (2.5) are linearly independent.
Theorem 2.1 is proved in 5.
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3. Tensor and exterior spaces. We refer the reader to Marcus ([6] and [7]) for
the basic multilinear algebra discussed in this section. As already pointed out, our task
is made more complicated by the fact. that we must show that a certain expression is
not a determinantal identity. The multilinear algebra is needed (apparently) to show
the existence of certain numbers without actually being able to construct them.

Let W be an n-dimensional vector space over R. The tensor product of W with
itself is the n2-dimensional real vector space W (R) W spanned by the decomposable
tensors x(R)y with x and y in W. The tensor product is an abstract algebraic construc-
tion. If W equals Rn and x (xl,x2,... ,Xn) and y (yl, y2,..., yn) are vectors in
W, then a concrete realization of x (R) y is the outer product xTy. In this case, W (R) W
is the vector space spanned by the outer products of vectors in W.

The ruth tensor power of W is the n’-dimensional real vector space

(R)’W W (R)... (R) W (m W’s)

spanned by all of the decomposable tensors Wl (R)’’" ( Wm where {w,..., Wm} C_ W.
The essential facts to keep in mind about the tensor power (R)’W are as follows.

(1) The map

(wi,..., w,) --* wi (R)’" (R) w,

is multilinear: for instance,

for all real numbers c and d and all vectors w,w, w2,..., Wm in W.
(R)

for all real numbers c and all vectors w, w2,..., Wm in W.
(3) If {x,x2,... ,xn} is a basis of W then the set of nm vectors

{xil (R)... (R)xi. :1 _< il,...,ira <_ n}

is a basis of (R)roW.
An inner product (., .) on W induces an inner product on (R)’W by defining

m

(Wl (R)’’" (R)Wrn,Vl (R)’’" (R) Vm) H(wi’ vi)
i--1

and extending linearly.3

The wedge product of vectors w,..., Wm is the element of (R)mw defined by

Wl / / Wm E sign(a)wa(1) (R)... (R) Wa(m),

where the summation extends over all permutations a of {1, 2,..., m} and sign(a)
is +1 if a is an even permutation and -1 otherwise. If wl, w2,..., Wm are the row
vectors of an rn n matrix B, then Cm (B) is a concrete realization of Wl A... A w,.
The subspace of (R)’W spanned by all the wedge products of m vectors of W is the
ruth exterior space4 over W and is denoted by Amw. The essential facts to keep in
mind about the exterior space Amw are as follows.

3 All of this applies to the complex number field provided we use a unitary inner product.
4 It is also called the mth Grassmann space over W and the ruth skew-symmetric space over W.
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(i) If {Yl, Y2,..., Yn} is a basis of W, then the set of vectors

is a basis of Amw (in particular, these vectors are linearly independent) and

dim Amw =(nm).
(ii) wl A.. "Awm 0 if and only if the vectors wl,..., Wm are linearly dependent.
(iii) If U is a subspace of W of dimension m with a basis ul,...,u,, then {ul A

A Um} is the subspace Amu of Amw of dimension one.
Using the definition of wedge product, we calculate that the induced inner product

on the exterior space Amw satisfies

(3.1)
(U A... A Urn, V A A Vm) m!(ul (R)... (R) u,, V A A Vm)

m! det

Hereafter we shall denote any matrix of the form as the one appearing in (3.1) by
specifying its (i, j)th element"

(u,vj) (for i,j 1,...,m).

If U and V are two subspaces of W of dimension m, then it follows from (ii)
and (iii) that for bases {ul,...,Um} of U and {vl, ,Vm} of V, whether or not
(Ul A... A urn, vl A’" A Vm) equals zero is independent of the choice of the bases
{Ul,..., urn} and {vl, Vm} of Y. For convenience we denote any of these inner
products (ul A... A urn,v1 A." A Vm) by [U, Y]. The orthogonal complement of a
subspace V of W is denoted by V+/-.

LEMMA 3.1. Let U and V be subspaces ofW of dimension m. Then the following
are equivalent:

[u, v] # o,
(b) U+/-NV={0},

v y+/- {0}.
Proof. Let ul,..., Um be a basis of U. If there were a nonzero vector vl in U+/-NV,

then extending vl to a basis vl,..., Vm of V we see that the determinant in (3.1) is
zero and hence [U, Y] 0. Therefore (a) implies (b). Now assume that (b) holds and
consider the vector space U (ul,..., u_l, ui+l,..., Uml spanned by all but the ith
basis vector ui. It follows from (b) that dimU nV 1, since we can obtain a vector
in this subspace by subtracting appropriate multiples of the vectors in a basis of U
from u. Let v be any nonzero vector in U n V. By (b) again we conclude that
(ui, v) = 0. We can repeat this argment to conclude that (u, v) - 0, for i 1,

m. Hence the determinant in (3.1), 1-In_l (uj, vj) 0 and thus (a) holds. Since
[U, V] IV, U], (b) and (c) are equivalent and the lemma follows.

4. A theorem in multilinear algebra. We now formulate a theorem concern-
ing exterior spaces that enables us to solve our original problems concerning bases for
the row space and null space of a generic matrix. In the next section we show how this
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theorem and a combinatorial lemma can be used to prove Theorems 1.1 and 1.2. In
the final section we prove the multilinear algebra theorem. It will be convenient to use
the language of projective geometry and algebraic varieties to describe the theorem.

We obtain an equivalence relation on points in RN+I by defining two points
X (Xo,... ,iN) and x’ (x0’,... ,Xv) to be equivalent if there is a real constant ,
such that x ,kx. Then N-dimensionM projective space over the real field pN (a) is
the set of equivalence classes of this relation on Rg+ \ {0}, and (x0,..., iN) are the
homogeneous coordinates of x. Note that the projective dimension is one less than
the number of coordinates.

Let

Uo {p p (xo,..., iN) e pN(R) and x0 # 0}.

Then the map taking (Xl,...,XN) RN to (1, Xl,...,iN) pN(R) is a one-to-
one correspondence between Rg and U0 because given p (x0,... ,iN) U0, we
can multiply by (l/x0) to obtain an equivalent point and then compute the inverse
map from U0 to ag. Thus we can identify U0 with RN. If H {p - 0 p
(O, Xl,...,Xg)} "the hyperplane at infinity," then N-dimensional projective space
has the representation pN (R) U0 [-J H, i.e., it consists of Rg augmented with the
hyperplane at infinity.

A variety is the solution set of a system of multivariate polynomials p 0,...,
Ps 0 in the variables xo,..., iN. It is a projective variety if each p is a homogeneous
polynomial, i.e., each term in p has the same total degree.

Let W be an inner product space of dimension n over It. Let m be an integer
with 1 < rn <_ n. The set of all subspaces X of W of dimension rn are the points
of a projective variety 1/Y,. Choose an m n matrix E whose rows form a basis
of X, and consider the map X Cm(E) that maps the subspace X to the set of

(r) determinants of all submatrices of order rn of E. This is a well-defined, injective
map from the set of m-dimensional subspaces of W to real projective space P of
(projective) dimension (r) 1. The (=) homogeneous coordinates are called the
Pliicker coordinates ofX and they satisfy certain quadratic relations called the Pliicker
relations. If we choose another matrix F whose rows form a basis of X, then the effect
is to multiply the Pliicker coordinates of X by a common nonzero scale factor. The
projective variety l/Ym consists of all points that satisfy the Pliicker relations and is
known as the Grassmann variety.

A subvariety of ]rn is a variety that is a nonempty subset of the subspaces in

l/Ym. A subvariety of 1/Ym is proper provided that it does not contain at least one
subspace of W.

Let X denote a subspace of W of dimension m. By property (i) of exterior spaces,
Am-1X is a subspace of (R)’-1W of dimension m. By property (ii) A"(Am- X) is a
subspace of (R)m(m-)W of dimension one. Let U, U2,..., Um be rn subspaces of W of
dimension rn- 1. Then each A’-U is a subspace of (R)m-w of dimension one, and
(Am-U1) A (A"-U2) A... A (Am-1Um) is a subspace of (R)m(m-)W of dimension zero
or one. The subspaces U, U2,..., Um satisfy the dimension m-intersection property
provided that

(4.1) dimCliep U < m-IPI (VP c_ {1,2,...,m},P =/- 0).

Clearly the dimension m-intersection property is the analogue for subspaces of the
m-intersection property for subsets.

We now come to the main theorem, the proof of which is given in the final section.
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THEOREM 4.1. Let W be an inner product space over R of dimension n, let m be
an integer with 2 <_ m <_ n, and let UI, U2, Um be m subspaces ofW of dimension
m- 1. Define Wm(U1, U2,..., Um) to be the set of all subspaces X ofW of dimension
m satisfying

(4.2) JAm(Am-IX), (Am-IU1) A (Am-Iu2) A... A (Am-lUm)] O.

Then ]4]m(U1, U2,..., Urn) is a proper subvariety of Wm if and only if UI,..., Um
satisfy the dimension m-intersection property.

In other words, the theorem states that there exists an m-dimensionM subspace
X of W for which (4.2) is not satisfied if and only if U1,..., Um satisfy the dimension
m-intersection property.

Let X have a basis X1,..., Xm, and for 1,..., m, let Xi be a subspace of X
spanned by Xl,... ,xi-1, xi+l,... ,Xm. Then making use of (3.1), we can express the
inner product in (4.2) as

(4.3) [(Am-lXl) A (Am-Ix2)A A (Am-lXm),
(Am-Iu1) A (Am-Iu2) A’" A (Am-lUm)]

=det[ [Xi, Uj] (fori, j=l,...,m).

We will make use of this representation of the inner product in the remaining sections
of the paper.

5. Proofs of Theorems 1.1, 1.2, and 2.1. Before applying Theorem 4.1 to
compound matrices, we prove the following lemma that may be of interest in its own
right.

LEMMA 5.1. Let I1, I2,..., It be t < m subsets of {1, 2,..., n} each of cardinality
m- 1, and assume that the m-intersection property

(5.1) Clisp &[ _< m- IPI
holds for all nonempty subsets P of {1,2,...,t}. Then there exist m- t subsets
/t+l,..., Im of {1, 2,..., n} of cardinality m- 1 such that (5.1) holds for all nonempty
subsets P of {1, 2,..., m}.

Proof. It suffices to show that there exists a subset It+l of {1, 2,..., n} of cardi-
nality m- 1 such that (5.1) holds for all nonempty subsets P of {1,2,..., t + 1}. If
INiep Ii < m-IPI for all subsets P of {1,2,... ,t} with IPI _> 2, then we may choose

It+l to be any subset of {1, 2,..., n} of cardinality m- 1 different from I1, I2,..., It.
Hence consider the situation when there exists a subset P with IPI >_ 2 that sat-

isfies the m-intersection property (5.1) as an equality. We show that then { 1, 2,..., t}
can be partitioned into maximal subsets that satisfy (5.1) as equalities.

Let P and Q be two nondisjoint subsets of {1,2,...,t} satisfying Nip Ii]
m- IP[ and riQ Ii[ m- IQI, respectively. Write X =_ fipIi and Y =_ riQIi.
Then applying the identity iX r YI [XI + IYI- ix YI we obtain

Since niEPIi, niEQIi C_ niEPnQIi, we see that

(niepIi) u (nei) c nepnQ&.
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Putting it all together, we obtain

m IP u QI -> neeue
nee I1 + nee h}- I(ne,,:,&) u (nee&)l
m -IPI + m -I1- I(n,]) u (ue])l

>_ m- IPI + "- I1- I(n,,:,ez)l
>- - IPI +- Il- (.- IP n 1)
m IP u QI.

Therefore

It follows that there exists a partition {P1,P2,... ,P} of {1,2,... ,t} into t _> 1 sets
such that (5.1) holds with equality for each Pi and

nee I] m- I1 implies that Q c_ Pi for some i.

We proceed to show how the set It+l may be chosen in this situation. Let x
be any element of ClieplI, and choose It+l to be any subset of m- 1 elements of
{1, 2,..., n} such that

Since IZ+,l m- 1 and by the choice of It+l we have ]It+ n(ne.,h)l m-IPl- 1,
It+ contains exactly IP] elements not in NepI. To prove that (5.1) holds for all
nonempty subsets P of {1, 2,..., t + 1}, it suffices to show that for each nonempty
subset Q of {1, 2,..., t} for which NeQ I m- IQI, we have

(5.2) nice/ /t+.

Case 1. Q c_ p. Then

xECep1/C_NeQ/ and xIt+
imply that (5.2) holds.

Case 2. Q c_ Pj for some j : 1. Then using (5.1) and the fact that P1 is maximal
with respect to the property that Nep1 I m- IPI, we obtain

Hence

I(nee&) \ (neP&)l m -I1- q >_ IPI + -.
Now by construction, t-bl contains exactly IPll elements not in niepiIi. Since ClieQIi
contains at least ]PI + 1 elements not in iep Ii, there exists an element y in ieQIi
that is not an element of It+. This completes the proof. [

Proof of Theorem 2.1. In 2 we showed that the rn-intersection property is a
necessary condition for the matrix (2.5) to have full row rank. Now suppose that
the rn-intersection property holds. It follows from Lemma 5.1 that it suffices to
prove that the rank of the matrix (2.5) equals m when t rn. Thus assume that
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t m, that is, that (2.5) is a square matrix. Since the entries of A are algebraically
independent over Q and since the determinant of the matrix (2.5) is a polynomial in
the entries of A with integer coefficients, it suffices to show that this determinant is
not identically zero. Let el, e2,..., en be the standard basis of Rn and let Uk denote
the subspace spanned by {ei" E Jk} (k 1, 2,..., t). We write the standard basis
of Uk as {ek ekm-l}" Since {J1, J2,..., Jm} satisfy the m-intersection property,
it follows easily that {U, U2,..., Urn} satisfy the dimension m-intersection property.
By Theorem 4.1 there exists a subspace X of Rn of dimension m such that (4.2) does
not hold.

Let B be an rn n matrix whose rows xl, Xm form a basis of X. Now

(x A... Ax_ Ax+ A... Ax,,e A... he,_

=det[ (xj,e) (forj=l,...,i-l,i+l,...,m, t=l,...,m-1)
Cm- (B)[i, Jk].

Hence from (4.2) and (4.3), we have

det[ [Xi, Uj] (for i,j 1,...,m)
det C,_ (B)[:, {J, J2,..., J,}] 0.

Proofs of Theorems 1.1 and 1.2. The proof of Theorem 1.1 follows immediately
from Theorem 2.1 and the calculations of 2. The necessity of the (n- k)-intersection
property for the linear independence of the elementary vectors of the null space of A,
y(I), y(I2),..., y(It), is an immediate consequence of the calculations of 2.

An argument is needed to derive the converse of Theorem 1.2 from Theorem 2.1,
since the assumption that the matrix A is generic does not imply that the matrix
B (defined in 2), whose row space is the null space of A, is generic. But we shall
overcome this by first choosing a generic B and then defining A.

Assume first only that A is a nondegenerate matrix and the sets {I,I2,... ,It}
satisfy the (n- k)-intersection property. Since the entries of each elementary vector
are polynomials in the entries of A, it follows that the elementary vectors in the null
space of A, y(I),y(I2),... ,y(It), are linearly dependent if and only if the determi-
nantal polynomial vanishes identically for every submatrix of order t of the t x n
matrix Y formed by these elementary vectors. The theorem follows if we can show
that there exists at least one nondegenerate k x n matrix A of rank k for which
y(I1), y(I2),..., y(It) are linearly independent, for then at least one of these deter-
minantal polynomials does not vanish identically. Let B be an n- k x n generic
matrix. Let x(I),x(I2),... ,x(It) be elementary vectors of the row space of B with
supports I1, I2,..., It, respectively. Choose A to be any k x n matrix of rank k such
that ABT O. Since BAT O the arguments in 2 show that A is nondegener-
ate. Since the (n- k)-intersection property holds, we conclude from Theorem 1.1
that x(I),x(I2),...,x(It) are linearly independent elementary vectors in the row

space of B. We now take the vectors x(I), x(I2),..., x(It) as the elementary vectors
y(I1), y(I2),..., y(It) in the null space, of A. This completes the proof.

6. Proof of the main theorem. In this section we give the proof of Theo-
rem 4.1. The following two elementary lemmas used in our proof concern vector
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spaces generated by certain operations on subspaces of a vector space; we review
these operations now. If V1 and V2 are subspaces of a finite dimensional vector space
W, then their union

v. uv= {v.ve v.} u {, v v.}

is generally not a vector space, since it is not necessarily closed under vector addition.
The sum

and intersection

V + V {v + v "v V, v. V}

y Y. {v v y y.}

are vector spaces, and it is easy to verify that the sum is the smallest vector space
that contains the vectors in V1 U V2.

LEMMA 6.1. Let k be a positive integer and let V, V,..., Vk be subspaces of a

finite dimensional vector space W over R. Then V C_ V U... U Vk if and only if
V c_ V for some i.

Proof. Let V(= VNV for 1,...,k. Then each V is asubspaceofV. If
each V is a proper subspace of V, then V \ Ui=kV V \ Ui=1V/ is a set of positive
Lebesgue measure of dimension dim V. []

LEMMA 6.2. Let k >_ 2 be an integer and let V1,..., V be subspaces of a finite
dimensional inner product space W over R. Then

kN:=. (V +". + VkL) ’L.

Proof. First suppose that k 2. Then the proof follows by choosing an or-
thonormal basis B2 of V1 N V2, extending to orthonormal bases B2 U B of V and
B12 U B2 of V2, and then extending to an orthonormat basis B2 UB U B2 U B of W.
Then B U B1 U B2 is an orthonormal basis of V + V, and it follows that B2 is an
orthonormal basis of (V + V)+/-. We now assume that k > 2 and use induction on
k. Using the inductive assumption twice, we obtain

Ni% k-1(ni=:l" V/) nV V ((nj1/4) +/- + v)+/-

V2 -- Vk’L_ --{- v’L -l-

Proof of Theorem 4.1. Let U, U2,..., U, be m subspaces of W of dimension
m- 1. Then ]4;m(U, U2,..., Urn) is clearly a subvariety of ]/Ym. Thus the theorem is
only concerned with whether or not it equals

This proof is technically the most demanding part of the paper, and hence we
provide a sketch of our proof technique before we embark on proving the theorem.
The necessity of the dimension intersection property is the easier part of the proof.
We use dimension-counting arguments to show that certain subspaces occurring in the
determinantal representation (4.3) of the inner product (4.2) have nontrivial intersect-
ion, leading to a large zero submatrix that makes the determinant zero. Sufficiency is
harder, and is proved by induction on m, by showing that when the dimension inter-
section property is satisfied there exists a subspace X of dimension m, constructed
using U,..., U, such that (4.2) does not hold.

First assume that the dimension m-intersection property (4.1) does not hold.
Without loss of generality, assume that V NiP= Ui satisfies

(6.1) dim V m p + 1,
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where p is an integer with 2 _< p _< m. Let X be any subspace of W of dimension
m. We have dimX+/- n m, and by (6.1), dim V+/- n m + p- 1; hence there
exists a subspace F, contained in both V+/- and X, of dimension p- 1. Choose a set
{xl, x2,..., Xp_ } ofp- 1 linearly independent vectors spanning F. For j 1, 2,..., p,
by Lemma 6.2

c_ +... + v

Since F and U- are subspaces of V+/-, and

dimF + dimUj+/- (p- 1) + (n- m + 1) n- rn +p > dimV+/- n- m +p- 1,

we have F N U- # {0} for each j 1, 2,... ,p. We now extend Xl,X2,... ,Xp_ to a
basis Xl,X2,... ,Xm ofX and let Xi be the subspace ofX with basis Xl,..., xi-1, Xi+l,

x, (i 1, 2,..., m). By the above it follows that

Xi V U {O} (i=p,p+l,...,m;j=l,2,...,p),

since such subspaces Xi contain F and F (h U - {0}. Hence by Lemma 3.1

[Xi, Uj]=O (i=p,p+ l,...,m;j= l,2,...,p).

Therefore the matrix in (4.3) whose (i, j)-entry equals [Xi, Uj] (i, j 1, 2,..., rn) has
an rn-p+ 1 p zero submatrix with (rn-p + 1) + p rn + 1, and it follows from the
Frobenius-KSnig theorem that its determinant equals zero. This implies that (4.2)
holds for every subspace X of W of dimension rn and hence 1/Ym(U, U2,..., Um)

Now we prove sufficiency of the dimension intersection property. Assume that
U1, U2,..., Um are subspaces of W of dimension rn- 1 satisfying the dimension
intersection property (4.1); in particular, no two of UI,U2,...,Um are equal. We
prove by induction on rn that there exists a subspace X of W of dimension rn for
which (4.2) does not hold.

First we consider the base case rn 2. Then U and U2 are distinct subspaces of
W of dimension one and we choose X to be the subspace of dimension two spanned
by u and u2 where u is a basis for U and u2 is a basis for U2. Then U A U2

(A2(A1X)) ((AIU1) A (AIU2)) and (ul A u2, Ul A U2) 0. Hence (4.2) does not hold.
Now suppose that rn > 2. If U is a subspace of W of dimension rn- 1, then we

define a subvariety 9r(U) of Wm by

’(U) {X" X e 1/Vm, dimX V U+/- _> 2).

Let X be a subspace in Wm \ :Tz(u). Since dimX rn and dim U+/- n- rn + 1, by
the choice of X, we have dimX g U+/- 1. Thus the subspace X* X (h (X ffl U+/-) +/-

is in W,_. The map

CU ]m \ flz’(U) .- Wm-1, where Cu(X) X*,

is a rational map.
We proceed to construct a subspace X of dimension m, m- 1 subspaces of X of

dimension rn- 2, and rn- 1 subspaces U of dimension rn- 2 to set up the inductive
step in the proof.
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Since U, U2, Um are distinct subspaces of the same dimension m- 1, it follows
from Lemma 6.1 that

u u u

Let Xm be any vector satisfying

(6.2) Xm e Um \ (U U... U Um_).
Let X be a subspace in 1d;m \ 9(U,) containing Xm and let {x,... ,Xm-l,xm} be an
orthogonal basis of X containing Xm. Let Xi be the subspace of X that is spanned
by {x,..., xi-, Xi+l,..., Xm}, (i 1, 2,..., m). We have Xm CUr. (X). Since the
vector Xm belongs to Um and X1,..., Xm-1, by Lemma 3.1 we have

(6.3) [X, Um] 0 (i 1, 2,..., m 1).

Furthermore, since dimX n U 1,

(6.4) [Xm, Urn] :/: O.

By (4.3), (4.2) is not zero if and only if

det[ [Xi, Vj] (for i,j 1, m)

is nonzero, and hence by (6.3) and (6.4), if and only if

det[ [Xi, Uj] (for i,j 1,...,m- 1)

is nonzero. Thus (4.2) does not hold if and only if

(6.5) [(Am-lXl) A (Am-lx2)A"" A (Am-lXm_l),
(Am-Iu1) A (Am-Iu2) A’" A (Am-lUm_l)] # O.

We now reduce the dimensions of U,..., Um- by one to apply the inductive
assumption.

By (6.2), Xm does not belong to the subspaces U,..., Um_x, and hence for each
i 1, 2,..., m 1, there exists a basis {u, u,..., Um_l} of Ui with

(6.6) (Xm, U})=O(j=l,2,...,m-2) and (x,,u,_l)=l.

Let subspaces of W be defined by

U=Uin{x,}+/- (i=l,2,...,m-1).

By (6.2) we have

dimU=m-2 (i=l,2,...,m-1).

We now use the bases of Xi and Uj, Lemma 3.1, and the determinantal formula in
(3.1) to compute [Xi, Uy] for i, j 1, 2,..., m 1. Let X be the subspace of Xi with
basis {xj j 1,...,i 1, + 1,...,m- 1}, (i 1,2,...,m- 1). Using the Laplace
expansion of the determinant in (3.1) by the last row (which is the vector (0,..., 0, 1)
by (6.6)), we see that each [Xi, Uy] m[Xf, U]. Hence (6.5) equals

(6.7) [(Am-2x) A (Am-2x;) A"" A (A"-2X_I),
(Am-2u) A (Am-2u)... (Am-2u_I)].
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It now follows that (4.2) is not identically zero provided (6.7) is not zero. By the
induction hypothesis, (6.7) is not zero provided U, U,..., Um-1 satisfy the dimension
(m 1)-intersection property. Our proof is complete if we show that these subspaces
satisfy the required dimension intersection property for some choice of Xm.

Assume to the contrary that, for any admissible choice of Xm in U \ (U U... U
U+/- there exists an integer k with 2 < k < m- 1 and a subset of { 1 2 m- 1}m--l,

(both depending on x,) of cardinality k, say the subset (1, 2,..., k}, such that

(6.s) dim nik=lU >_ (m-1)-k+l=m-k.

Since k ki= Ui - i=1Ui we have

kdim i=1 gi

__
m- k,

and since U, U2,..., U, satisfy the dimension m-intersection property, we have

k(6.9) dim g)i= Ui m k.

Hence there exists a set Z C_ Um \ (U U U +/-Um_) of positive Lebesgue measure in

Um such that

(6.10) k

We now show that (6.10) leads to a contradiction of the dimension m-intersection
property (4.1).

If (6.10) holds for all Xm E Z, we claim that

(Note that now we are considering the sums of the vector spaces, and not the unions
considered in (6.2).) The proof of the claim is also by contradiction. If the claim were
not true, then (U +... + U) Um is a proper subspace of Um and hence we may
choose the vector Xm Z in (6.2) so that Xm is in Um \ (U +’-" + U). Let V be
the subspace of W spanned by xm Then using the definitions of the subspaces Ui’

we have

k V"I" (n/k=1 ni= Ui,i:lU CI Ui) (V + U +". + Ui-) -1- C (U + + Ui_)+/- k

where we have used Lemma 6.2 twice. The containment relation we have obtained
contradicts (6.10). We conclude that (6.11) is true whenever (6.10) holds.

Writing (6.11) in the form

Um C_ U1 +,,. + U (n=lUi)-L,

we find

n=U C_Ur

Therefore

k kUm n (hi=1Ui) ni=. Ui.

But now (6.9) and (6.12.) contradict the dimension m-intersection property (4.1). This
completes the inductive proof of sufficiency and the proof of the theorem. [:]
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7. Coda. Theorem 4.1 implies a sufficient condition for a collection of vectors
in the wedge product of a vector space to be linearly independent.

COROLLARY 7.1. Let W be an inner product space over R of dimension n and
let m be an integer with 2 <_ m <_ n. If U1,U2,...,Um are m subspaces of W of
dimension rn- 1 that satisfy the dimension m-intersection property, then Am-IuI,
Am-u2,... ,Am-Um as vectors in Am-w are linearly independent.

Proof. Assume that U, U2,..., Um are subspaces of W of dimension rn- 1 satis-
fying the dimension m-intersection property. Recall that each Am-Iu is a subspace
of Am-w of dimension one and thus can be regarded as a nonzero vector of Am-w.
It follows from Theorem 4.1 that there exists a choice of subspaces X, X2,..., X, of
W of dimension m- 1 such that

[Am-IXl A Am-ix2 A"’ A Am-iXm, Am-IUl A Am-It2 A"" A Am-lUm] O.

Let X /m-lxi and w Am-Iu for 1,2,...,m. It follows from (3.1) and
elementary column operations that if w, w2,..., w, are linearly dependent, then [X A
X2 A... A Xm,Wl Aw2 A’" Aw,] 0. Hence it holds that wl,w2,... ,Wm are linearly
independent. [:]

We remark that the converse of Corollary 7.1 is not true in general. For example,
let n 4 and m 3 and let el,e2, e3, e4 be the standard basis of W R4. Also
let U1, U2, and U3 be the subspaces of W spanned by {e, e4}, {e2,e4}, and {e3, e4},
respectively. Then U, U2, U3 do not satisfy the dimension 3-intersection property,
since U g U2 N U3 = {0}. Using the concrete realization of the wedge product,
we see that /2U1,/2U2, and /2 U3 are spanned by e A ea (0, 0, 1, 0, 0, 0), e2 A
e4 (0, 0, 0, 0, 1, 0), and e3 A e4 (0, 0, 0, 0, 0, 1), respectively, and hence are linearly
independent.

However the converse of Corollary 7.1 is true if m n.
COROLLARY 7.2. Let UI, U2, Ut be subspaces ofRm of dimension m-1. Then

/km-lu1,Am-lu2,. ,Am-lut are linearly independent if and only if U, U2,. Ut
satisfy the dimension m-intersection property.

Proof. Let J c_ {1,2,...,t}. Since U,U2,...,Ut are (rn- 1)-dimensional sub-
spaces of an m-dimensional space, the dimension of VjejUj is at least rn- IJI. By
Lemma 6.2,

Hence dim(jejUj) <_ m- IJI (and so equals m- IJI) if and only if the vectors
Am-1U1, Am-1U2, Am-1Ut are linearly independent.

The following lemma identifies the support of the elementary vectors of an arbi-
trary subspace (taken as the row space of a matrix) of Rn.

LEMMA 7.3. Let A be an rn n real matrix of rank rn. Let I be a subset

of {1, 2,..., n}. Then there exists an elementary vector of the row space of A with
support I if and only if (i) the rank orAl:, I] equals rn-1 and (ii) the rank orAl:, It2{j}]
equals rn for each j E I.

Proof. First assume that there is an elementary vector x(I) with support I. If the
rank of A[:, I] equals rn, then any linear combination of the rows of A that vanishes
on is a trivial linear combination. If the rank of A[:, t2 {j}] is less than rn for some
j E I, then there is a nontrivial linear combination of the rows of A that vanishes on
t2 {j} and hence x(I) is not an elementary vector. Assertions (i) and (ii) now follow.
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Now assume that (i) and (ii) hold. Let K be any subset of I of cardinality m- 1
such that the rank of A[:, K] equals m- 1. Then with I replaced by K, (2.1) defines
an elementary vector x(I) in the row space of A with support I. cl

We now give a criterion for a set of elementary vectors of a subspace of Rn (again
taken as the row space of a matrix) to be a basis.

THEOREM 7.4. Let A be an m n real matrix of rank m and let x(I1), x(I2),...,
X(Im) be elementary vectors in the row space W of A. Let Uj be the subspace of Rm
spanned by the columns of A[:,Ij] (j 1,2,...,m). Then {x(I),x(I2),...,X(Im)}
is a basis of W if and only if U1, U2,..., Um satisfy the dimension m-intersection
property.

Proof. By Lemma 7.3 each of the subspaces Uj has dimension m- 1. For each
j 1, 2,...,m there exists a vector y(Ij) such that x(Iy) y(Iy)A. The vectors
x(I),x(I2),... ,X(Im) are linearly independent if and only if y(I), y(I2),..., y(Im)
are. By Lemma 7.3, there exists K C_ Iy such that ]Kjl- m- 1 and the rank of
A[:,Kj] equals m- 1. We can identify the vector y(/j) with the vector Am-IUj
(cf. (2.3)). If y(I),y(I2),...,y(Im) are linearly dependent, then A’-IU A A
Am-IUm 0 and hence by Theorem 4.1, U, U2,..., Um do not satisfy the dimension
m-intersection property.

Conversely, suppose that U, U2,..., Um do not satisfy the dimension m-intersec-
tion property. Then, as remarked in the proof of Theorem 4.1, we have

and hence Am-1U1,... Am-1Um are linearly dependent. [:l

In the case that A is generic over Q, we have shown that the subspaces U,..., Um
satisfy the dimension m-intersection property if and only if the sets I,..., Im satisfy
the m-intersection property. More generally we make the following conjecture.

CONJECTURE. If A is an m n matrix whose nonzero elements are algebraically
independent over Q, then the elementary vectors x(I), x(I2),..., X(Im) form a basis
of the row space of A (that is, by Theorem 7.4, the subspaces U, U2,..., Um satisfy
the dimension m-intersection property) if and only if

rank A[:,CiepIi] <_ m-IPI (UP c_ {1,2,...,m},P # 0).
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DUALITY AND BLACK BOX INTERPOLATION I: THE ONE
VARIABLE NONDEROGATORY CASE *

VAIDYANATH MANI AND ROBERT E. HARTWIG

Abstract. The one variable black box interpolation problem is solved for the case of a non-

derogatory linear operator on a vector space over a closed field.

Key words, interpolation, black box, nonderogatory

AMS. subject classifications. Primary 15A21, 15A15, 41-10, 34-36

1. Introduction. Consider a linear map A: ]; - ) on a possibly infinite di-
mensional vector space ]; over an algebraically closed field F. Suppose that a vector

f E ) admits an annihilating polynomial over IF and thus has a minimal annihilaling
polynomial (m.a.p.) (A) such that r(A)f 0. It is clear that if (A) is the minimal
polynomial for f, then its degree 0 rn if and only if f, Af,..., Akf are linearly
independent for k rn- 1 and linearly dependent for k rn as vectors in ]?. The
existence of the minimal polynomial is crucial in our consideration, since in essence
it turns our problem into one that is finite dimensional and hence a matrix problem.
Suppose further that has the form

(1.1) ,(A) lI (A Aa)qk

k--1

where ql + + qs m and Ai are distinct.
As a consequence of Euclid’s algorithm we have "duality," i.e., the identity

(1.2) N[(-)kl)qk]-N[(1-)k)qk
k=l

is valid. For now let us set

G =G.
k--1

Last, we assume that these generalized eigenspaces Gk N[(A- AkI)q] are finite
dimensional with dimension qk and bases {(k)}, k 1,2,... ,s,j 0,... ,qk 1. In
this case, needless to say, duality gives that

(1.a) (A-)I)q f ** f C.(kJ (kj)
k=l k=l j=O

In other words we assume that the restricted operator A .la has one Jordan block
per eigenvalue, i.e., A is nonderogator. The following are important examples where
duality holds.

* Received by the editors July 28, 1992; accepted for publication (in revised form) by A. Berman,
August 24, 1993.

North Carolina State University, Raleigh, North Carolina 27695-8205 (hartwig@math.
ncsu.edu, vmani@unity:ncsu.edu).
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a. Dim (V) is finite, e.g., for matrices where A A and V Fn.
b. A ID d/dx and ]2 c[a, b] (the continuous functions on [a, hi) as well as
c. A and (f(x)) f(px)(p is a prime) and ]2 Fix].
Consider ]2 as a vector space of functions. In the black box interpolation problem

the aim is to expand a given function f E V in terms of the eigenfunctions of A subject
to the constraint that one is only allowed to use up to a prescribed number of terms,
say at most s. That is, we are given the following:

a. Operator A, its spectrum, and its generalized eigenvectors, possibly infinite in
number;

b. Function f;
c. The sparsity of the problem, i.e., either the exact (finite) number of terms in

the basis expansion that one is willing to use or, in a weaker version, an upper bound
for this number;

d. A black box

f

which generates a set of output values, say Aif(aj), 0, 1,..., for one or more input
values aj, which we refer to as nodes. We denote these output values by f(i)(ay)
and refer to them as "derivatives" of f at aj. Clearly these values will serve as initial
conditions for the interpolation problem. From these output values we want to find
out the following:

a. which finite subset of generalized eigenspaces Gk, k 1,..., s must be selected;
b. which basis vectors (k) in these eigenspaces must be used;
c. coefficients c(kj) such that our given f can be expanded as

(1.4)
qk --1

k= j=O

The difference here from the usual interpolation problem is that the basis vectors (i.e.,
the choice of eigenfunctions) as well as the exponents qk are unknown beforehand (see
[11, [2]).

Remark 1. In the matrix case, when f(a) a_Tf or (_alf}, the duality relation (1.2)
may also be derived from the existence of the Drazin inverse An of A. Indeed, if Zi
denote the principal idempotents of A, then f Zlf+... +Zsf since Z1 +...+Zs I.
To show that Zkf N(A-/kI)qk, we first observe that

rl(A)f 0 :: rl(A)Zlf 12I (A- AkI)q Zlf O.
k--1
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Thence U(A-/1I)ql Zlf 0, where

u + (z: +... +
k----2

is invertible with inverse

U-1 lI [(A- kI)D]qkzl - (Z2 -..--- Zs).
k--2

Consequently, (A-)1I)ql Zf 0 and likewise Zkf E Gk, as desired.
Remark 2. For the case of the derivative operator D, duality is usually proven via

the fundamental theorem for initial value problems.
Remark 3. In the case when A one may show duality directly by using the

fact that ; is made up of polynomials.
Remark 4. In the above three cases, the generalized eigenspaces and their bases

are as follows.
Case 2. Gk {f; (]I)- AkI)qf(t) 0}, which has basis

(1.5) {tJ ekt; j O, 1,..., qk 1}.

Case 3. G {f; ( pkI)q f 0}, which has basis

(1.6) {(logx)Yx;j 0, 1,...,qk --1}.

Case 1.

which has as a basis the links in the Jordan chain of length qk, associated with eigen-
value ,, i.e.,

(1.7) {Xl, (A ,k[)Xl,... (A,- kI)qk-lXl}.

Remark 5. It should be noted in Remarks 2 and 3 that dim Gk is in fact equal to
qk, without further assumption, while in case 1, the matrix case, we must still assume
that A is nonderogatory. Indeed, using an integrating factor and induction it follows

m--1at once that every solution to (II) (I)my 0 must be of the. form j=0 cJtjeat,
so that the functions tJeat span Gk. Since linear independence is trivial, they form a
basis.

Remark 6. The m.a.p, x e converts the basis in Remark 2 into a basis for
Remark 3 as illustrated in [4] for the Cauchy equation. This is really a consequence
of the isomorphism between the underlying Lie algebras.

Remark 7. Except in the one-dimensional case, the degree m of the minimal
polynomial , need not be equal to the sparsity of the vector! For example, if f tet,
then () (A- 1)2 relative to ID, yet f is only one-sparse. This illustrates that we
must be more careful in the higher dimensional cases.

Remark 8. We may think of (1.2) as a local version of the primary decomposition
theorem or as an operator version of the Chinese remainder theorem. We stress the
fact that equality in (1.2) holds whenever we have Euclid’s algorithm at our disposal.
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Recall that if try(A)= 1-Ij(A- Ak)qk, then gcd(l(A),..., rts(A))- 1, and hence by
Euclid’s algorithm there exist polynomials gi(A) such that 1 g11 +"" + gsrt,. If we
now set Zi gi(A)(A). Then I Z1 +... + Zs and hence

f Zlf +... + Zf,

where Zf g(A)i(A)f E G. Moreover it follows that

(1.9) ZZj f 0 for = j, Z2 f Zf for 1,... ,s.

The operator Zj is the spectral components of A associated with Aj.
Remark 9. In general, we want to select our bases to make our black box inter-

polation, as easy as possible, i.e., with as few conditions as possible.
Consider (k where Ak a. and qk q. Since (k is cyclic, we may either select a

cyclic basis

(1.10) ui" {o,Ao, A2o,..., Aq-lo}

where the minimal polynomial for o is (A- a)q, a Jordan chain basis

(1.11) vj" {(A aI)a-lo, (A aI)a-2o,..., (A aI)o, o},

which starts with the eigenvector Vo (A aI)-lo, or a reverse Jordan basis

(1.12)

where the leader o is a generalized eigenvector of grade q, i.e., (A- aI)qo 0 =/=
(A- al)q-lo. It is easily seen that if U [Uo,...,uq-1],V [Vo,...,Vq-1], and
W [Wo, wl,..., Wq_l], then

(1.13) AU- UL[(A- a)q], AV- VJ(a), and AW- WJa(a)T,

where L L[f(A)] [_e2,_e3,...,en,-fT] is the companion matrix of the monic
polynomial f(A) fo + fl r- -- n with.f [fo,..., fn-1]T and

a 1 o
a 1

(1.14) Jn (a) aln + N
1

0 a nn

is the standard Jordan block. Needless to say, AkU ULk and AkV VJk. The
bases in (1.10) and (1.11) are further related via the equation

(1.15) U- Van(a),

where the n x n binomial matrix ’n(a) is given by

(1.16) (an(a))ij () ai-j, i,j 0,...,n- 1.

It should be noted that the following are true.
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(i) Row k contains the binomial coefficients from (a + 1) k.
(ii) The entries in Dn indeed vanish for < j.

(iii) As a matter of fact, D(a) is the Wronskian of {tie’fly!} evaluated at t 0.
(iv) n(O)-1 n(-o).
(v) AkU AkYFt(a)= YJkt(a).

For later use let us denote the submatrix of n, which is made up of its first k columns
by t.

Let us now go through the two stages of the black box problem for a nonderogatory
A. We shall see that the case of one data node, say value a, allows us to solve the
nonderogatory black box interpolation problem.

2. The nonderogatory case. Our procedure consists of two phases. In Phase
I we use initial conditions f(J)(a) AJf(a) at node a to find operator L (A). Then
by factoring ?(A), we find the eigenvalues Ak and A and their multiplicities qk in .
Subsequently, the associated Jordan bases V(kj) are known.

In Phase II we again use initial conditions to find the coefficients in the basis
expansion. That is, we decide which of the basis vectors are actually used to represent
f. An interesting aspect of this approach is that Phase II is needed to complete Phase I!

Suppose that we are given f and its derivatives and we want to express f as a
linear combination at most m of its generalized eigenvectors. This means that (A)f
0 for some polynomial (A). Indeed, we may assume that the minimal polynomial of
f has exact degree m, say, () bo + blA +... + ATM. However, unlike degree m,
coefficients by are unknown. The minimality of m assures that f, Af,..., Am-if are
linearly independent as vectors in ]2. Now AJ(A)f 0 for all j 0, 1,..., m, which
we may evaluate at point a to give 0 im__o biAi+J f(a). In matrix form this becomes
Hb- -h or

(2.1)

f(a) Af(a) Am-lf(a)
Af(a) A2f(a) Amf(a)
A2f(a) A3f(a) Am+If(a)

Am-f(a) A’f(a)... Am-2f(a)

=(-)

b-I A2m-lf(a)

We shall show shortly that the invertibility of this Hankel matrix H is really equivalent
to the following problem, which actually can be rephrased as the homogeneous case of
Phase II!

Given (A)f 0, what additional conditions of the form Af(aj) 0 are needed on

f to ensure that f vanishes?

Assuming for now that the Hankel matrix is invertible, we may solve (2.1) to
find coefficients bk and hence (x). Given that IF is closed, we now factor (x) as

1-Ikm__ (x A)q, which shows which of the eigenvalues from the point spectrum
have actually been used and what their indices are in the minimal polynomial
for f. As a last step, we compute the associated generalized-eigenvector bases for
and proceed to Phase II.

Phase II. The only problem remaining is that of finding the rn Fourier coefficients.
In theory this is a standard procedure analogous to the imposition of initial conditions
on the solutions of a differential equation.

To find coefficients C(kj) in (1.4), we again use the fact that the derivatives f(J)



26 VAIDYANATH MANI AND ROBERT E. HARTWIG

AJf(a) are all known With aid of the Jordan bases, we start by writing (1.4) as

(2.2)
qk --1 s

E E (x) E
k=l j=o k=l

where Vk is as in (1.13) and V- IV1,..., Vs]. It then follows that for all j -0, 1,...,

(2.3)
k=l k=l

For simplicity consider next the case )k , q- qk and recall that

Now recall that for a given q < m, Ft.(a) denotes the rn q submatrix of tm made
up of its first q columns, i.e., m [t(a),*]. We now come to the crucial identity

V V V
VJ VN VN

(2.4) fm(a) Ft.(a)

V(Jq)m-1 V(N)m-1 V()q-1
in which the last matrix has Toeplitz form

VO Vl Vq--
0 Vo Vl Vq--2

(2.5) T "..
Vl

0 Vo

In general, when a Ak we indicate qk qk matrix T by Tk(x). Substituting in (2.3)
we arrive at

(2.6)

Am-if 0

0 _C

_C2

Ts c

or f- Tc. In this example, the matrix

is the Wronskian matrix of the functions

{xJekx/j!},j 0, ,q- 1 at x 0

and hence is always invertible!
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We note in passing that the transpose of this matrix enters in the proof of the
spectral theorem [3].

Evaluating (2.6) at x a, we see that to obtain an invertible matrix T
diag[T1,... ,Ts], we must require that eigenvectors W(ok) corresponding to the roots
of (A) cannot vanish at node a, i.e., W(o)(a) 0 for all k 1,..., s. We then obtain
the unique solution c T-t-f thus completing the proof of Phase II.

We make the following remarks before continuing with the proof of Phase I.
Remark 1. The above solution shows that the exponential function also plays

a dominant role in black box interpolation as seen in the spectral theorem and the
theory of functions of a matrix.

Remark 2. We solved the more general black box interpolation problem in which
we only gave an upper bound m for the number of terms to be used.

Remark 3. Matrix gtn is a special case of the more general block derivative matrix
defined as follows.

Let A(A) [Aij (A)] be a block matrix in which each block Aij(A) is differentiable.
Define n n block matrix n by

i) ]i}i_j [A(A)]"(2.7) (gtn[A(A)])ij- j

If A(A) exp(aA) we recover a(a). It can be shown that

n[A(A)B(A)] n[A(A)]n[B(A)],

and that if A()B(A)= B(A)A(), then n[A(A)] and n[B(A)] commute.
Let us now return to the question of the invertibility of Hankel matrix H in

(2.1), again under the nonderogatory assumption. Consider the set of rn functions
{f,..., fm} from vector space ]; and their associated m m Wronskian matrix

H(x) H[fl(x),..., fm(x)]

f f2
Af Af2

’-fl m-lf:

The key question is how does the invertibility of H(x) relate to the independence of
vectors fi(x). Following the theory of differential equations we have Lemma 1.

LEMMA 1. If H(x) is invertible for at least one choice of vector x (say at x a
in set7)), then fl, f2,..., fm are linearly independent over T).

Proof. As always let mi=1 cifi 0. Then i= ciAJfi 0 for all j 0, 1,...,
and hence H(x)c _0. At x a, we arrive at H(a)c_ 0, which, because of the
invertibility of H(a), yields _c- 0_. In other words, fj are linearly independent. [:]

The converse is generally not true and requires the additional fact that fi are
solutions to an operator equation.

LEMMA 2. Suppose that A is nonderogatory and (A)f 0 where

fI
k=l

and ql +’" + qs rn.

Then the initial conditions AJf(a) O,j 0,... ,m-1 force f O, provided that the
eigenvectors V(ok) of A corresponding to )k do not vanish at node a.
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Proof. By duality ](A)f- 0 gives f- E=I Vaca as in Phase II. From (2.6) we
see that /Tc f 0, and hence c 0 provided that A is nonderogatory and the

eigenvectors satisfy V(oa) (a) : 0.
We now may apply this proof to give the desired converse.
LEMMA 3. If fl,..., fm are linearly independent (on 9) and (A)fi 0 then

H(x) is invertible for all x (in 7)).
Proof. If this is not true, let H(a) be singular. Then there exists c 0 so that

H(a)c 0. With scalars ci, we next define the function g Clfl --’" - Cmfm. Then
(A)g 0, while H(a)c 0 ensures that AJg(a) 0 for j 0,..., rn- 1. Invoking
Lemma 2 we then may conclude that g 0, which in turn implies that fl, f2,..., fm
are linearly dependent, a contradiction.

It should be clear that Lemma 2 is the "kingpin" in the whole interpolation story
as well as in the question of solvability! Returning to Phase I and (2.1), we may
therefore conclude that if (/) is the minimal polynomial for f, then the functions
{AJf},j 0,..., rn- 1 are linearly independent solutions to (A)f 0 and hence by
Lemma 3 the Hankel matrix H [Ai+Jf(a)] is indeed invertible for all a.

We remark in closing that, since the differential operator II) is nonderogatory, the
above approach gives a constructive proof to the existence of a unique solution to an
nth order linear differential equation (II))f 0, with constant coefficients, without
using the fundamental theorem for initial value problems! This illustrates the fact
that it is an algebraic result and not an analytic result.

Acknowledgment. The authors thank Dr. Michael Singer for posing this prob-
lem and several stimulating discussions.
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EXISTENCE AND UNIQUENESS OF OPTIMAL MATRIX SCALINGS*

V. BALAKRISHNANt AND S. BOYD$

Abstract. The problem of finding a diagonal similarity scaling to minimize the scaled singular
value of a matrix arises frequently in robustness analysis of control systems. It is shown here that
the set of optimal diagonal scalings is nonempty and bounded if and only if the matrix that is being
scaled is irreducible. For an irreducible matrix, a sufficient condition is derived for the uniqueness of
the optimal scaling.

Key words, diagonal similarity scalings, scaled singular value minimization, irreducible matrices
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Notation. R (C) denotes the set of real (complex) numbers. R+ stands for
the set of positive real numbers. For z E C, Re z is the real part of z. The set of
rn n matrices with real (complex) entries is denoted Rmn (cmn). I stands for
the identity matrix with size determined from context. For a matrix P Cmn
pT stands for the transpose and P* stands for the complex conjugate of pT. iipi
is the spectral norm (maximum singular value) of P given by the square root of the
maximum eigenvalue of P*P. (For a vector v Cn, Ilvll is just the Euclidean norm.)
For P Cnn, Tr P stands for the trace, that is, the sum of the diagonal entries of
P.

1. Introduction. Given a complex matrix M Cnn and a nonsingular diag-
onal matrix D Cnn, the similarity-scaled singular value of M corresponding to
scaling D is defined as

f(M, D) IIDMD-l[.
The optimal diagonal scaling problem is to minimize f(M, D) over all diagonal non-
singular matrices D"

(1) fmin(M) inf {IIDMD-1IIID cnxn, D is diagonal and nonsingular}.

We refer to fmin(M) as the optimally scaled singular value of M.
Problem (1) arises in the robustness analysis of control systems with structured

uncertainties. For further details, see [11] and [4]. Much research has focused on
the related problem of finding optimal (with various criteria for optimality) diagonal
preconditioners for use in iterative algorithms; see, for example, [5] and [7].

Reformulation as a convex optimization problem. We note that f(M, IDI)
f(M,D); we also observe that f(M,D) is homogeneous of degree zero in D, that is,

f(M, aD) f(M, D) for all nonzero a E C. Therefore, we may rewrite (1) as

(2) fmin(M) inf {lieDMe-D II D Rnn, D is diagonal, Tr D 0}.

Received by the editors August 10, 1992; accepted for publication (in revised form) by L.
Kaufman, September 30, 1993. This research was supported in part by Air Force Office of Scientific
Research under contract F49620-92-J-0013.
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The reason for rewriting (1) as (2)is that IleDMe-DII is a convex function of D--
this fact will prove important in the sequel--while IIDMD-111 is not [12], [13]. For
convenience, we let

V {D D e Rnn, D is diagonal, Tr D 0}.
In this paper, We do not concern ourselves with the solution of (2). We instead

investigate the set of minimizers for (2), that is, the set of optimal scalings )opt
defined by

(3) :Dop {D D T, I[eDMe-DII fmin(M)}
In the process, we provide a sufficient condition for :/:)opt to be nonempty (which means
the infimum in (2) is achieved) and a sufficient condition for Topt to be a singleton
(which means that there is a unique optimal scaling).

2. Boundedness of opt. We start with a few definitions.
DEFINITION 1. A permutation matrix P is a real, orthogonal n x n matrix (i.e.,

ppT pTp I) with entries that are either one or zero. We let P denote the set
of n z n permutation matrices.

DEFINITION 2. A complex matrix M is said to be reducible if there exists some
P P such that PMPT is block upper triangular, that is,

pMpT= [ Mll M2 ]0 M
where M, M22 are square matrices of appropriate sizes [6], [1]. A matrix that is
not reducible is termed ieducible.

Remark. For any permutation matrix P,

[]eDMe-D[] ][peDpTpMpTpe-DpT[.
Note that peDpT is diagonal and corresponds to just a reordering of the diagonM
entries of ep. Therefore, as far as the scaling problem is concerned, if a matrix M is
reducible, we may assume without loss of generMity that

0 M
bearing in mind that a reordering of the entries of the scMing D might be necessary.
In the sequel, the phrase "within a permutation" refers to such a reordering of the
entries of D and the corresponding permutation similarity transformation on M.

Let denote the sblevel set

The following theorem relates the irreducibility of M to the boundedness of the sub-
level sets.
Toa 2.1. For ae 7 > fmin(M), the sblevel set is boeded if ad ol

if M is irreducible.

Pro@ We first note the Nllowing lemma.
LEMMA 2.2. B holds that

Mll 0 ]0 M22
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where Mll, M12, and M22 are matrices of appropriate sizes.

Proof. The proof is left to the reader.
We first assume that M is reducible. Then to within a permutation,

M-
0 M22 J

where Mll E Cr r with r < n.
Then given any /> fmin(M) and D E T) (note that T) is nonempty), partition

D conformally with the block upper triangular structure of M above as

0 D2

Consider now a sequence of scaling matrices D(i) of the form

D(i)= [Dl-i(n-r) 0 ] i=1 2,0 D2+ir

(Note that D(i) e T) for 1, 2,
a sequence of scalings, IleD()Me-D()]I converges to

mx (il
which is less hn or equal

for every i, from Lemma 2.2. Thus for every -), > fmin (M), the set 7) is unbounded.
To prove the converse, let us assume that for some - > fmin(M), - is not

bounded. Then there is a sequence of scalings D(i) in D with some of the elements
of the diagonal scaling matrix D(i) with absolute value tending to infinity. Then,
there exists a subsequence D(n), which can be partitioned to within a permutation
&s

0 D2,n

where every element of Dl,n diverges to -oc with i, while every element of D2,n is
bounded below. (In fact, at least one of the elements of D2,n must diverge to cx), but
we will not use this fact.)

Thus the maximum singular value of

[ eDI,- Mlle-DI,n eDI,’ M12e-D2,- ]M
eD2 ’ M21e-DI’n eD " M22e-D’r

remains bounded with every element of Dl,n diverging to -oe while the elements of
D2,, are bounded below. This immediately means that M21 0, which shows that
M must be reducible.

COROLLARY 2.3. )opt i8 nonempty and bounded if M is irreducible.

Proof. If M is irreducible, the sublevel set T) is bounded for every - > fmin(M);
since IleDMe-DII is a continuous function of D over/), the infimum in (2)is achieved.
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Thus )opt is nonempty if M is irreducible. Boundedness of )opt follows from an
argument similar to the one in the proof of Theorem 2.1. El

We note that this sufficient condition for the existence of optimal scalings can
also be found in [3, Prop. 4].

Remark. Thus, irreducibility of M is a sufficient condition for the existence of
optimal matrix scalings. If M is reducible, two cases are possible: :/)opt may be empty
or it may be nonempty and unbounded. The following examples illustrate this.

Example 1 (/:)opt empty).

1 1 1 11 1 1
0 0 1

It is shown in the Appendix that )opt is empty. The optimally scaled singular
value is the limit of the sequence of scaled singular values corresponding to scalings
D(d) with d $ -oo:

D(d)
d 0 0 ]0 d 0
0 0 -2d

Example 2 ()opt nonempty and unbounded).

1 1 1]1 1 -1
0 0 1

It is shown in the Appendix that

D 0 d 0 d e (-oo, log(3/2)/61
0 0

3. :)opt for irreducible matrices. We next derive a sufficient condition for
)opt to be a singleton.

We first state without proof a condition for optimality of a scaling D.
THEOREM 3.1. Suppose the maximum singular value of eDMe-D is isolated,

i.e., of unit multiplicity. Then D is an optimal scaling for Problem 2 if and only if
there exist vectors u and v, with Ilull Ilvll 1, such that

eDMe-D v-- fmin(M) u
and Ilu(i)l=lv(i) i=12.., n,-DM*eD u= fmin(M) v,

where u() and v(), 1, 2,..., n are the components of u and v, respectively.
Theorem 3.1, which is a "magnitude-matching" condition on the components of

the left and right singular vectors of the scaled matrix, follows immediately from
simple gradient calculations (see, for example, [9]).

We also need the following theorem about the analyticity properties of the singular
values of a complex matrix that depends on a real parameter (see [2], [10], [8]).
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THEOREM 3.2. Let A(x) be a (complex) m n matrix, the entries of which are
analytic functions of a real parameter x. There are real analytic functions fi R --,

R, 1,..., min(m, n) such that, for all x E R,

(4) {ai(A(x)),i 1,...,min(m,n)} {Ifi(x)l,i 1,...,min(m,n)},
where ai(A(x)) stands for the ith singular value of A(x). (Thus, the f ’s are the
unordered and unsigned singular value functions of A(x).)

For convenience, we let ’7 fmin(M). With D being an optimal scaling, suppose
that (i) "7 is the isolated maximum singular value of eDMe-D and (ii) the left and
right singular vectors of eDMe-D (i.e., u and v in Theorem 3.1) belong to the same
coordinate subspace, i.e., a subspace of the form JieI span{ei}, where I is a proper
subset of the set of indices {1,... ,n} and {ei, i- 1,... ,n} are coordinate vectors
(i.e., unit vectors of an in the standard basis). We will show that this means that
)opt is not a singleton.

First note that to within a permutation, we have

where Ul, vl E Cr with 1 _< r < n; we then partition eDMe-D as

eDMe_D._[ MIM21 M22M12]
where Mll G Crxr. Of course, u v 1,...,r, and "7 is the optimally
scaled maximum singular value of Mll. Now, with

D(,) [ A(n- r)I1 0 ]0 -ArI2 + D,

where I is the r r identity matrix, consider

eD(A)Me_D(,X) Mll
e-AnM21

einM12
M22 I

For every A R, "7 is a singular value of eD()Me-D(), with u and v in (5) being the
corresponding left and right singular vectors. Moreover, every entry of eD()OMe-D()O

is an analytic function of/k. Then, using Theorem 3.2 and the assumption that the
maximum singular value of eDMe-D is isolated, we conclude that the maximum
singular value of eD(A)Me-D(A) is isolated, and hence a real analytic function of A for

[-, ], where e > 0 is sufficiently small. It follows immediately that for

’7 is the maximum singular value of eD(A)Me-D(A). In other words, D(A) is also an
optimal scaling for M, for A E I-e., ].

Conversely, let us assume that )opt is not a singleton, so that there exist D1, D2
:Dopt, with D # D2. Then, from the convexity of :Popt, D(A) AD1 + (1 A)D2
:Dopt for every A [0, 1]. Moreover, let us assume that ’7 is the isolated maximum
singular value of eD()Me-D() for A [0, 1].

Since D1 =/= D2, to within a permutation,

dlI1 0 0
0 d212 0

D1 -D2 ..
0 0 dpIp
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where p > 1, dl > d2 > > dp, and Ii,I2,...,Ip are identity matrices of sizes
P and iP__l ndi 0. Note thatnl, n2,..., np respectively. Of course, =1 n n,

every entry of eD(’X)Me-D()) is an analytic function of A, more specifically equal to
a ratio of polynomials of (the components of) z [edl c)’d2... e)’dP]. Then, using
Theorem 3.2, we conclude that since 9/is the maximum singular value of eD()Me-D(’)

for A E [0, 1], it must be a singular value of eD()Me-D() for all R.
Next, let u(A) and v(A) be the left and right singular vectors of eD(’)Me-D()’)

corresponding to the singular value 9/, so that

(6)
eD()M e-D() v(A)=9/ u(A),

e-D()M eD() u(A)=9/v(A),

with I1 ( )11 IIv( )ll . Then, by a direct calculation, u(A) and v(A) can be
chosen as analytic functions of A whose every entry can be expressed as a ratio of a

polynomial of z and the square root of a polynomial of z. Therefore, the limits, as
A --. +(x, of u(A) and v(A)exist. Next, from Theorem 3.1 we have
for i= 1,2,...,n and A e [0, 1], and therefore lu()(A)l Iv(i)(A)l for i= 1,2,...,n
and for all R.

Partitioning eDMe-D, u(A) and v(A) as

eDMe-D

where M Cnin, and u(A) and v(A) CTM for 1, 2,...,p, we now show that
9/is the optimally scaled maximum singular value of Mll or M22 or Mpp.

Consider the following equation, taken from (6).

e-)dl MllVl (,) --e-XdM12v2(A)+’" + e-dpMlpvp(A) 9/e-)dltl (,))

Letting -- -oc in the above equation, we get

MllVl (-(:x:)) 9/t (-(:x:)).

Since Vl(--(X))*Vl(--(X)) tl(--(X))*ltl(--(X) (this follows from
for 1, 2,..., n and for E R), we conclude that either 9/is the optimally scaled
maximum singular value of Mll or t (--(::X:)) V (--(:X3) 0. Continuing similarly,
it follows that 9/ is the optimally scaled maximum singular value of Mii, for some

1,..., p. (Recall our assumption that 9/is the isolated maximum singular value of
eD()Me-D() for [0, 1], so that only one of Mll,..., Mpp can have a maximum
singular value of 9/.)

Remark. Suppose ul (-c) 0 - vl (-oc). Then, by replacing by + /(where
/ R is fixed) in the preceding argument, we may show that [ul (-c)* 0... 0]* and
[vl(-oc)* 0... 0]* are left and right singular vectors of eD(V)Me-D(v) corresponding
to a singular value 9/for every r/ R, where D(r/) r/D1 + (1 r/)D2.

Remark. If the entries of D1 D2 are distinct, then there exist left and right
singular vectors of eD2Me-D corresponding to the maximum singular value that
both equal the same coordinate vector.

We thank Reviewer for drawing our attention to this remark.
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In summary, we have shown that there exist two different optimal scalings D1
and D2, with the optimally scaled maximum singular value being isolated for all
D() D2 + )(D1 D2), E [0, 1], if and only if there exist left and right singular
vectors of eD2Me-D. (indeed, of eD()Me-D(), , [0, 1]) corresponding to the
isolated maximum singular value, belonging to the same coordinate subspace.

We thus arrive at the following sufficient condition for the optimal scaling to be
unique.

THEOREM 3.3. For an irreducible matrix M, let D be an optimal scaling, and let
the maximum singular value of eDMe-D be isolated. Then D is the unique optimal
scaling if and only if there exists no pair of vectors u and v, with Ilull Ilvll 1
satisfying

eDMe-D v- u(7) e-DM*eD u--9/ V

that belong to the same coordinate subspace.
Remark. With D being an optimal scaling, if the maximum singular value of

eDMe-D is not isolated, then there always exist v and u with Ilull Ilvll 1,
satisfying (7) and belonging to the same coordinate subspace. In this case, the optimal
scaling may or may not be unique as the following two examples illustrate.

Example 3 (:/:)opt is a singleton).

[ 1 1 -1 1M= 1 1 1
-1 1 1

It is shown in the Appendix that the unique optimal scaling is zero, i.e., the "identity"
scaling, though [1/x/ 1/x/ 0]T is both a left and right singular vector corresponding
to the maximum singular value of two. Note that the maximum singular value at the
optimal scaling is not isolated.

Example 4 (:Dopt is not a singleton).

1 1 -1

11 1 1
1

-1 1

It is shown in the Appendix that )opt is given by

Dopt= D D= 0 d 0 d[-d,,d,]
0 0 -2d

where

For every D e Vopt [1/x/ 1/x/ 0]T is both a left and right singular vector of
eDMe-D corresponding to the maximum singular value of two. Note that the maxi-
mum singular value at the optimal scaling

d, 0 0
0 d, 0
0 0 -2d,

is not isolated, as with Example 3.
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4. Conclusion. We have derived sufficient conditions for existence and unique-
ness of optimal diagonal similarity scalings for scaled singular value minimization.
These conditions can be extended to the other structured scaling problems such as
block diagonal similarity scaling.

Appendix. More on the examples. Example 1. Let dl, d2, and d3 be the
diagonal entries of D, with dl q- d2 + d3-- 0. Then,

M 1 1 1 and eDMe-D ed2-dx 1 ed2-d3

0 0 1 0 0 1

We observe that if dl d2, then IleDMe-DII > 2, since the maximum singular
value of the principal 2 x 2 block exceeds 2. With dl d2 d, IleDMe-D II > 2 once

(eD[e-D) eDMe-D

again, since

2 2 2e3d ]2 2 2e3d

2e3d 2e3d 1 + 2e6d

is a matrix with positive entries, and therefore its spectral radius (the maximum mag-
nitude of its eigenvalues) is strictly greater than four, which is the spectral radius of its
principal 2 2 block (see, for example, [1]). Therefore, it follows that IleDMe-DII > 2
for every scaling D.

Finally, we note that with dl d2 d, as d --, -, IleDMe-DIl--- 2.
A plot of the singular values of of eDMe-D as a function of d is shown in Fig. 1.

4.5

3.5

3-

2.5-

2

1.5

0.5

0
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

FIG. 1. Example 1.

Example 2. We have

1 1 1 11 1 -1
0 0 1

and eDMe-D
1

ed2-dx
0

edl --d2

1
0

ed -d3

_ed2 -d3
1

with d + d2 q- d3 0.
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Once again, if dl #- d2, then ]leDMe-DII > 2. However, in contrast with Exam-
ple 1, with dl- d2- d, [[eDMe-D[[ is only greater than or equal to two. Since

(eDMe-D)*eDMe-D
2 2 0
2 2 0
0 0 1 + 2e6d

the singular values of eDMe-D are V/1-4-2e6d, 2, and 0. Therefore if d < d.
log(3/2)/6, II  M - II 2.

A plot of the singular values of of eDMe- as a function of d is shown in Fig. 2.

5

4.5

3.5

2.5

0.5

FIG. 2. Example 2.

Example 3. We have

M 1 1 1 and eDMe-D ed2-dl 1 ed-d3
-1 1 1 -ed3-dl ed3-d2 1

with d + d2 + d3 0.
Once again, if d d2, then [leDMe-D[[ > 2. With dl d2 d, consider

(eDMe-D)*eDMe- 2 + e-6d 2 e-6d -eTM

2 e-6d 2 -- e-6d eTM J--e-3d eTM 1 + 2e6d

The eigenvalues of this matrix are

1( 2e6d i(’4, (1 + + 2e-6d) =t= 1 + 2e6d + 2e-6d)2 16

Therefore the maximum singular value of eDMe-D exceeds two if d # 0, and equals
two if d 0. In other words, the unique optimal scaling is zero, i.e., the "identity"
scaling. Note that the maximum singular value at the optimal scaling is not isolated.

A plot of the singular values of of eDMe-D as a function of d is shown in Fig. 3.
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4.5

3.5-

3-

2.5-

2

1.5

0.5

-.3 -.2 -d.1 0:1
d

FIG. 3. Example 3.

0.5

Example 4. We have

1 -1

11 1 1
1

-1 1
and

1 edl -d2 _e_,dl -d3
e_,d2 -d 1 ed2 -d3eDMe-D 1_ed3-dz ed3-d

with dl + d2 q- d3 0.

4.5

3,5-

2.5

2

1.5

0.5

0
-d.

-0.5 -1.4 -(.3 -1.2 -{.i 1 0.1 0’.2 0’.3 0:4

FIG. 4. Example 4.

0.5

Once again, if dl = d2, then II DM -DII > 2. With d d2 d, consider

(eDMe-D)*eDMe-D
2 + e-6d 2 e-6d -(1/v)e-3d "]
2 e-6d 2 + e-6d (1/x/)eTM J-(1/v/-)eTM (1//)e-3d 1/2 + 2e6d
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The eigenvalues of this matrix are

11(1/2 + 2e6d )4, + 2e-6d) +/- V/(1/2 + 2e6d + 2e-6d)2 16

From this, it follows that the maximum singular value of eDMe-D equals two if
d E I-d,, d,], where

d, (1/6)log

Note that the maximum singular value of eDMe-D is isolated for d E (-d, d,).
A plot of the singular values of of eDMe-D as a function of d is shown in Fig. 4.
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ON THE STABILITY OF THE BAREISS AND RELATED
TOEPLITZ FACTORIZATION ALGORITHMS*

A. W. BOJANCZYKt, R. P. BRENT$, F. R. DE HOOG, AND D. R. SWEET

Abstract. This paper contains a numerical stability analysis of factorization algorithms for com-
puting the Cholesky decomposition of symmetric positive definite matrices of displacement rank 2.
The algorithms in the class can be expressed as sequences of elementary downdating steps. The
stability of the factorization algorithms follows directly from the numerical properties of algorithms
for realizing elementary downdating operations. It is shown that the Bareiss algorithm for factorizing
a symmetric positive definite Toeplitz matrix is in the class and hence the Bareiss algorithm is sta-
ble. Some numerical experiments that compare behavior of the Bareiss algorithm and the Levinson
algorithm are presented. These experiments indicate that generally (when the reflection coefficients
are not all of the same sign) the Levinson algorithm can give much larger residuals than the Bareiss
algorithm.

Key words. Toeplitz matrices, Bareiss algorithm, Levinson algorithm, numerical stability
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1. Introduction. We consider the numerical stability of algorithms for solving
a linear system

(1.1) Tx b,

where T is an n n positive definite Toeplitz matrix and b is an n 1 vector. We
assume that the system is solved in floating point arithmetic with relative precision
by first computing the Cholesky factor of T. Hence the emphasis of the paper is on
factorization algorithms for the matrix T.

Roundoff error analyses of Toeplitz systems solvers have been given by Cy-
benko [10] and Sweet [22]. Cybenko showed that the Levinson-Durbin algorithm
produces a residual which, under the condition that all reflection coefficients are pos-
itive, is of comparable size to that produced by the well-behaved Cholesky method.
He hypothesised that the same is true even if the reflection coefficients are not all pos-
itive. If correct, this would indicate that numerical quality of the Levinson-Durbin
algorithm is comparable to that of the Chol.esky method.

In his Ph.D. thesis [22], Sweet presented a roundoff error analysis of a variant of
the Bareiss algorithm [2] and concluded that the algorithm is numerically stable (in
the sense specified in 7). In this paper we strengthen and generalize these early results
on the stability of the Bareiss algorithm. In particular, our approach via elementary
downdating greatly simplifies roundoff error analysis and makes it applicable to a
larger-than-Toeplitz class of matrices.

After introducing the notation and the concept of elementary downdating in 2
and 3, in 4 we derive matrix factorization algorithms as a sequence of elementary
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downdating operations (see also [4]). In 5 we present a first order analysis by bound-
ing the first term in an asymptotic expansion for the error in powers of e. By analyzing
the propagation of first order error in the sequence of downdatings that define the
algorithms, we obtain bounds on the perturbations of the factors in the decomposi-
tions. We show that the computed upper triangular factor " of a positive definite
Toeplitz matrix T satisfies

T fTf + AT, I]ATII <_ c(n)ellTII,

where c(n) is a low order polynomial in n and is independent of the condition number
of T. Many of the results of 2-5 were first reported in [5], which also contains some
results on the stability of Levinson’s algorithm.

In 6 we discuss the connection with the Bareiss algorithm and conclude that the
Bareiss algorithm is stable for the class of symmetric positive definite matrices. Fi-
nally, in 7 we report some interesting numerical examples that contrast the behaviour
of the Bareiss algorithm with that of the Levinson algorithm. We show numerically
that, in cases where the reflection coefficients are not all of the same sign, the Levinson
algorithm can give much larger residuals than the Bareiss or Cholesky algorithms.

2. Notation. Unless it is clear from the context, all vectors are real and of
dimension n. Likewise, all matrices are real and their default dimension is n x n. If
a e }n, ilal denotes the usual Euclidean norm, and if T e .nxn, IITI denotes the
induced matrix norm:

Our primary interest is in a symmetric positive definite Toeplitz matrix T whose
i, jth entry is

tij tli-jl.

We denote by ek, k 1,..., n, the unit vector whose kth element is 1 and whose
other elements are O. We use the following special matrices:

1 0 0 0
n-1

Z E tTi+l e/T 0 "’.

= "’. 0 0
0 0 1 0

0 0 1

n 1 0

J =-- E en-i+leT
i=1

0 1
1 0 0j

The matrix Z is known as a shift-down matrix. We also make use of powers of the
matrix Z, for which we introduce the following notation:

I if k=0,
Zk Zk if k > 0.
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The antidiagonal matrix J is called a reversal matrix, because the effect of applying
J to a vector is to reverse the order of components of the vector:

Xl Xn
X2 Xn--1

Xn Xl

The hyperbolic rotation matrix H() E 22 is defined by

(2.1) H()=
1 [ 1 -sin0]cos sin 1

The matrix H(O) satisfies the relation

[1 0 H(O)=[ I 0H(O) 0-1 0-1

and it has eigenvalues 1(), 2() given by

(2.2) () ;1() sec -tanO.

For a given pair of real numbers a and b with laI > ]bI, there exists a hyperbolic
rotation matrix H() such that

0

The angle of rotation 0 is determined by

(2.4) sin 0
b a b

COS 0
a a

3. Elementary downdating. In this section we introduce the concept of ele-
mentary downdating. The elementary downdating problem is a special case of a
more general downdating problem that arises in Cholesky fctorization of a positive
definite difference of two outer product matrices [i], [6], [7], [12]. In 4, factorization
algorithms are derived in terms of a sequence of downdating steps. The numerical
properties of the algorithms are then related to the properties of the sequence of
elementary downdating steps.

Let uk, Vk n have the following form:
k

[0 0 x x x x],Uk
T [0 0 0 X X X ],Vk

k+l
that is

euk----0, j<k, and eTvk--0, j_k.

Applying the shift-down matrix Z to uk, we have
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k+l

TzT [0 0 0 X X X]Uk

vk 0 0 x x
T

k/l
Suppose that we wish to find uk+l, vk+l E n to satisfy

(3 1) Uk+U’+ T ZukuZT T
Vk+lVk+ VkVk

where

that is

T --[0 0 0 X XUk+
T [0 0 0 0 XVk_bl

k+l

x],

k+2

T and T
ejUk+ 0, j<k+l, ejVk+l=0, j<k+l

We refer to the problem of finding uk+ and Vk+l to satisfy (3.1), given Uk and vk,

as the elementary downdating problem. It can be rewritten as follows:

T
1 0 ukZ1 0 Uk+l "-[Zuk Vk] 0 1 T[Uk+l Vk+l] 0 --1 T

Vk+l Vk

From (2.1), (2.3), and (2.4), it is clear that the vectors Uk+l and Vk+l can be found
by using a hyperbolic rotation H (Ok) defined by the following relations:

(3.3a)

(3.3b)

T Tsin Ok ek+vk/ek Uk

COS Ok V/1 sin2 Ok,

and

(3.4) Uk+l H (Ok) Uk
T T

Vk+l Vk

The elementary downdating problem has a unique solution (up to sign changes) if

leu > leT+ve I.
The calculation of uk+l, Vk/l via (3.4) can be performed in the obvious manner.

Following common usage, algorithms that perform downdating in this manner are
referred to as hyperbolic downdating algorithms.

Some computational advantages may be obtained by rewriting (3.1) as follows:

Uk+l [ZUk Vk+l] Uk

Vk Vk+l
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Consider now an orthogonal rotation matrix

[ coSOk sinOk ]G(k) --sin0k cos0k

where cos 0k and sin k are defined by (3.3b) and (3.3a), respectively. Then it is easy
to check that

(3.5) a(ok) Uk+l Uk
T T

Vk Vk+l

or, equivalently,

(3.6) Uk+l G(Ok)T uzT
T TVk Vk-{-1

Thus, we may rewrite (3.6) as

(3.7a) vk+l (Vk sinOkZuk)/COS0k,
(3.7b) uk+ sin Okvk+ + COsOkZuk.

Note that (3.7a) is the same as the second component of (3.4). However, (3.7b) differs
from the first component of (3.4) as it uses vk+l in place of vk to define uk+l. It is
possible to construct an alternative algorithm by using the first component of (3.5)
to define Uk+l. This leads to the following formulas:

(3.8a) uk+ (Zuk sinOkvk)/ COS0k,

(3.8b) Vk+ sin0ku+ + COS0kVk.

We call algorithms based on (3.7a)-(3.7b) or (3.8a)-(3.8b) mixed elementary down-
dating algorithms. The reason for considering mixed algorithms is that they have
superior stability properties to hyperbolic algorithms in the following sense.

Let fi, 9k be the values of uk, Vk that are computed in floating point arithmetic
with relative machine precision e. The computed values ilk, k satisfy a perturbed
version of (3.1), that is,

T Zk-TZT k-T O(2(3.9) fik+fi+l VkTlVk+l Uk Vk + eGk + ),

where the second order term O(e2) should be understood as a matrix whose elements
are bounded by a constant multiple of e2]]Gk]]. The norm of the perturbation Gk
depends on the precise specification of the algorithm used. It can be shown [6] that
the term Gk satisfies

ll kll Cm (lIZukll 2 + llVkll 2 +   Uk+ ll 2 +   Vk+ ll
when a mixed downdating strategy is used (here Cm is a positive constant). When
hyperbolic downdating is used, the term G satisfies

where Ch is a positive constam [6]. (The constants Cm and Ch are dependent on

implementation details, but are of order unity and independent of n.) Note the
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presence of the multiplier IIH(O)II in the bound (3.11) but not in (3.10). In view
of (2.2), IIH(Ok)ll could be large. The significance of the multiplier IIH(Ok)ll depends
on the context in which the downdating arises. We consider the implications of the
bounds (3.10) and (3.11) in 5 after we make a connection between downdating and
the factorization of Toeplitz matrices.

It is easily seen that a single step of the hyperbolic or mixed downdating algorithm
requires 4(n k) + O(1) multiplications. A substantial increase in efficiency can be
achieved by considering the following modified downdating problem. Given ak,/k E
and Wk, Xk E n that satisfy

e"wk=0, j<k and exk=0, jk,
find ak+l, k+ and wk+, Xk+ that satisfy

T 2 T T T 2 T+1Wk+lWk+ k+lXk+ ZWk kXkXkXk+ WkZ
with

eywk=0, j<k and eyxk=0, jk.
If we make the identification

Uk kWk and vk kXk,

then we find that the modified elementary downdating problem is equivalent to
the elementary downdating problem. However, the extra parameters can be cho-
sen judiciously to eliminate some multiplications. For example, if we take ak k,
ak+ &+, then from (3.3a), (3.3b), and (3.4),

sin Ok e+1Xk/ewk,
a+l a/cos0,

(3.12a)
(3.125)
and

(3.13a)
(3.13b)

Wk+l Zwk sin 0kxk,

Xk+l sin OkZWk " Xk.

Equations (3.12a)-(3.13b) form a basis for a scaled hyperbolic elementary downdat-
ing algorithm that requires 2(n- k) + O(1) multiplications. This is about half the
number required by the unscaled algorithm based on (3.4). (The price is an increased
likelihood of underflow or overflow, but this can be avoided if suitable precautions are
taken in the code.)

Similarly, from (3.7a) and (3.75) we can obtain a scaled mixed elementary down-
dating algorithm via

and

T Tsin Ok kek+Xk/akek Wk,

Ok+l Ok COS k
Z+ Z/ cos t,

sin Okak
Xk+l Xk Zwk

sinOkk+
Wk+l Xk+l t_ Zwk.

Ok+

The stability properties of scaled mixed algorithms are similar to those of the
corresponding unscaled algorithms [12].
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4. Symmetric factorization. We adopt the following definition from [18].
DEFINITION 4.1. An n n symmetric matrix T has displacement rank 2 if and

only if there exist vectors u, v 6 n such that

(4.1) T- ZTZT uuT vvT.
The vectors u and v are called the generators of T and determine the matrix

T uniquely. Whenever we want to stress the dependence of T on u and v we write
T- T(u, v).

In the sequel we will be concerned with a subset T of all matrices satisfying (4.1).
The subset is defined as follows.

DEFINITION 4.2. A matrix T is in T if and only if the following apply:
(a) T is positive definite;
(b) T satisfies (4.1) with generators u and v;
(c) vTel O, i.e., the first component of v is zero.

It is well known that positive definite n n Toeplitz matrices form a subset of T.
Indeed, if T (tli_jl)n-1i,j=o, then

where

T- ZTZT uuT- VVT,

uT (to,
v

The set T also contains matrices that are not Toeplitz, as the following example
shows.

Example. Let

T= 20 32 29 u= 4 and v= 3
15 29 4O 3 1

It is easy to check that T is positive definite. Moreover,

T-ZTZT= 20 7 9 20 16 12 0 9 3 =uuT-vvT.
115 9 8 115 12 9 0 3 1

Hence T T(u, v) 6 T, but T is not Toeplitz.
We now establish a connection between the elementary downdating problem and

symmetric factorizations of a matrix from the set T.
Let T T(u, v) T. Set

u u v v

and, for k 1,..., n- 1, solve the elementary downdating problem defined by (3.1),
T vkT+I Zu,,u Zr

Which we assume for the moment has a solution for each k. On summing over
k 1,...,n-1 we obtain

n--1 n--1 n--1 n--1

Uk_t_lUk+ E
k=l k=l k=l k=l
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If we now observe that, from (3.2),

Zun "-vn --O
we arrive at the following relation:

(4.2) UkUk
T Z UkUk

T ZT UlUl
T

VlVlT,
k--1 k--1

n Twhich implies that -,k= UkUk "" Moreover, as matrices having the same genera-
tors are identical, we obtain

T U
k--1

where
n

U= -eku"
k----1

is upper triangular, and hence is the Cholesky factor of T. We have derived, albeit
in a rather indirect manner, the basis of an algorithm for calculating the Cholesky
decomposition of a matrix from the set T.

We now return to the question of existence of a solution to the elementary down-
dating problem for each k 1,...,n- 1. It is easy to verify that, if T E T, then
[eTul[ > [e2Tvll. Using (4.2) and (3.1), it can be shown by induction on k that

leue[ > le+vel, k 2,...,n- 1.

Consequently, [sin0k] < 1 in (3.3a), and the elementary downdating problem has a
solution for each k 1,..., n- 1.

To summarize, we have the following algorithm for factorizing a matrix:

T T(u, v) .
Algorithm FACTOR(T):

Set Ul u v v.
For k 1,... ,n- 1 calculate Uk+l, va+ such that

u [+ ZuuZ vvkTlUk+ Vk+l

e+lvk+ 0

Then T uTu, where U n Tk:l ekUk

In fact we have not one algorithm, but a class of factorization algorithms, where
each algorithm corresponds to a particular way of realizing the elementary downdating
steps. For example, the connection with the scMed elementary downdating problem
is straightforward. On making the identification

(4.3) uk kwk and vk kXk,

we obtain

T WTD2W,
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where

n

D okekek
k--1

It is clear from 3 that Algorithm FACTOR(T) requires 2n2 + O(n) multiplica-
tions when the unscaled version of elementary downdating is used, and n2 + O(n)
multiplications when the scaled version of elementary downdating is used. However,
in the sequel we do not dwell on the precise details of algorithms. Using (4.3), we can
relate algorithms based on the scaled elementary downdating problem to those based
on the unscaled elementary downdating problem. Thus, for simplicity, we consider
only the unscaled elementary downdating algorithms.

5. Analysis of factorization algorithms. In this section we present a numer-
ical stability analysis of the factorization of T E 7" via Algorithm FACTOR(T). The
result of the analysis is applied to the case when the matrix T is Toeplitz.

Let ilk, k be the values of uk, Vk that are computed in floating point arithmetic
with relative machine relative precision e. The computed quantities fik and "k satisfy
the relations

(5.) fi u + o(), v + o(),

and the aim of this section is to provide a first order analysis of the error. By
a first order analysis we mean that the error can be bounded by a function that
has an asymptotic expansion in powers of e, but we only consider the first term of
this asymptotic expansion. One should think of e - 0/ while the problem remains
fixed [19]. Thus, in this section (except for Corollary 5.5) we omit functions of n from
the "O" terms in relations such as (5.1) and (5.2).

The computed vectors ilk, ’k satisfy a perturbed version (3.9) of (3.1). On
summing (3.9) over k 1,..., n- 1 we obtain

where

U ekuk
k=l

Since

we find that

Zin 0(), rn 0(),
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Now define

(5.3)

Then, using (4.1), (5.2), and (5.3),

n-1

zz +y vv + a + o().
k=l

In a similar manner we obtain expressions for ZjZ- ZjA_I__ZA_I, j 0,..., n- 1.
Summing over j gives

(5.4)

n--1

--E ZJ((llT1 -UlUlT) -- (rlrlT VlVlT))z)t"

j=0

n-ln-1

+ zaz + o()
j=o

We see from (5.4) that the error consists of two parts--the first part associated with
initial errors and the second part associated with the fact that (5.2) contains an
inhomogeneous term. Now

IIT vvTII < 211vii I11 vii + o(2).

Furthermore, from (4.1),

Tr(T)- Tr(ZTZT) Ilull 2 -Ilvll > 0,

and hence

(5.5)

n-1

+ vv )  ll
j=0

This demonstrates that initial errors do not propagate unduly. To investigate the
double sum in (5.4) we require a preliminary result.

LEMMA 5.1. For k 1, 2,..., n 1, and j 0, 1, 2,...,

Proof. Let

k n

/=1 /=k+l

It is easy to verify that

Tk ZTkZT ZukuZT VkvTk
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and, since Tk is positive semidefinite,

We now demonstrate stability when the mixed version of elementary downdting
is used in Algorithm FACTOR(T). In this case the inhomogeneous term G satisfies

shifted version of (3.10), that is

c(z+u + Zv +z+ + lz+),(5.6) IIZall
where cm is a positive constant.

THEOREM 5.2. Assume that (3.9) and (5.6) hold. Then

n--1

+ + +
j=0

Pro@ Using Lemma 5.1,

Furthermore, since

it follows that

n

Tr(ZyTZ) E IIZuk]]2
k=l

n--1 n n--1

(5.7) [] ZjGkZ;I <_ 4Cm E Tr(ZjTZ;).
j--0 k-- j=0

The result now follows from (5.4), (5.5), and (5.7). []

For the hyperbolic version of the elementary downdating algorithms a shifted
version of the weaker bound (3.11) on Gk holds (see [6]), namely,

(5.8) IIZjGZ]’II < hllH(Ok)ll(llZj/ukll / IlZyvkll)(llZuk+xll / IlZjVk/lll).

By Lemma 5.1, this simplifies to

(5.0) IlZyazffll < 4chllH(Ok)ll IlZy+iull

The essential difference between (3.10) and (3.11) is the occurrence of the multiplier
IIH(Ok)ll, which can be quite large. This term explains numerical difficulties in appli-
cations such as the downdating of a Cholesky decomposition [6]. However, because
of the special structure of the matrix T, it is of lesser importance here, in view of the
following result.

LEMMA 5.3. For k 1, 2,..., n 1, and j 0, 1,..., n k,

IIH(Ok)[[ [[ZjUk+l[ 2(n--

Proof It is easy to verify from (3.4) that

1 3 sin0k (Uk+ 3= Vk+l ) Zuk 3= Vk
cosO
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and from (2.1) that

Thus,

IIH(O)II
1 + sin01

cos

IIH(0)II ]lZCu+ll _< IIH(0)II IIZv+lll / IIZ+ull + IIZCvll
<_ IIH(Ok)]l IlZj+lUk+ll / 211Zj+ukll,

where the last inequality was obtained using Lemma 5.1. Thus

IIH(0k)ll IIZuk+]l _< 2 E IIZukll,
l--j-t-1

and the result follows.
Remark. Lemma 5.3 does not hold for the computed quantities unless we intro-

duce an O(e) term. However, in a first order analysis we only need it to hold for the
exact quantities.

THEOREM 5.4. Assume that (3.9) and (5.8) hold. Then

n--1

lit- TII <_ 2nllull (lift1 ull + I11 vii ) + 8eCh E(n j)Tr(ZjTZ) + O(e2).
j--1

Proof. Applying Lemma 5.3 to (5.9) gives

and hence
n--ln--1 n--ln--1

(5.10)
j--0 k=l j=l k=l

n-1

8Ch (n- j)Tr(ZyTZ).
j:l

The result now follows from (5.4), (5.5), and (5.10).
Note that, when T is Toeplitz,

Tr(ZTZ) (n j)to.

Hence, from Theorems 5.2 and 5.4, we obtain our main result on the stability of the
factorization algorithms based on Algorithm FACTOR(T) for a symmetric positive
definite Toeplitz matrix.

COROLLARY 5.5. The factorization algorithm FACTOR(T) applied to a symmet-
c positive definite Toeplitz matrix T produces an upper triangular matrix U such
that

T OTO + AT,
where

IIATll O(eton2)
when mixed downdating is used, and

IlZXTII O(ao)
when hyperbolic downdating is used.
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6. The connection with the Bareiss algorithm. In 1969, Bareiss [2] pro-
posed an O(n2) algorithm for solving Toeplitz linear systems. For a symmetric
Toeplitz matrix T, the algorithm, called a symmetric Bareiss algorithm in [22], can
be expressed as follows. Start with a matrix A() :- T and partition it in two ways:

)T(1) L(0)

where U() is the first row of T and L() is the last row of T. Now, starting from
A(), compute successively two matrix sequences {A(i) } and {A(-i)}, 1,..., n- 1,
according to the relations

(6.1)
A() A(i-) ai_ZiA(-i+l),
A(-) A(-i+) _+ZA(-1)

For 1 _< _< n- 1, partition A(i) and A(-i) as follows:

U(i) )A()
T(i+)

A(-i)= ( T(-i-I) )L(i)

where U(i) denotes the first + 1 rows of A(i) and L(i) denotes the last + 1 rows of
A(-i). It is shown in [2] that the following are true.

(a) T(i+1) and T(-i-1) are Toeplitz.
(b) For a proper choice of ai_ and a-i+1, the matrices L(i) and U(i) are lower

and upper trapezoidal, respectively.
(c) With the choice of ci_ and c-+1 as in (b), the Toeplitz matrix T(--1) has

zero elements in positions 2,..., + 1 of its first row, while the Toeplitz matrix T(i+)

has zero elements in positions n 1,..., n of its last row.

(U(i) )A(i)=
T(i+)

Pictorially,

X X

0 X X

X X

0 0 x x
x 0,... 0 x x

x x 0 0 x

and

A(-i) (T(-i-1))L(i) x x x 0

\ X X
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After n-1 steps, the matrices A(n-l) and A(-n+l) are lower and upper triangular,
respectively. At step only rows + 1,..., n of A(i) and rows 1, 2,..., n- of A(-i)

are modified; the remaining rows stay unchanged. Moreover, Bareiss [2] noticed that,
because of the symmetry of T,

T(+) J+T(--I)J and a_ a_i+,

Here, J+ and Jn are the reversal matrices of dimension (i + 1) (i + 1) and n n,
respectively.

Now, taking into account (6.2), it can be seen that the essential part of a step of
the Bareiss algorithm (6.1) can be written as follows:

/(i+1) /(i+1) /(i+1) )i-t-2 i+3 n

0 /(-i--1) (--i-1)

(6.3) +3 tn

1 --Oi_ i-b2 i--3

-a_ 1 +(-) +(-i) t(-)+2 i+3

where (/(-i) /(-i) t(-i)ki-t-2 ’i+2 are the last (n- i- 1) components of the first row of

T(-) and t/() /() ..,t(n)i+2,+3,. are the last (n- i- 1) components of the first row of
T().

Note that (6.3) has the same form as (3.136)-(3.13b), and hence a connection
between the Bareiss algorithm and algorithm FACTOR(T) is evident. That such a
connection exists was observed by Sweet [22], and later by Delosme and Ipsen [11].
Sweet [22] related a step of the Bareiss algorithm (6.3) to a step of Bennett’s down-
dating procedure [3]. Next, he derived the LU factorization of a Toeplitz matrix as a
sequence of Bennett’s downdating steps. Finally, he estimated the forward error in the
decomposition using Fletcher and Powell’s methodology [12]. This paper generalizes
and presents new derivations of the results obtained in [22].

7. Numerical examples. We adopt from [17] the following definitions of for-
ward and backward stability.

DEFINITION 7.1. An alogrithm for solving (1.1) is forward stable if the computed
solution satisfies

IIx- c (n)  cond(T)ll ll,

where cond(T) IITII lIT-111 is the condition number ofT, and c(n) may grow at
most as fast as a polynomial in n, the dimension of the system.

DEFINITION 7.2. An algorithm for solving (1.1) is backward stable if the com-
puted solution satisfies

IIT bll c2(n) llTII I1: 11,

where c2(n) may grow at most as fast as a polynomial in n, the dimension of the
system.

It is known that an algorithm (for solving a system of linear equations) is backward
stable if and only if there exists a matrix AT such that

(T + AT) b, IIATII cn(n)ellTII,
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where c3(n) may grow at most as fast as a polynomial in n.
Note that our definitions do not require the perturbation AT to be Toeplitz, even

if the matrix T is Toeplitz. The case that AT is Toeplitz is discussed in [13], [24].
The reader is referred to [9], [14], [19] for a detailed treatment of roundoff analysis for
general matrix algorithms.

It is easy to see that backward stability implies forward stability, but not vice
versa. This is manifested by the size of the residual vector.

Cybenko [10] showed that the L1 norm of the inverse of a n n symmetric positive
definite Toeplitz matrix Tn is bounded by

1 1 } n--1

max n-1 _: < Ilr#llll <_ H 1 + sin

1-Ii=l cos2 oi 1-Ii=: (1 + sin 0i) i=l
1 ]sin

where{ sin0i}=1 are quantities called reflection coefficients. It is not difficult to
pick the reflection coefficients in such a way that the corresponding Toeplitz matrix

Tn satisfies

cond(Tn) 1

One possible way of constructing a Toeplitz matrix with given reflection coefficients
n--1{-sin 0i}=1 is by tracing the elementary downdating steps backwards.

An example of a symmetric positive definite Toeplitz matrix that can be made
poorly conditioned by suitable choice of a parameter is the prolate matrix [21], [23],
defined by

2w if k=0,
tk= sin(2rwk)/(rk) otherwise,

where 0 < w < 1/2. For small w the eigenvMues of the prolate matrix cluster around 0
and 1.

We performed numerical tests in which we solved systems of Toeplitz linear equa-
tions using variants of the Bareiss and Levinson algorithms and (for comparison) the
standard Cholesky method. The relative machine precision was e 2-53 10-16.
We varied the dimension of the system from 10 to 100, the condition number of the
matrix from 1 to e-1, the signs of reflection coefficients, and the right-hand side so
that the magnitude of the norm of the solution vector varied from 1 to e-1. In each
test we monitored the errors in the decomposition, in the solution vector, and the size
of the residual vector.

Let XB and XL denote the solutions computed by the Bareiss and Levinson algo-
rithms. Also, let rB TXB --b and rL TXL --b. Then for the Bareiss algorithms
we always observed that the scaled residual

8B

was of order unity, as small as would be expected for a backward stable method.
However, we were not able to find an example that would demonstrate the superiority
of the Bareiss algorithm based on mixed downdating over the Bareiss algorithm based
on hyperbolic downdating. In fact, the Bareiss algorithm based on hyperbolic down-
dating often gave slightly smaller errors than the Bareiss algorithm based on mixed
downdating. In our experiments with Bareiss algorithms, neither the norm of the



STABILITY OF THE BAREISS ALGORITHM 55

TABLE 7.1

Prolate matrix, n 21, w 0.25, cond 3.19.1014.

Cholesky
Bareiss(hyp)
Bareiss(mixed)
Levinson

decomp, error soln. error resid, error

5.09.10-1

3.45.100
2.73.10

7.67.10-3

1.40.10-2

1.41.10
5.30 10

1.25.100
8.72. I0-I

1.09. i0
4.57.103

TABLE 7.2

Reflection coefficients of the same magnitude IKI but alternating
signs, IK[ 0.8956680108101296, n 41, cond 8.5.1015.

decomp, error solnl error resid, error

Cholesky 1.72.10-1 6.84.10-2 3.11.10-1

Bareiss(hyp) 2.91.10o 2.19.10-1 1.15.10-1

Bareiss(mixed) 3.63.10o 2.48.10-1 2.47.10-1

Levinson 5.27.10-1 1.47.105

TABLE 7.3

Reflection coefficients of the same magnitude IKI but alternating
signs, IKI 0.9795872473975045, n 92, cond 2.77.1015.

decomp, error soln. error resid, error

Cholesky 8.51. 10-1 3.21. 10-2 4.28. 10-1

Bareiss(hyp) 8.06.10o 1.13.10-1 2.28.10-1

Bareiss(mixed) 6.71.10o 1.16.10-1 3.20.10-1

Levinson 2.60.10-1 1.06.105

error matrix in the decomposition of T nor the residual error in the solution seemed
to depend in any clear way on n, although a quadratic or cubic dependence would be
expected from the worst-case error bounds of Theorems 5.2, 5.4, and Corollary 5.5.

For well-conditioned systems, the Bareiss and Levinson algorithms behaved simi-
larly and gave results comparable to results produced by a general stable method (the
Cholesky method). Differences between the Bareiss and Levinson algorithms were no-
ticeable only for very ill-conditioned systems and special right-hand side vectors.

For the Levinson algorithm, when the matrix was very ill conditioned and the
norm of the solution vector was of order unity (that is, when the norm of the solution
vector did not reflect the ill conditioning of the matrix), we often observed that the
scaled residual

was as large as 105. Varah [23] was the first to observe this behavior of the Levinson
algorithm on the prolate matrix. Higham and Pickering [16] used a search method
proposed in [15] to generate Toeplitz matrices for which the Levinson algorithm yields
large residual errors. However, the search never produced SL larger than 5.105. It is
plausible that SL is a slowly increasing function of n and

Tables 7.1-7.3 show typical behavior of the Cholesky, Bareiss, and Levinson al-
gorithms for ill-conditioned Toeplitz systems of linear equations when the norm of
the solution vectors is of order unity. The decomposition error was measured for
the Cholesky and Bareiss algorithms by the quotient liT- L. LTII/(e IITII), where
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L was the computed factor of T. The solution error was measured by the quotient
IlXcomp--Xll/llXll, where Xcomp WaS the computed solution vector. Finally, the residual
error was measured by the quotient lIT. Xcomp -bll/(llTII. [IXcompll. e).

8. Conclusions. This paper generalizes and presents new derivations of results
obtained earlier by Sweet [22]. The bound in Corollary 5.5 for the case of mixed
downdating is stronger than that given in [22]. The applicability of the Bareiss al-
gorithms based on elementary downdatingsteps is extended to a class of matrices,
satisfying Definition 4.2 that includes symmetric positive definite Toeplitz matrices.
The approach via elementary downdating greatly simplifies roundoff error analysis.
Lemmas 5.1 and 5.3 appear to be new. The stability of the Bareiss algorithms fol-
lows directly from these lemmas and the results on the roundoff error analysis for
elementary downdating steps given in [6].

The approach via downdating can be extended to the symmetric factorization
of positive definite matrices of displacement rank k >_ 2 (satisfying additional condi-
tions similar to those listed in Definition 4.2); see [18]. For matrices of displacement
rank k the factorization algorithm uses elementary rank-k downdating via hyperbolic
Householder or mixed Householder reflections [8], [20].

We conclude by noting that the Bareiss algorithms guarantee small residual errors
in the sense of Definition 7.2, but the Levinson algorithm can yield residuals at least
five orders, of magnitude larger than those expected for a backward stable method.
This result suggests that, if the Levinson algorithm is used in applications where the
reflection coefficients are not known in advance to be positive, the residuals should
be computed to see if they are acceptably small. This can be done in O(n log n)
arithmetic operations (using the fast Fourier transform).

It is an interesting open question whether the Levinson algorithm can give scaled
residual errors that are arbitrarily large (for matrices that are numerically nonsin-
gular). A related question is whether the Levinson algorithm, for positive definite
Toeplitz matrices T without a restriction on the reflection coefficients, is stable in the
sense of Definitions 7.1 and 7.2.
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Abstract. A general result is proven concerning time-variant displacement equations with
positive solutions in a general operatorial setting. It is then shown that the solutions of several
completion problems, recently considered in connection with classical interpolation and moment
theory, follow as special cases of the main result. The main purpose of this paper is to show that
under supplementary finite-dimensionality conditions, a so-called generalized Schur algorithm, which
naturally arises in connection with displacement equations, can be used to prove the above-mentioned
result. The associated transmission-line interpretation is also discussed in terms of a cascade of
elementary sections with intrinsic blocking properties.
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1. Introduction. We prove a general result concerning time-variant displace-
ment equations with positive solutions. More specifically, we show that a contractive
upper-triangular operator S can always be associated with a Pick solution R(t) of a
time-variant Lyapunov (or displacement) equation. This result is actually a variation
of the commutant lifting theorem of Sarason-Sz. Nagy-Foias and many other formu-
lations have been considered in the literature (see, e.g., [2], [13], [16], [20]-[22]). Under
supplementary finite-dimensionality and nondegeneracy conditions, we further derive
a so-called generalized Schur algorithm and discuss an associated system-theoretic
interpretation in terms of a cascade of elementary sections with intrinsic blocking
properties. These considerations lead to a constructive proof of the previous result
about displacement equations. Several classical algorithms proposed in the literature
for the solution of interpolation problems, such as Schur, Nevanlinna-Pick, and ex-
tensions thereof, follow as special cases of the general framework presented here. We
also extend the content of our companion paper [26] where several other applications
of the algorithm are presented.

The paper is organized as follows. In 2.we introduce our notation and define the
class of time-variant structured matrices. We also prove the main result concerning
the existence of an upper-triangular operator S in connection with Pick solutions of
time-variant Lyapunov equations. In 3 we show that several moment, interpolation,
and completion problems, and extensions thereof, follow as special cases of the main
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theorem of 2. In 4 we derive a computationally oriented recursive procedure that
leads to a constructive realization of all possible solutions S in terms of a cascade
of elementary sections with certain intrinsic blocking properties. In 5 we further
elaborate on possible simplifications and describe the associated Schur parameters.

(An early account of the results of this paper was announced in [9]. We further
remark that after submitting this paper, a closely related result to Theorem 2.2 was
independently derived in [11].)

2. Displacement structure and abstract interpolation. We first introduce
our notation. The symbol Z denotes the set of integers, and for two Hilbert spaces
7-/ and 7-/’, we write (7-/ T/’) to denote the set of bounded linear operators acting
from 7-/into 7-/’. We further consider three families {L/(t), ))(t),n(t)}tez of Hilbert
spaces depending on the parameter t E Z, two families of bounded linear operators
G(t) e (bl(t)@)2(t),(t)) and F(t) e (T(t-1),(t)), and we define the symmetry
J(t) (In(t) @ -Iv(t)) acting on L/(t)@ ];(t), where In(t) denotes the identity operator
on the space L/(t). We partition G(t) U(t) Y(t) ], where U(t)
and Y(t) (P(t), n(t)). We also use the symbol * to denote the adjoint operator
and we write F*(t)= (F(t))*.

DEFINITION 2.1. A family of operators {R(t) e z:(7(t))}te is said to have
a time-variant displacement structure with respect to {F(t), G(t)}tez if {R(t)}tez is
uniformly bounded, viz., there exists r > 0 such that IIR(t)[[ <_ r for all t Z, and
R(t) satisfies the time-variant Lyapunov (or displacement) equation

(1) R(t) F(t)R(t- 1)F*(t) G(t)g(t)G*(t).

The cardinal number r(t) dim//(t)+ dim)(t) is called the displacement rank of
R(t) in (1). We say that (1) has a Pick solution if R(t) is positive-semidefinite for
every t Z.

(For more discussion on the application of time-variant structured matrices in
adaptive filtering, matrix factorization, and interpolation problems; the reader is re-
ferred to the companion papers [25], [26], [29].)

We further introduce some assumptions that will guarantee the existence of a
unique family with time-variant displacement structure with respect to a given set of
generators {F(t), G(t)}tz. To this effect, we con,sider the infinite (block) matrices

U(t) F(t)F(t- 1)U(t-2) F(t)U(t- 1)
V(t) F(t)F(t- 1)V(t- 2) F(t)V(t- 1)

and assume that for each t e Z and h E 7(t), we have

(2a)

u(t) ],
v(t) ],

F*(t n)F*(t n + 1)...F*(t 1)F*(t)h --, 0 as n -, oc,

(2b) U(t) and V(t) are well-defined bounded linear operators,

u(t) e n(t)), V(t) e (_<_tP(j), n(t)).

(2c) {U(t), V(t)}tez are uniformly bounded families:

c > 0 and cv > 0 such that IIU(t)ll < c and IIV(t)ll <_ c. for all t e Z.
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The above assumptions imply that (1) has a unique uniformly bounded solution
given by

(3) R(t) U(t)U* (t) V(t)V* (t).

We should remark that assumptions (2a)-(2c) are automatically satisfied in some
special, though frequent, cases such as the following.

1. {G(t)}tez is a uniformly bounded family, viz., there exists Cg > 0 such that
IIG(t)ll <_ ca, and F(t) 0 for ltl sufficiently large.

2. {G(t)}tez is a uniformly bounded family, viz., there exists ca > 0 such that
IIG(t)ll <_ ca, and {F(t)}tez is a stable family, i.e., there exists cf > 0 such that
IIF(t)ll <_ cf < 1 for all t.

3. {F(t)}tez is a uniformly bounded family and G(t) 0 for It[ sufficiently
large.

The following result shows that the existence of a Pick solution of (1) is equivalent
to the existence of an upper-triangular contraction relating U(t) and V(t), which will
play a fundamental role in subsequent sections.

THEOREM 2.2. The displacement equation (1) has a Pick solution R(t) if and only
if there exists an upper-triangular contraction S E (@tez )(t), tz/(t)), (IISII _<
1), such that

(4) V(t) U(t)Pu(t)S/j_<_t;(j) for every t e Z,

where Pu(t) denotes the orthogonal projection of @tebl(t) onto j<tbl(j).
Proof. One implication is immediate. If an upper-triangular contraction S exists

such that (4) holds, then the solution given by (3) is a Pick solution. The converse is
a consequence of a commutant lifting theorem. Thus assume (1) has a Pick solution.
Then R(t) U(t)U*(t)-V(t)V*(t) are positive operators for all t . Z. Hence, there
exist contractive operators (t) (i.e., II(t)ll _< 1),

S(t) e C(_<_tY(j), 7(U*(t))),

such that V(t) U(t)(t) for all t e Z,. where n(U*(t)) denotes the closure of
the range of U*(t). Let us define, for every t Z, the shift (or marking) operator
Mu(t) j<_t-1 hi(j) j<_tbl(j),

Mu(t) 0 I
0

It is easy to check that for all t e Z, U(t)Mu(t) F(t)U(t- 1) and V(t)Mv(t)
F(t)V(t- 1). Hence,

M(t)S*(t)U*(t) M(t)V*(t) V*(t- 1)F*(t)
S* (t 1)U* (t 1)F* (t) S* (t 1)M(t)U* (t).

We now use the-comutant lifting theorem of Sarason-Sz.Nagy-Foias [13], [23] in its
"time-variant" formulation in [4]-:-actually we use a slight variation in [8]--to con-
elude that there exists a family {S(t) e (y<t )(j), @y<tlg(j))}tez of contractions,
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with the properties: *(t) *(t)/TC(U*(t)), and (t)Mv(t) Mu(t)(t- 1).
This is a rather standard argument by now (see [21], the proof of Theorem VIII-
2.2 in [13], or Theorem 5.C.4 in [16]). We then conclude from the last equality that
there exists an upper-triangular contraction S E (tez (t), tezL/(t)) such that
S(t) P(t)S/j<t V(j). This can be viewed as a time-variant version of Lemma
V-3.5 in [31]. Consequently, S satisfies (4) and the proof is complete. [:]

We have thus shown that an upper-triangular contraction S can always be associ-
ated with a Pick solution of time-variant displacement equations of the form (1). This
is a general result that includes, as special cases, solutions of several interpolation,
completion, and moment problems considered in the literature. In fact, it will be-
come clear throughout our discussion that the solutions of these problems correspond
to determining the appropriate contraction S that is associated with the Pick solution
R(t) of (1) for specific choices of F(t), G(t), and g(t). Some examples to this effect
are discussed in the next section. It should be noted though that the argument used
in the above proof only assures the existence of S. It does not show how to construct
such an S. Later in 4 we shall, however, describe a recursive algorithm that, under
suitable finite-dimensionality conditions, leads to a constructive proof of Theorem 2.2.

3. Connections with completion problems. In this section we illustrate the
application of Theorem 2.2 to the solution of some moment and completion problems
(and extensions thereof).

3.1. A positive completion problem. We begin by considering the following
moment-type problem. We fix a positive integer p and a family {$(n)}nez of Hilbert
spaces.

PROBLEM 3.1. Given a family {Qij/i,j Z, IJ il < p} of operators such that

(ij ;i and ij e ((j),$(i)), it is required to find conditions for the existence
of a positive definite kernel M [QiJ]i,jez such that for i,j Z and IJ- i[ <_ p we

have Qij Qij.
By a positive-definite kernel we mean an application M [QiJ]i,jez on Z Z such

that for i, j e Z we have Qij e ($(j), $(i)) and ’in,j=_n < Qijhj, hi > _> 0, for every
integer n > 0 and every set of vectors {h-n,h-n+l,..., hn}, hk $(k), Ik] <_ n. We
show here how to solve the above problem by usihg Theorem 2.2 and connections with
displacement structure theory.

We can assume, without loss of generality, that Qi I for all Z. We also
define the Hilbert spaces

7(t) z(-t + v(t) z(-t),
k--0

and the operators

u(t)

I 0

Q-t+l,-t Q-t+l,-t
v(t)=

We further consider the operators J(t) (Iu(t) -Iv(t)), G(t) U(t) V(t) ],
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and

() F(t)

0
I 0

The elements {F(t), G(t), J(t)}fez, as defined above, specify a displacement structure
of the form (1). Using the result of Theorem 2.2 we conclude the following.

THEOREM 3.2. Problem 3.1 has solutions if and only if the displacement equation
(1), associated with the data {F(t), G(t), J(t)}tez defined above, has a Pick solution.

Proof. Using the defined operators {F(t), G(t), J(t)}tez, we readily check that
the solution R(t) of the corresponding (1) can be written as

R(t) U(t)U*(t) V(t)V*(t)

I _,_+ _,_+
Q-t+l,-t I Q-t+,-t+p

Q-t+p,-t Q-t+p,-t+l I

We thus conclude that if Problem 3.1 has positive-definite solutions M then R(t) is
a positive block matrix for all t E Z. Conversely, if (1) has a Pick solution R(t)
then, by Theorem 2.2, there exists an upper triangular contraction S
.(t.]Z(t), tbl(t)) such that V(t) U(t)P(t)S/@j<_t(j). If we take the
structure of U(t) and V(t) into account we then conclude that Stt 0 for all t Z.

i--1 .We define Qj ’k=j+ Q,kS-k,-y + S_,_y for > j, IJ il > P, Q Qj for

i < j, Ij-il > p, and Q j for Ij-il <_ p, and consider the kernel M
We now check that M is indeed a positive definite solution of Problem 3.1. For this
purpose, we consider a positive integer N > p and define the operators

I 0

u(t) -+’- -+’-v(t)

-t+,-t -+,-

Then

I Q-t,-t+ Q-t,-t+N
Q,t+l,-t I Q-t+l,-t+N

Q-t+N,-t Q-t+N,-t+l I

UN(t)U*N(t) VN(t)V*N(t)

u(t)[- ,;] u(t),

where St Pu(t)S/j<t (j). Consequently, M is positive-definite. [:]

We further remark that the well-known trigonometric moment problem [1] corre-

sponds to the special case Qj QIJ-il (i.e., the entries of the specified band exhibit
a Toeplitz structure). The case $(n) 0, for Inl large enough, was considered and
solved in [12].
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3.2. The Hermite-Fejr interpolation problem. The solution of the posi-
tive completion problem corresponds to the special choice of the operator F(t) as in
(5). The statement of Theorem 2.2, however, allows for other choices of F(t). Indeed,
choosing F(t) in a general Jordan form leads to the solution of a general interpolation
problem of the Hermite-Fejr type as we now elaborate.

We first introduce some notation. We consider three families of Hilbert spaces
{/(t), V(t), Y’}tez and bounded upper-triangular operator T e :(tz V(t)etz Ll(t)),
T [Tij]i,jez, Tij E (lg(j), V(i)),

T-l,-1 T-l,0 T-l,1
To1 To2

T12 T3

where denotes the (0, 0) entry of T. We further consider a stable family of opera-
tors {f(t) E (9)}tez, viz., there exists c > 0 such that If(t)l < c < 1 for all t 6 Z.
We also introduce the symmetric functions S(kn) of n variables (taken k at a time).
That is, S(on) 1 and

s(n)(xl,x2,. ,Xn) Xi1Xi Xik.

For example, n 3 corresponds to s(03) 1, 83)(Xl,X2,X3) x -x2--X3,

S3)(XI,X2, X3) XlX2 + XlX3 + X2X3, and s(33)(x,x2,x3) xx2x3.
For a uniformly bounded family of operators {u(t) e (V(t),’)}tez, viz., there

exists > 0 such that ]]u(t)] < g for all t, we define the operator u(t). T(f(t)) as
follows:

u(t) T(f(t)) u(t)Ttt + f(t)u(t- 1)Tt-,t + f(t)f(t- 1)u(t- 2)Tt-2,t +’".
This corresponds to a time-variant tangential evaluation along the "direction" defined
by u(t). More generally, we define the operators, (for p >_ 0)

u(t) p! (f(t)) =_ If(t), f(t 1),..., f(t m p + 1)] u(t m p)Tt-,-p,t
m--’O

We shall also use the compact notation u (t) u2(t) ].H(f(t)) to denote the oper-

T(1)(f(t))+ u2(t). T(f(t)) which we also writeator u (t). T(f(t)) ul (t). Ti.
as

T(/(t))

More generally, we write Ul (t)

].

T(f(t))

ur(t) H,(f(t))
T(1) (f(t)) (rl)! T(r-1) (/(t))

T(f(t)) (r_2)!T(r-2)(f(t))

O T(f(t)) T(1) (f(t))
T(f(t))
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To formulate the Hermite-Fejr problem, we again consider three families of
Hilbert spaces {b/(t), 2(t),fi’i}ty,,o<_i<m, and rn stable families
for i 0, 1,..., rn- 1. We associate with each ai(t) a positive integer ri _> 1 and
uniformly bounded families of operators ai(t) and bi(t) partitioned as follows:

ai(t)= [u?)(t) ui)(t) u()(t) ], bi(t)= [v?)(t) vi)(t) J()(t) ],
where u.i)(t) e (bl(t),Jzi) and vJi)(t) e (V(t),i),j 1,...,ri, are uniformly
bounded families of operators.

PROBLEM 3.3. Given rn stable families {ai(t)} with the associated uniformly
bounded data ai(t) and bi(t), as described above, it is required to find necessary
and sufficient conditions for the existence of upper-triangular contractive operators S
(IISlI _< 1) that satisfy

(6) bi(t)=ai(t).H(ai(t)) for O <_ <_ rn-1 and t e Z.

The first step in the solution consists in constructing three operators F(t), G(t),
and J(t) directly from the interpolation data: F(t) contains the information relative to
the operators {ai(t)} and the dimensions {ri}, G(t) contains the information relative
to the direction operators {ai(t),bi(t)}, and J(t) (It(t)@-Iv(t)). Define, for

0, 1,..., rn 1, 7i(t) ’i @ 9ri "" $’i (ri times), and

m-1
n(t) n(t).

i--0

The operators F(t) and G(t) are then constructed as follows: we associate with each
ai(t) an operator in Jordan form/i(t) E (7i(t- 1),7i(t)) (= (TCi(t)), in this

case),

(t)
1

(t)

(t)

and two operators Ui(t) and V(t), respectively, which are composed of the operators
associated with ci(t), viz.,

Then F(t) diagonal {/0(t),/1 (t),...,/m-1 (t)} and

Uo(t) Vo(t)
u (t) v (t)

(t) [u(t)
u_(t) v._(t)

v(t) ].
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We shall denote the diagonal entries of F(t) by {fi(t) n-1}i=o (for example, fo(t)
fl(t) fo-l(t) Co(t)). We have thus specified all the elements of a displace-
ment equation as in (1).

THEOREM 3.4. The tangential Hermite-Fejdr Problem 3.3 is solvable if and only
if the displacement equation (1), associated with the interpolation data above, has a
Pick solution.

Proof. The result follows by showing that the interpolation conditions (6) follow
from Theorem 2.2. The assumptions made in the statement of Problem 3.3 guarantee
that conditions (2a)-(2c) are satisfied. If R(t) is a Pick solution then there exists an
upper-triangular contraction S that satisfies (4). Now, by comparing terms on both
sides of (4) and by invoking the special constructions of {F(t), G(t)} as above, we
conclude that expression (4) can be rewritten as

bi(t) ai(t). H (ai(t)), for 0,1,...,m- 1,

which is the desired interpolation property (6). Conversely, assume there exists an
interpolating solution S that satisfies (6). Then, by comparing terms on both sides of
(6), we conclude that the ith entry of U(t)Pu(t)S/@j<t V(j) is the ith entry of V(t).
Hence, S satisfies V(t) U(t)Pu(t)S/@j<t )(j) for every t e Z. Consequently, R(t)
is a Pick solution. l

3.3. A special case: The Carath6odory-Fejr problem. The Hermite-
Fejr problem includes as a special case the following so-called Carathodory-Fejr
problem.

PROBLEM 3.5. Given families of Hilbert spaces (b/(t), )(t)}tez, and n families
{ti(t)}, i 0, 1,..., n 1, of operators i(t) E (l)(t),bl(t n + 1)), it is required
to find necessary and sufficient conditions for the existence of an upper-triangular
contraction S E L:(@tez V(t), tezl(t)), S [Sij]i,jZ such that for all t Z we

have St-i,t =/hi(t) for 0, 1,..., n 1.
The classical Caratheodory-Fejr-Schur interpolation problem [1] corresponds to

the special case i(t) i for all t Z and 0, 1,..., n-1. Several other contractive
completion problems, such as those considered in [4], also follow as special cases of
Problem 3.5 by choosing/i(t) 0 for sufficiently large values of t.

To put the above problem into our framework, as described in the previous section,
we construct the operators

I

U(t) V()

as well as J(t) (Iu(t) @-Iv(t)), G(t) U(t) V(t) ], and

0
I 0

(7) F(t)
".

COROLLARY 3.6. Problem 3.5 has solutions if and only if ][M(t)l < 1 for all



66 T. CONSTANTINESCU, A. SAYED, AND T. KAILATH

t E Z, where

M(t)

Zo(t)
l(t) ]0(t 1)

/n-1 (t) 0(t- n+ 1)

3.4. A special case: Tbe Nevanlinna-Pick problem. The Hermite-Fejer
problem also includes as a special case, the following so-called time-variant version of
Nevanlinna-Pick introduced in [10] and further studied and extended in [5].

PROBLEM 3.7. Given families of Hilbert spaces (’i,b/(t), l;(t)}tez, and n stable
families of operators {ai(t)}, 0, 1,..., n- 1, c(t) E :(9), with two uniformly
bounded families of operators {ui(t), vi(t)}tez, O, 1,..., n- 1, ui(t)
vi(t) ()(t),i), it is required to find necessary and sufficient conditions for the
existence of an upper-triangular contraction S (te V(t), @teSt(t)) such that
for all t Z we have ui(t) S(a(t)) v(t), O, 1,..., n 1.

The classical Nevanlinna-Pick problem [1] corresponds to the special case a(t)
a, ui(t) u, andre(t) v for allt E Z andi 0,1,...,n-1. Following the
construction given in the previous section we get

-0(t) 0(t) 0(t)

F(t)
o (t) 0

G(t)
1 (t) v (t)

0
Oln_ (t) tn-- (t) Vn--1

COROLLARY 3.8. The Nevanlinna-Pick Problem 3.7 has solutions if and only if

[{?.ti (t)t (t) vi(t)v; (t) } Na; (o/i (t))] n-1i,j--o
>_0 for all t Z,

where, for a stable family {a(t)}tez, the upper-triangular operator Na is defined by
(N)tt I, and (N)t_j,t a(t j + 1)a(t j + 2)... a(t) for j >_ 1. (The stability
of {a(t)}te assures that N is a well-defined bounded operator.)

4. A recursive solution. The examples considered in the previous sections re-
veal the significance of Theorem 2.2 in the solution of moment and interpolation
problems. However, the result of Theorem 2.2 only provides an existence statement,
i.e., it only assures the existence of an upper-triangular contraction S that satisfies
(4). It does not show how to construct or find such an S. The several applications
mentioned above though, motivate the need for an alternative route that would also
lead to a construction of S. In this section, following the arguments in [24]-[27], we
describe a recursive procedure that leads us to what we call a generalized Schur algo-
rithm, and which allows us to provide an implementation for S in terms of a cascade
of elementary sections. The derivation that follows, however, is only applicable to the
case where the involved Hilbert spaces are finite-dimensional. More specifically, we
consider displacement equations as in (1), viz.,

R(t) F(t)R(t 1)F* (t) G(t)J(t)G* (t),
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where R(t) e ((t)), C(t) e (bt(t) 3 P(t),T(t)), F(t) e ((t- 1),7(t)), and
J(t) (Iu(t)-Iv(t)), and assume the following finite-dimensionality conditions.

n--1
(8a) There exists a finite positive integer n such that 7(t) Ti(t), for all t;

i--0

(8b) dim 7i(t) are all equal and finite for all t E Z and 0, 1,..., n 1;
(8c) dimb/(t) p(t) < and dim V(t) q(t) for all t E Z.

We further assume that the following are true.

(8d) {F(t)} is a uniformly bounded family of lower triangular

operators with stable families of diagonal entries {fi(t) }i=0n-1;
(8e) {G(t)} is a uniformly bounded family.

By condition (8a) we can write R(t) [rij(t)]n-i,j=0, with block entries rij(t)
(Tj (t), 7"Q (t) ).

4.1. A time-variant embedding relation. A major tool in our analysis is a
so-called embedding result for displacement equations. This result was derived in [14]
in the time-invariant case and further explored and discussed in [19]. Its relevance
to rational interpolation problems was detailed in [24], [25], [28] and in connection
with time-variant interpolation problems in [5], [25], [26]. Here we discuss the general
time-variant case following the pattern developed in [25], [26].

For this purpose, we consider again the time-variant displacement equation (1)
and, in addition, assume that {R(t)}tez is also uniformly bounded from below, viz.,

(8f) such that 0<riI<_R(t) for all tZ.

THEOREM 4.1. Suppose (8a)-(8f) hold, then there exist uniformly bounded fami-
lies of operators {H(t)}tez and {K(t)}tez,

H(t) e ((t- 1),L/(t) V(t)), K(t) e (bl(t) 3 P(t)),

such that the following time-variant embedding .relation is satisfied

(9) H(t) K(t) 0 J(t) H(t) K(t) 0 o]J(t)

Proof. It is easy to check (as in [19], [24], [25]) that the following choices for
H(t) and K(t) satisfy the embedding relation (we use the notation O-l(t) to mean

H(t) O-l(t)J(t)G*(t) [R (t)--(t)R(t-1)F*(t)] -1

[T(t)R-1/2 (t --1) R-1/2 (t)F(t)]

K(t) 0- (t) I J(t)G* (t) ni (t) T(t)ni (t 1)F* (t) n-1/2 (t)G(t)

for an arbitrary J(t)-unitary operator O(t) and an arbitrary unitary operator T(t),
whenever the inverse of R(t)- T(t)R(t- 1)F*(t) exists. Here, R1/2(t) denotes
the operator defined by R(t) R1/2 (t)R (t). (The finite-dimensionality conditions
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guarantee that it is always possible to choose a unitary matrix T(t) so as to assure
the invertibility of R (t)- T(t)R (t- 1)F* (t).)

We now show that we can choose O(t) and T(t) adequately so as to guarantee the
uniform boundedness of the families {H(t), K(t)}tez. By our hypothesis, there exist
rl > 0 and r2 > 0, independent of t, such that 0 < rlI <_ R(t) <_ r2I for all t E Z. It
follows that we can always find -(t) such that

[R*12(t)- T(t)R*12(t 1)F*(t)] R*12(t)- T(t)R*12(t- 1)F*(t)]* _> eI > 0,

for some e > 0. Indeed, define A(t) R1/2(t- 1)F*(t)R-1/2(t). If A(t) 0 then
the claim is obvious, otherwise write A(t) (A(t) 0) with respect to the de-
compositions TC(A*(t)) K:er A(t) and Ti(A(t))/Cer A*(t) of (t) and 7(t- 1),
respectively. We readily conclude that A(t) is invertible. If we define T(t)
(-A(t) [A (t)A(t)] -1/2 B(t)), with respect to the above decompositions, and for an
arbitrary unitary operator B(t), then it follows that [T*(t) A(t)] IT(t) A*(t)] _> I.
Therefore, R (t)- T(t)R (t- 1)F*(t) is invertible and the family

{ [R*12(t) T(t)R*/2(t- 1)F* (t)]--1 }tEZ
is uniformly bounded. Taking O(t) I for all t E Z leads to uniformly bounded
families {H(t), K(t)}tEz.

4.2. Generalized Schur algorithm. We now use the embedding result of The-
(tln-1orem 4.1 to derive a generalized Schur algorithm for block matrices R(t) [rij

along the lines presented in [25]-[27]. More precisely, we focus on the time-variant
displacement equation (1) and show that it allows the successive computation of the
Schur complements of R(t) to be reduced to a computationally efficient recursive
procedure applied to the so-cMled generator matrix G(t).

Let Ri(t) denote the Schur complement of the leading submatrix of R(t). If
l(t) and di(t) stand for the the first column and the (0, 0) entry of R(t), respectively,
then (the positive-definiteness of R(t) guarantees d(t) > 0 for all i)

(10) [oR(t) l(t)dl(t)li (t) 0
o ]

Hence, starting with an n n matrix R(t) and performing n consecutive Schur com-
plement steps, we obtain the triangular factorization of R(t), viz.,

R(t) lo(t)dl(t)l(t) + l(t) (t) l(t) + L(t)D-(t)L*(t)’

where D(t) diag{d0(t),... ,dn-(t)) (D-l(t) stands for (D(t))-) and the (nonzero
parts of the) columns of the lower triangular matrix L(t) are {/0(t),..., ln- (t)}. The
point, however, is that this procedure can be speeded up for matrices R(t) that exhibit
a time-variant displacement structure as in (1). In this case, the above (Gauss/Schur)
reduction procedure can be shown to reduce to a recursion on the elements of the
generator matrix G(t). The computational advantage then follows from the fact that
the column dimension of G(t), viz., r(t) p(t) + q(t), is usually small when compared
to the dimension of R(t). The following theorem shows that the triangular factor at
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time (t- 1), viz., L(t- 1), can be time-updated to L(t) via a recursive procedure on
G(t).

THEOREM 4.2. The Schur complements R(t) are also structured with generator
matrices G(t), viz., R(t) F(t)R(t- 1)F/*(t) G(t)J(t)G(t), where G(t) is
a matrix that satisfies, along with l(t), the following generator recursion: Go(t)

 o(t) F(t),

l(t) G+l(t) F(t)l(t- 1) a(t) J(t)9(t) J(t)k(t)J(t)

where g(t) is the top (block) row of G(t), F(t) is the submatrix obtained after deleting
the first (block) row and column of F_(t), and h(t) and k(t) are arbitrary matrices
chosen so as to satisfy the time-variant embedding relation

[ fi(t) gi(t) ] di(t-1) 0 ] [ fi(t) gi(t)]* di(t) 0 ](11) hi(t) ki(t) 0 J(t) h(t) ki(t) 0 J(t)

where di(t) satisfies the time-update di(t) fi(t)di(t- 1)f/*(t) + gi(t)J(t)g(t).
Proof. We prove the result for 0. The same argument is valid for >_ 1.

Let do(t),lo(t), and go(t), denote the (0, 0) (block) entry of R(t), the first (block)
column of R(t), and the first (block) row of G(t), respectively. It then follows from
the displacement equation (1) that lo(t) F(t)lo(t- 1)f(t)+ G(t)J(t)g(t) and
do(t) fo(t)do(t- 1)f (t) + go(t)J(t)g (t). Let F (t) be the submatrix obtained after
deleting the first (block) row and column of F(t). Using the expressions for lo(t), do(t),
and (10), it is straightforward to check that we can write/ (t)- F(t)t (t- 1)F*(t)

G(t)J(t) {J(t)- g)(t)dl(t)go(t)} J(t)G*(t)
F(t)lo(t- 1)ff)(t)d(t)go(t)J(t)G*(t)
G(t)J(t)g(t)dl(t)fo(t)l(t 1)F*(t)

(12) F(t)lo(t- 1)[d(t- 1)- ff)(t)d(t)fo(t)] l(t- 1)F*(t).

We now verify that the right-hand side of the above expression can be put into the form
of a perfect square by introducing some auxiliary quantities. Consider a (block) column
vector ho(t) and a matrix ko(t) that are defined to satisfy the following relations (in
terms of the quantities that appear on the right-hand side of the above expression,
this is always possible as explained ahead)

(12b) h(t)J(t)ho(t) d(t- 1) f(t)d(t)fo(t)

k(t)J(t)ko(t) J(t) g(t)dl(t)go(t), k) (t)J(t) ho (t) g (t)d (t) fo (t)

Using {ho(t),ko(t)}, we can factor the right-hand side of (12a) as 01(t)J(t)O (t),
where G(t)- F(t)lo(t-1)h(t)J(t)+G(t)J(t)k(t)J(t). Recall that the first (block)
row and column of R(t) re zero. Hence, the first (block) row of ((t) is zero,

1 (t) 0 GT (t) IT. Moreover, it follows from (12b) (and from the expression
for do(t)) that

ho(t) ko(t) 0 J(t) ho(t) ko(t) 0 J(t)

which is equivalent to (11) for 0.
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The existence of uniformly bounded families {hi(t),k(t)}tez that satisfy (11)
follow as a special case of Theorem 4.1, since d(t) satisfies a time-variant displacement
equation, viz.,

di(t) fi(t)di(t- 1)f*(t) + gi(t)J(t)g(t),

the finite-dimensionMity conditions stated prior to Theorem 4.1 are satisfied, and the
families {d(t),g(t)}tez are uniformly bounded as shown next.

LEMMA 4.3. The sequences {d(t)}tez and {g(t)}tez obtained through the recur-
sive Schur reduction procedure are uniformly bounded. More specifically, there exist
real numbers bd, Cd, and cv (independent of t) such that

0 < bdI < d(t) < CdI, IIg(t)ll < c. for all t.

Proof. It is clear that {do(t)}tex is uniformly bounded from above since {f0(t)}tex
is stable and {go(t)J(t)g(t)}tez is uniformly bounded. A similar argument shows
that {/0(t)}tex is also uniformly bounded. It further follows from 0 < rlI <_ R(t)
that the sequence {do(t)}tez is uniformly bounded from below, viz., do(t) >_ rlI > 0
for all t. Hence, by Theorem 4.1, we can always choose uniformly bounded sequences
{ho(t)}tez and {ko(t)}te so as to satisfy the embedding relation (11). From the
generator recursion we get g(t) eF(t)lo(t- 1)h(t)J(t) + eG(t)J(t)k(t)J(t). It
then follows that {g (t)}tez is also uniformly bounded. Repeating this argument we
conclude, by induction, that there exist real numbers Cd > 0 and c > 0 such that
di(t) < CdI and Ilgi(t)ll < c for all t Z.

To show that the sequence {di(t)}tez is uniformly bounded from below, we use
the fact that the successive Schur complements Ri(t) also satisfy relations similar to
(1). For this purpose, we rewrite each step of the Schur reduction procedure (10) in
the form

(13)

n(t) [ l(t)dv, l(t) In--i 0 R+(t) l(t)dv* l(t) I__i

which exhibits a congruence relation. We define, for notational simplicity,

[ 0 ]A(t) =_ l(t)dT* (t) I__

which is an invertible lower triangular matrix. Assume that R(t) > eI for some

e > 0 independent of t (e0 rl since 0 < rlI <_ R(t)). Then clearly d(t) > eI and
A(t) is uniformly bounded. For any nonzero column vector y, we can always write
y A(t)x for some nonzero column vector x, since A(t) has full rank. Therefore,

y,[ di(t)o R +I (t) y Ai(t) 0 R +I (t) (t)x x*R (t)x

> e llxl[ ellA-*(t)y[[ e / llyll

where in the last equality we defined e+ and used the fact that {A(t)}tez is uni-
formly bounded. Consequently, d+1 (t) > e+1 and we can choose bd min0<<n_
We thus conclude that {d(t)}tez is uniformly bounded from below.

We finally remark that we can also conversely show that if {d(t)}tez is uniformly
bounded from below, then {R(t)}tez is also uniformly bounded from below. To see
this, we apply the same argument and use (14) backwards starting with Rn-(t)
dn-l(t) down to Ro(t) R(t).
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4.3. Recursive construction of S. The question now is: How does the recur-
sive algorithm in Theorem 4.2 relate to the result of Theorem 2.2? The relevant fact
to note here is that each recursive step gives rise to a linear discrete-time system (in
state-space form)

[ f(t) h(t)J(t) ]J(t)g (t) J(t)k (t)J(t)

which appears on the right-hand side of the generator recursion in Theorem 4.2. This
can be thought of as the (state-space) transition matrix of a linear system as follows

[ f(t) h(t)J(t) ](14) [x(t + 1) y(t) ]= x(t) w(t)
J(t)g(t) J(t)k(t)J(t)

where x(t) denotes the state, w(t) denotes an input vector, and y(t) denotes an
output vector at time t.

The second important observation, which we shall verify very soon, is that each
such section exhibits an intrinsic blocking property. The cascade of n sections would
then exhibit certain global blocking properties, which will be shown to be equivalent
to the desired result (4). Interesting enough, these blocking properties simply follow
from the fact that ech step of the Schur reduction procedure yields a matrix with a
new zero row and column (as in (10)), which translates to a generator matrix with a
new zero row as in Theorem 4.2.

4.3.1. Properties of the first-order sections. Let

denote the upper-triangular transfer operator associated with (14), where the {T? }
denote the time-variant Markov parameters of Ti and are given by

T) g(l)k;(1)Y(1) T() g(1)g;(1)h(1 + 1)J(/+ 1)

J(l)g(1)f(1 + 1)f*(/+ 2)... f(j- 1)h(j)J(j) for j > l+ 1.

The output and input sequences of T are clearly related by

[... yi(-1) ly (0) yi(1) [... wi(-1) [Wi(0i wi(1) ]Ti.
After n recursive steps (recall that G(t) has n rows) we obtain a cascade of sections
T ToTi... T_i, which may be regarded as a generalized transmission line.

LEMMA 4.4. Each first-order section Ti is a bounded upper-triangular linear
operator.

Proof. We already know that {fi(t)}tsz and gi(t)}tsz are stable and uniformly
bounded sequences, respectively, and that {hi(t),ki(t)}tsz can always be chosen to
be uniformly bounded sequences as well. It is then a standard result that the corre-
sponding transfer operator Ti is bounded (see, e.g., [15]). l-I

Moreover, if we define the direct sum J t J(t), it then follows that each Ti
also satisfies the following J-losslessness property.

LEMMA 4.5. Each first-order section Ti satisfies TiJT J and TJTi J.
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Proof. The proof is a direct consequence of the embedding construction (11),
which leads to the relations

f(t)d? l(t)fi(t) + h(t)J(t)hi(t) d? l(t 1).
f(t)d.-(l(t)gi(t) + h(t)J(t)k(t) O.

g(t)d;(t)gi(t) + k(t)J(t)ki(t) J(t).

Therefore, we can expand d- (t) and write

d?(t) h(t + 1)J(t + 1)hi(t + 1)
+ f(t + 1)h(t + 2)J(t + 2)hi(t + 2)fi(t + 1)
+ f;(t + 1)f* (t + 2)h(t + 3)J(t + 3)hi(t + 3)fi(t + 2)fi(t + 1) +....

Now the tth element on the main diagonal of TiJT (denoted by )tt) is given by

itt J(t)[k(t)J(t)ki(t) + g(t)h(t + 1)J(t + 1)hi(t + 1)gi(t)
+ g(t)f(t + 1)h(t + 2)J(t + 2)hi(t + 2)fi(t + 1)gi(t) +...]J(t).

Using the expression for di-l(t), we obtain

itt J(t) J(t)g(t) [d-(t)- d-l(t)] gi(t)J(t) J(t).

The same argument can be used to show that the off-diagonal elements of TiJT are
zero. For proving that TJT J we use a similar procedure. [:]

Furthermore, each section Ti satisfies an important blocking property in the fol-
lowing sense.

THEOREM 4.6. Each first-order section Ti satisfies

[... fi(t)fi(t-1)gi(t-2) fi(t)gi(t-1) gi(t) ? ITi= [0 ? ],
where gi(t) is at the tth position of the row vector. Consequently, gi(t).Ti(fi(t)) O.

Proof. This follows directly from the embedding result (11) (as well as from the
fact that each step of the generator recursion in Theorem 2.2 produces a new zero

row). The output of Ti at time t is given by

yi(t) + fi(t)fi(t- 1)gi(t- 2)Tt-2,t + fi(t)gi(t- 1)Tt-,t + gi(t)Ttt
[-di(t 1) + di(t 1)] fi(t)h(t)J(t) O,

where we substituted the expressions for the Markov parameters {Tjt}j<_t and used

d(t) g(t)J(t)g(t) + f(t)g(t- 1)J(t- 1)g;(t- 1)f* (t)
+ f(t)f(t- 1)gi(t- 2)J(t- 2)g (t- 2)f* (t- 1)f* (t)+....

The same argument holds for the previous outputs. [:]

In general terms, the blocking property means that when gi(t) (which is the first
row of G(t)) is applied to T we obtain a zero output at f(t) at time t. We say that
f(t) is a time-variant transmission-zero of T and g(t) is the associated time-variant

left-zero direction. We remark that the concepts of transmission zeros and blocking
directions are central to many problems in network theory and linear systems [17].

We can now put together the two main pieces proved so far: the Schur reduc-
tion procedure and the blocking properties of the elementary sections. This leads to
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the following constructive proof of Theorem 2.2, assuming finite-dimensionM spaces
{(t),H(t), ])(t)}tez and the supplementary nondegeneracy condition U(t)U*(t) >_
# > 0 for all t e Z, where # is a fixed constant.

THEOREM 4.7. Assuming finite-dimensional spaces {7(t),b/(t), ]2(t)}tez and the
nondegeneracy condition U(t)U*(t) >_ # > 0 for all t, the time-variant displacement
equation (1) has a Pick solution R(t) such that R(t) > eI > 0 for a constant e and
for all t if and only if there exists an upper-triangular strict contraction S (]IS[I < 1),
S 12(t ])(t), tebl(t)), such that

(15) V(t) U(t)Pu(t)S/<_t;(j) for every t e Z.

Proof. One implication is immediate. We now give a constructive proof of the
converse statement. So assume the displacement equation (1) has a Pick solution
R(t) such that R(t) > eI > 0 for a constant e and for all t. Then applying the
Schur reduction procedure (or the generalized Schur algorithm) to {F(t), G(t)} leads
to a cascade of elementary sections, viz., T TOT1... Tn-. Following n rgument
similar to that presented in [19] for the time-invariant case and in [24], [26] for the
time-variant case, we readily conclude that the entire cascade admits the following
state-space description:

[ F*(t) H*(t)J(t)]Ix(t+ 1) y(t) ]= Ix(t) w(t) J(t)G*(t) J(t)K*(t)J(t)

where {H(t), K(t)}tez are, due to our ssumptions, uniformly bounded operators that
satisfy the embedding relation

(16) [ F(t) G(t)I [ R(t-1) 0 ] [ F(t) G(t)]* JR(t) 0 ]H(t) K(t) 0 J(t) H(t) K(t) 0 J(t)

Moreover, it follows from the blocking properties of the sections Ti that the entire
cascade T satisfies the global blocking relation

(17) [...F(t)F(t-1)G(t-2) F(t)G(t-1) G(t)0... IT= 0 ? ],
where G(t) appears in the tth position.

We further partition the matrix entries 2 of the cascade T accordingly with J(1)
and J(j),

and consider the triangular operators

[T] IT2] [T] [Ty] for -cx jlj T12 T22 2Ill W21

We now verify that Tf2 is an upper-triangular and bounded operator and that

T12T2-21 is a strictly contractive upper-triangular operator, such that

V(t) -U(t)Pu(t)T2Tf/tV(j) for all t e Z.

For this purpose, note that it follows from the J-losslessness property of T that

(18) T22T2 I, T2T I.
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Hence, T22 is invertible and IIT-II <_ . Define X(t) Pv(t)T22/j<t V(j), then
it follows from (18) that X*(t)X(t) >_ I. Define T(t) Puv(t)T/j<tLl(j) @ V(j)
and Jt y<t J(j). It follows from the embedding relation (16) that

Jt-T(t)JtT*(t) F(t)G(t- 1) G(t) ]*R-l(t)[ F(t)G(t- 1) G(t) >_ O.

Hence, X(t)X* (t) > I and we conclude that X (t) is invertible for every t E Z and that
the family {X-i(t)}tez is uniformly bounded by one. Define the following operators
(acting on the same space as T22),

(t)= [X(t) O]0 0

Then (t -4- 1) and (t) satisfy the following nested property (they differ by just one
block column)

(19) (t+l)= [(t) ?10 ?

where ? denotes irrelevant entries. Hence, {(t)}tez strongly converges to a bounded
operator ) as t x. It is easily checked that ) is upper-triangular and that it
actually coincides with T2.

The fact that T12T-2 E (tez V(t), tezb/(t)), is an upper-triangular strictly
contractive operator is a consequence of the J-losslessness of T. We thus conclude that
S -T12T2-21 (tez V(t), tezbl(t)) is a strictly contractive upper-triangular
operator that satisfies (15).

Remark. The above argument is based on a recursive construction of T. We
can also give a direct (nonrecursive) proof of the same result as follows: First prove
the embedding relation (16) as in Theorem 4.1 and the blocking property (17) as in
Theorem 4.6. We then conclude the argument as above.

4.3.2. Parametrization of all solutions. We now show how to parametrize
all solutions S that satisfy (15).

THEOREM 4.8. Assuming finite-dimensional spaces {7(t),/g(t), P(t)}te and the
nondegeneracy condition U(t)U* (t) >_ # > 0,, for all t, and that the displacement equa-
tion (1) has a Pick solution R(t) such that R(t) > eI > 0 for a constant and for all t.
Then all strictly contractive upper-triangular solutions S
are given by

-[W + T] [W+ T]-
for arbitrary upper-triangular contractive operators

K e ,(tez V(t), re% U(t)) with IIK:II < 1.

Proof. One implication is immediate. Consider a K as above. Since T2 is a

bounded upper-triangular operator, it follows that S [Tllg -t- T12] [T21K -- T22] -1is bounded upper-triangular and, using the J(t)-losslessness of T, we conclude that

IIsII < 1. Let $1 TllK + T12 and S. T21K + T22. Then,

S1
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and, because of the blocking property of T, we obtain that S is a solution of (15).
For the converse implication we follow the pattern developed in [6] and adapted

for the time-variant Nevanlinna-Pick problem in [5]. Because our framework is
more general, we indicate the necessary changes. For an upper-triangular opera-
tor X ($, ), where $ te $(t) and K te (t) are two families of Hilbert
spaces, we define X(t) Ps(t)X/<_t ](j). We also denote by Up the set of upper-
triangular operators in .(@tez V(t), @tez(/g(t) @ V(t))). We claim that TUp {X
Up/G(t)X(t) O, t Z}, where G(t) [...F(t)F(t-1)G(t-2)F(t)G(t-1) G(t)].
Indeed, take Y Up then G(t)(TY)(t) G(t)T(t)Y(t) 0, by the blocking
property of T. Conversely, take X Up, G(t)X(t) 0 for all t Z and define
Y T-X JT*JX. Due to the structure of the Markov parameters of T, it is
readily checked that all the entries of Y under the main diagonal are zero. That is,
Y Up and the claim is proved. From now on the arguments in Theorem 3.1 of [5]
for getting the required representation of the solution of (15) apply directly.

5. Schur parameters. There are special choices of the parameters {hi(t), k(t)}
in (11) that would greatly simplify the generator recursion of Theorem 4.2 and lead
to the so-called Schur parameters and the corresponding lattice sections. These pa-
rameters, which first appeared in the classical paper of Schur [30], have encountered
applications in several areas including the study of orthogonal polynomials, inverse
scattering, digital filtering, etc. [18]. They were also studied in a general operatorial
framework in [3] and [7]. However, we want to emphasize that in our paper the Schur
parameters are not the parameters associated with the load (i.e., the upper-triangular
contractive operator K in Theorem 4.8), but rather are the parameters associated with
the recursive construction of the strictly contractive solution S -T12T2-21.

We do not go into the details of the lattice structures here. The reader is referred
to [24] and [26] for a detailed derivation. Instead we show how certain so-called
time-variant Schur (or reflection) parameters appear in two important special cases.

We continue to require the finite dimensionality assumptions and the nondegen-
eracy condition U(t)U*(t) > # > 0, for all t, of the previous section. But we now
further assume that dim Ti(t) 1 and that there exists b > 0 such that

(20) b <_ Ig(t)J(t)g(t)l for all t e Z.

We remark that conditions (20) and {di(t)} bounded from below are independent,
as can be shown by simple examples. We distinguish between two special cases"

gi(t)J(t)g(t) > 0 or gi(t)J(t)g(t) < 0. That is, gi(t) has either positive or negative
J(t)-norm. We partition gi(t) accordingly with J(t), viz., gi(t)= ui(t) vi(t) ].

5.1. The positive case. In the positive case, we have

gi(t)J(t)g (t) ui(t)u (t) vi(t)v (t) > O,

and, by a well-known factorization result (see [21]), it follows that there exists a
contraction i(t): n(v(t)) - n(u(t)) such that vi(t) ui(t)/i(t), and IIi(t)ll < 1.
We can extend this contraction by zero to another contraction i(t) E (N(t), )(t))
that still satisfies 119,i(t)l < 1 and vi(t) ui(t)/i(t). If we now construct the g(t)-
unitary operator

-l(t) Iy(t) 0 (I /(t)/i(t)) -112
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we readily conclude that Oi(t) reduces gi(t) to the form gi(t)Oi(t) 5i(t)
for a certain 5i(t). Now note that

0],

5(t)5 (t) g(t)Oi(t)J(t)O (t)g (t) gi(t)J(t)g (t) > b,

and consequently, using the boundedness of {g(t)J(t)g(t)} from below, there exists
a constant k > 0 such that IIO-l(t)ll _< k for all t.

5.2. The negative case. In the negative case, we have

gi(t)J(t)g(t) u(t)u(t) v(t)v(t) < O,

and, by the same argument as above, we conclude that there exists a contraction
/i(t) e (51(t), l)(t)) IIi(t)l < 1) such that u(t) v(t)’y(t). If we now define the
J(t)-unitary operator

-/(t) Iv(t) 0 (I "y(t)y(t)) -/2

we readily conclude that Oi(t) reduces g(t) to the form g(t)O(t) 0
for a certain 5(t). It also follows from

5 (t) ],

-5(t)5 (t) g(t)O(t)J(t)O (t)g (t) gi(t)J(t)g (t) < -b,

that IIO-(t)ll _< k for some k > 0.
The contractions {’(t)}tez are called the Schur parameters of the underlying

displacement structure (1).

5.3. Strictly lower-triangular F(t). An important special case that often arises
is the case of strictly lower triangular E(t). That is, f(t) 0 for all t E Z and

0, 1,... ,n- 1 and, consequently, di(t) gi(t)g(t)g(t). But {di(t)} is uniformly
bounded from below, viz., di(t) > e > 0 for all t. Hence, we now always have

ui(t)u (t) vi(t)v(t) > > 0 for all t e Z,

and there always exist Schur parameters ,i(t) such that vi(t) ui(t)/i(t), with the
corresponding J(t)-unitary operator defined by

-/(t) Iv(t) 0 (I /(t)/i(t)) -/2

The generator recursion in Theorem 4.2 can then be shown to reduce to the compact
form (see also [29])

Gi+(t) Fi(t)Gi(t- 1)Oi(t- 1) 0 0 +G(t)O(t) 0 I(r(,)-)

which has the the following interpretation: multiply Gi(t) by O(t) and keep the last
columns; multiply the first column of G(t- 1)O(t- 1) by Fi(t); these two steps
result in Gi+l (t).
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6. Concluding remarks. We proved a general result (Theorem 2.2) concerning
time-variant displacement equations of the form (1) with Pick operator solutions
We considered several moment, completion, and interpolation problems whose solu-
tions followed as special cases of Theorem 2.2. These problems were stated in a general
operator setting, including a time-variant version of the tangential Hermite-Fejr in-
terpolation problem. Under supplementary finite-dimensionality and nondegeneracy
conditions, a recursive procedure was derived that led to a recursive construction
and parametrization of all solutions of the general result of Theorem 2.2. We also
considered special cases where further simplifications were possible.
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A DIVIDE-AND-CONQUER ALGORITHM FOR THE
BIDIAGONAL SVD*
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Abstract. The authors present a stable and efficient divide-and-conquer algorithm for com-
puting the singular value decomposition (SVD) of a lower bidiagonal matrix. Previous divide-and-
conquer algorithms all suffer from a potential loss of orthogonality among the computed singular
vectors unless extended precision arithmetic is used. A generalization that computes the SVD of a
lower banded matrix is also presented.

Key words, singular value decomposition, divide-and-conquer, bidiagonal matrix
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1. Introduction. Given an (N + 1) N lower bidiagonal matrix

c1
]1 0/2

(1) B oo
fiN N

its singular value decomposition (SVD) is

0
yT,

where X and Y are (N + 1) (N + 1) and N N orthogonal matrices, respectively,
is an N N nonnegative diagonal matrix and 0 is a row of zero elements. The

columns of X and Y are the left singular vectors and the right singular vectors of
B, respectively, and the diagonal entries of are the singular values of B. This
problem arises when one computes the SVD of a general matrix by first reducing it to
bidiagonal form [10], [12]. In this paper, we propose a bidiagonal divide-and-conquer
algorithm (BDC) for solving this problem.

BDC first partitions B as

B= ( BI akek 0 )0 e B
where B and B2 are lower bidiagonal matrices, each of which is a submatrix of
B. Next it recursively computes the SVDs of B and B2 and computes orthogonal
matrices (Q, q) and W such that

B=(Qq) 0
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An N N lower bidiagonal matrix can be put into the form (1) by appending a zero row; we
consider this case since it simplifies the recursion.

79
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where M is an N N matrix with nonzero elements only in the first column and
on the diagonal. Finally it finds the singular values of B by computing the SVD
M UVT, where U and V are orthogonal matrices, and then computes the singular
vector matrices of B as (QU, q) and WV, respectively.

Since error is associated with computation, a numerical SVD of B or M is usually
defined as a decomposition of the form

(2) B X ( ) T + O( IIBII2) or M 0"tT + O(e IIMII2)0

where e i8 the machine precision, t i8 diagonal, and and 1 or 0" and are nu-
merically orthogonal. An algorithm that produces such a decomposition is said to be
stable.

While the singular values of B and M are always well conditioned with respect to
pert^urbations, the singular vectors can be extremely sensitive [13, pp. 419-420]. That
is, t must be close to t, but , 17, [, and V can be very different from X, Y, U, and
V, respectively. Thus one is usually content with stable algorithms for computing the
SVD of B or M.

Jessup and Sorensen [22] present a divide-and-conquer method that uses basically
the same dividing strategy and computes the SVD of M using an algorithm based
on the work in [5], [6], and [9]. While it can compute the singular values of M to
high absolute accuracy, in the presence of close singular values it can have difficul-
ties in computing numerically orthogonal singular vectors unless extended precision
arithmetic is used [22], [23], [27].

In this paper we develop a new algorithm for computing the SVD of M based on
the work in [16] and [19]. It uses an approach similar to that of Jessup and Sorensen
for computing the singular values, but it uses a completely different approach for
computing the singular vectors, one that is stable. The amount of work is roughly the
same, yet it does not require the use or simulation of extended precision arithmetic.
Since it uses this algorithm, BDC is stable as well. Moreover, BDC uses a new
procedure for handling deflation that makes it up to twice as fast asymptotically as
the Jessup and Sorensen method.

There are three other divide-and-conquer algorithms for the bidiagonal SVD. Ar-
benz and Golub [3] follow the Jessup and Sorensen approach, but divide B by removing
a column rather than a row. Arbenz [1] and Gragg, Thornton, and Warner [14] (see
also Borges and Gragg [4]) each use a divide-and-conquer method for the symmetric
tridiagonal eigenproblem to compute a spectral decomposition of a symmetric per-

o BTmutation of the matrix (B 0 while taking advantage of its special structure. All
three algorithms can be unstable as noted above, unless extra precision arithmetic is
used. The techniques presented here can be used to stabilize (and speed up deflation
in) these algorithms as well.

BDC computes all the singular values in O(N2) time and all the singular values
and singular vectors in O(N3) time. By using the fast multipole method of Carrier,
Greengard, and Rokhlin [7], [15], BDC can be accelerated to compute all the singular
values in O(N log2 N) time and all the singular values and singular vectors in O(N2)
time (see [16] and [17] for details). These asymptotic times are better than the corre-
sponding worst-case times (O(N2) and O(N3)) for the Golub-Zahan algorithm [10],
[12] and bisection with inverse iteration [20], [21].

Section 2 presents the dividing strategy; 3 presents an algorithm for comput-
ing the SVD of M; 4 presents the deflation procedure; and 5 generalizes BDC to
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compute the SVD of a lower banded matrix.
We take the usual model of arithmetic2

o Z) o Z) (1 +

where a and/ are floating-point numbers, o is one of +,-, and +, fl(c o ) is the
iloating-point result of the operation o, and I1 < e. We also require that

fl(x/) / (1 + sc)

for any positive floating-point number c. For simplicity, we ignore the possibility of
overflow and underflow.

2. "Dividing" the matrix. Given an (N + 1) N lower bidiagonal matrix B,
we divide B into two subproblems as follows (cf. [22]):

(3) B=( B1 akek 0 )0 5e B

where 1 < k < N, B1 and B2 are k (k-l) and (N-k+l)x (N-k) lower bidiagonal
matrices, respectively, and ej is the jth unit vector of appropriate dimension. Usually
k is taken to be [N/2].

Let

be the SVD of Bi. Let lT and A be the last row and last component of Q and ql,

respectively, and let f2T and 02 be the first row and first component of Q2 and q2,

respectively. Substituting into (3), we get

CkAI 0 0

(OWl O)B= ( q QI 0 O) ckl D 0
1 0 0

0 0 Q2 q2 kf2 0 D2 0 0 W20. 0 0

There is only one nonzero element in the first and last rows of the middle matrix.
Applying a Givens rotation to zero out k92, we have

(4) B ( ( cqsoq2 Q’

_=(Q q) (Mo

ro 0
0
Q2 coq2 kf2 0

0 0

WT,

0
1 0 0

D2 0 0 W20

where

(5) ro (akA1)2 + (kO2)2, CO , and So
r0 r0

2 This model excludes machines such as CRAY and CDC Cyber that do not have a guard digit.
BDC can easily be modified for such machines.
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Thus we have reduced B to (M0 by orthogonal transformations (Q, q) and W, and
M has nonzero elements only in the first column and on the diagonal.

Let UVT be the SVD of M computed using the algorithm described in 3.
Substituting into (4) we obtain

B=(Qq) 0 0

The singular values of B are the diagonal elements of , and the singular vectors of
B are the columns of X and Y. To compute the 8VDs of B and B2, this process
((3) and (4)) can be reeursively applied until the subproblems are sufficiently small.
These small subproblems are then solved using the Golub-Kahan algorithm [10], [12].
There can be at most O(log2 N) levels of reeursion.

Equations (3) and (4) also suggest a recursion for computing only the singular
values. Let fT and Ol be the first row ofQ and the first component of q, respectively;
let l and A2 be the last row of Q2 and last component of q2, respectively; let fT and
be the first row of Q and first component of q, respectively; and let 1T and be the

last row of Q and the last component of q, respectively. Suppose that D, fi, , l,
and i are given for 1, 2. Then we can compute , f, A, l, and by computing
ro, s0, and c0 using (5), computing the SVD of M, and computing

0)< 0 g)<

There is a similar reeursion for the divide-and-conquer algorithms in [8], [16],and [18]
for the symmetric tridiagonal eigenproblem.

3. Oomputing the SVD of M. In this section we present a stable and efficient
algorithm for finding the SVD of the n x n matrix

Zl
z2 d2

Zn dn

where D diag(dl,... ,dn), with3 0 =- dl 5 d2 < < dn, and z (z,... ,Zn)T.
We further assume that

(6) j+l- dj > T[[M[12 and

where r is a small multiple of e to be specified later. Any matrix of this form can
be reduced to one that satisfies these conditions by using the deflation procedure
described in 4.1 and a simple permutation.

The following lemma characterizes the singular values and singular vectors of M.
LEMMA 3.1 (Jessup and Sorensen [22]). Let UfVT be the SVD of M with

U (?1,..., Un), diag(w,..., COn) and V (v,..., Vn).

Then the singular values { i}i= satisfy the interlacing property

0 dl < CO < d2 <’" < dn < COn <dn + [Izll

3 We introduce dl to simplify the presentation.
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and the secular equation

n 2

:(CO)-- 1+ E Zk
d,2_ CO2

k-1

The singular vectors are given by

(s)

Zl Zn Zk

2""’d2- 2 (d 2 2’u= dl -)

,’", 2 1 +
2"2

vi= -1,
d22_wi -wi (d-wi

On the other hand, given D and all the singular values, we can reconstruct M up
to the signs of the zi (cf. LSwner [25]).

LEMMA 3.2. Given a diagonal matrix D diag(dl,..., dn) and a set of numbers
{&i }in= satisfying the interlacing property

(9) 0=d<&<d2<...<dn<&n,

there exists a matrix

2 d2

Zn dn

whose singular values are {&i}=. The vector - (2,2,... ,n)T is given by

( ) ( )(o1 I1 ( ) H ( 1 (+ ),k=l k=i

where the sign of i can be chosen arbitrarily.
Pro@ Assume that (and thus ) exists. Then

n

det (D2+ 22T w21)= det (21//1)T -w21) H (&- w2)"
k=l

On the other hand,

det (D2 + 22T w2i) det (I + (D2- CO2I) -1 T) det (D2 -w2I)

( -)1+ d _COg.
k=l

Combining these two equations,

II (&- w) 1 + z (d- w9)
k=l d w2

k=l
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Setting w d, we get

/,,2 II II (4
k= / k

Because of the interlacing property (9), the expression on the right-hand side is posi-
tive. Taking square roots we get (10). Working backward, if is given by (10), then

nthe singular values of are {w}=.
3.1. Computing the singular vectors. If w were given, then we could com-

2 2pute each difference d-w in (7) and (8) to high relative accuracy as (dt:-w)(d+w).
We could also compute each product, each ratio, and each sum to high relative accu-
racy and thus compute ui and vi to componentwise high relative accuracy.

In practice we can only hope to compute an approximation &i to wi. But problems
can arise if we approximate ui and vi by

Z1 Zn Zk
"2’’’’’ d2 "2

and

(i.e., replace wi by &i in (7) and (8) as in [22]). For even if &i is close to wi, the
^2approximate ratios zk/(d--wi and dkzk/(d--&2) can still be very different from the

exact ratios Zk/(d2k--W2) and dkz/(d-w), resulting in i and )i very different from
ui and vi. And when all the approximate singular values {&i}in= are computed and
all the corresponding singular vectors are approximated in this manner, the resulting
singular vector matrices may not be orthogonal.

Lemma 3.2 allows us to overcome this problem. After we have computed all the
napproximate singular values {wi}i=l of M, we find a new matrix 57/whose exact sings-

lar values are {bi}i and then compute the singular vectors of _h?/using Lemma 3.1.
Note that each difference

&-d=(&k-d)(&k+d) and d-d,2. =(dk-d)(dk+d)

in (10) can be computed to high relative accuracy, as can each ratio and each product,
and we can choose the sign of 2i to be the sign of zi. Thus 2i can be computed to high
relative accuracy. Substituting the exact singular values {&i}= and the computed

into (7) and (8), each singular vector of it?/ can be computed to componentwise
high relative accuracy. Consequently, after all the singular vectors are computed, the
singular vector matrices of M will be numerically orthogonal.

To ensure the existence of 21/, we need {&i}in= to satisfy (9). But since the
exact singular values of M satisfy the same interlacing property (see Lemma 3.1),
this is only an accuracy requirement on the computed singular values and is not an
additional restriction on M.

We can use the SVD of// as an approximation to the SVD of M. And since
i 21/112 z 112, such a substitution is stable (see (2)) as long as 2 is close to

z (cf. [16], [19]).
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3.2. Computing the singular values. To guarantee that is close to z, we
must ensure that the approximations ( i}i=l to the singular values are sufficiently
accurate. The key is the stopping criterion for the root-finder, which requires a slight
reformulation of the secular equation (cf. [5], [16], [19]).

Consider the singular value wi E (di, di+l), where 1

_ _
n- 1; we consider the

case n later.
First assume that4 wi E (di, d+d+l2 ). Let 5j dj di and let

i(#) ---- (hi #)(+ di + #)
j--1

and i(#)
n

+ + ,)"
j-i+l

Setting w di + #, we seek the root # wi di (0, 5i+1/2) of the reformulated
secular equation

gi(#) f(# + di) 1 + i(#) + i(#) 0.

2Note that we can compute each ratio zj/((5i-#)(dj +di+#)) in gi(#) to high relative
accuracy for any # (0, 5+1/2). Indeed, either 5y # is a sum of negative terms or

I#1 <- Ihj[/2, and dj + di + # is a sum of positive terms. Thus, since both (#) and
i(#) are sums of terms of the same sign, we can bound the error in computing gi(#)
by

r/n(1 +

where is a small multiple of e that is independent of n and #.
Now assume that wi [diWdi+2 di+l). Let 5j dj di+l and let

i(#) =- .= (hi #)(dj + d,+ + #)
and

n 2

’(#) =- E (5 #)(dj + d,+ + #)"
j=i+l

Setting w di+ -- t.t, we seek the root #, w, d,+ [5,/2, 0) of the equation

gi(#) =-- f(# + di+l) 1 + ,(#) + i(#) 0.

For any # E [5,/2, 0), we can compute each ratio zy/((hj #)(dj + di+l + #)) to
high relative accuracy (either 5j # is a sum of positive terms or I#1 -< 15jl/2; and
dy + d, + # dy + (d,+l + #), where I#1 -< d,+/2) and we can bound the error in
computing g,(#) as before.

Finally consider the case n. Let 5 dj dn and let

n 2

’(#) =- E (6j #)(dj + dn + #)
j----1

and Cn(#) 0.

Setting w dn + #, we seek the root #n Wn dn e (0, Ilzll) of the equation

4 This can be checked by computing f( 2 ) >O, thenwiE (di, 2 ),
otherwise wi e[ di+l)
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Again, for any # e (0, Ilzll), we can compute each ratio zyl((hj #)(dj + dn + )) to
high relative accuracy, and we can bound the error in computing gn(#) as before.

In practice, the root-finder cannot make any progress at a point # where it is
impossible to determine the sign of gi(#) numerically. Thus we propose the stopping
criterion

(11) (1 + I (m)l +

where, as before, the right-hand side is an upper bound on the round-off error in
computing gi(#). Note that for each i, there is at least one floating-point number
that satisfies this stopping criterion numerically, namely, fl(#).

We have not specified the method for finding the root of g(tt). We can use the
bisection method or the rational interpolation strategies in [4], [5], [14], [24]. What is
most important is the stopping criterion and the fact that, with the reformulation of
the secular equation given above, we can find a # that satisfies it.

3.3. Numerical stability. We now show that 2 is close to z.
THEOREM3.3. If T 2n2 in (6) and each [t satisfies (11), then

(12)

The proof is nearly identical to that of the analogous result in [19]. As argued
there, the factor n2 in T and (12) is likely to be O(n) in practice.

4. Deflation.

4.1. Deflation for M. Let

Zl
z2 d2

Zn dn

where D diag(dl,..., dn) with dl 0 and d _> 0, and z (z,... ,Zn)T. We now
show that we can stably reduce M to a matrix of the same form that satisfies

Id- dyl _> IIMII. for j and Izl _> TIIMII
(cf. (6)), where T is specified in 3.3. We illustrate the reductions for n 3, i 3,
and j 2. Similar reductions appear in [22].

Assume that Izl < TIlMII2. Changing Zl to TIIMII2 perturbs M by O(TIIMII2):

(13) M z2 d2 z2 d2 + O(IIMII.).
z3 d3 za d3

The perturbed matrix has the same structure as M and satisfies ]Zll
Next assume that Izil < TIIMII2 for >_ 2. Changing zi to zero perturbs M by

O(rllMIl .)"

(14) M= z2 d2 z2 d2 +O(rllMIl.).
za da 0 da
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In the perturbed matrix, di is a singular value and can be deflated, and the (n- 1)
(n- 1) leading principle submatrix has the same structure as M.

Now assume that Idi- dll- Idol < TIIMII2 for >_ 2. Changing d to zero and
applying a Givens rotation G to zero out z perturbs the matrix GM by O(TIIMII2)"

(5) GM 1 z2 d2 + O(TIIMII2)
-s c za 0

z2 d2 + O(’IIMII2),
0 0

where r V/Z2 + z2, s z/r, and c zl/r. In the perturbed matrix, 0 is a singular
value and can be deflated, and the (n- 1) (n- 1) leading principle submatrix has
the same structure as M.

Finally assume that Idi- djl < TIIMII2 for i,j >_ 2. Changing dj to d and
symmetrically applying a Givens rotation G to zero out z perturbs the matrix GMGT

by O(IIMII):

(16) GMGT= c s z2 d3
-s c z3 d3

r d3 + O(IIMII.),
0 d3

2 /r, and /r. In the perturbed matrix, di is a singularwherer= zi + z, s zi c= zj

value and can be deflated, and the (n- 1) (n- 1) leading principle submatrix has
the same structure as M.

4.2. Local deflation. In the dividing strategy for BDC (see (4)), we write

(7) q) 0 0

where

soq2 0 Q2
M-- akll D 0 and W= 1 0 0

Zb. o D 0 0 W.

lT is the last row of Q, f2T is first row of Q2, and UVT is the SVD of M.
Note that both Q and W are block matrices with some zero blocks. Since the

main cost of BDC is in computing the matrix-matrix products QU and WV, we would
like to take advantage of this structure. In this subsection we describe a deflation
procedure for BDC that gets a speedup of roughly a factor of two by doing so. This
approach is not used in [22].

If Ir01 < TIIMII2 then we apply reduction (13). If the vector (aklT1, kf2T) has
some components with small absolute value, then we apply reduction (14). In both
cases the block structure of Q and W is preserved. IfD has a small diagonal element,
then we apply reduction (15), and if D1 has two close diagonal elements, then we apply
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reduction (16). Again in both cases the block structure is preserved. We do the same
when D2 has a small diagonal element or has two close diagonal elements.

However, when D1 has a diagonal element that is close to a diagonal element in
D2 and we apply reduction (16), the block structure of Q and W is changed. To
illustrate, assume that after applying a permutation, the first diagonal element of D1
is close to the last diagonal element of D2. Let

Q1=(1 Q1), Q2=((2 2), w=(@l ITv1), and W2=(IV2 @2);

and let

akll 51 kf2 D diag(d2, D1), and
ZN

D2 diag(D2, dN).

Changing d2 to dN and applying a Givens rotation G to zero out ZN, we get

ro
r dN

GMGT 1
z2
0

0 ) + O(TIIMII2)D1 + O(TIIMII2) =-- 0 dND2
dN

where r v/z + Z2N, c- z2/r, and s zg/r. Substituting into (17), we have

( GMGT ) (wGT)TB=(QGT q) 0

=(:h q) o
0 0

+ O(TIIMII2),

where

-1 (0ql 1soq sO 0
P ) and
Q: c4:

and

0 C@1 1 0 )?1=1o op
0 s2 0 W2

and 9- 0

dN is an approximate singular value of B and can be deflated. The corresponding
approximate left and right singular vectors are and , respectively. The matrix M1
has the same structure as M and can be deflated in a similar fashion until no diagonal
element of is close to a diagonal element of 2.

Thus, ignoring permutations of the columns of Qi and Wi and the diagonal entries
of Di, after a series of these interblock deflations B can be written as

B= ()1 22 q) 0
0 O)0

T
+O(TIIBII2).
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2 is a diagonal matrix whose diagonal elements are the deflated singular values, and
the columns of )2 and 2 are the corresponding approximate left and right singular
vectors. -/i is of the form

ro

]1-- 0 bO
’i DI

where the dimension of/)0 is the number of deflations, l and/2 contain the diagonal
elements of D1 and D2 not affected by deflation, and 50, 51, and ;2 are defined
accordingly. l and l are of the form

(18) .1__ (COql Q[o,1 1 _o ) and
soq2 Qo,2 0 Q2 (0 0)0 _0

O Wo,. o w
where the column dimension of Qo,1, Qo,2, lo,1, and I0,2 is the number of deflations,
and the columns of (l, (2, l/V1, and I]V2 are those of Q1, Q2, W1, and W2 not affected
by deflation.

Let 11T be the SVD of 21/1. Then

0 )B ( fQ 22 q) 0 fie ( / O(TllBllu)
0 0

q) o + O(IIBII2),
0 0

Thus (,lrl,-2, q) and (ll, 2) are approximate left and right singular vector
matrices of B, respectively. The matrices lrl and ll can be computed while
taking advantage of the block structure of ’l and l in (18).

We refer to these as local deflations since ,they are associated with individual
subproblems.

4.3. Global deflation. To illustrate global deflation, we look at two levels of
the dividing strategy (see (4))"

(19) B ( B1 ai+jei+j
3+je\ B2 fliel B1,2 ai+jej

fli+jel B2

where Bi, B2, B1,1 and B1,2 are principle submatrices of B of dimensions (i + j) x
(i + j- 1), (N- i-j + 1) x (N- i-j), x (i- 1), and j x (j- 1), respectively.

Let Xi,2(Dl’20 )w,T2 be the SVD of Bi,2, and let (fiT,2, 99i,2) and (/iT,2, Ai,2) be the
first and last rows of Xi,2, respectively. Then

BI,1 oie,

(20) B ifl,2 D1,2 oi+jll,2 T
i(Pl,2 0 ai+iAi,2

i+jel B2
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where X -diag(Ii, X1,2, IN-i-j+) and Y -diag(Ii_, 1, W,2, 1, IN-i-j).
Let d- be the sth diagonal element of D,2, and let is and 1- be the sth components

of fl,2 and/,2, respectively. Then ignoring all zero components, the (i + s)th column
and row of the middle matrix in (20) are (d-) and (iL, d-, ai+j[8), respectively.
Thus if both Iifsl and lai+jlsl are small, then we can perturb them to zero. ds is a
singular value of the perturbed matrix and the (i + s)th columns of and are the
corresponding left and right singular vectors, respectively. This singular value and its
singular vectors can be deflated from all subsequent subproblems. We call this global
deflation.

Consider the deflation procedure for computing the SVD in 4.2. If Iifl is small,
then it can be perturbed to zero. This is a local deflation if only I/i]l is small and a
global deflation if lai+j8l is also small.

5. Computing the SVD of a banded matrix. We now generalize BDC to
compute the SVD of a lower banded matrix. This problem arises when one uses the
block Lanczos algorithm to compute the SVD of a sparse matrix [11], [13]. Arbenz [2]
has similarly generalized a divide-and-conquer algorithm for the symmetric tridiagonal
eigenproblem to solve the symmetric banded eigenproblem.

Let B be an (N+ K) N lower (K / 1)-diagonal matrix with K << N. We divide
B into two subproblems as follows:

(21) B= ( BI,1B,2 0 )0 B2,2 B2,3

where 1 < k < N, B, and B2,3 are (k+K) k and (N-k) (N-K-k)
lower (K + 1)-diagonal matrices, respectively, B,2 is a (k + K) K matrix with
nonzero elements only on the lowest K diagonals, and B2,2 is an (N- k) K matrix
with nonzero elements only on the highest K diagonals. Usually k is taken to be
[(N- g)/2J.

Let

B1,1--(Q1 1) (D01) WlT and

be the SVDs of B,I and B2,3, respectively. Substituting into (21), we have

(22) B= (S1 Q1 Z1 D1 0 IKQ2 S. Z2 0 D2 W2Zo,2 0 0

where Z01 S1TB1,2, Z1 QT1B1,2, Z2 T and Zo 2
TQ2 B2,2 $2 B2,2. There exists

a 2K 2K orthogonal matrix

such that

( z0’l ) (el’l G1’2) ( sO )Zo,2 G2,1 G2,2 0
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where Zo is a K K lower triangular matrix. Substituting into (22), we have

(S1GI,1 Q1 S1G2,1) Z1DIO IK(23) B=
$2G1,2 Q2 $2G2,2 Z2 0 D2 W20 0 0

The middle matrix in (23) is lower triangular and can have nonzero elements only
in the first K columns and on the diagonal. Partition

Z 2 zZ

where 2o is a (K- 1) (g- 1) lower triangular matrix and z (ro, zT, zT2)T, with z{

being the last column of Zi and ro being the last diagonal element of Zo. Let UgtVT

be the SVD of

M zl D 0
Z2 0 D2

computed using the algorithm described in 3. Then the middle matrix in (23) can
be rewritten as

( )((,o 0 ),o 0
2 VYT U VT2 - Y

where the middle matrix is lower triangular and can have nonzero elements only in
the first K- 1 columns and on the diagonal. Thus the SVD of the middle matrix in
(23) can be computed by applying this procedure K times.

To compute the SVDs of B, and B2,3, we can recursively apply (21) and (23) to
BI,1 and B2,3 until the subproblems are sufficiently small. These small subproblems
are then solved using the Golub-Kahan algorithm [10], [12]. There can be at most
O(log2 N) levels of recursion. This algorithm takes O(KN3) time to compute both
the singular values and the singular vectors. Similar to the bidiagonal case, there is an

O(K2N2) time divide-and-conquer algorithm for computing only the singular values.
These times can be reduced to O(KN2) and O(K2Nlog2 N), respectively, by using
the fast multipole method [16], [17]. These reduced times are better than the corre-
sponding worst-case times (O(N3) and O(KN2)) for the banded QR algorithm [26,
p. 172].

REFERENCES

[1] P. ARBENZ, Divide-and-conquer algorithms for the computation of the SVD of bidiagonal ma-
trices, in Vector and Parallel Computing, J. Dongarra, I. Duff, P. Gaffney, and S. McKee,
eds., Ellis Horwood, Chichester, 1989, pp. 1-10.

[2] , Divide-and-conquer algorithms for the bandsymmetric eigenvalue problem, Parallel
Comput., 18 (1992), pp. 1105-1128.

[3] P. ARBENZ AND G. H. GOLUB, On the spectral decomposition of Hermitian matrices modified by
low rank perturbations with applications, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 40-58.

[4] C. F. BORGES AND W. n. GRAGG, A parallel divide and conquer algorithm for the generalized
real symmetric definite tridiagonal eigenproblem, in Numerical Linear Algebra and Scien-
tific Computing, L. Reichel, A. Ruttan, and R. S. Varga, eds., de Gruyter, Berlin, 1993,
pp. 10-28.



92 M. GU AND S.C. EISENSTAT

[5] J. R. BUNCH AND C. P. NIELSEN, Updating the singular value decomposition, Numer. Math.,
31 (1978), pp. 111-129.

[6] J. R. BUNCH, C. e. NIELSEN, AND D. C. SORENSEN, Rank-one modification of the symmetric
eigenproblem, Numer. Math., 31 (1978), pp. 31-48.

[7] J. CARRIER, L. GREENGARD, AND V. ROKHLIN, A fast adaptive multipole algorithm for particle
simulations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 669-686.

[8] J. J. M. CUPPEN, A divide and conquer method for the symmetric tridiagonal eigenproblem,
Numer. Math., 36 (1981), pp. 177-195.

[9] G. H. GOLUB, Some modified matrix eigenvalue problems, SIAM Rev., 15 (1973), pp. 318-334.
[10] G. H. GOLUB AND W. KAHAN, Calculating the singular values and pseudo-inverse of a matrix,

SIAM J. Numer. Anal., 2 (1965), pp. 205-224.
[11] G. H. GOLUB, F. T. LUK, AND M. OVERTON, A block Lanczos method for computing the

singular values and corresponding singular vectors of a matrix, ACM Trans. Math. Soft.,
7 (1981), pp. 149-169.

[12] G. H. GOLUB AND C. REINSCH, Singular value decomposition and least squares solutions, Nu-
mer. Math., 14 (1970), pp. 403-420.

[13] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The Johns Hopkins University
Press, Baltimore, MD, 1989.

[14] W. B. GaAaa, J. R. THORNTON, AND D. D. WARNER, Parallel divide and conquer algorithms
for the symmetric tridiagonal eigenproblem and bidiagonal singular value problem, in Mod-
elling and Simulation, W. G. Vogt and M. H. Mickle, eds., Vol. 23, Part 1, University of
Pittsburgh School of Engineering, Pittsburgh, 1992, pp. 49-56.

[15] L. GPEEN(ARD AND V. ROKHLIN, A fast algorithm for particle simulations, J. Comput. Phys.,
73 (1987), pp. 325-348.

[16] M. Gu, Studies in Numerical Linear Algebra, Ph.D. thesis, Department of Computer Science,
Yale University, New Haven, CT, 1993.

[17] M. Gu AND S. C. EISENSTAT, A fast algorithm for updating the singular value decomposition,
manuscript.

[18] , A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem, SIAM J.
Matrix Anal. Appl., 16 (1995), pp. 172-191.

[19] , A stable and efficient algorithm for the rank-one modification of the symmetric eigen-
problem, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 1266-1276.

[20] E. R. JESSUP, Parallel Solution of the Symmetric Tridiagonal Eigenproblem, Ph.D. thesis,
Department of Computer Science, Yale University, New Haven, CT, 1989.

[21] E. R. JESSUP AND I. C. F. IPSEN, Improving the accuracy of inverse iteration, SIAM J. Sci.
Statist. Comput., 13 (1992), pp. 550-572.

[22] E. R. JESSUP AND D. C. SORENSEN, A parallel algorithm for computing the singular value
decomposition of a matrix, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 530-548.

[23] W. KAHAN, Rank-1 perturbed diagonal’s eigensystem, manuscript, July 1989.
[24] R.-C. LI, Solving secular equations stably and efficiently, Working Paper, Department of Math-

ematics, U..niversity of California at Berkeley, Oct. 1992.
[25] K. LSWNER, Uber monotone Matrixfunktionen, Math. Z., 38 (1934), pp. 177-216.
[26] B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs, NJ,

1980.
[27] D. C. SORENSEN AND P. T. P. TANG, On the orthogonality of eigenvectors computed by divide-

and-conquer techniques, SIAM J. Numer. Anal., 28 (1991), pp. 1752-1775.



SIAM J. MATRIX ANAL. APPL.
Vol. 16, No. 1, pp. 93-112, January 1995

() 1995 Society for Industrial and Applied Mathematics
OO7

ON THE SENSITIVITY OF SOLUTION COMPONENTS IN LINEAR
SYSTEMS OF EQUATIONS*

S. CHANDRASEKARAN? AND I. C. F. IPSEN

Abstract. Expressions are presented for the errors in individual components of the solution to
systems of linear equations and linear least squares problems. No assumptions about the structure
or distribution of the perturbations are made.

The resulting "componentwise condition numbers" measure the sensitivity of each solution com-
ponent to perturbations. It is shown that any linear system has at least one solution component whose
sensitivity to perturbations is proportional to the condition number of the matrix; but there may
exist many components that are much better conditioned. Unless the perturbations are restricted, no
norm-based relative error bound can predict the presence of well-conditioned components, so these
componentwise condition numbers are essential.

For the class of componentwise perturbations, necessary and sufficient conditions are given under
which Skeel’s condition numbers are informative, and it is shown that these conditions are similar
to conditions where componentwise condition numbers are useful. Numerical experiments not only
confirm that these circumstances do occur frequently, they also illustrate that for many classes of
matrices the ill conditioning of the matrix is due to a few rows of the inverse only. This means that
many of the solution components are computed more accurately than current analyses predict.

Key words, condition number, diagonal scaling, forward error, linear system, least squares,
perturbation theory
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1. Introduction. Certain problems in statistics [33], combustion [26], and mo-
lecular conformation [10] require the solution of systems of linear equations whose
individual solution components have physical significance; knowledge about the accu-
racy in the computation of the solution components is important. For the solution of
problems involving Markov chains, for instance, it turns out that all solution compo-
nents exhibit essentially the same sensitivity to perturbations in the data [25]. In [8]
it is necessary to analyse individual solution components to demonstrate the conver-
gence of inverse iteration in finite precision.

1.1. Motivation. Consider the solution of a system of linear equations Ax b
with nonsingular coefficient matrix A. The computed solution 2, which is usually
different from the true solution x, can be viewed as the true solution to a perturbed
system (A + F)2 b + f.

So far, little work has dealt with trying to assess the error in individual solution
components of a linear system; exceptions are the stability analyses of algorithms for
solving particular structured linear systems, e.g., [3], [20], [22], [23]. The conventional
way of estimating the error in 2, as.compared to the true solution x, is to estimate
an upper bound on the norm-based relative error 112- x[I/llxll. The most commonly
used first-order bound is

xll  (A)(pA + Pb)
I1’ 11
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where the condition number t(A) IIAII IIA-II >_ 1 acts as an amplifier for the
relative perturbations in the data PA I[FII/IIAII and Pb Ilfll/llbll.

In many situations this type of error assessment is just fine unless, however, the
individual components of the solution have physical significance. The example of
the matrix of order four below, which represents a special case of a class of matrices
discussed in 7, illustrates that the condition number n(A) can severely overestimate
the error in some components,

0.4919 0.1112 -0.6234 -0.6228 0.4351

A -0.5050 -0.6239 0.0589 0.0595 -0.1929
0.5728 -0.0843 0.7480 0.7483

b
0.6165

-0.4181 0.7689 0.2200 0.2204 -0.8022

The first three columns of A are nearly orthogonal while the last two columns are
almost identical. Both the two-norm condition number t2(A) and Skeel’s condition
number [31] are larger than 103 (note that the matrix is not ill scaled). But the
"componentwise condition numbers" that we introduce in this paper turn out to be

< 1.1, < 1.1, > 103, > 103

This means that the first two components of x are well conditioned, regardless of the
perturbations, and the remaining two are ill conditioned. To illustrate this, compare
the "exact" solution x computed with 16-digit arithmetic with the solution 2 com-
puted with 4-digit arithmetic, which can be viewed as the solution to a perturbed
problem,

-.5000879795933286 -.5003
x-

-.0242511388797165
x-

-.0589
.02624513955005858 .06090

As predicted by our componentwise condition numbers, the first two components are
accurate to almost four digits, whereas the last two have no accuracy whatsoever. As
far as we know no other existing condition numbers can predict the well conditioning
of the first two components of this system.

1.2. Overview. Given a linear system Ax b of full column rank and a per-
turbed system (A + F)2 b + f, we derive expressions for the error in individual
components of the computed solution 2 (2). Our work is more general than that
of Skeel [31] on componentwise perturbations and that of Stewart [34] on stochastic
perturbations because we make no assumptions about the perturbations F and f,
their size, structure, or distribution.

We associate with a linear system Ax b not a single condition number but a set
of "componentwise condition numbers," one for each solution component. These con-
dition numbers provide a clear separation of the three factors responsible for the loss
of accuracy in the computed solution: relative magnitude of the solution components,
matrix condition, and relationship between matrix and right-hand side.

We show that there is at least one component of the solution vector whose sensi-
tivity to relative perturbations is proportional to the condition number of the matrix;
but there may exist components that are much better conditioned. Consequently,
unless the perturbations are restricted, no norm-based relative error bound can ever
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predict the presence of well-conditioned components in x. Therefore, our component-
wise condition numbers are essential.

Along the way, we comment on the tightness of norm-based error bounds (3),
and we clarify some results of Chan and Foulser [6] regarding the influence of the
right-hand side on the sensitivity of the solution to perturbations (4).

We also provide a geometric interpretation (5) of our condition numbers, which
in turn leads to a geometric interpretation of rank-revealing QR factorisations. Un-
like traditional condition numbers, our componentwise condition numbers are able
to indicate how linearly dependent individual matrix columns are on other columns.
They can therefore be considered a continuation of Stewart’s work on collinearity in
regression problems [33].

We further show that the relative errors in individual components of a linear
system are reduced by column scaling only if column scaling manages to reduce the
perturbations (6). Two simple examples are given where our componentwise condi-
tion numbers are significantly more accurate than the norm-based condition numbers
(7). We extend the results for linear systems to the solution of linear least squares
problems miny IIAy bll of full column rank (8).

For the class of componentwise perturbations, we give necessary and sufficient
conditions under which Skeel’s condition numbers are informative, and we show that
these conditions are similar to those where componentwise condition numbers are
useful (9). Numerical experiments not only confirm that these circumstances do occur
frequently, they also illustrate that for many classes of matrices the ill conditioning of
the matrix is due to a few rows of the inverse only (11). This means that many of
the solution components are computed more accurately than current analyses would
lead us to believe. Finally we demonstrate that a componentwise error bound for
componentwise perturbations can be significantly better than the norm-based error
bounds.

Existing software can be used to compute or estimate componentwise condition
numbers (10). We also prove that the problem of estimating componentwise con-
dition numbers for triangular matrices by means of the comparison matrix is well
conditioned.

2. Condition numbers for linear systems. This section presents expressions
for errors in individual solution components of linear systems with full column rank
and defines condition numbers for each component.

As for notation, I1" represents the two-norm and e stands for the ith column of
the identity matrix I. Let A be an n rn matrix A of rank m. Its condition number
is (A) [JAIl IIA and the rows of its left-inverse A are denoted by rT.

Regarding perturbations in the right-hand side, the treatment of linear systems
and least squares problems can be combined. Suppose the exact solution x = 0 solves
miny IIAy- bll while the computed solution 2 solves miny IIAy- (b + f)ll. Let i
be the angle between ri and b, and i the angle between ri and f. If xi = 0 and

b Ilfll/llbll then

Regarding perturbations in the matrix of a linear system, suppose the exact so-
lution x 0 solves Ax b, while the computed solution 2 : 0 solves (A + F)2 b.



96 S. CHANDRASEKARAN AND I. C. F. IPSEN

IIFII thenDenote by i the angle between ri and F2. If x =fi 0 and A IIAI111211

(RE2) 2 x 1 IIF211 cos 11211 IIAII !lrll eACOS.x cosZ I111 x

The perturbations in the first expressions for (RE1) and (RE2) are amplified
by 1/cos. Hence the relative error in 2 is likely to increase with increasing orthog-
onality of r and b.

The second expressions in (RE1) and (RE2) have two amplification factors in
common: the magnitude of x relative to Ilxll, and the matrix condition IIAII IIrll _<
(A). The term

in (RE1) occurs in the error expressions for all 2i and describes the relation between
matrix and right-hand side. In the case of linear systems Ax b it has the upper
bound

[Ibll IIAxll < 1.
IIAIIIIxll IIAIIIIxll

The expressions (RE1) and (RE2) provide a clear separation of the three factors
responsible for the loss of accuracy in the computed solution: relative magnitude
of the solution components, matrix condition, and relationship between matrix and
right-hand side.

Now we determine when the amplification factors are maximal. If Ilrmaxll
maxk Ilrkll is the row of largest norm in A then

(CN) [IAII ][rmx[[ (A) <_ x/-llAII l]rmx]].

Applying inequalities (CN) to the componentwise relative errors (RE1) and (RE2)
shows that there must exist a component 2k for which

I-xl > 1 Ilbll
Ixl vllAIIllxll bl cos

12k xk > 1

Ixl -,(A) AICOsI.

Therefore, the sensitivity of xk to matrix perturbations is proportional to the condition
number of A, and is proportional to right-hand side perturbations only when the right-

Ilbll is not too small.hand side has an appropriate direction, that is, whenever [[AI [ixl
DEFINITION 1. Let x 0 solve the linear system Ax b with n m matrix A of

rank m, and let 2 0 be the computed solution. If rT eT At, then the quantities

IIAII I111, 1 _< _< m,

are called componentwise condition numbers for the linear system or condition num-
bers for x.
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Support for this kind of definition comes from earlier work of Stewart [33] who in-
troduces the "collinearity indices" ai --Ilaill Ilrill that represent the scaling-invariant
version of IIAII Ilrill. The main difference between Stewart’s condition numbers and
ours is that the collinearity indices are designed to reflect the linear dependence of
the matrix columns, while our componentwise condition numbers measure the condi-
tioning of the linear system: matrix plus right-hand side.

In 1970 van der Sluis [38], [39] realised the need to distinguish the conditioning of
individual components of x and the fact that the conditioning depends on the relative
size of a component. He introduced the notion of "ith column condition number
of A," IIA-11111aill, and derived the similar-looking normwise relative error bound
(here f 0)

3. Conventional error bounds. This section argues that for any linear sys-
tem there exist perturbations for which the norm-based bounds on the relative error
are as tight as possible. We also justify our particular representation of the matrix
perturbations.

It follows from (RE1) and (CN) that for perturbations of the right-hand side,

where

v(A) IIAII Ilxll b#
I1- xll < x/-(A) Ilbll

Ilxll I]AII Ilxll ’’

As for perturbations of the matrix,

1 I111 I1 xl] < v/-(A A,

!!FIIwhere A IIAII I111"
In the absence of knowledge about the values of cos Oi, we must assume the

worst case # 1, which implies that the norm-based error bounds are tight. Thus
the conventional upper bounds are as good as possible given that one has chosen
to measure a norm-based error. As a consequence, if the normwise bounds give
unsatisfying information, it is not because the bounds are loose, but rather because
an unsatisfying way of measuring the error was adopted in the first place.

The upper bounds for nonsingular linear systems commonly found in the literature
are of the form

I1-xll < (A) (PA + ), ]]A-FII < 1,
Ilxll 1- (A)pA

e.g., III.2.3 in [35], where the matrix perturbations are represented by PA IIFII/IIAII.
In contrast, our representation of the matrix perturbations is CA. This is a sensible
measure because A represents the smallest possible matrix perturbation, as we now
show.

For given Ax b and 2, let Fmin be the perturbation of smallest Frobenius norm

among all perturbations F that satisfy (A+F)2 b (Fmin also has smallest two-norm
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among all such perturbations). From Theorem III.2.16 in [35], and also [27], it follows
that Fmi satisfies

[[Fmin[I-(A + Fmin) b, ffmin IIAII [[AI[ I111’
which is exactly the matrix perturbation eA in the relative error (RE2).

4. Special right-hand sides for linear systems. This section analyses error
bounds for linear systems Ax b whose right-hand side b is a singular vector associ-
ated with the smallest singular value am of A. We show that in this case all solution
components are sensitive to perturbations.

In this case

IIA*bll/llbll- 1/am- IIA*II
and

Ilbll 1 Ilbll
IIAIIIIxll (A)’ IIAIIIIxll

IIrll 1.IIA[[ I111 IIA*
This implies together with (RE1) that the relative sensitvity of all solution components
to right-hand side perturbations is solely determined by their relative magnitude.

According to 2, the norm-based error satisfies

1 I1 xll < v.-’ <
Ilxll

This means the norm-based relative error is about the same magnitude as the per-
turbation in the right-hand side and does not depend on the condition number of A.
This was already observed in [6].

Chan and Foulser [6] try to incorporate a potential relationship between right-
hand side and matrix by modifying the conventional bound

(A) IIFIII1 xll < (PA / ), PA IIAIIIlxll 1 (A)pA

Let

A UY]VT, where U (Ul Un ), a >_ ae >_... >_ a > 0,

be the singular value decomposition (SVD) of a nonsingular matrix A with singular
values ai and right singular vectors ui. According to Theorem 1 in [6], if A2 b + f
and Pk is the orthogonal projection onto the space spanned by u,-k+l,..., Un,

They conclude that if, for some k, a large fraction of b lies in the space spanned by
Un-k+l,..., Un, and if an-k+l " an, then x "is relatively insensitive to perturbations
in b." For instance, if b Un then Pb b,
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ai spanki{ak}

spanki {ak }

FIG. 1. Angles associated with columns.

and we conclude that x is insensitive to perturbations in b.
The interpretation of Theorem 1 given in [6] is valid if f represents the input

error in the data b. However, we do not agree with the application of Theorem 1 in
the case when f represents a backward error chosen to satisfy A2 b + f because

f depends on the size of 2. Since Fmin --f’T/’Tc is the perturbation of smallest
two-norm and Frobenius norm satisfying (A + Fmin); b, Theorem III.2.16 in [35],
we obtain from the first expression in (RE1)-- min COS

When b tn, the common term IIAII I111/11bll is approximately allan and the sensi-
tivity of all solution components is proportional to the condition number. A slightly
different argument based on the use of the perturbations

IIFminl[ IIb[I
min [[A[] IIAII I1 :1[

implies that for b Un we have eb ;(A)min and the ill conditioning is merely hidden
in the perturbation eb. Consequently, all components of x are extremely sensitive to
perturbations if A is ill conditioned, which disagrees with the interpretation in [6].

5. Geometric interpretation. This section gives a geometric interpretation
of the componentwise condition numbers. It is shown that IIrll reflects the linear
dependence of column of A on all other columns. This, in turn, leads to a geometric
justification for rank-revealing QR factorisations.

First of all, the size of the IIrll reflects the linear dependence of the ith column
of A on all others because

where ai is the angle between ri and ai. This follows from the expression 1 rTiai
Ilrill Ilaillcosci for the ith diagonal element of I AtA, which also implies that
cosc > 0, so -r < ai < r. Because e/T rTA, ri is orthogonal to all columns
of A except for ai, see Fig. 1.

To obtain a geometric meaning for rl, partition A (al A1 ), where al rep-
resents the first column of A and A1 represents the remaining columns. Let -51
be the residual in the least squares approximation of al by the columns of A1,
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115111 miny IIAly- alll and let -fi-1 be the residual in the least, squares approxi-
mation of the columns of A1 by al, lift.1 miny IlalyT AIlI. As in the derivation
of the formulae for partial correlation coefficients in [11] one can now show that

A (ATA)-IAT

It follows that the first row rl
T of At lies in the same direction as the residual -1

in the least squares approximation of column al by the remaining columns. The
residual, in turn, is just the projection of a onto the orthogonal complement of the
range of A1. Hence, Ilrlll 1/5, which means that increasing linear dependence
of a on the other columns leads to larger r]]. Analogous statements hold for the
other rows r of A.

Already in [33] Stewart used a different argument to show that

]] min ]]Ay a] 1/r].
y

Here we provide more justification for the choice of r as an indicator of sensitivity:
because r is a multiple of the residual 5, the residual is inherent in A and thus
represents a most nturM choice for sensitivity measure.

Angles between subspaces spanned by different columns of a matrix also occur in
the context of nonsymmetric eigenvalue problems [12], [29].

5.1. Application. Our geometric interpretation of the rows of the left-inverse
explains certain algorithms for rank-reveMing QR factorisations. These factorisations
ppeared first in [15], [4], [16], [18], and are further analysed and refined in [32], [13],
[5], [33], [9]. In the simplest case, the goal of a rank-reveMing QR factorisation is to
determine the most linearly dependent column of a matrix A.

The idea [9], [32] is based on the existence of a row of A that approximates ]]A
well. Perform a QR factorisation AP QR, where Q has orthonormal columns, R
is upper triangular, and the permutation matrix P is chosen so as to minimise the
magnitude of the trailing diagonal element (R)mm of R. Then the inverse of this

Telement, 1/](R)mm] ]]eR- r]], s as large as possible, and the residual
1/r[ is as small as possible. Therefore the last column of AP is the column that
can be best approximated by all other columns and so is the most linearly dependent
among all columns.

6. Implications for column scaling. This section shows that the component-
wise relative error decreases under column scaling only if column scaling actually
reduces the perturbations.

A diagonal column scaling D of the least squares problem miny ]]Ay- b] to
minz [(AD)z-b, where D is a nonsingular diagonal matrix, changes only the lengths
of the columns but not the angles. In case of a column equilibrated matrix AD, [17,
3.5.2], and [37], [38], where the diagonal matrix D is chosen so that all columns of
AD have identical length, the condition number of AD comes from the largest angle
of A,

1

cos(max a) [[AD (AD)[[ cos(mx a)"

This bound already appeared in a different form in [33].
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In [37], van der Sluis showed that a column equilibrated matrix A of order n has a
condition number that is at most a factor x/,away from the lowest condition number
among all matrices of the form AD. This would suggest that one could solve only
linear systems and least squares problems with column equilibrated matrices so as to
minimise the condition number in

Ilxll IIAIlllxll
However, note that the condition number occurs in an upper bound.

Based on the expressions for the componentwise errors (RE1) and (RE2) we come
to the following conclusions. In contrast to the norm-based condition numbers, the
amplification factors 1/cos/i are preserved when the columns of A are multiplied by
nonzero scalars. The computed solution 2 of the system (AD)z b, where z D-ix,
satisfies a perturbed system AD2 b-4- g. Postmultiplication of A by D corresponds
to premultiplication of A by D-1, which changes only the lengths of the rows rT
in A but preserves the angles i between b and r. Hence the amplification factors
1/cos/ remain invariant under column scaling. Therefore the componentwise relative
error decreases under column scaling only if column scaling manages to reduce the
perturbations.

7. Example. This section contains two examples that illustrate the previous re-
sults. The first example represents a generalisation of the example from 1.1 and
demonstrates that even a very ill-conditioned matrix may have robust solution com-
ponents.

Consider a 4 4 orthogonal matrix A (al a2 a3 a4) and define a one-
parameter family of matrices by

()a3 -4- ad) ).A(A) (al a2 a3

Obviously A(0) A is a well-conditioned matrix and A() is a singular matrix. For
all , IIA( )II _< 2. When < , the inverse is given by

[A(A)] -1 a2
T

a3
T Aa4T
+

from which one computes

COSOZ3 Ila311COS(O3) COS O4 Ila4ll cos(o4) v/1 + 2
Thus as c the matrix A(A) becomes increasingly singular. Its condition number
behaves like O(). Note that the matrix A(A) is column equilibrated (and not nec-
essarily row ill scaled) so the ill conditioning is a result of small angles rather than
short columns.

Consider a linear system A(A)x(A) b, where the right-hand side is independent
of and can be represented as b Tlal + T2a2 -f- 7"3a3 -+- Tda4. Then

T1 72 7"3 AT4 7"4

I1 11’ I1 11’ II llv’ + I1 11
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The solution vector is given by

The values of Xl and x2 are independent of A, and so are Ilajllcos j and cos/j for
j 1, 2. So the sensitivity of the components xl and x2 depends solely on their size
relative to x. If, for instance, Ixll >> Ixl for : 1 then, according to (RE), the
error in x is not amplified independent of the values of A and the condition number
of A(A).

The second example show8 that all 801ution components can be sensitive to per-
turbation8 when the choice of right-hand side i8 unfortunate. In [25] we show that
system8 with uniformly sensitive solution components also occur in ill-conditioned
Markov problems.

The coefficient matrix of the linear system Ax b is the Hilbert matrix with
elements 1/(i -+- j 1) of order 4,

1.00000000000000
0.50000000000000
0.33333333333333
0.25000000000000

0.50000000000000
0.33333333333333
0.25000000000000
0.20000000000000

while the right-hand side

0.33333333333333
0.25000000000000
0.20000000000000
0.16666666666667

0.25000000000000
0.20000000000000
0.16666666666667
0.14285714285714

bT (-0.02919332316479 0.32871205576319 -0.79141114583313 0.51455274999716)

is a left singular vector corresponding to the smallest singular value of A. The con-
dition number of A is at least 104. If the error matrix F has norm IIFII
then the solution of the system (A + F)2 b contains at least one component that
has no accurate digits. We choose the following random matrix with norm

0.00057208543036
0.00019069514345
0.00019069514345
0.00038139028691

0.00017162562911 0.00038139028691
0.00057208543036 0.00019069514345
0.00057208543036 0.00019069514345
0.00038139028691, 0.00057208543036

Computing x and 2 in 16-digit arithmetic gives

0.00038139028691
0.00057208543036
0.00057208543036
0.00005720854304

-301.88859986174430
3399.21637943995029

x
-8183.99472310610599
5320.99783141589251

81.63154025985811
1310.35333852711346
3649.17285297454328
2572.42993839543533

The components of 2 do not even have the correct sign, let alone any accurate digits.
So all solution components of this system are sensitive to perturbations.

8. Condition numbers for least squares problems. This section presents
expressions for componentwise errors in the solution of least squares problems of full
column rank. The treatment in 2 on perturbations of the right-hand side is now
extended to also allow perturbations in the matrix.

Suppose x 0 solves

min IIAy bll, where r b Ax,
y
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and 2 0 solves

min II(A + F)y- (b + f)ll, where 4 b + f- (A + F)2 # 0.
y

Let q]" eTi(ATA) -1 and define the following error angles: CF, is the angle between
ri and F2, Cf,i is the angle between ri and f, wi is the angle between ri and 4, and
Wq,i is the angle between qi and FT4. By applying (RE1) to the associated augmented
nonsingular system one can show the following.

IIFTII thenIf xi # 0 and A,r IIATII I11

x Ilbll cos cos RE + IIAII llll x A, cOSq,,

where

RE= IIllx IIAII IIrll [A cos CF, Ilbll
IIAII I111Cb COS

is the componentwise relative error in the solution of a linear system solution.
Equations (LS) contain two different expressions that account for the least squares

nature. The perturbation in the first expression is amplified by 1/cos i, which reflects
how linearly dependent b is on the space spanned by ak, k # i; and it is invariant
under column scaling.

The relative perturbation eA,rCOSWq,i in the second expression is amplified by
three factors. The first factor represents, as in the error for linear system solution,
the size of the component xi relative to 11211. The second factor Ilqill IIAII 2 has the
bounds

(llr, IIAll) IIqll IIAII II(ATA)-III IIAII a2(A),
as a result of Ilqi -> I1 . Since there exists a row rk of At whose norm approximates

IIAt to a factor of v/-, there must exist at least one component xk for which

IIqll IIAll >_ la2(A)
m

I1tl describes the relationship between matrix and right-handThe third factor IIAII I111
side. If 0 is the angle between b and the range of A, then the exact residual r satisfies

and for some xk

1

n(A)
tan 0 < IIr[I < tan 0

IIAII Ilxll

1 Ilrll 2 2--(A) tan 0 < Ilqkll IIAII < (A) tan 0.
m IIAII Ilxll

Consequently, least square8 problem8 are alway8 more sensitive to ill conditioning
than linear system8 and, depending on the angle between b and the range of A, their
sensitivity may be as high a8 the square of the condition number.

DEFINITION 2. Let x 7 0 solve the least squares problem miny IlAy b[I with n xm
matrix A of rank m, and let 2 7 0 be the computed solution with residual 4 # O. If
qi eTi (ATA)-1 and rT eTi A then the quantities

112[[ 114[[ [[A[[ Ilqi 1 _< _< m,Ix, l’ IIAIIl[r, ll, IIAIIIIII
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are called componentwise condition numbers for the least squares problem.
The condition numbers for linear systems from [38] and [39] are extended to least

squares problems in [14].
9. A special class of perturbations. Unlike the previous sections, which as-

sumed no knowledge about the perturbations, this section analyses the reduction in
error bounds brought about by the special structure of perturbations resulting from
floating point computations. This issue was first investigated by Skeel in [31] for
the case of "componentwise perturbations." We provide necessary and sufficient con-
ditions under which Skeel’s condition numbers are useful, and we show that these
conditions are similar to those where componentwise condition numbers are useful.
The experiments in 11 illustrate that these conditions indeed occur frequently.

For Ax b and (A + F)2 b + f the perturbations F and f are called compo-
nentwise perturbations if the inequalities

hold componentwise for some e >_ t3.
In [31] Skeel defines a condition number that exploits componentwise perturba-

tions. Theorem 2.1 in [31] shows that

and Skeel uses

cond(A,x) IA-I IAI Ixl I1

as the condition number for the linear system Ax b. He also introduces

cond(A) IA-Xl IAI I1
as an upper bound for cond(A,x).
number

A componentwise version of Skeel’s condition

eT(IA-Xl IAI Ixl + IA-11 Ibl)/Ixl

is advocated in [28]; and [1] introduces condition numbers similar to the one used by
Skeel for matrix inversion, least squares problems, and the solution of Vandermonde-
like linear systems.

Skeel’s condition number is invariant under row-scaling. Therefore, cond(A) may
be much lower than the traditional condition number e;(A) IIA-111 IIAII when
the rows of A are ill scaled, i.e., when the norms of the rows of A differ widely. But the
less known fact is that cond(A) can be much lower than t(A) only when the rows
of A are ill scaled. The reasoning is as follows. Let e be the vector of all ones and DR
a nonsingular diagonal matrix with DRIAle e, that is, the diagonal elements of DR
are the inverse row norms of A. Then

no(D)
_< cond(A) _< n(A).

This means, if n(D) 1 then the rows of A are not ill scaled and cond(A) a(A),
which limits the applicability of cond(A).
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Remember that our componentwise condition numbers are useful if there are large
differences among the Ilrill. It turns out that something similar holds for cond(A, x):
cond(A,x) is useful only when the norms of the columns of A-1 differ widely in
magnitude. Denote the columns of A by ai and the columns of A-1 by Pi. If j(i) is
the index of the largest element in column i, Ilall la,j()l, then

Choosing such that Ixil Ilxll and defining De as the diagonal matrix that
equilibrates the columns of A, eTIAIDc eT, gives

cond(A,x) IA-11 ]AI Ixl I1 > ilpj(i)llllAil
1

Ilxll nt(Dc)

> mini IlPill 1

IlPjlI
al(A) n2a(nc)

for some column py of A-1. This means, cond(A, x) al (A) for all x whenever d-1

is not badly column-scaled. Therefore the conditions under which cond(A, x) is useful
are quite similar to those for our componentwise condition numbers.

It is possible to profitably combine Skeel’s analysis with our componentwise errors
because componentwise perturbations induce upper bounds on the cosines. If A2
b+ f and [f eb then

ITI Ibl
I11111fll’

implies

(CRE1) 12i- xl < IrTI Ib_____t
Ixl -Irrbl

for error (RE1). Similarly, if (A + F)2 b and IFI <_ elA then the upper bound for
(RE2) simplifies to

(CRE2) Ii- xl <e IrTI IAI Il

This last inequality illustrates that componentwise perturbations in our error expres-
sions lead to a componentwise version of Skeel’s condition number cond(A,x). Al-
though these expressions already exist implicitly in Skeel’s work, it is the observation
that we lose a lot by taking norms that is important. Because the rows of the inverse
may differ significantly in size, the difference between our bounds and cond(A, x) may
be arbitrarily large as shown in the following example.

Let e > 0 and

so that

A= b=

A-l= - x-
e 1
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Hence

Skeel’s condition number cond(A, x) is unbounded as e becomes small. In fact, it has
the same order of magnitude O(1/e2) as the traditional condition number a(A),
although the columns of A are badly scaled (this is because Ixl lies almost in the
singular direction corresponding to the largest singular value of IA-111AI). In contrast,
the amplifier in our error bound for x2, which is the largest component of x, equals
Irl IAI Ixl/]x21 1.

Because our error expressions represent a componentwise version of Skeel’s condi-
tion number, we get the same componentwise error bounds as appear in the literature.
For instance, when IA-111bl--Ixl, as is the case for certain Vandermonde systems
[20] and M-matrices with positive right-hand sides, the term amplifying e in (CRE1)
equals one. So the individual solution components are insensitive to perturbations in
the right-hand side (an algorithm for such systems that gives rise to a small compo-
nentwise backward error f is called "weakly stable" in [23]).

For triangular M-matrices A with positive right-hand side b, it is shown in [22]
that

which implies

Hence the term amplifying e in (CRE2) is essentially bounded above by 2n- 1. This
is true in particular if b is the vector of all ones. Thus, estimating the componentwise
condition numbers of a triangular matrix by solving a linear system involving the
comparison matrix, as in [21] and 10, is a well-conditioned problem.

10. Estimation of componentwise condition numbers. This section shows
that componentwise condition numbers can be efficiently estimated with existing soft-
ware.

For a n m matrix A, bounds for IIAII can be determined in O(mn) operations,
and IIll/Ixil and 11411 can be estimated a posteriori in O(mn) operations. This leaves
the computation of Ilrill and Ilqill. Numerical issues in the computation of the Ilrill,
due to the potential ill conditioning of A, are addressed in [32] and in the context of
statistical errors in [33]. If a factorization of A is available, then upper bounds on

Ilrill can be determined in O(n2) additional operations and an estimate of Ilqill can
be obtained by making use of the inequality Ilqill >- Ilrill 2.

For instance, suppose the QR factorization

is available, where Q is a n n orthogonal matrix, and R is an rn m nonsingular
upper triangular matrix. To compute Ilri and Ilqi II, it suffices to work with R instead
of A. From

qT eT (ATA)- eTi R-1R-T vT R-T, V R-Tei



SENSITIVITY OF LINEAR SYSTEMS 107

it follows that qi is the solution of the triangular system Rqi v and IIrll- Ilvillo
As for the actual computation of Ilqill and Ilrill, observe that Vm R-Tern -em,

where p is the element of R in position (m, m). Hence Ilrmll- 1/Ipl and Rq, -em.
Therefore, if a QR decomposition of A is available, Ilrmll is available right away and
the computation of qm requires O(m2) operations. This process can be carried out for
all i, and is described in [32] for the computation of IIrll by permuting the columns
of A. Gragg and Stewart [18] show how to efficiently "update" the QR factorisation
from one permutation to the next in O(m2) operations; see also [17, 12.6].

Next, we indicate how the condition number estimators for triangular matrices in
[21] can be used to compute upper bounds for the IIrll in O(n2) operations. Since A
is triangular, (A-1)i 1/a and 1/[ail <_ IIrll <_ Ilrilll. Replace A by its comparison
matrix C(A) (ciy) of A [2], which is defined as

f [al if j,
cij -lajl ifij,

and satisfies the componentwise inequalities

C(A)- >_ O, IA-I C(A)-
because it is an M-matrix [40]. The first inequality implies that the ith element of
C(A)-Te equals IIC(A)-TeII, where e is the vector of all ones, while the second
one implies IIrll <_ IIr[l <_ IIC(A)-TeII. Hence all IIC(A)-TeIII can be computed
with a total of O(n2) operations by solving the system C(A)Ty e. Since C(A)
is an M-matrix, so is C(A)T. According to 9, the solution of linear systems with
triangular M-matrices and positive right-hand side produces a small componentwise
error. Hence, the estimation of componentwise condition numbers from the solution
of C(A)Ty e is a well-conditioned problem.

In [7] we fit the linear-time algorithms in [19] for computing IIA-II for bi or
tridiagonal matrices A to the computation of Ilrill.

We are currently investigating techniques based on appropriate rank-revealing QR
decompositions that estimate componentwise condition numbers in O(n2) operations.

11. Numerical experiments. This section presents numerical experiments that
reveal the existence of large classes of matrices for which the componentwise matrix
condition numbers vary widely. For these matrices, componentwise condition num-
bers can therefore predict the sensitivity of individual solution components much more
accurately than norm-based or Skeel’s condition numbers.

Here we consider only nonsingular linear systems Ax b. The componentwise
condition numbers consist of two parts: the relative magnitude II2[[/x of the solution
component and the associated matrix condition IIAII IIrll where r eTA-. We
consider only matrices for which IIrll differ widely in size because they exhibit a
large difference between IIrll and [[A-II, as well as between IrTI [A] and cond(A).
According to inequalities (CN), at least one Ilrkll approximates IIA-II to within a
factor of v/-, where n is the order of A. The potential for deviation of other Ilri from

IIA-111 increases, of course, with increasing ill conditioning of A. Below we present
examples where some IIrll are orders of magnitude smaller than IIA-II.

All experiments were performed in CLAM, version 2.00 [30], on a SPARCstation 1.
The tests involved more than twenty classes of matrices, most of them from [24], their
orders ranging up to n 500. Among these, only the Minij and Pei matrices have r
that are essentially identical in size. A group of matrices with a little more variation in
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000

FIG. 2. Random tridiagonal matrix A with n 100, IIA-Xll 4752, mini IIrll ..
the IIrll are the highly ill-conditioned Pascal, Cauchy, Hilbert, and Lotkin matrices. In
the group of matrices that comprises random symmetric and nonsymmetric matrices,
random Woeplitz and Vandermonde matrices, at least half of the IIrll differ from

IIA-111 by a small multiple of ten. This means, at least half of the components of x
are 1-2 digits more accurate than predicted by IIA-111 (assuming the components are
not too small). The group of matrices with the widest variation in the IIrll includes
random tridiagonal matrices, Jordan matrices, Chebyshev-Vandermonde matrices,
and triangular comparison matrices.

The surprising outcome of our experiments is that often only a few rows of A-1

are responsible for IIA-111, while most of the remaining rows are small in size. This
is more pronounced for ill-conditioned matrices. It also comes out in the plots in
Figs. 2-7, where we plot IIrill against i, 1 _< <_ n, for matrices from the last group.
In case of high ill conditioning, the difference among the Ilrill can be as high as 1015
for matrices of order n 100. In addition, preliminary statistical analyses show that
for these matrices usually more than half of the IIrll are small. Therefore, although
a norm-based error bound would predict a total loss of accuracy, many components
could actually be computed to a significant number of correct digits.

Figures 2-4 contain plots of three typical random tridiagonal matrices of order
n-- 100. The differences in the IIr[I for each matrix are illustrated in Table 1.

TABLE

Figure IIA-II mini II?ll
2 4752 1.1
3 678 1.2
4 2577 1.1

Figure 5 shows the II? II for a random Chebyshev-Vandermonde matrix of order
n 10, for which IIA-111 11922 and minllrill .72. Figures 6 and 7 plot the

IIrill on a logarithmic scale for a random Jordan and a random unit upper triangular
comparison matrix, respectively, both of order n 100. The Jordan matrix has

lid-ill 4.1014 and min Ilrill 1.4, While the triangular matrix has lid-ill 2.1017
and min IIrll 1.1. Similar observations about the ill conditioning of random unit-
triangular matrices are made in [36].
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600

200

50 180

FIG. 3. Random tridiagonal matrix A with n 100, IIA-1ll- 678, mini Ilrill- 1.2.

50

FIG. 4. Random tridiagonal matrix A with n- 100, IIA-11I- 2577, mini Ilrill- 1.1.

10

FIG. 5. Random Chebyshev-Vandermonde matrix A with n 10, IIA-111 11922, mini Ilrill .72.
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50 10

FIG. 6. Random Jordan matrix A with diagonal element .7183, n 100, IIA-111 4.10TM,
mini Ilrill-- 1.4.

ll

50 100

FIG. 7. Random unit upper triangular comparison matrix A, n 100, I[A-111 2. 1017,
mini Ilrill-- 1.1.
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AN INDEX THEOREM FOR MONOTONE MATRIX-VALUED
FUNCTIONS*

WERNER KRATZ
Abstract. The main result of this paper is the following index theorem, which is closely related

to oscillation theorems on linear selfadjoint differential systems such as results by M. Morse. Let real
m m-matrices RI, R2, X, U be given, which satisfy

R1R R2RT1, xTu uTx, rank (R1, R2) rank (XT, UT) m.

Moreover, assume that X(t), U(t) are real m x m-matrix-valued functions on some interval
J I-e, el, e > 0, such that

xr(t)V(t) uV(t)X(t) on J,

Z(t)-,X and U(t)--.U as t-.O,

X(t) is invertible for E 7\{0}, and such that

U(t)X-l(t) is decreasing on 7\{0},
and define

M(t)
_
R1R T R2U(t)X-I(t)RT2 A(t) _= R1X(t) + n2u(t), A =_ R1X T R2U.

Then ind M(0+), ind M(0-), and def A(0+) exist and

ind M(0+) ind M(0-) def h def A(0+) def X,

where ind denotes the index (the number of negative eigenvalues) and def denotes the defect (the
dimension of the kernel) of a matrix. The basic tool for the proof of this result consists of a theorem
on the rank of a certain product of matrices, so that this rank theorem is the key result of the present
paper.

Key words, rank of products of matrices, monotone matrix-valued functions, index of matrices,
oscillation of linear selfadjoint differential systems

.&MS subject classifications. 15A03, 15A23, 26A48, 34A30

1. Introduction. We use the following notation. By ker, Im, rank, def, ind,
respectively, we denote the kernel, image, rank, defect (that is, the dimension of the
kernel), negative index (that is, the number of negative eigenvalues), respectively, of a
matrix; I denotes the identity matrix and QT denotes the transpose of Q. Moreover,
we say that a (square) matrix-valued function Q(t) is decreasing on some interval
ff c , if Q(t) is symmetric for t E ,7 and if Q(tl)- Q(t2) is nonnegative definite
for all tl, t2 E with tl <_ t2. Of course, increasing for Q(t) is defined similarly.
Throughout this paper we deal with real matrices.

We now present the central result of this paper (Theorem 2 in 3). Let real
rn x m-matrices R, R2, X, U be given, which satisfy

RIRT2 R2RT, xTu uTx, rank(R1,R2) rank (xT, uT) m.

Moreover, assume that X(t) and U(t) are real rn x m-matrix-valued functions on
some interval 7 I-e, el, > 0 such that

XT(t)U(t) UT(t)x(t) on 7,

Received by the editors November 16, 1992; accepted for publication (in revised form) by R.
Horn, November 9, 1993.

Abteilung Mathematik V, Universitt Ulm, D-89069 Ulm, Germany (kratz(C)dulruuhl.b+/-tnet).
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X(t) --* X and U(t) --. U as t--. O,

X(t) is invertible (regular.) for t e 7\{0}, and such that

U(t)x-l(t) is decreasing onfl\{0},

and define

M(t) R1R + R2U(t)X-I(t)R, A(t) _= RIX(t) + R2U(t), A =_ RX + R2U.

Then, ind M(0+), ind M(0-), and def A(0+) exist and

ind M(0+) ind M(0-) def A def A(0+) def X.

The motivation for this result stems from oscillation theorems on linear self-
adjoint differential systems. Actually, our index theorem includes (in a certain way)
the Oscillation Theorem by Morse. [10, Thm. 24.1] (see also [9] and [1, Thm. 1] and [7,
Thm. 10]). These oscillation results are intimately related to corresponding quadratic
functionals, associated eigenvalue problems, and their Rayleigh principle as discussed
in [5]. Our result here is stated in a general setting that does not use the underlying
differential systems, but instead uses only a few consequences, particularly the mono-
tonicity (and symmetry) of certain matrix-valued functions. By contrast, the proofs
of the corresponding results in [1], [7], [9], and [10] use the differential system time
after time.

Finally, we summarize the setup of this paper. The proof of our quoted central
result is split into two parts: an algebraic part (2) and an analytic part (3). The
content of the algebraic part is a rank theorem (Theorem 1) about a certain associated
matrix (built up from the matrices R,R2,X, and U above). Actually, this theorem
is the key result of this paper. The analytic part in 3 is based mainly on a limit
theorem for monotone matrix-valued functions from [6], which in turn uses compact-
hess, monotone convergence, the minimum-maximum principle, and an inequality on
symmetric matrices [4, Lem. 1]. This limit theorem and the rank theorem yield the
index theorem rather straightforwardly.

2. The rank theorem. In this section we prove a rank theorem on the product
of certain matrices. This result is in a sense the algebraic part of an oscillation theorem
on linear selfadjoint differential systems [1, Thm. 1] or [7, Thm. 10] as mentioned in
the Introduction. Our theorem is stated in a general setting without reference to
the differential systems that motivated it. As a consequence, the result is now much
clearer, and, correspondingly, the proof is more transparent than its counterpart in
[7, p. 132].

The following proposition is contained in [1, Prop. All or in [7, Prop. All, and we
cite it here since it is used several times.

PIOPOSITION 1. Given real rn rn-rnatrices Q, Q2 with QQT2 Q2QT and
QTrank(Q1 Q2) m. Then rank( ,Q) rn andkerQQT2 kerQTkerQ", where

denotes a direct sum.
Furthermore, we need a result on the rank of the product of three matrices. While

the inequality below is well known (the so-called Frobenius inequality [8, (2.17.1)]),
the case of equality does not seem to be cited elsewhere. Although a corresponding
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statement in [1, Prop. Ah] and [7, Prop. A8] is incorrect, this does not affect its appli-
cation either in [1] or in [7]. So, the following proposition, including its proof, is also
a correction of [1, Prop. Ah] and [7, Prop. A8].

PROPOSITION 2. Let real matrices Q1, (2, Q3 be given and suppose the product
Q1Q2Q3 is defined. Then

rank Q1Q2Q3 >_ rank Q1Q2 + rank Q2Q3 rank Q2

with equality if and only if

(1) Q1Q2d E Im Q1Q2Q3 and (Q2Q3)TQ2d- 0 always imply Q2d 0.

Proof. Consider bases zl,...,zr, yl,...,ys, and xl,...,xt of ImQ3, ImQ2Q3,
and Im Q1Q2Q3, respectively, as in the proof of [7, Prop. AS] (thus rank Q3
r >_ rankQ2Q3 s >_ rankQiQ2Q3 t) with y Q2z and x, Qly,
Q1Q2z, for v 1,... ,s; # 1,...,t. Moreover, supplement these bases to bases
Yl,... ,Ys,l,... ,k and xl,... ,xt,2l,... , of Im Q2, respectively, Im Q1Q2 (thus
rank Q2 s + k >_ rank Q1Q2 t + to such that

yT~y,=0, i=Ql) for v=l, ,s, it=l, ,k, and i=l,...,

Hence, l _< k, i.e.,

t rank Q1Q2 rank Q1Q2Q3 <_ k rank Q2 rank Q2Q3

which yields the Frobenius inequality, and we have equality if and only if

(2) xl,... ,xt, Q11,..., Qlk are linearly independent

We show that (1) and (2) are equivalent. First, assume (2) and let QIQ2d
Q1Q2Q3c ImQIQ2Q3, (Q2Q3)TQ2d 0. Put y Q2d. Then Qly
Im Q1Q2Q3 and yTy 0 for 1,...,s, so that y is a linear combination of

k1,..., k; Y -.=1/ say. Hence,

k

v=l v=l =i

and (2) implies that c1 c I k 0 so that y Q2d O, which
proves (I). Next, assume (I), let

k

--i --I

and put y -k=l/. Then y Q2d Im Q2, yTy 0 for v 1,..., s, so that
(Q2Q3)TQ2d 0 and Qly Q1Q2d t,= ax e Im Q1Q2Q3. Thus, by (1),
we have y Q2d k-y=lY --0, and therefore also -y=l O/yXy --0. The linear
independence of )1,. )k and of Xl,..., xt implies that/1 k 1

at 0, which proves (2).
Remark 1. It is straightforward to see that if Q2 I is the m x rrAdentity matrix

(so that Q1 and Q3 must be type n x m, m x k, respectively, for some positive
integers n and k), then condition (1) is equivalent to the condition

(I’) kerQl C ImQ3.
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Remark 2. By using the singular value decomposition (SVD) (see [3, Thm. 7.3.5])
of Q2, it can be shown that the hypothesis of symmetry of Q1QT2 in Proposition 1 can
easily be relaxed to normality. This fact was pointed out by the referee. Moreover,
the SVD of the matrices Q1 and (3 in Proposition 2 leads to an alternative proof,
particularly in the case of equality, i.e., of assertion (1).

The statement and the proof of our main result in this section require some
notation and auxiliary lemmas. Let real m rrmatrices R1, R2, X, U be given such
that

(3) rank (R1, R2) m, R1R2T R2R1T,

(4) rank (XT, UT) m, XTU VTX.

The orthogonal decomposition of Im R2T into Im X (i.e., the column-space of X)
and its orthogonal complement leads to a unique matrix S and another matrix S
(which is not uniquely determined and which may be any matrix with this property)
such that

RT2 XS + withXT=o.

Then we consider any matrix T with

(6) Im T ker ,
which yields T 0,

Finally, we define
TTT 0, and Im/T ker TT.

(7) A RIX + R2U

(8) K =_ XTX --[- UTU.

First, assumptions (3), (4) together with Proposition 1 yield Lemma 1.
RTLEMMA 1 It holds that rank( 1,R2T) rank(X,U) m, ker(R1,R2)

Im Ry UT_R), ker(XT Im (_Vx) and K xTx + uTu is invertible.

Next, we have Lemma 2.
LEMMA 2. The matrix S’ K- UT satisfies

(9) XS’=0, =US’, and rankS’= rank

Proof. By (5), we have 0 xT xT- uTo.
exists ’ such that ’ U’, 0 X’, and therefore

Hence, by Lemma 1, there

uru ’ {xrx + uru} ’
This implies that d’ S’ K-1UT and, together with U’ US’, we

can conclude that rank S rank . [:]

The next lemma is crucial. It corresponds to [7, Lem. 10] and [1, Lem. 4.3]
("crucial result"), but we do not need any of the identities that occur there.
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LEMMA 3. Let S =_ K-1UT as in Lemma 2. Then

(10) kerTTA kerA ImS

and

rank TTA rank T + rank A m.

Proof. Because rank T m- rank S’ by (6) and (9), the statement (10)implies
(1if). First, we show that

ker A + Im S c ker TTA.

Of course, ker A c kerTTA. So let d S’c c Im S’. Then, from (7), (5), (6),
(4), and (9), we obtain

TTAd- TT{R1X + (sTxT + T)U}d TT{R1 + sTuT}Xd- 0,

which proves the inclusion above. Next, we show that the sum is direct. Let d
S’c e ker A N Im S’. Then, by (7), (5), (4), and (9),

0 Ad {(R1 + sTuT)x + Tu}S’c Tc.

Hence, d S’c I(-1UTc- 0 by Lemma 2. Thus, ker A gl Im S’ {0}, and,
together with the inclusion we have already shown, it follows that

defTTA
_

def A + rank S’ m { rank A + rank T m}

> m rank TTA defTTA

from (9), (6), and Proposition 2 (with Q1 TT, Q2 I, Q3 A). Hence, we must
have equality above, which yields (10).

Remark 3. Observe that, by Remark 1, condition (1if) implies

ker TT C Im A and ker AT C Im T.

Finally, we need Lemma 4.
LEMMA 4. We have

(11) kerTTR2 kerR2 Im

and

(11) rank TTR2 rank T + rank R2 m.

Proof. By (6), statement (11) implies (11’). As in the preceding proof we show
first that

ker R2 + Im C ker TTR2.
Of course, ker R2 C kerTTR2. So let d c Im . Then TTR2d

TTsTXTc 0 by (5) and (6), which yields the inclusion. To show that the sum
is direct, assume that d c ker R2 Im . Then (5) implies that 0 R2d
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{sTxT -[-T}c-- Tc. Hence, d c 0, so that ker R2N Im {0}. It follows
that

deftTR2 >_ defR2+ rank m-{rankR2+ rankT-m} >_ m- rankTTR2 deftTR2
by (6) and Proposition 2 (with Q1 TT, Q2 I, Q3 R2). Hence, we must have
equality above and the assertion (11) follows.

Remark 4. As in Remark 3, the condition (11) implies

ImT=kerTTC ImR2 and kerR2T

Now we can state the central result.
THEOREM 1 (rank theorem). Let real m x m-matrices R1, R2, X, and U be given,

which satisfy (3) and (4), i.e.,

rank (R1, R2) m,

and

rank (XT, UT) m, xTu uTx

and suppose that the matrices S, T, and A are given by (5), (6), and (7), respectively,
i.e.,

RT2 XS + with xT O,

Im T ker S,

and

A R1X + R2U.

Then the matrix

(12) Q TTAST

is symmetric and it satisfies

(13) rank Q rank TTA + rank R2TT rank X

and

(13’) rank Q 2 rank T + rank A + rank R2 rank X 2m.

Proof. First, the conditions (5), (6), (7), (4), and (3) imply tyhe following equa-
tions.

(14)
RT XST, TTA TTR’X,

Q TT{R1RT2 + sTuTXS}T (TTR’)X(ST), where R’ R1 + sTuT.

Hence, by (4), Q is symmetric. Moreover, by (10’) and (11’) of Lemmas 3 and
4 above, the statement (13’) follows from (13). Now, we show (13) by applying
Proposition 2 with

Q1 TTR’I, Qe x, Qa ST
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(as indicated in (14)), such that Q Q1Q2Q3, Q1Q2 TTA, and Q2Q3 RT2 T by
(14). Hence, we must prove (1). Therefore, assume that

TTAd TTASTc E Im Q1Q2Q3 and TTR2Xd O.

Then TTA(d- STc) 0, and Lemma 3 implies that

d STc =dl + d2 with Adl 0, d2 SIc E Im S’,

where S is as in Lemma 2. By (9), Xd2 0 so that

Zd-- Zd -- T2Tc with 0--- Ad R1 {Xdl} -- R2{Vdl}.By Lemma 1 there exists d’ such that Xdl Rd, Udl -RT d, and therefore
Xd RT2 Im R2T with d’ + Tc. Moreover, TTR2Xd 0 implies by Lemma
4 that Xd cl + Sc2 (= R2T) with R2cl 0. Altogether, it follows that (use also
(5)) dTXTXd TR2{cl + Sc2} TR2c2 dTZTc 0. Thus, Xd Q2d O,
which establishes (1). D

3. The index theorem. The following index theorem contains, in a rather gen-
eral setting, the (local) oscillation theorem on linear selfadjoint differential systems
stated in [1, Thm. 1] and [7, Thm. 10], and, in particular, it contains the oscillation
theorem of Morse [10, Whm. 24.1] (see also the discussion in [1, p. 332]). It turns out
that (besides some identities yielding the symmetry of certain matrices, e.g., (4)), we
need only the monotonicity of the matrix-valued function under consideration as a
consequence of the differential system. The proof below uses (besides the algebraic
result of the previous section) as analytic tools only limit results on matrix-valued func-
tions (see [1], [4], [6], [7]) and the following proposition that is stated in [7, Prop. AT]
and [1, Prop. A4] (and that is based mainly on the minimum-maximum principle for
symmetric matrices; see [2] or [11]).

PROPOSITION 3. Let Q(t) be an m m-matrix-valued function that is symmetric
and increasing on (a, to) with a < to Kt U {c}, and suppose T is an m r-matrix
such that

r= rankT, TTT Irr, and lim cTQ(t)c c for all c

_
ImT,

t-*to

and is such that ( limt_--,to- TTQ(t)T exists. Moreover, let #i(t) and [ti denote the
eigenvalues of Q(t) and Q with #l(t) <_... <_ #m(t), [tl <_’’" <_ fir. Then

(i) limt--,to- #i(t) # for 1,..., r, and
(ii) limt--,to- #i(t) c for r + 1,..., m.
A similar result holds for right-hand limits. The main result of this paper now

follows.
THEOREM 2 (index theorem). Let real m m-matrices R1,R2,X, U be given, that

satisfy (3) and (4), i.e.,

rank (R1, R2) rank (XT, UT) m, RIR R2RT xTu uTx,

and let real m m-matrix-valued functions X(t) and U(t) be given on some interval
[-, ], > O, such that

XT(t)U(t) uT(t)X(t) for t e
(15)

X(t) X, U(t) U t 0;

and
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x(t) is invertible for t E [-, ], t 0 and

(17) U(t)X-l(t) decreases on [-,0) and on (0,].

Define

(18) M(t) R1RT2 + R2U(t)X-I(t)R,
A =_ R1X + R2U (as in (7)).

A(t) R1X(t) + R2U(t), and

Then ind M(0+), ind M(0-), and def A(0+) exist, and

(19) ind M(0+) ind M(0-) def A def A(0+) -defX.

Proof. Of course, U(t)X-l(t) and M(t) are symmetric by (15) and (3). The limit
theorem on monotone matrix-valued functions [6, Thm. 1] implies that

(20)
xTu(t)X-I(t)X uTx as t - O, and

cTU(t)x-l(t)c-- oc (respectively, --) as

t -- 0 + (respectively, 0--) for all a Im X.

Now suppose that S, S, T, and Q are given by (5), (6), and (12) as in the previous
section, such that, in particular, RT2c Im X if and only if c Im T. We may
assume that T satisfies the requirement of Proposition 3 that T is of type m r with
TTT Irr. Then, it follows from (20) (and (18)) that

(20’)
TTM(t)T -+ Q TTAST as t 0, and

cTM(t)c --, c (--cx) as t --, 0 + (0--) for all c Im T.

Proposition 3 can now be applied, and denoting by #1 (t),..., #m(t) and #1,..., #r
the eigenvalues of M(t) and Q, we get

(i) #j(t) --+ #j for j 1,..., r, #j(t).-+ cx for j r + 1,..., m as t -- 0+, if
#l (t) _< _< #, (t) #l _< _< #r and

(ii) #y(t) - #y for j 1,..., r, #y(t) --, -cx for j r + 1,..., m as t --+ 0-, if
(t) _>... _> ,(t), >_... >_ .

Since M(t) h(t)X-l(t)RT2 (by (18)) is symmetric with

rank (A(t)X-I(t),R2) rank (R1 + R2U(t)X-I(t),R2) rank (R1, R2) m,

Proposition 1 implies that

(21) ker M(t) ker AT (t) ker R2T for t e [-, el, t # 0.

The monotonicity of M(t) on (0,] (hypothesis (17)) implies that def M(t) is
constant on (0, 5] for some 5 > 0, and therefore, by (21), def M(0+) and def A(0+)
exist with

(21’) defM(0+) defA(0+) + defR2.
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Of course, indM(0+) and indM(0-) exist as well, and the statements (i) and (ii)
above (observe also that the #j (t) are decreasing on (0, ] and [-, 0) by [7, Prop. A3]
or [11, p. 101, 102]) imply that

ind M(0+) ind Q + def Q def M(0+), and ind M(0-) ind Q + m rank T.

Since def Q r rank Q rank T rank Q, we finally obtain from (21’) and
(13’) of Theorem 1 the following corollary, which is more specific than assertion (19)
and which, of course, yields (19) and completes the proof. [3

COROLLARY 1. Under the assumptions and with the notation of Theorem 2 let
S, T, and Q be defined by (5), (6), (12), respectively. Then

(22)
ind M(0+) ind Q + m rank T + def A def A(0+) def X, and

ind M(0-) ind Q + m rank T.

Remark 5. Replacing t by -t we obtain corresponding results if U(t)X-l(t)
is increasing instead of decreasing, while the other assumptions remain unchanged,
namely,

(19’) ind M(0+) ind M(0-) def A(0-) def A + defX;

and

(22’)
ind M(0+) indQ + m- rankT, and

ind M(0-) ind Q + m rank T + def h def A(0-) def X.

Finally, in the special case R1 0, R2 I, the condition (3) holds, and then
Theorem 2 reduces to the following corollary (which complements [6]).

COROLLARY 2. Assume that X(t) and U(t) are real m m-matrix-valued func-
tions such that (15), (16), (17) hold, let X and U be real m m-matrices such that
rank (XT, UT) m, and let Q(t) U(t)Z-(t). Then def U(0+), ind Q(0+) and
ind Q(0-) exist and

(23) ind Q(0+) ind Q(0-) def U -def U(0+) defX.

Remark 6. If A(t) is a matrix-valued function defined for all t in a neighborhood
of zero and if limt__.0 A(t) A, then, by considering subdeterminants of A(t) (or the
singular values of A(t) and A), it follows that there is some > 0 such that

rankA<_ rankA(t) for all0<lt[<_5.

This implies that we always have

def A(0+) < def A, def A(0-) _< def A, def U(0+) < def U

in the assertions (19), (19’), (22), (22’), (23), respectively, above.
Remark 7. Since the background of our results is in a sense a real theory, we

have dealt with real matrices. But the results above (including their proofs) carry
over easily to Hermitian matrices (instead of real and symmetric matrices), when the
transpose of a matrix is always replaced by the Hermitian adjoint.
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COMPUTING MOST NEARLY RANK-REDUCING STRUCTURED
MATRIX PERTURBATIONS*

M. A. WICKS AND R. i. DECARLO$

Abstract. The paper investigates the problem of computing structured matrix perturbations
that cause, or most nearly cause, some specified system matrix to fail to have full rank. The paper
discusses some theoretical issues concerning the existence of solutions to these problems. It suggests
a numerical approach to computing solutions that utilizes some ideas on differentiation of singular
values. Finally, an algorithm for finding structured most rank-reducing perturbations and structured
most nearly rank-reducing perturbations is developed. The paper demonstrates convergence of the
algorithm to a rank-reducing perturbation or to a local minimum for a most nearly rank-reducing
perturbation. Numerical examples illustrating the technique are included.

Key words, matrix perturbation theory, rank, rounding errors, singular value decomposition,
stability robustness, controllability robustness
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1. Introduction. For a given matrix M, a rank-reducing perturbation R from
an allowable perturbation set makes the matrix M- R rank-deficient. Eigenvalue
problems can be cast in this context. For example, to find the eigenvalues of a square
matrix A, one must compute a "perturbation matrix" of the form I such that det(A-
I) -0. Similarly, in the generalized eigenvalue problem, one must find a structured
rank-reducing matrix perturbation: given square matrices, A and B, compute a matrix
having the form AB for which det(A-AB) 0. Third, there is the eigentuple problem
[1], [2], [15]: given A and Bi, i-- 1,..., n find i and x = 0 for which

A iBi
i-1

x--0.

These are special cases of the rank-reducing perturbation (RRP) problem.
DEFINITION 1.1 (The RRP problem). Given M 6 Cn’ with n

_
m and a

vector space n C Cnm determine R n (if possible) so that rank(M R) < n.
The coefficient field for the vector space 7 may be 1 or C. The main emphasis of

the problem formulation considered in this paper is that T characterizes the structure
of the particular problem under study, such as controllability or stability. However,
7 may also represent a space of structured parameter variations. An R satisfying
rank(M R) < n is called an RRP.

Numerical algorithms solving various special cases of the RRP are well developed,
especially for the case when the dimension of T is one and M is square. Here, the
RRP reduces to the familiar generalized eigenvalue problem, for which numerically
reliable techniques are available (see, for example, [11]).
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On the other hand, algorithms for nonsquare M or when 7 is multidimensional
are not as fully developed. Under certain conditions, the elements of a two-parameter
eigentuple problem can be decoupled and the problem can be reduced to two gener-
alized eigenvalue problems [15]. Here, conventional eigenvalue techniques can be used
to obtain a solution.

In [1] and [2], iterative gradient methods are explored for the general RRP. The
papers remark that these techniques require no large matrix inversions at each itera-
tion. Hence, they may be appropriate for large, sparse systems. However, the authors
point out that the rate of convergence makes these techniques rather slow.

The nonlinear eigenvalue problem is similar to the problem stated in Defini-
tion 1.1: given A() determine and x = 0 such that A(A)x 0. Frequently,
the nonlinear eigenvalue problem appears in the form of a polynomial

AiAix O.

This problem is a multiparameter problem or eigentuple problem with a special struc-
ture imposed on the perturbation to A0.

Several numerical methods for solving the nonlinear eigenvalue problem are re-
viewed in [14]. It appears possible to generalize these techniques for general multipa-
rameter problems. Indeed, Rayleigh quotient iteration, used for solving the nonlinear
eigenvalue problem is similar to the method presented in this paper. Specifics will
be presented later in the paper. However, issues arise from the multidimensional and
nonsquare nature of the problem given in Definition 1.1 that do not accompany the
single parameter, square, generalized, or nonlinear eigenvalue problems. Specifically,
the nonexistence of a solution to the general rectangular RRP may be generic, depend-
ing on the dimensions involved in the problem. Moreover, in many applications, the
existence of a solution is undesirable. In this case, a most nearly rank-reducing per-
turbation provides information about the property being investigated. For example,
consider the usual linear time-invariant state model,

2(t) Ax(t) + Bu(t),

where A E Ixn and B E Ix. The existence of a A C for which

rank([A-AI, Bl)<n

indicates uncontrollability. This is often undesirable. If rank([ A- AI, B ]) n for
all C, one may wish to find the value of (there exists one, see [17]) for which
the matrix most nearly fails to have full rank, i.e., that value of A that minimizes
an([ A- I, B ]) as well as the corresponding perturbation to the matrices A and
B that would result in uncontrollability (an(M) denotes the nth singular value of M,
where the singular values are assumed to be ordered as al >_ a2 >_ >_ an). The
problem of determining such a perturbation is called the controllability robustness
problem [7], [8], [17]. This desirable nonexistence of solution is also present in the
stability robustness problem, where one finds a value of w that minimizes an ([A-jwI])
and a corresponding matrix perturbation which results in instability [4], [18], [12].

The nonexistence of solutions in these problems suggests a more general prob-
lem formulation designated as the most nearly rank-reducing perturbation (MNRRP)
problem. Definition 1.2 formalizes this problem.
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DEFINITION 1.2 (The MNRRP problem). Given M E Cnxm with n <_ m and a
vector space T C Cnxm determine an R E T (if one exists) that minimizes an(M-R).

The coefficient field for the vector space T may be or C. The vector space script
7 characterizes the structure of the problem under consideration. A minimizing R is
called an MNRRP.

Note that any RRP is also an MNRRP. Hence, a method for solving the MNRRP
problem will necessarily solve the RRP problem. The converse does not hold. Thus,
a single method that solves the MNRRP (and hence the RRP) is desirable.

Numerical methods have been developed for several special cases of the MNRRP.
The one-dimensional case where the coefficient field for R is C is considered in [3].
The method computes R E , which minimizes IluHM-uHRII at each iteration (with
u fixed), and then updates u to be a left singular vector associated with an(M- R).
This method is globally convergent, but not necessarily to a global minimizer. The
method easily generalizes to multiparameter problems. The main disadvantage of this
technique is the large amount of overhead required per iteration compounded by a slow
rate of convergence. Similar techniques are applied to the controllability robustness
problem in [17].

As noted above, the stability robustness problem is a special case of the MNRRP
where the coefficient field for 7 is I and the dimension of 7 is one. A bisection
method for finding solutions for the stability robustness problem appears in [4]. This
technique converges rapidly to a global minimum. A similar technique appears for
structured stability in [12]. However, it is unclear how to generalize the technique to
cases where 7 is multidimensional or where the coefficient field of T is C.

Another area of research related to work of this paper focuses on computation
of the so-called structured singular value [9], [10], [16]. The structured singular value
is used to measure the robustness of feedback systems in the presence of structured
uncertainty. Given a square M .nxn, computing the structured singular value
involves minimizing the spectral norm of IIAII subject to rank(/+ MA) < n, where
A has a specified block-diagonal structure.

While similar to the structured singular value (and motivated by similar objec-
tives), the MNRRP differs in several aspects. First, the structured singular value is
a frequency response technique measuring robustness at a particular frequency and
is recomputed for each desired frequency. The resulting destabilizing perturbation
represents a perturbation on a frequency domain model representation. Minimizing
an(A- jwI) finds the minimum destabilizing perturbation for a time domain plant
representation. The minimizing value of jw is the eigenvalue that would result from
the minimum norm, destabilizing parameter variation. The goal is to accomplish the
minimization over w automatically. Second, the MNRRP applies to a broad class of
problems having similar structure, including controllability robustness and stability
robustness. Being able to determine controllability robustness has numerical implica-
tions [13]. Third, the structure imposed by 7 in Definition 1.1 reflects the particular
robustness problem being investigated. The minimizing singular value reflects the
offending parameter variation, which is assumed to be unrestricted in the case of
the MNRRP problem. Techniques developed for the MNRRP should prove useful
for restricted parameter variation problems, which incorporate a parameter variation
structure in addition to the structure represented by .

The problem of finding minimum RRPs on square matrices where the size of
the perturbation is measured using the maximum entry after applying a prespecified
scaling is addressed in [6]. Computing an approximation of the solution of this problem
to arbitrary accuracy is shown to be NP-complete.
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A problem similar to the structured singular value is solved in [5] where a min-
imum Frobenius, or two-norm perturbation that reduces the rank of the matrix, is
constructed. Again, the MNRRP differs from this work as it minimizes an(M- R)
over a linear space 7, where 7 characterizes the structure of the problem rather than
the structure of the perturbation. A primary motivation for solving the MNRRP is
to perform the minimization over T automatically.

This paper presents a method for numerical solution of the RRP and the MNRRP.
The approach views the RRP as a special case of the MNRRP. An algorithm based on
this approach attempts to drive the nth singular value of M- R toward zero. From
this perspective, singular points are not viewed as isolated points, but as zeros of the
surface defined by an(M- R) as R varies over 7.

Before discussing these algorithms, it is useful to set forth some elementary prop-
erties on the existence of solutions to the above problems. Section 2 covers some theo-
retical issues on the existence of solutions and the asymptotic behavior of an(M- R)
as IIRII c. Section 3 discusses differentiation of singular values and develops a
Newton method for computing RRP solutions as motivation for an MNRRP algo-
rithm. Such a method will fail near a local minimum of an(M- R) as the derivative
of an(M- R) vanishes. To avoid this difficulty, a modified algorithm is proposed
that will always converge to either an RRP or an MNRRP (a local minimum) while
retaining the convergence rate of the Newton method to an RRP. Convergence to an
MNRRP is nearly as rapid. Section 4 presents a specific algorithmic implementation
along with an analysis of its convergence. The paper proves convergence of this algo-
rithm with a suitable stepsize choice under certain conditions. Experimental results
are presented in 5 demonstrating the accuracy and efficiency of the algorithm.

2. Existence of solutions. This section discusses some elementary properties
relating to the existence of solutions to the problems introduced above. The following
property is a restatement of an earlier observation.

PROPERTY 2.1. For a given matrix, M E C’m, there may be no finite RRP.
The asymptotic behavior of an(M- R) as IIRII -, c helps to understand the

global behavior of the singular value surfaces and can provide insight into determining
suitable starting values for numerical algorithms. The next set of properties charac-
terize the asymptotic behavior of singular values as functions of matrices as R varies
over 7.

ASSUMPTION 2.1. Henceforth, assume that T C C,nxm is a vector space over the

field 1.
ASSUMPTION 2.2. Singular vector pairs u and v are always chosen to be associ-

ated with a singular value a so that Rv an, RHu av, Ilull 1, and Ilvll 1.
PROPERTY 2.2. Given M Cnm and R T, there exists a pair of left and right

unit length singular vectors u and v associated with an(R) for which the asymptote of
an(M (R) is given by

PROPERTY 2.3. If the singular values of R are nonzero for all R e T, R O,
then a finite solution exists to the MNRRP.

PROPERTY 2.4. lim_ an(M- aR) is finite if and only if rank(R) < n.

Before presenting the next group of properties, it is necessary to distinguish
between finite solutions to the RRP and infinite solutions to the RRP.

DEFINITION 2.1. The RRP has a finite solution if and only if some R
satisfies an(M- R) O. The RRP is said to have an infinite solution if for some

R 7 lima--.o n(M aR) 0.
As mentioned in Property 2.1 there may be no finite solution or infinite solution
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to the RRP problem.
DEFINITION 2.2. The MNRRP is said to have an infinite solution if for some

R0 E T lim__, a,(M aR0) infneT an(M R).
In contrast to the RRP, the MNRRP has the following property.
PROPERTY 2.5. The MNRRP always has a solution, which may be a finite or an

infinite solution.
The previous property reinforces the desirability of computing MNRRP solutions

rather than RRP solutions. The former always exist while the latter may not exist in
any sense, finite or infinite. The nonexistence of RRP solutions, finite or infinite, can
occur even when the matrices involved are square.

Finally a complete characterization of infinite solutions to the RRP is possible.
PROPOSITION 2.1. Given M and T as before, an infinite solution to the RRP

exists if and only if for some R

(2.1) rank
M
R rank(R),

where n is the row dimension of M and R.
Proof. Suppose for some R 7 (2.1) holds. From (2.1) it follows that rank(R) <

n. First, it is necessary to establish the existence of x, y Cn, x 0 for which xHM+
yHR 0 and xHR 0. To do this consider a basis for the left null-space of R, say
{yi}, i 1,..., n- rank(R). The set of vectors {col( 0, yi )}, 1,..., n rank(R)
forms a linearly independent set contained in the left null-space of

But (2.1) implies the dimension of this left null-space is greater than n- rank(R).
This implies the existence of another vector, col( x, y ), in this left null-space that is
linearly independent of the set {col(0, yi )}, 1,..., n rank(R). It must be that
x =/- 0; otherwise one would obtain yHR 0 with y being linearly independent of the
set of {yi}, which cannot be.

Using the vectors x and y obtained from col( x, y above, consider the product

(x + (1/a)y)H(M + aR) (1/c)yHM.

Taking the limit of this product as cx) yields zero, i.e.,

lirn(x + (1/a)y)H(M + aR) O.

Since x : 0 and since n _< m, this implies that

lim an(M + aR) 0,

satisfying the definition of an infinite RRP solution.
Conversely, suppose for some R G 7

lim an(M + aR) O.

This implies the existence of sequences, ak and zk for which ak --* oc, Ilzkll 1
and IIz.(i + okR)ll- O. The vector zk can be written (in a unique way) as zk
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Xk + (1/ak)Yk for some Xk E ker(RH) and ya E range(R). From this construction it
follows that Ilxkll _< 1 and II(1/ak)Ykll _< 1. Using these vectors, one obtains

(2.2) II(Xk + (1/ak)Yk)H(M+aaR)ll H Hxk M + Yk R + (1/at)yRII -- O.

It follows from (2.2) that IlYII is bounded; otherwise IlyRII would be unbounded
since Yk range(R) and (2.2) would not converge to zero since all other terms are
obviously bounded as described above. Moreover, it follows that H H

Yk Rxk Mq-- ----- 0since boundedness of IlY[[ implies (1/ak)y ---* O.
Also, it follows that Ilxk[[ - 1 since [[y[[ is bounded and [[z[[ 2 [[xk[[ 2 +

(1/a)2[[ykll 2 1. Thus, arbitrary cluster points of the sequences, xk and Yk, say x.
and y,, must satisfy x.HM + y.HR 0, x,HR 0, and x. - 0, i.e., col(x, y. is
contained in the left null-space of

(2.3) M R 1R 0

Again, let {yi}, 1,..., n-rank(R) be a basis for the left null-space of R. Clearly the
vectors, {col( 0, yi )} are contained in the left null-space of the matrix in (2.3) and are
linearly independent of col( x,, y, because x, 0, i.e., there exist n- rank(R) + 1
linearly independent vectors in the left null-space of the matrix given in (2.3). This
implies (2.1). [:]

Depending on the dimension and structure of the matrices involved, the nonex-
istence of a solution to the RRP may be generic, i.e., even though a solution to the
RRP may exist in principle, it may not exist, numerically speaking. Numerically, the
RRP problem can be perturbed into an MNRRP problem. This problem is discussed
in [17] within the context of the controllability robustness problem mentioned earlier.
This provides additional motivation for designing single algorithms that work on either
problem. Such an algorithm is developed in the following section.

3. Algorithm development. The Newton approach to the problem is formu-
lated by differentiating the smallest singular value of M- R. To avoid differentiation
problems associated with singular values, assume that the singular values of M- R
are distinct for almost all R in 7. Certain problem structures may cause the singular
values to be nondistinct throughout 7. This paper does not consider such problem
structures. The function

(3.1) f(a) an(M oR)

is differentiable with respect to a (a is real) as long as the nth singular value of M-R
is distinct and nonzero. The derivative of f is given by -Re(uHRv) where u and v
form a left and right unit length singular vector pair associated with an(M dR).

When M and all R T are real this differentiation poses no difficulty and there
results a simple expression for Newton iteration for finding an RRP. For example,
when 7 is a one-dimensional space having R as its basis, one obtains the Newton
iteration,

(3.2) a+l a + [u(M- aR)vk]/(uHk Rv)
(UHk Mvk)/(uHkRvt),

where u and vk are left and right unit length singular vectors associated with an(M-
akR). The sequence a -- a, as k -, oc and the quantity a,R becomes the RRP.
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Here, the similarity of (3.2) and Rayleigh quotient iteration is evident. Rayleigh
quotient iteration is used for the generalized eigenvalue problem and the nonlinear
eigenvalue problem [11], [14]. When M-skR is symmetric, (3.2) is virtually the same
as Rayleigh quotient iteration. This follows because M-skR being symmetric implies
uk =kvk. A notable difference between (3.2) and Rayleigh quotient iteration is the
use of different vectors on the left and right in (3.2), obviously necessary if dealing with
rectangular matrices. Hence, (3.2) appears to be a generalization of Rayleigh quotient
iteration suitable for use with rectangular matrices. The vector used for Rayleigh
quotient iteration is usually obtained via inverse iteration. In (3.2), uk and vk are
obtained from a singular value decomposition. However, one can envision obtaining
uk and vk via left and right pairs of inverse iterations.

When 7 is multidimensional, one must locate ARk E T such that

(3.3) ukH (ARk)vk ukH(M Rk)vk

and set Rk+l Rk + ARk. This follows because a Newton iteration sets 0 an +
Aan uH(M- R)v uH(AR)v which is equivalent to (3.3).

On the other hand, when M or R have nonzero imaginary parts, the successive
approximations of the Newton iteration are determined by locating ARk E 7 such
that

(3.4) H(M Rk)vkae(u(ARk)vk) uk

with Rk+ Rk + ARk. This formulation is more difficult to implement than (3.3)
because of the presence of the real part. The real part is present because the derivative
of the function in (3.1) is Re(uHRv) duly generalized to multiple dimensions in (3.3).

The first main result of this section shows that the quantity -uHRv may be
utilized in place of the actual derivative of f(s) in a Newton iteration when M or R
is complex. Strictly speaking, the quantity --uHRv is not the derivative of f(s) as

given in (3.1), but it is the derivative of a complex-valued function having the same
modulus as an(M sR). Obviously locating zeros of this function is equivalent to
locating zeros of an(M- sR). This result is stated below in Proposition 3.1, and
justifies using the iteration given by (3.2) even if R and M are complex.

PROPOSITION 3.1. Let M,R Cnm. Given so for which the first n singular
values ofM-soR are nonzero and distinct, there exists a locally differentiable function
c(s) for which Ic(s)l n(M- sR) in a neighborhood of so and which satisfies
c’(so) -uHRv, where u and v are a pair of singular vectors associated with an(M-
soR). Note that s is real.

Proof. Let u(s) and v(s) be a left and right unit length singular vector pair
associated with an(M sR). Consider the solution of the initial value problem

c’ (s) (uH (s)Rv(s)
an(M cR)

with the initial condition c(s0) an(M- soR) O. The solution of this problem
exists in some neighborhood of s0. Since s is a real variable

d
c(s)(s)=-2

ds an(M

c(s)(s)2f’(s)
f(s)

Re(uH(s)Rv(s))
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where f(a) is defined in (3.1). This implies that c(a)(a) [an(M- aR)]2 and
completes the proof, n

The function c(a) may be interpreted as a complex-valued singular value since
it satisfies ]c(a)] an(M oR). By associating singular values with the modulus of
a differentiable complex valued function, an appealing derivative formulation results.
Left and right singular vectors associated with c(a) can also be defined. They must
be selected to satisfy (M oR)v(o) c(o)u(o) and (M ozR)Hu(o) (o)v(o).

Clearly c(a) is zero if and only if an(M- oR) O. This suggests applying the
Newton method to c(a) rather than applying it to an(M-oR). Given any initial guess,
say c0, the derivative of c(.) at c0 becomes --uH(oo)Rv(oo) since an(M- ooR)
c(c0). This amounts to using (3.3) in the complex case as opposed to (3.4).

Iteration based on (3.3) or (3.4) will be unstable near a solution to the MNRRP.
This occurs near a positive local minimum of an(M- aR) where the derivative van-
ishes, i.e., uHRv approaches zero, making the iteration based on (3.3) unstable. As
an illustration of this instability, consider Example 3.1.

Example 3.1. Determine c E , which minimizes a2(M- aR), where

0 1 0
R--

0 1 100

A local minimum occurs when a is approximately equal to 2.00975 x 10-4. Applying
(3.3) with s0 0 results in al 1, for which a(M- aiR) is approximately 8.955.
The divergence of al from the actual solution occurs because the derivative of an(M-
aR) is nearly zero at the initial point.

As a method of stabilizing the Newton approach consider determining ARk to
minimize the least squares problem,

(3.5) min II[u]ff (M nk ARk) [Vn]k [Vn+l]k
ARk ET-

and setting Rk+l Rk + ARk. The vectors [u]k and [Vn]k are left and right unit
length singular vectors of M-Rk associated with an(M-Rk), while the orthonormal
vectors [vi]k for i n + 1,..., m span the kernel of M- Rk. The notation Ilk denotes
the kth iterate of the quantity in the bracke,ts. This notation has been introduced
to avoid confusion between the ith column vector vi and the kth iterate of the ith
column vector, [V]k. Note that the inversion implicit in the solution of (3.5) may
be nonsingular even if the quantity Re([u]ffRk[Vn]k) is zero for all R e 7. In the
one-dimensional case, the norm of the ARk obtained from (3.5) will be less than or

equal to the norm of the ARk obtained from (3.3), thereby adding stability to the
algorithm. In the multidimensional case, adding the null-space information has the
effect of adding second derivation information. The additional vectors are used to
guarantee convergence in Proposition 4.1. Moreover, solution of (3.5) always yields a
descent direction for f(c) as given in (3.1), i.e., there will always be some R, 7 on
the line connecting Rk and Rk +ARk for which an(M-R,) < an(M-Rk). This claim
is verified by Lemma 4.2, appearing in 4. By a suitable choice for the stepsize, global
convergence is achieved. A specific choice for the stepsize appears in 4. However, it
is not immediately apparent that the convergence rate of (3.3) is retained locally after
incorporating the null-space information into the iteration formula. The stabilizing
effect of using the extra singular vectors can be observed by executing a single iteration
of (3.5) on Example 3.1. The resulting value of al is 1.9996 x 10-4 compared with
the locally minimizing value 2.0098 x 10-4.
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The remainder of this section serves only to suggest that the convergence rate
achieved by (3.5) is nearly the same as that achieved by (3.2) by restricting the dis-
cussion to the one-dimensional, real case. A convergence proof appears in 4 for the
general, complex case. In the one-dimensional real case, the iteration based on (3.5)
is approximately equivalent to the iteration function

ak+ Ok f’(k) + (f(ok)f"(Ok)/f’(ok))(3.6)
f(ok f’ (ak

k (/,(k))2 / f(ok)f"(Ok)"
The iteration function of (3.6) converges quadratically in a neighborhood of either
a single zero of f or a zero of f’. Near a zero of f’ it converges quadraticMly so
long as f and f’ do not simultaneously vanish. The iteration specified by (3.6) is an
approximation to the iteration of (3.5) in the one-dimensional, real case when m > n.
Loosely speaking, the approximation becomes better as f becomes smaller so that
performance improves as the singular value associated with a solution of the MNRRP
diminishes. Performance improves as robustness decreases.

A correspondence between (3.5) and (3.6) becomes clear after examining the
closed form solution of (3.5) in the case when M is real, m > n, and T is one-
dimensional having a real matrix R as its basis:

k R[Vn]k)(3.7) ak+l ak + ([u]/(M okR)[Vnlk)([ulH
+

Most of the quantities in (3.7) correspond to quantities in (3.6), i.e., f(ok) is given by
[u]/(-AI- okR)[Vn]k and f’(ok) is given by -[u]fR[v,]. The correspondence with
(3.6) would be complete if f"(ok) were equal, to the quantity

m

(3.8)
1

aTE1 H V
an(M oR) [u]k R[ ilk)2

i=

The quantity in (3.8)approximates f"(ok)ifm > n and an(M-akR) << an-l(M-
okR). To see this, consider the second derivative of the quantity O’n(M oR). With
the real restriction on M and R, the second derivative of f may be written as

f"(a) --(u’(a)TRv(a) + u(a)TRv’(a))

0

By differentiation of the equation

-an(M aR)I
(M oR)T

and recognition that

it is possible to show that

(3.9)

(M-aR) ] [u(a)] =0-an(M an)I v(o)

u’(a) -D+(a) _RT
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where

D(a) (M_aR)T

and the quantities u(a) and v(a) are unit length left and right singular vectors asso-
ciated with an(M aR). Assuming the singular values of M aR are distinct, the
singular values of D(a) in (3.9) can be enumerated as follows: 2n- 2 nonzero singular
values of the form la + al, two zero singular values, and a singular value equal to
an. having multiplicity m- n. The singular value decomposition of the matrix, D(a),
(dropping the explicit dependence on a) can be written

n-1

i--1

+ E(1/2)(-a, an) -v,U’ [uT _VT a, E V
i--1 i--n+l

where a is a singular value of M- aR (not of D(a)) having associated left and
right unit length singular vectors, ui and vi, and where vi, n + 1,..., m are an
orthonormal basis for the kernel of M- aR. If am is much smaller than the other
nonzero singular values and m > n, then an approximation to the pseudoinverse can
be obtained by truncating the smallest 2n- 2 nonzero singular values. This results in
the approximate equality

(3.10) D+(a) +a(M aR) 0 vvi--

Substituting this approximation into (3.9) results in the approximate equality

1
m

f"(ak) ,-
O’n(M okR) E (uRvi)2’

i--n+l

where the vi, n+ 1, n+2,..., m span the null-space of M-akR. This demonstrates
the approximate equivalence of (3.5) and (3.6) when an(M-akR) << a-i(M-akR)
and m > n. The convergence rate increases as an(M- akR) decreases and the
approximation of (3.10) improves. Experimental evidence presented in 5 supports
this intuition for both the one-dimensional case and multidimensional case. Section 5
presents a multidimensional complex case. Section 4 presents a globally convergent
stepsize, demonstrates convergence, and discusses implementation issues.

4. Implementation. This section discusses specific details of an implementa-
tion of the algorithm and demonstrates convergence of the algorithm to a local mini-
mum of an(M- aR). The first goal of this section is to establish convergence of the
following algorithm.

1. Set k 0, select R0; R0 [0] is a convenient choice.
2. Compute the singular value decomposition of the matrix, M- Rk, i.e.,

determine orthonormal sets {[u]k}, i-- 1,... ,n, and {[V]k}, i= 1,... ,m so that
n HM- Rk i=l[Ui]k[ai]k[Vi]k

3. Let Vk [Vn]k [V+l]k [Vm]k ].
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4. Let ARk be the matrix having smallest norm that minimizes the quantity
II[un](ARk)Vk -[Unl(M-

5. Set ak

6. Set g/k=min((1/4)( ]][ul(ARk)VkH2 )ak[l ), 1

7. Let Rk+l Rk +9
8. For some prespecified e, if 9/kllARk]l < elIM- Rkll stop; otherwise let k

k + 1 and go to 2.

Identifying some quantities will assist in verifying convergence of the algorithm.
H H H HLet ck [un]k (ARk)Vk, let the error ek [Un] k (M- Rk)Vk --[Un](ARk)Vk, and
Hlet sk [Un](M-Rk)Vk. (The quantity ek represents the error in the least squares

solution of Step 4.) Note that ek is orthogonal to the vector ck and ek -]- Ck 8k, i.e.,
IlCk 2 + Ilekll 2 IlSkll 2. Here, orthogonality is not defined with respect to the usual
inner product on Cm-n+1. Instead, Cm-n+1 is viewed as a 2 (m-n- 1) dimensional
real space having the inner product < x, y >= Re(x)T Re(y) + Im(x)T Im(y).

Subsequently, a preliminary lemma will prove useful.
LEMMA 4.1. The orthogonality of ck and ek implies that

as long as 9/E [0, 1].
Proof. Consider that

(4.1)

for 9/E [0, 1]. Since

it follows that

(4.2)

Dividing inequality (4.1) by inequality (4.2) provides the stated result. D
The following lemma provides an upper bound for the the nth singular value,

an(M Rk 9 for 9/e [0, 1].
LEMMA 4.2. With the quantities as specified in the algorithm statement above,

any 9/ [0, 1] satisfies

an(M- Rk-9 <_ [an]k -t- akg/2

H H ^H (IProof. Define 9 [u,]ARk- ck V or equivalently vk [u,]ARk
^H (a solution is guaranteed becauseVV) and let []k satisfy []kH(M- Rk) vk

is in the row space of M Rk since vkHk 0). Consider the product

(4.3)
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where tH uH(ARk)(I- VkVt)(M- Rk)+. Applying Lemma 4.1 to the first term
of (4.3) and recognizing that the norm of [u]k +k is greater than one results in the
statement of the lemma.

Convergence of the algorithm is readily established in the following proposition.
However, the following convergence proof requires a regularity assumption. Specifi-
cally, assume that the norm of ARk as computed in Step 4 of the algorithm remains
bounded. The norm of ARk will remain bounded as long as the norm of the pseudo-
inverse required for the least squares solution of Step 4 remains bounded. As suggested
in the previous section, this is related to the assumption that the second derivative of
the nth singular value does not vanish at the solution point.

PROPOSITION 4.1. If ARk remains bounded, the algorithm stated above con-
verges to a necessary condition for a solution to an MNRRP in the sense that either

0

Proof. The sequence {an} is nonincreasing. To see this, consider that the upper
bound given by Lemma 4.2 is minimized for /E [0, 1] by the choice

k=min[(1/4)(allCkll2]k[an]k)’ 1

For this choice, one can show that

[O’n]k --[Tn]k+l min [( 1/16) [(Tn]2kak (1/4) [O’n]k J"
It can be shown that ak <_ tlARkll2g/[an-1]k. Hence,

[O’n]k --[O’n]k+l > min [(1/16)[Ick]14[an-]k[O.nl]]ARk]12 (1/4)[Tnlk J"
Assume [O’n]k does not converge to zero. The sequence ck has 0 as a limit point
since the sequence {[an]k -[Crn]k+l} 0, the sequence {[an]k} is bounded, and by
assumption {IIARkl]} is bounded. To show that [un](R)[vn]k 0 for each R e ,
take any R 7 and any real a and consider that

IlO[tn] Hk RYk [tn]kH(M Rk)Ykll

_
II[tn]ARkYk [tn]kH(M Rk)Ykll

for all k from the least squares solution of Step 4. The sequences, {[?.tn]k/-/}, {Vk/-/}, and
{sk} have cluster points, say u,,V,, and s,, which satisfy

This implies that the row vectors u,HRV, and s, are orthogonal (with respect to
the inner product on the real space described earlier). This can be the case only if
Re(u,HR[v],) 0, or if s, 0 in which case

A few comments are in order concerning implementation of the algorithm de-
scribed above. The least squares solution required in Step 4 may be accomplished
with regard to a particular basis for 7, say {Ri}, 1,... ,s. The matrix ARk is

expressed in the given basis as ARk = Rii. Here, assume that the basis is

selected so that the norm of AR is equal to the norm of the vector. A solution for
the real coefficient vector is formulated as follows: define

Ek VHRH u k VkHRH2 u k VkHRH u k
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and Fk VI(M- Rk)H[Un]k, then is given by

Im(Ek) Im(Fk)
The pseudoinverse of M- Rk needed in Step 5 requires inversion of only the first

n- 1 singular values. The projector (I- VkVkH) projects out the remaining singular
space. Hence, the product (I- VkV)(M- R)+ can be obtained directly from the
singular value decomposition of M- Rk. Evaluation of the formula directly as written
in Step 5 may lead to a poor estimate for ak.

The algorithm statement presents a coordinate-free version of the algorithm. It
may seem that exploitation of a particular coordinate system would make the algo-
rithm more efficient. The algorithm presented requires a full singular value decom-
position at each iteration. A coordinate dependent implementation could use the
singular value decomposition from each iteration to update the coordinate system so
that M- Rk is nearly diagonal at the next iteration, resulting in faster computa-
tion of the subsequent decomposition. Unfortunately, an implementation of this idea
reveals that this technique requires more time because of the costly full coordinate
transformations that must be applied to M and all of the basis matrices for 7 at each
iteration. For the same reason, it is costly to use approximate singular value/vector
information. Because the singular value decomposition is required at the solution
point, using approximate singular space information requires transforming the coordi-
nate system at each iteration so as to obtain the final singular value decomposition in
the limit. It is not clear if there exists an intelligent choice for the coordinate system
at each iteration that may be exploited to increase the efficiency of the technique.

5. Numerical results. This section shows numerical examples illustrating some
of the topics discussed in this paper. Data from numerical experiments are presented
that evaluate the numerical accuracy and experimental rate of convergence of the
algorithms. The numerical experiments exhibit the following topics:

(i) Quadratic convergence to the solution in a neighborhood of an RRP;
(ii) nearly quadratic convergence to the solution of an MNRRP if the final

robustness measure is small;
(iii) improvement of the convergence rate as the separation between the last two

singular values increases.
Consider the following example, which is a parametrized family of problems hav-

ing a known solution.
Example 5.1. Let M, P, R1, R2, and R0 be defined as follows:

-1-1i -2+1i -4-1i -4-1i -5-3i’]

M0=
-1-1i -2-1i -4+1i -4-3i -3-1i
1-1i 2-1i 4-1i 4-3i 5+1i
1- li 2 + li 4 + li 4- li 3 + 3i

0.6 3.6 0.3 0.6 0.31-0.6 4.4 -0.5 -0.6 -0.5
0.5 -4.9 0.5 -0.2 -0.2

-0.5 -3.9 -0.7 0.2 0

0.6 3.0 -0.3 0.6 0.3
-0.6 4.6 -0.3 -0.6 -0.5
0.5 -6.3 -0.9 -0.2 -0.2

-0.5 -2.9 0.3 0.2 0
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0.18 1.02 0.03 0.18 0.09"l
-0.18 1.34 -0.13 -0.18 -0.15
0.15 -1.61 0.01 -0.06 -0.06

-0.15 -1.07 -0.11 0.06 0

0.4 + 0.8i -0.1 + 0.3i 0.1 0.3i -0.2 0.4i -0.1 -t- 0.3i
-0.4 -0.1 0.1i 0.1 -t- 0.1i 0.2 -0.1 0.1i

1.6 + 1.2i 0.1 + 0.7i -0.1 0.7i -0.8 0.6i 0.1 + 0.7i
-0.8 1.2i 0.1 0.5i -0.1 + 0.5i 0.4 + 0.6i 0.1 0.5i

Let 7 ((1R1 / c2R2 (1, c2 E I} and let M Mo / sP + Ro. The matrix R0
satisfies a necessary condition for being an MNRRP solution. The minimum singular
value associated with this perturbation is exactly sv/il.44. The second to last singular
value is approximately 2.32. The algorithm stated in 4 was executed for varying values
of s. An implementation of the algorithm was executing using MATLAB 4.0 on a 486.
For each value of s, the following quantities are recorded in Table 1: the required
number of iterations N, the relative error e, the computed rate of convergence r, the
associated coefficient of convergence C, and the floating point operation (flop) count
reported by MATLAB. The relative error was computed as the Frobenius norm of
the difference between the computed and the actual solution divided by the Frobenius
norm of M0.

TABLE
Experimental results for parametrized example.

s N e r C Flop count

0 5 2.9 10-17 2.65 2.3284 25,924
0.001 6 4.2 10-17 1.22 0.0065 42,343
0.01 7 9.0 x 10-17 0.91 0.0004 51,771
0.1 10 1.7 x 10-16 1.00 0.0232 73,740
0.2 45 2.2 10-14 1.00 0.5307 349,227
0.3 124 9.7 10-14 1.00 0.8409 934,658

This example supports the claim made earlier that performance improves with
the separation of the values of an and an- at the solution point.

6. Conclusion. This paper examines a Newton approach to the solution of the
structured RRP problem as well as the structured MNRRP problem. The Newton
iteration is based on driving the smallest nonzero singular value of the matrix M-R to
zero. The paper demonstrates that a direct implementation of the Newton approach
will be unstable near an MNRRP that is not also an RRP. The paper proposes a
method that stabilizes the Newton iteration, retains quadratic convergence to an RRP,
and often has rapid convergence to an MNRRP. Proper choice for the stepsize achieves
global convergence to a solution. In addition, the paper provides some insight into
the asymptotic behavior of singular value surfaces and into the existence of solutions
to the RRP and MNRRP problems. Numerical examples are provided demonstrating
the main ideas of the paper.
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DOWNDATIN(2 THE RANK-REVEALING URV DECOMPOSITION*

HAESUN PARKt AND LARS ELDlN:

Abstract. An accurate algorithm is presented for downdating a row in the rank-revealing URV
decomposition that was recently introduced by Stewart. By downdating the full rank part and
the noise part in two separate steps, the new algorithm can produce accurate results even for ill-
conditioned problems. Such problems occur, for example, when the rank of the matrix is decreased
as a consequence of the downdate. Other possible generalizations of existing QR decomposition
downdating algorithms for the rank-revealing URV downdating are discussed. Numerical test results
are presented that compare the performance of these new URV decomposition downdating algorithms
in the sliding window method.

Key words, downdating, null space, rank-revealing decomposition, sliding window method,
two-sided orthogonal decomposition, URV decomposition

AMS subject classifications. 65F20, 65F25

1. Introduction. The singular value decomposition (SVD) is of great theoreti-
cal and practical importance [8]. One of its major merits is that it provides the rank
of the matrix and a basis for four important spaces including the null space. However,
the SVD has the drawback that it is computationally expensive. Especially when the
problem is of recursive nature, the SVD requires (9(na) flops for a matrix of order
n even for a simple update such as adding a new row. Thus, algorithms that utilize
the existing results for incorporating changes in data are desired. Our goals are to
perform such modifications with as few operations and as little storage requirement as
possible and to compute the new decomposition for rank-deficient matrices to obtain
accurate results.

Recently, Stewart [18], [17] introduced two-sided orthogonal decompositions, called
the rank-revealing URV and ULV decompositions (RR URVD and RR ULVD) that
are effective in exhibiting the rank and the basis for the null space, and can be updated
in (O(n2) flops. They are compromises between the SVD and a QR decomposition
with some of the virtues of both.

Given a matrix X 6 Rpn, where p >_ n, we say that it has numerical rank r, if
its singular values satisfy

a _>’’" _> ar > O’r+l _>’’" _> O’n,

where ar is large compared to ar+l. Then there exist orthogonal matrices U Rpp
and V Rnn such that,
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where T E Rnxn, R Rrx, and G R(n-)x(-) are upper triangular, and

(:rmin(R) O’r, F [[v -[[ G [[2F (Tr+12
__ __

(Tn,2
where I1" liE denotes the Frobenius norm. This is the RR URVD. Given an upper
triangular matrix T Rnn, let w be the unit right singular vector of T corresponding
to the smallest singular value an. If an orthogonal matrix Q Rnn makes

QTw en

and we have the QR decomposition of the product TQ

TQ Q(1)T(1),

where Q(1) Rnxn is orthogonal and T(1) E Rnxn is upper triangular, then

an =[[ Tw [12--[[ Q(1)T TTQQ II:=ll I1:
(][" [[2 denotes the Euclidean vector norm). Thus the last column of T(1) is small.
This is called a deflation and by applying the deflation repeatedly, the RR URVD
for T can be computed [18], [17]. When the right orthogonal matrix Y (V V2) is
partitioned according to the rank, where V Rx and V2 Rx(n-), then V2 is
an orthogonal basis for the null space of X. Note that the SVD is a special case of
the RR URVD.

For recursive problems, two common ways of incorporating changes in data are
the sliding rectangular window method and the exponential window method. For
updating the SVD and the RR URVD after a new data row is attached, see [18], [17].
For phasing out the old data, one or more rows are deleted explicitly from X in the
sliding rectangular window method. In the exponential window method, a value ,
0 < fl < 1, which is called a forgetting factor, is multiplied to existing rows to damp
out the effect of the old information. After an update in the exponential window
method, the numerical rank can increase, decrease, or stay the same. In particular,
since the effect of old data is only gradually phased out, it is likely that situations
occur where the numerical rank is not well determined, and thus the rank decisions
are difficult. In such situations the choice of the forgetting factor and the tolerance
used in the decision of the numerical rank becomes critical, especially since these
quantities are closely related to each other.

The sliding window method can track the change in the information statistics
more accurately than the forgetting factor method when there is an abrupt change in
data such as when signals are turned on and off or outliers are removed [3]. Stewart’s
original presentation of the URVD was in the context of using an exponential window
method in recursive least squares. This paper fills the gap by providing the details
for using the URVD in the sliding window setting, making the URVD a complete tool
that can handle both types of recursive problems efficiently.

An advantage of the sliding window method is the a priori information on the
rank after the modification: mathematically, after adding a row, the rank can only
stay the same or increase by one, and, after deleting a row, the rank can only stay the
same or decrease by one. Thus, the indefinite steps of deflation in using the forgetting
factor that results from not having any similar a priori information on the rank of the
modified matrix can be eliminated.

The methods used in this paper are partly based on the algorithms for down-
dating described in [6], particularly a hybrid between" the LINPACK and the CSNE
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downdating algorithms. It is necessary to use such accurate algorithms here, since
the downdates are often very ill conditioned when the numerical rank decreases.

The rest of this paper is organized as follows. In 2, we discuss the relation be-
tween downdating two-sided orthogonal decompositions and the QR decomposition.
Then we present a two-step procedure for downdating the QR decomposition. In
3, we discuss the rank-revealing aspect of URVD downdating and present a new
algorithm for downdating the RR URVD based on the two-step QR decomposition
downdating algorithm together with other generalizations of QR decomposition down-
dating algorithms to the RR URVD downdating. Section 4 contains numerical test
results comparing the accuracy of these algorithms in deciding rank and a basis for
the null space.

There is a vast literature on algorithms in the area of subspace-based signal pro-
cessing. The papers [1], [4], [19] deal with the problem of rank determination in recur-
sive computations. A Lanczos procedure is used in [19] to find the signal subspace.
The algorithm in [4] is based on the updating and downdating of a rank-revealing
QR decomposition. An application of the exponential window method for the URV
decomposition is described in [1].

2. Downdating a two-sided orthogonal decomposition. In this section we
first show that the problem of downdating a two-sided orthogonal decomposition is
related to that of downdating a QR decomposition. Then we present a two-step
procedure for downdating a QR decomposition. This procedure plays an important
role in our downdating algorithm for the RR URVD that is presented in the next
section. We also introduce a downdating algorithm based on a reduction to a simpler
problem.

One important requirement in an algorithm for downdating the rank-revealing
URV decomposition is that it must not destroy the "large-small" structure and that
it shall reveal the rank after the downdating. In this section, we leave the rank-
revealing aspects aside. In the next section, we will show that the two-step procedure
combined with condition number estimating methods can fulfill this requirement. The
motivation for the two-step procedure is that we separate the downdating of T into
two parts to take advantage of the fact that the matrix R is well-conditioned even if
T may be ill-conditioned. In a rank-revealing context, since the matrices F and G are
considered as "noise," it is undesirable to allow them to destroy the whole downdating
procedure due to ill-conditioning.

2.1. A two-step procedure for downdating a QR decomposition. Sup-
pose a two-sided orthogonal decomposition for X E apn

0
0 0

is given, where U and V are orthogonal, R E Rrr and G R(n-r)(n-r) for some
r _< n are upper triangular. We assume that the matrix V is stored, since it is needed
in many applications, e.g., subspace-based signal processing and applications, which
require least squares solutions. However, if p >> n then the extra storage for U
may be prohibitive, thus we assume that U is not stored. A QR decomposition of Xv
defined as

(2.2) Xv XV= V= z
Xv
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is

0

The QR decomposition downdating problem for Xv

XV1 XV2 0 0

T T T T RrXl Rnxrwhere % (z.1 z2 with Zl E and V1 E
problem of finding the upper triangular matrix

0 d

v yl y

can be formulated as a

given the upper triangular matrix T and the row to be downdated, T
%, so that

Zvl Zv2 0 0
,yT k R F

o o
is satisfied for some orthogonal matrix J. Note that R is the upper triangular factor
in the QR decomposition of XV1. Similarly, R is the upper triangular factor in the
QR decomposition of XV1.

Now, we show how we can perform the downdating of the QR decomposition of
Xv in two steps based on the partitioning (2.1) of T. This is essential in the new
downdating algorithm for the rank-revealing URV decomposition presented in the
next section. In obtaining 2? from T, we can first find/ such that

Zvl 0
(.3) R

0 0

for some orthogonal matrix J1. This is a standard downdating problem that can
be solved by hyperbolic transformations [2], LINPACK [14], [15], CSNE, or hybrid
algorithms [6], for example. With the matrix J1 from (2.3), we have the relation

Zvl Zv2 0
(2.4) T / / R F

0 0 c

for some vector h R(’-r)l. The computation of/ and h is discussed at the end
of this subsection. Assuming that they are known, we have only to find (, such that

F F(.5)
a

for some orthogonal matrix J2. Combining (2.4) and (2.5), we can complete the
downdating of the QR decomposition since

zvl z2 0 0 0
(2.6) aV2T]T / / aV2T R F R F

0 0 0 a
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The two-step procedure is summarized as follows.

Two-step procedure for downdating a 2 2 block QR decomposition.
Given the upper triangular factor R0 ) in the QR decomposition of a matrix, whose

T T Tfirst row is % z, z, ), find the downdated triangular factor 0 0) after deleting
z.

I. Downdate the first part.
(a) Find/ such that

[ (z5 0

for some orthogonal matrix J1.
(b) Determine F and h such that

jT zv2
/ F

II. Downdate the second part.
Find G such that

( o

for some orthogonal matrix

We now discuss Step I(b). After Step I(a), we know and an orthogonal matrix
J1, such that

(v 0

Normally is chosen as a product of plane rotations,

(.7) J ...1,
Twhere Pi is a rotation in the (1, + 1) plane that annihilates the ith element in %1.

Specifically, in Step I(b), the first rotation P1 affects the rows 1 and 2 of

which can be written as

(2.8) Pl (1, 2) z’2 hT cl 81

]T fT P1(12)=
-81

where c cos(0) and s sin(01) for some angle 01, the vectors fT and ]T denote
the first rows of F and , respectively, and T and hT are unknown. We use the
notation P1 (i, j) for the 2 2 matrix, whose elements are the (i, i), (i, j), (j, i), and
(j, j) elements of P. Rearranging (2.8), we obtain

() (T) (1/Cl 81/Cl)hT zv2 H1 (1, 2)H1(1, 2) fT fT 81/Cl 1/C
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from which we have

hT T 1/Cl sl/c
]T =Hi(1 2) -1 z’2

1/Cl

where g(,2)can be identified as a hyperbolic rotation since 1/c 1/cos(0)=
cosh() and sin(0L)/cos(0) sinh() for some rh [2]. We can continue in a similar
way and compute F and h as shown in the following algorithm.

ALGORITHM HYPER
Given F E arx(n-r),zv2 a(n-r)xl, and rotation parameters in vectors cc Rrxl

and ss Rrxl from downdating transformations for R, compute and h.
1. Determine elementary transformations

H-i(1, + 1) -ss(i)/cc(i)

2. Compute

hT T

Algorithm HYPER requires about 4r(n-r) flops (1 flop 1 multiplication and 1
addition). The matrix V does not change since the transformations are applied from
the left side only.

2.2. Reduction to a simpler downdating problem. From 2.1, we know
Tthat if we have the downdated QR decomposition of Xv after deleting zv,

0

where is orthogonal and is upper triangular, then we have the downdated two-
sided decomposition of X after deleting zT, since

Similarly, if we have a two-sided orthogonal decomposition for 2,

2v=O(
for some orthogonal matrices and V0, nd a triangular matrix , then

0 <’) = VVo

gives a downdated two-sided orthogonal decomposition of X.
In the two-sided orthogonal decomposition, we can transform the downdating

problem into a simpler one by reducing Zv to e, where z1]2, by a proce-
dure analogous to one in [17]. This can be done without changing the "large-small"
structure of the upper triangular mtrix, using a sequence of Givens rotations. We
can find matrices ’ Y... Y-I and U W... W_, where Rr and
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W E R
upper triangular. Computation of R(1) requires O(r2) operations.

Defining

T T R(1) ’TR,’VOare rotation matrices, such that zvlVo er and U0 is

and F(1) uTF, we now have

(2.9) XV(1) V1(1).g2(1 0 G
0 0

where V(1) (V1(1) V2(1)) and gl(1) E Rnxr, and (2.9)is another two-sided orthogonal
decomposition of the matrix X. Accordingly, (2.9) gives a QR decomposition of the
matrix XV(1) for which the first row to be downdated has a simpler form than that
in (2.2). Furthermore, the norm of each submatrix of T has been maintained, i.e.,

In Step I(a) of the two-step procedure of 2, we now want to find an upper
triangular R, such that

(2.10) J1T ( tcey
R(1))

for some orthogonal matrix J1. Writing the matrix R(1) in the form

R(1)=( R10 PS)
where R1 R(r-1)(r-1), and s R(r-1)l, we see that the downdated matrix
differs from R(1) only in the (r, r) element, and it is given by

(2.11)

__
(R01 8)

Now Step I(a) in the two-step procedure consists of computing/5 as in (2.11). Since the
row to be downdated has already been transformed to erT, we only need to multiply
by one hyperbolic rotation in Step I(b) to obtain hT and the last row of

This procedure can be used also when the downdating fails due to p2 tl;2 < 0 in
floating point arithmetic. In this case we can simply put t5 equal to zero. In the next
section we also use it for downdating G in the two-step algorithm. We summarize the
algorithm as follows.

ALGORITHM REDUCTION
Given R Rrxr and v Rxl, this algorithm computes the downdated matrix
/ E Rrxv by using two-sided transformations on R to reduce the vector v into a
simpler form keeping the triangular structure of R.

1. Determine plane rotations Yi in the plane (i, + 1), 1 < < r- 1, such that

IeTr vTy1 Yr-1,
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2. Determine plane rotations Wi in the plane (i, + 1), 1 < i _< r- 1, such that

is upper triangular.
Compute 0 "=/(r, r)2 2
If & > 0 then

else
o

end if
Save the information for Y and Wi if necessary.

This algorithm requires 4r2 flops. When Algorithm REDUCTION is used in Step
I(a) of the two-step downdating, the matrix F must also be modified with W’s (4r(n-
r) flops). Also the matrix V has to be modified due to the right side transformations
Y1 Yr- (4nr flops). Altogether, this adds up to 8nr flops. Similar operation counts
are obtained when this algorithm is used in Step II. As a result of reducing the vector v
into eT, the actual downdating occurs only on the last column of the new triangular
factor. The information from the plane rotations are saved if necessary.

3. Downdating the rank-revealing URV decomposition. We now extend
the results from the previous section and consider downdating the rank-revealing URV
decomposition of X

(3.1) X g 0 a VT,
0 0

where R E Rr and G are upper triangular, and the matrices F and G are assumed
to be small in the sense that they satisfy

V/IIF[I / IG[I -< tol,

for a given value tol. Thus X has numerical rark r.
We have seen in Section 2 that downdating the QR decomposition ofXV i8 closely

related to downdating the two-8ided orthogonal decomposition of X. In this section,
we incorporate the aspect8 of numerical rank decisions, in particular. The problem of
downdating the RR URVD (3.1) can be formulated a8 follows.

PROBLEM. Downdating of RR URVD. Given (oR G),F V, andr= rank(R) in the
RR URVD of

X f( V 0 G VT,
0 0

find the downdated matrices ,/, , and , and rank(/) such that

o
0 0

for some orthogonal matrix U.



146 HAESUN PARK AND LARS ELDIN

When the numerical rank of is reduced by one as a result of downdating, then
is r- 1, and otherwise it is equal to r. Thus, after downdating, not only is upper

triangular but also reveals the new rank, i.e.,

Note the difference in notations from those in 2: is used to denote the downdated
matrices before the rank decision is made and- is used to denote those after the rank
decision is made on downdated matrices. Thus the order of/ is one less than that of
/ when the rank of R is reduced by one as a result of downdating.

3.1. Algorithms for two-step downdating. The downdating algorithm based
on hyperbolic transformations [2], the LINPACK [14], [15], hybrid, and CSNE [6]
downdating algorithms can be used for the two-step downdating. In fact, when hy-
perbolic transformations are used, it is not necessary to divide the downdating of Xv
into two steps, as the same procedure can be applied throughout. Below we summa-
rize the LINPACK and LINPACK/CSNE hybrid algorithms. For more details, see

[14],
When the LINPACK algorithm is used for Step I(a) in the two-step downdating,

we first solve the .triangular system RTql z,l and compute the plane rotations
P1,..., Pr so that

1(0)(3.2) p... pT (ql
where v/1 -]lql I12, which also gives

()0
In (3.2), each pT is a rotation in the (1, + 1) plane and (c, s) from P can be saved
to obtain Hi to perform Step I(b).

Equation (3.3) and the discussion of.Step I(b) in 2.1 show how the LINPACK
algorithm and the algorithm based on hyperbolic transformations are related: equiv-
alent transformations are applied, in the first case as Givens rotations, and in the
second as hyperbolic transformations (cf. also [11]). The LINPACK algorithm is
summarized as follows.

ALGORITHM LINPACK
Given R E Rrr and v E R1, this algorithm computes the downdated matrix
and saves the rotation parameters from downdating transformation in cc Rrx and
88 Rr 1.

1. Compute ql and -y from

RTql v, "/’:-- (1-- Ilqll12) 1/2.

2. Determine plane rotations P in the (1, + 1) plane, 1 <_ _< r, such that

1 vT " 0(0 ) "=PT’"PT(ql R)
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and save

where (ci, si) is from Pi(l + l) -siCi Si)ci if necessary.

The above algorithm requires about 2.5r2 flops. There is no change in the matrix
V in the URVD.

The downdating problem in Step I(a) in the two-step procedure is ill conditioned
in two cases: (a) when a row containing an outlier is removed, and (b) when there
is a decrease in rank (cf. [15], [6]). The ill conditioning reveals itself in that the
quantity 1- Ilq11122 computed in the LINPACK algorithm is small or even negative in
floating point arithmetic. In [6] it was shown that the method of corrected seminormal
equations (CSNE) can be used to recover ql and /more accurately in ill-conditioned
cases. Accordingly, the Pi’s in (3.2) are also determined more accurately. The accurate
results from the CSNE method are obtained due to the fact that the original data
matrix is used in the refinement of ql and /. The hybrid method [6] that applies the
refinement only when necessary is an excellent compromise when both computational
complexity and accuracy are concerns.

We refer to the LINPACK, hybrid, and CSNE algorithms as LINPACK-type
algorithms since the ways the downdating transformations are computed in these
methods are similar. The essential difference among LINPACK-type algorithms is in
the computation of ql and -. After ql and - are determined, the rest of the algorithm
is the same. Thus, each Pi is computed to satisfy (3.2) and the Step I(b) can be
performed using Hi’s obtained from Pi’s. Note that in the first step of downdating,
these LINPACK-type algorithms will generally do well in computing ql since R is
relatively well conditioned according to the definition of the RR URVD. The hybrid
LINPACK/CSNE algorithm is summarized below.

ALGORITHM LINPACK/CSNE
Given X E apn, the first r columns of V, which is V1 anr, R Rrr, v Rrl,
and a tolerance toll, this algorithm computes the downdated matrix R and saves the
rotation parameters from downdating transformation in cc R1 and ss R 1.

1. Compute ql and a from

2RTql v, o :- 1 Ilq1112.

2. If a > toll then (LINPACK)
/:= vf

else (CSNE)
Compute y and t from

Ry ql, t := el XVly.

Improve q, y and compute

q := ql + 5ql,
t t- XV15y,

end if
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3. Determine plane rotations Pi in the (1, + 1) plane, 1 _< <_ r such that

(1 vT) (9/ O)0
._pT...pT

ql R

and save

cc(i) ci, ss(i) si,

where (ci, si) is from Pi(1, + 1)= ( -siCi ciSi) if necessary.

This algorithm requires 3up + 3nr + 4r2 flops if the CSNE branch is taken and
2.5r2 flops otherwise. There is no change in V in the URVD. Another alternative for
Step I(a) downdating is the reduction algorithm described in 2.2.

When G is ill conditioned or numerically singular, then downdating in Step II is
difficult and the LINPACK-type algorithms suffer since the downdating transforma-
tion relies on the solution of the triangular system where G is the coefficient matrix.
The downdating method based on hyperbolic transformations has problems similar to
the LINPACK algorithm. If we use the reduction algorithm in Step II, then we first
reduce the vector hT obtained from Step I(b) into -%T_r where T Ilhl12 while restor-
ing the triangular structure of G as shown in 2.2. Even when G is ill conditioned or
singular, the reduction step does not break down.

3.2. Deflation. In downdating, the numerical rank cannot increase, but can
decrease. Therefore, we need to test R obtained from Step I(a) for numerical rank
deficiency and deflate it, if necessary. Rank deficiency of a matrix can be detected by
estimating its smallest singular value [8, p. 128], [9]. In downdating, there are two
cases to consider. After downdating and before deciding the new rank, the new value
for u is

which is from

Suppose

where/1 E R(r-)(-). If

(3.6) V/2 + I1 11 = + tol,

then the numerical rank is decreased as a result of downdating and / /1 E
R(-) x (-).

If (3.6) is not satisfied, then the rank may decrease or stay the same. To check
this, the smallest singular value of/ is estimated and the deflation step [17] mentioned
in the introduction is applied to transform/ to

(3.7) wTy (d gd )0 a

(3.5) / (/" g)0 ,5
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where W and Y are orthogonal, d E a(r-1)(r-1) is upper triangular, and d
V/5 + I1dl]22 is a good approximation of the smallest singular value of/. If, after
transforming R as in (3.7),

/2 + ] _< tol,

then the numerical rank of/ is r- 1, and we can modify/ and ( accordingly. In this
case, the matrices F and V must be updated by W and Y, respectively. Otherwise,
the rank after the downdating is the same as before, so r, .and R R.

We outline the deflation procedure as follows.

ALGORITHM DEFLATE
Given the downdated matrices/ E Rrr,/ Rrx(n-r), R(n-r)(n-r), and the
orthogonal V ann, test for deflation and perform deflation if needed.

1. Compute 2 2 ilzv2112.

2. /--/,/=/,(=,=9.
If V/2 + IIR(:, r)[122 tol then

r:=r-1, R=R(l"r-l,l’r-1), ’=V/2+l[R(’,r)l[2
change dimensions of/ and ( accordingly.

else
Estimate the smallest singular value, & of R.
If x/ + e < tol,

Transform/ as in (3.7),/ := wTyY, and modify/ and
r- 1,/ =/(1" r- 1, 1" r- 1), P v/2 + &2.

Modify/ and ( accordingly.
end if

end if

The estimation of the smallest singular value requires ar2 flops, where a is a
small constant [9]. The transformation (3.7) can be done in 8nr flops (including the
modification of F and V).

3.3. New algorithms. Incorporating the rank decision with the downdating al-
gorithms described in the previous sections, we present three RR URVD downdating
algorithms. Various algorithms can be constructed by combining the algorithms pre-
sented for Step I(a) and Step II downdating. Our goal is to obtain accurate solutions
with less computational work. The first obvious choice is applying the LINPACK
algorithm for both Steps I and II. However, LINPACK can fail in Step II (in fact, it
can fail also in Step I(a), see the numerical tests in 4). Therefore, if the downdating
in Step II is very ill conditioned, or, if it breaks down completely (this can be seen in
the LINPACK algorithm in that the quantity, 1- Ilq11122, becomes negative, which, in
theory, is positive), then we use REDUCTION algorithm, in which we simply set the
last diagonal element of ( equal to zero when the downdating breaks down.

Another choice is to use the REDUCTION algorithm in Steps I(a) and II. In this
case, only one hyperbolic rotation is needed in Step I(b).

We want our algorithm to be robust when the downdating is ill conditioned in Step
I(a) or Step II and we want it to be fast at the same time. The LINPACK algorithm
is considerably less expensive than the CSNE algorithm, while the latter has much
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better accuracy than the former [6]. Thus we can use the hybrid LINPACK/CSNE
algorithm in Step I(a). In Step II, we prefer the LINPACK algorithm in case the
downdating is well conditioned, and the REDUCTION algorithm otherwise, since the
latter is less expensive than the CSNE algorithm, and can also deal with the case
when G is exactly singular. This is the third algorithm.

The three algorithms are summarized in Table 1 and the total computational
complexity is shown in Table 2. In combining the different algorithms described
above into a two-step procedure and in computing complexity, the following rules
should be applied.

1. If R is modified from the left, then the same transformation must be applied
to F.
2. If G is modified from the right, then the same transformation must be applied
to F.
3. If any part is modified from the right, then V must be modified accordingly.

TABLE 3.1
Three algorithms.

Step
()
I(b)
II
III

Algorithm A
LINPACK
HYPER
LINPACK/REDUCTION
DEFLATE

Algorithm B Algorithm C
REDUCTION LINPACK/CSNE
HYPER HYPER
REDUCTION LINPACK/REDUCTION
DEFLATE DEFLATE

TABLE 3.2
Computational complexity (flops).

Step Algorithm A
I(a) 2.5r
I(b) 4r(n-r)
II 2.5(n r)2 or 4(n r)(2n r)
III cr2 (+8nr)

Algorithm B
8nr

4(n- r)
4(n r)(2n r)
or2 (+8nr)

Algorithm C
2.5r2 or 3np + 3nr -t- 4r2

4r(n--r)
2.5(n r)2 or 4(n r)(2n r)

ar2 (+8nr)

4. Numerical experiments. Numerical tests have been performed in Pro-MAT-
LAB with IEEE double precision floating point arithmetic to compare the accuracy of
the RR URVD downdating algorithms that have been presented. In a sliding window
method, the data matrix consists of the p latest rows of an observation matrix. In
each step, a new row of observations is updated into the RR URVD and an existing
row of the data matrix is downdated from the decomposition on a first in-first out ba-
sis. The QR decomposition or the SVD of the window matrix was used as a reference
in checking the accuracy.

In the plots where signal and noise space errors are shown, the solid; dashed, and
dashed-dotted lines denote results from Algorithms A, B, and C, respectively. Errors
are plotted against the step number in the sliding window method.

The error in the signal part was taken to be the 2-norm of the difference between
the recursively computed matrix R and the R factor from the QR decomposition of
the window matrix multiplied by the first r columns of V, where r is the computed
rank from the corresponding algorithm.

The basis of the numerical null-space given by the last n r columns of V was
compared to the null-space obtained from the SVD of the window matrix. The largest
principal angle between these two null space bases was computed as arccos(/]min),
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FIG. 1. Test I. Signal space errors, downdating conditioning, and rank estimates for 12 8
window matrices.

where Pmin is the smallest singular value of VoTZo, and V0 and Z0 are the orthonormal
null space bases from the computed V and the SVD, respectively, see [5] and [8, p.
585]. From [10], the imprecision in the null-space due to the nonzero block F in the
RR URVD is essentially I]FIIF/a(R). This level of uncertainty depends on the details
of the deflation procedure and thus it may vary for different algorithms.

According to the perturbation analysis result of Pan [12] (see also [15], [7]),
the downdating condition number is tdown a2(R)/(1- Iiq11122), where a(R)
IIRII2 IIR-1112 is the condition number of the matrix to be downdated. In each plot
where the condition numbers for downdating are shown, the solid line and the dashed
line represents 1/(1-IIq11122) and a(R), respectively. When 1-IIql12 < 0 numerically,
then 1/(1 -IIq1122) is set to be 1020 in the plot. In Algorithm C, Step I(a), the CSNE
branch was taken when a(R) > 104 or 1/(1 -IIqll) > 5. In Algorithms A and C,
Step II, the Linpack branch was taken if a(G) < 6.106, and 1/(1 -IIql12) _< 5. It
is possible to estimate the condition numbers of the triangular matrices after updat-
ing/downdating in O(n) operations with the adaptive methods such as ACE [13].

In the graph where rank estimat’es are presented, the signs indicate where the
CSNE branch was used in Algorithm C and + signs indicate where the downdating in
the REDUCTION algorithm in Step I(a) was made by setting the diagonal element
equal to zero.

Test I. A random matrix A E R14s was constructed with elements taken from
a uniform distribution in (0, 1). To vary the numerical ranks of the window matrices,
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FIG. 2. Test I. Noise space error and downdating conditioning.

certain parts of the matrix were multiplied by 5 10-4. Then the matrix was
multiplied by a random, orthogonal, 8 8 matrix from the right. Finally, an outlier
equal to 103 was added in position (8,4). ,The window size p was 12. The tolerance
value for determining the numerical rank was 105. The results are shown in Figs. 1
and 2.

Algorithms A and B lost accuracy significantly in signal space estimation after the
outlier was deleted. Then the accuracy was not recovered even after the downdating
problems became well conditioned. This phenomenon is consistent with what was
observed in the LINPACK algorithm for QR decomposition downdating [6].

All three algorithms gave the correct estimate of numerical ranks. Note that the
first rank reduction happened when the outlier was removed. The noise space error
was below the level of uncertainty given by the data for all three algorithms. They
produced almost identical results. In noise space downdating, the numerical value for
1- Ilq11122 was often negative toward the last steps.

Test II. A random matrix A E R749 was constructed with ill-conditioned diag-
onal blocks and zero blocks. Then the matrix was multiplied by random orthogonal
matrices from the left and right sides. The window size p was 13. The tolerance value
for determining the numerical rank was 305. The results are shown in Figs. 3 and 4.

Algorithm A failed when gdown became negative in Step I(a). Algorithms B and
C produced comparable results although Algorithm C was consistently better. The
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FIG. 3. Test II. Signal space errors, downdating conditioning, and rank estimates for 13 x 9
window matrices.

error in the noise subspace was again of the magnitude that one would expect from
the noise level in the data and the tolerance. For a sequence of steps, the plot of
the noise error shows an error equal to zero since the window matrix had full column
rank, and thus there was no nontrivial null space.

All three algorithms gave the correct estimate of numerical ranks. Note that the
CSNE branch was heavily used when the rank kept decreasing in Algorithm C.

We ran several other tests. The results reported here are typical. However, there
were a few cases with singular G when the performance of the three algorithms was
less satisfactory. For such problems, we developed a method that is based on the
observation that G is the R factor of the QR decomposition of the residual matrix for
the least squares problem minw IIzv w xy21iF, where V (V1 V2), V] E Rnxr.
The solution of this problem is obtained from the linear system RW F and can be
refined using CSNE. Preliminary tests have shown promising results, and, although
this method is considerably more costly than Algorithm REDUCTION, it may be an
alternative for handling extreme cases with almost singular G. Also Algorithms A and
B seem to be more sensitive to the choice of the tolerance value for the rank decision.
The actuM applications should provide helpful information for the tolerances. Further
work is needed to make the algorithms more robust.

5. Conclusion. In this paper we introduced a two-step procedure for downdat-
ing the rank-revealing URV decomposition, where the downdatings of the signal and
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FIG. 4. Test II. Noise space error and downdating conditioning.

noise parts are performed separately. This enables us to obtain accurate results using
the LINPACK/CSNE hybrid algorithm for the ill-conditioned downdates that occur
when the numerical rank is decreased.

Three different algorithms based on the two-step procedure have been described.
The numerical tests indicate that it is necessary to use the more sophisticated variants
to handle ill-conditioned downdates.

In signal processing applications, where signals are turned on and off (thus the
numericM ranks of the window matrices vary), the sliding window method was re-
ported to be highly sensitive to round-off errors [3], and therefore the exponential
windowing method is preferred. However, our preliminary tests indicate that the
new algorithms, and Algorithm C in particular, can give accurate results for the ill-
conditioned downdates that occur when rank decreases. We expect that the new
algorithms can be used successfully for such applications. Further research is needed
to investigate their applicability to real problems in signal processing and to study
the choice of the tolerance for rank decision (see [16]).
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PRECONDITIONED KRYLOV SUBSPACE METHODS
FOR LYAPUNOV MATRIX EQUATIONS*

MARLIS HOCHBRUCKt AND GERHARD STARKE$

Abstract. The authors study the iterative solution of Lyapunov matrix equations

AX / XAT -DTD
by preconditioned Krylov subspace methods. These solution techniques are of interest for prob-
lems leading to large and sparse matrices A as those arising from certain applications in large space
structure control theory. We show how conjugate gradient (CG)-type methods for nonsymmetric
linear systems can be applied to this type of equation utilizing the special structure when computing
matrix-vector and inner products. In contrast to recently developed methods for such matrix equa-
tions based on Krylov subspaces associated with A, the authors implicitly work with the equivalent
system of linear equations involving the Kronecker sum M A (R) IN -}- IN (R) A. Motivation for this
new approach comes from the observation that it allows the straightforward incorporation of pre-
conditioners. Several preconditioners for such problems are presented and analyzed. In particular,
since the solution matrix X is known to be symmetric, it is of interest to know which of the methods
produces symmetric iterates in each step. It is proven that this is the case for alternating direction
implicit (ADI)-type and (point) symmetric successive overrelaxation (SSOR) preconditioning in as-
sociation with the quasiminimal residual (QMR) method. As numerical results show, it is essential to
use preconditioning in association with Krylov subspace methods. Several preconditioners for such
problems are presented and analyzed. Finally numerical examples are presented where the different
preconditioners are compared.

Key words. Lyapunov matrix equations, iterative methods, Krylov subspace methods, QMR,
preconditioning, ADI preconditioning, SSOR preconditioning, non-Hermitian matrices

AMS subject classifications. 65F10, 65N22, 93B40

1. Introduction. In the past ten years the interest in iterative methods for the
solution of Lyapunov matrix equations

(I) AX + XAT -DTD

has been growing substantially. This is due to the fact that applications have been
found that lead to such matrix equations where A is large and sparse. For example,
for constructing a near-optimal reduced-order model for a dynamical system

c Ax + Bu,
y-Cx

with state x E ]N, input u E ]lp and output y Iq (A ]INXN,B ]INxp, C
INxq), one must solve the Lyapunov equations

AX + XAT -BBT,
ATy -+- YA -CTC

(cf. Moore [23], Hodel [15]). In large space structure control theory, it is often the case
that the system may be described as a continuum by a system of partial differential
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equations (cf. Balas [1]). Discretizing this partial differential operator (in the space
variables) using finite elements or finite differences leads to a matrix A, which is
large and sparse. Another application of Lyapunov equations comes from the use of
Newton’s method for Riccati matrix equations arising in optimal control problems
(of. Mehrmann [22, 11], Hodel [15]).

The Lyapunov matrix equation has a unique solution if and only if a(A)Na(-A)
(see [17, Cor. 4.4.7]). Moreover, for symmetric right-hand side, as in (1), this solution

is also symmetric (see [17, Cor. 4.4.10]).
The Lyapunov matrix equation is a special case of the more general Sylvester ma-

trix equation AX- XB C. There are also applications of Sylvester equations with
B =fi -AT in control theory (Datta and Datta [5] and references therein). Although
most of the theory presented below can be easily generalized to Sylvester matrix equa-
tions, in this paper we restrict ourselves to the Lyapunov case, i.e., B -AT. For
the general case, we refer the reader to [14, Chap. 6].

Direct methods for the solution of Lyapunov matrix equations, such as those pro-
posed by Bartels and Stewart [3] and Hammarling [t3], are attractive if the matrix
A is of moderate size. Parallel versions of Hammarling’s algorithm and an iterative
procedure designed for larger order Lyapunov matrix equations are studied by Hodel
and Poolla [16]. However, since these direct methods are based on the Schur de-
composition of A, their complexity is O(Na), which restricts their use to problems
of relatively small size. One of the most popular iterative methods for solving (1)
was introduced more than twenty years ago by Smith [27] and Barnett and Storey
[2]. In [341, Wachspress showed that Smith’s method can be regarded as the natural
application of the well-known ADI method to such matrix equations (see, also, Lu
and Wachspress [21]). If we collect the coefficients of the unknown matrix X E IRNxN
column by column in the vector

X Xll...XNI...XlN...XNN

then we can rewrite the Lyapunov matrix equation as a linear system of equations
with the coefficient matrix

(2) M := A (R) IN + IN (R) A IN2xN2,
where (R) denotes the standard gronecker produc’t (cf. Horn and Johnson [17, p. 243]).

One possibility for deriving iterative methods for the solution of (1) is to take
any of the well-known iterative schemes for the solution of the large system (2) with

coefficient matrix M Ig2xN2 and reformulate it in terms of (1). In this manner,
the ADI method with respect to the splitting of the linear system into A (R) IN and
IN (R) A leads to Smith’s method

(A pjIN)f(j )1T [Xj (A + jIN)T + DTD]
Xj(A- .[N -[(A + pjIN)2j-1 + DTD]

with real parameters oj,j 1, 2, In what follows, we refer to this method as

the ADI method (for Lyapunov matrix equations). The interpretation of the block
(or line) successive overrelaxation (SOR) method as an iterative technique for solving
Sylvester matrix equations was studied by Starke and Niethammer in [31], a combi-
nation of the alternating direction idea with SOR in [29]. It should be noted that, in
contrast to SOR, ADI is always (in theory) convergent if all the eigenvalues of A are
contained in the left half-plane, an assumption that is always fulfilled in our applica-
tions since it follows from the prerequisite that the underlying dynamical system is
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stable. To be precise, we can always find parameters j > 0 (it is actually sufficient
to use the same parameter throughout the iteration) such that the scheme (3) is
convergent.

All of the iterative techniques mentioned above have in common that the solution
of the Lyapunov matrix equation (1) is reduced to an iterative series of sets of systems
of linear equations with the matrix A, which can be solved in parallel independently
for each column or each row of X, respectively. It is, of course, also possible to
apply the CG method or, if A is nonsymmetric, any of the CG-like methods such
as Bi-CG, generalized minimal residual (GMRES), and QMR (see Freund, Golub,
and Nachtigal [9] for an overview of Krylov subspace methods for linear systems) to
the equivalent large linear system (2) and utilize the special structure of the Kro-
necker sum M A (R) IN + IN (R) A when computing matrix-vector and inner products.
Different, more sophisticated, types of Krylov subspace methods for Lyapunov ma-
trix equations have recently been proposed by Saad [25], Hu and Reichel [18], and
Jaimoukha and Kasenally [19]. Their methods are based on Krylov subspaces associ-
ated with the matrix A itself rather than M. We exclude the latter class of methods
from our study since it is not clear if and how preconditioning can be incorporated
into these algorithms (see 3).

Our purpose in this paper is to study Krylov subspace methods based on the
Kronecker sum formulation M A (R) IN + IN (R) A and to present and analyze several
preconditioners for this approach. Our numerical results in 5 show that it is essential
when using Krylov subspace methods for solving Lyapunov matrix equations to use
preconditioning.

Section 2 gives a brief review of the Lanczos process and the QMR method in
terms of Lyapunov matrix equations and discusses implementational issues that arise
in this connection. In 3 we deal with preconditioning these methods and present
several approaches to this problem. Since the solution X E ]1N N of (1) is a symmetric
matrix, it is of particular interest to have symmetric iterates throughout the iteration.
We will prove that this is the case for the QMR method without preconditioning and
when using (point) SSOR or ADI-type preconditioners.

The. use of ADI (Smith’s method) as a preconditioner for Lyapunov matrix equa-
tions is the topic of 4. In [4], Chin, Manteuffel, and de Pillis used the stationary ADI
method, i.e., y = ,j 1, 2,..., to precondition the Chebyshev iteration applied to
discretized elliptic boundary value problems of convection-diffusion type. Translated
into the language of Lyapunov matrix equations, this approach takes the form

(4) (A IN)-IAX(A flN)-T + (A gIN)-IXAT(A flIN)-T
-(A IN)-IDTD(A Ig)-T

(corresponding to left preconditioning for the corresponding linear system) or

(5) A(A IN)-Y(A IN)-T + (A IN)-Y(A IN)-TAT -DTD,
(A IN)-Y(A IN)-T x

(corresponding to right preconditioning). Since the two operations "multiply a matrix
from the left with A" and "multiply a matrix from the right with AT’’ obviously
commute, the two types of preconditioning (4) and (5) are mathematically equivalent
here. Of course, the need for an appropriate choice of the parameter (or parameter
sets for higher order ADI preconditioning) implies that some information about the
location of the eigenvalues of the matrix A must be known. However, since the matrix
A is relatively small compared to the size of the problem, it pays to compute (or at
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least estimate) its eigenvalues and compute optimal parameters with respect to this
information.

We also include a brief review of the approximation problem associated with the
optimal choice of the ADI parameters as it was developed in [33] for the symmetric
and in [28] for the nonsymmetric case. ADI preconditioning for elliptic boundary
value problems is also studied in [30]. Finally, 5 contains a collection of numer-
ical experiments carried out for dynamical systems modeled by partial differential
equations.

2. Krylov subspace methods for matrix equations. Krylov subspace meth-
ods, especially when combined with preconditioning, are known as powerful meth-
ods for the solution of linear systems. Krylov subspace methods for Lyapunov and
Sylvester matrix equations were developed by Saad [25], Hu and aeichel [18], and
Jaimoukha and Kasenally [19]. All of these methods are based on Krylov subspaces
associated with the matrix A.

The main idea for our approach is to write the matrix equation (1) as a linear
system with the coefficient matrix M defined in (2) and then apply a Krylov subspace
method to this large linear system of order N2. However, we do not want to work with
this linear system explicitly, but instead rewrite the algorithms in terms of the original
matrix equation. One advantage is that we can then implement the algorithm with
BLAS 3 instead of BLAS 2 (cf., e.g., [6]) subroutines. Another important issue is due
to the question: In the case of a Lyapunov equation with a symmetric right-hand side
does the algorithm also compute symmetric iterates? Recall from the introduction
that for a(A)Na(-A) there exists a unique solution of (1) and that this solution
is symmetric.

In this paper, we have chosen to use a slightly different approach and rewrite the
Krylov subspace methods in an operator formulation instead of a Kronecker product
formulation. This allows us to work completely in the space ]NN with the inner
product in IN2"

(6) (X, Y} "= trace(XTy).

This inner product induces the Frobenius norm, which is denoted by IIXIIF v/(X, XI.
To this end, we define the Lyapunov operator L as

(7) L" X AX + AT.

From (X, LY) (X, AY + YAT) trace(XT(Ay + yAT)) (ATX + XA, Y it
follows that

L*’ f ]YN ___> INxN,
X ATx + XA,

is the adjoint operator of L.
To keep this paper self-contained and because we feel that this can be useful also

in other applications, we now explain Krylov subspace methods for general matrix
equations of the form

(9) HX F, H" INxN I[NxN, X, F InxN

in more detail. First, we call

(10) K:n(H, B) span{B, HB,... ,Hn-IB}
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the nth Krylov subspace with respect to the operator H and the matrix B. Here,
and in the sequel, HkB is defined recursively as HkB := H(Hk-IB) for k _> 1 and
HOB := B. We denote by H* the adjoint operator of H with respect to the inner
product (6).

Now, what remains to be done for applying a Krylov subspace method to the
matrix equation (9) is to take ones favorite Krylov subspace method (for the linear
system Mx f, where f is the vector containing the columns of the right-hand side
matrix F) and replace each matrix-vector multiplication Mx by HX, i.e., by applying
the operator H to the matrix X. If the method additionally requires the transpose
MT, one needs to replace MTx by H’X, i.e., by applying the adjoint operator H* to
the matrix X. The inner products are as defined in (6).

For example, for the extension of the classical Lanczos algorithm [20] to matrix
equations, it is easily verified that it constructs two sequences of matrices V1, V2,...,
Vn+ and W, W2,..., W+ that span the nth Krylov subspace with respect to the
operator H and R0 and the adjoint operator H* and So, respectively:

span{V,..., V} (H, R0),
span{W1,..., Wn} n(H*, S0).

The so-called left and right Lanczos matrices Wn and Vn fulfill the biorthogonality
condition

(11) (Wi, V) 0 for j, i,j <_ L.

Here, L denotes the termination index of the classical Lanczos algorithm. Moreover,
the following three-term recurrence relations hold true:

(12) HV -j+V+ + ajV + jYj-1 for j 1,2,... ,n.

The classical Lanczos algorithm breaks down prematurely whenever it terminates
with L < min{dim K:n (H, R0), dim ]n(n*, S0) }. However, except in very special
cases, the breakdowns can be cured using look-ahead [10]. We do not want to present
the details here since, in our examples, no look-ahead steps have been necessary. We
refer the reader to [14] for a look-ahead Lanczos algorithm for general Sylvester matrix
equations.

The nth iterate of a Krylov subspace method is of the form

(13) Xn E Xo .- n(H, R0),

where R0 F- HX0 is the initial residual of (9). Thus, we have

(14) Xn Xo -- IV1 gn] (Zn (R) IN).

The expression [V V,] (Zn (R) IN) simply represents a linear combination of the
matrices V1,...,

Since our main interest in this paper is in preconditioning, from now on we con-
centrate on a particular scheme, namely, the QMR algorithm proposed by Freund and
Nachtigal [11]. However, the ideas presented for this method can clearly be applied
to any other Krylov subspace method. For simplicity, we consider only a version of
QMR without look-ahead. Let us write the recurrence coefficients from (12) into

tridiagonal matrix T(ne) tridiag(Tj, ay, j) E ](n+l)n, where j, ay, and y are the
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entries of the jth row of Tn(). Then, for the QMR algorithm, the coefficient vector Zn
in (14) is determined by means of a quasi-minimization property

(15) IlWlllR011F el- n+lr(ne)znll- min I]WllIR011F el n+lr(ne)zll.
Here, I1" denotes the Euclidean norm in IRn+l, el [1 0 0]T e ],+1, and

tn+l diag (wl,..., Wn+l) is a diagonal scaling matrix. The natural choice for the
weights is wy IIVIIF. In this case, all the matrices in the representation (14) are
treated equally. We always assume the weights to be chosen in this fashion.

Note, that the minimization problem (15) is exactly the same as for the QMR
algorithm for linear systems. Thus we refer to [11] for a detailed description of the
solution of this problem.

Recently, Freund and Nachtigal [12] developed a different implementation of the
QMR algorithm which is based on coupled two-term recurrences that seem to be more
stable, instead of the three-term recurrences used in the Lanczos algorithm.

For the consideration of the symmetry of QMR iterates, we have the following
theorem.

THEOREM 2.1. If X0, F, and W1 are symmetric N N matrices, then the QMR
algorithm computes symmetric iterates X,, n 1, 2,..., if for any symmetric matrix
X holds

(16) HX (HX)T and H*X (H’X)T.

Proof. Since X0 is symmetric and because of (16), the initial residual R0, and
hence V1, is symmetric. Going through the algorithm, it is easily verified by induction,
that all matrices occurring are symmetric for n 1, 2, 71

COROLLARY 2.2. If Xo and W1 are symmetric, then the QMR algorithm applied
to the Lyapunov matrix equation (1) computes symmetric iterates Xn.

Proof. Using Theorem 2.1, it only remains to show that (16) holds for the Lya-
punov operator L and its adjoint L*. Let X XT E INxN be arbitrary. Then

(LX)T (AX + xAT)T XAT + AX LX,
(L’X)T (ATX + XA)T XA + ATx L*X. 71

3. Preconditioning Lyapunov matrix equations. When looking for precon-
ditioners for Lyapunov matrix equations, one of the first things that comes to mind is
to multiply (1) by nonsingular matrices Q1 e ]NN (from the left) and Q2 e ]NN
(from the right). This leads to the equivalent formulation of (1),

(17) (Q1AQI)Q1XQ2 + Q1XQ2(QIATQ2) -Q1DTDQ2.

This is now a Sylvester matrix equation in f( QIXQ2"

if( + f([ -QDTDQ2,

where fi Q1AQ and [ QIATQ2. To make this a Lyapunov matrix equation
we must choose Q2 QT. This leads to

(18) fir( + 5:Ar -brb

with ) Q1XQT,fi, Q1AQT1, and b DQT. However, since the matrices A
and . have the same eigenvalues, this is also true for the corresponding Lyapunov
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operators L and L (cf. (7)). This means that, at least with respect to eigenvalues,
(18) cannot be easier to solve than the original equation (1). Another explanation
why this approach is not useful, is as follows.

Associated with the Lyapunov operator L and are the Krylov subspaces K:n (L, R0)
and n(L, R_o). If we denote by R0 the initial residual of the original equation

(_1) and by R0 the initial residual of the preconditioned equation (18), then, from
Xn Q1XnQT we obtain

(19) o -brb- 2o QIRoQT.

LEMMA 3.1. The Krylov subspaces n(L, R0) and n(, 0) fulfill

K:,(L, Ro) QIK:n(], o)Q-T.

Proof. From the definition (10) of the Krylov subspaces KJn(L, R0) and K:n(,/0),
we conclude that it is sufficient to show that

QI (LkRo)QT ko

holds for k 0, 1,..., n- 1. For k 0 this is obviously true. Then, by induction, we
get

Q (Lk+Ro)QT Q(A(LRo) + (LkRo)AT)QT
Q(AQ-{(ko)Q-T + Q-I(’ao)Q-TAT)QT
([o) + (o)
Lk+/0.

The iterates of a Krylov subspace method, applied to the original equation,
are contained in X0 + K:n(L, R0), and those of the preconditioned sys_tem in X0 /
K:n(1,/0). Now Lemma 3.1 tells us that if we transform the iterates X of the pre-
conditioned system back by Xn Qlf(nQT, then we find ourselves in the Krylov
subspace associated with the original equation. Thus, we do not change the Krylov
subspace by this preconditioning strategy. Of course, this does not mean that the
iterates are the same in both cases. More precisely, the QMR iterates are contained
in the same Krylov subspace but constructed by quasiminimization in different norms.
However, this can generally not be expected to lead to a faster convergent iteration.

We would like to remark at this point that a result similar to Lemma 3.1 can
be proved along the same lines for the more general Sylvester matrix equations
AX- XB C if we do not restrict ourselves to Q2 QT in the above similar-
ity transformation. The result is the same: the iterates are still contained in the same
Krylov subspace (cf. [14, 6.6]).

The first specific example of a preconditioner for Lyapunov matrix equations that
we want to consider here is the well-known SSOR preconditioning of the corresponding
system (2). If we split the matrix A according to A DA- LA- UA into its diagonal,
(strictly) lower triangular and (strictly) upper triangular part, then the corresponding
decomposition of M A (R) IN + IN (R) A is given by

(20)
M DM LM UM

(D (R) I + (R) D) (L (R) + (R) L)
-(V (R) + (R) V).
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The SSOR preconditioning matrix is given by

SSSOR
1

(DM wLM)DI(DM WUM)

(see Young [35, Chap. 15]). In the course of evaluating the SSOR preconditioner, we
must solve the linear systems

(21)
(DM --WLM)y x .== (DA --wLA)Y + Y(DA --wL) X,

(DM --wUM)y x == (DA --wUA)Y + Y(DA --wU) X.

Of course, it goes without saying that x and y again denote the vectors created by
columnwise storing of X and Y, respectively. In analogy to the SOR method for
linear systems, the equations in (21) can be solved without inverting matrices. For
the first equation, the matrix Y can be computed columnwise from left to right and
from top to bottom in each column. The second equation can be solved in exactly
the opposite order. For the Lanczos process one also needs to evaluate the transpose
operator. This leads to

(22)
(DM -WLM)Ty X (DA -wLTA)Y + Y(DA -wLA) X,

(DM WUM)Ty X (DA wU)Y + Y(DA wUA) X,

which can obviously be solved in a similar fashion.
If, for any a 6 , the matrix A + aIg can be easily inverted (in the sense of

solving linear systems with this matrix), we can use the block SSOR method instead
of the point SSOR method as preconditioner. The associated preconditioning matrix
is

where

SOR w(2 -w)
DbM wLbM DbM Db

M wUbM

DbM IN ( A + DA (R) IN,

L :- LA (R) IN,.

v. (R)

In this case we must solve the linear systems as follows:

(23)

(DDM --wLDM)y X == AY + Y(DA -wLTA) X;

(DbM --wUbM)y X AY + Y(DA -wU) X;

(DbM --wLbM)Ty X ATy + Y(DA -wLA) X;

(DM --wu)Ty x ATy + Y(DA --wUA) Z.

To do this, we compute the columns of Y from left to right for the first and the last
equation and from right to left for the second and third equation. Now, for each
column of Y, we must solve a linear system with the coefficient matrix A / aIg,
1,...,N.

We previously showed in Theorem 2.1 that if we start with symmetric matrices,
then the QMR method produces symmetric iterates. Is the same true if we use SSOR
preconditioning? If we look back at Theorem 2.1, we see that the basic ingredient was
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the fact that (16) holds for any symmetric matrix X. Similarly, we must show now
that the preconditioned operator maps symmetric matrices to symmetric matrices.
For point SSOR with w E I this can easily be seen: each of the equations in (21)
and (22) is a Lyapunov equation with symmetric right-hand side and therefore the
solution is also symmetric. We state this result in the following theorem.

THEOREM 3.2. If we start with symmetric matrices Xo, So NN, the QMR
method using (point) SSOR preconditioning (21) with w e I produces symmetric
iterates Xn.

For block SSOR preconditioning, the corresponding result is generally not true
since the corresponding matrix equations in (23) may have nonsymmetric solutions.

4. ADI preconditioning. In this section we are concerned with the construc-
tion of effective preconditioners based on the ADI splitting of (1). Let us first consider
the stationary case 1 as introduced in (5). (We restrict ourselves to right precon-
ditioning here.)

For the ADI method, it is crucial to achieve good convergence results that the
parameter is properly chosen. We now study this problem for ADI preconditioning.
When using one of the CG-like methods for nonsymmetric systems (like Bi-CG, GM-
RES, or QMR), the goal is to get the preconditioned problem "as close as possible"
to the identity operator. This is motivated by the fact that convergence bounds for
QMR methods involve the quantity

(24) inf{max]pm(.)l pm e IIm,Pm(O) 1}
AA

where A denotes the spectrum of the underlying (preconditioned) operator (see Shad
and Schultz [26] for GMRES and Freund and Nachtigal [11] for QMR). With this,
our goal is to choose the preconditioner in such a way that the quantity in (24) is
minimized. Since it is usually too difficult to achieve this task, the easiest method is
to get the spectrum of the preconditioned operator into a disk gt, excluding the origin,
such that

(25) inf{maxlpm(z)]’p. e IIm,Pm(O) 1}z

becomes as small as possible. For

with 0 < p < lal, the polynomial for which (25) attains its minimum, is obviously
given by p, (z) (1 z/a)TM and, therefore,

min{maxlp(z)l "p. e Yl.,pm(O)= 1} (p/oOTM

zf

Note that this quantity only depends on the ratio p/a so that without loss of generality
we can set a 1.

Specifically, for ADI preconditioning, our aim is to choose the parameter in
such a way that the spectrum of the operator Sl defined by

INN ]NN,
(26) SI" X 2[A(A IN)-X(A-- Im)-T

+ (A iN)-X(A IN)-A]
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is contained in a small disk around one. Here, we normalized S by multiplying (5)
with the constant -2 (note that this has no effect on the preconditioned iterative
method) to center the spectrum of $1 at one. From (3), the ADI iteration operator
T is given by

]NxN _.+ ]NxN,(27) T X (A + pIN)(A pIN)-IX(A + pIN)T(A IN)-T.

Comparing (26) and (27), we conclude that T1 I- Sl where I denotes the iden-
tity operator on INN. Note that this is similar to the situation for systems of
linear equations Mx b. There, if we have a preconditioned linear system with
the coefficient matrix S G-1M, then T I- S I- G-1M G-I(G- M)
is the iteration matrix of the classical iterative method associated with the splitting
M=G-(G-M).

A straightforward generalization of Theorem 4.2.12 in [17] shows that

a(T1) { (A + + A, # e a(A)},

which leads to the following result:

(28) max{J1 TI’T e o’(Sl) } max
eo(A)

This means that the search for an optimal ADI preconditioner in the sense of (5)
leads to the well-known ADI parameter problem of choosing in such a way that
(28) is minimized (see [33], [28]). We will now derive a similar approach to ADI
preconditioning of higher degree.

Let the polynomial qt(z) (z- 91)...(z- l) with Rely > 0,j 1,...,1 be
given. The corresponding ADI iteration operator Tt (using the parameters 1,..., t
in a cyclic fashion) is, in analogy to (27), defined by

]iNxN
(29) Tt" X

]lNxN

qt(-Ai[qt(A)]-lX[qt(A)]-Tqt(-A)T
This gives rise to define the operator St as

INxN ._+ INxN,(30) St" X X qt(-A)[qt(A)]-lX[qt(A)]-Tqt(-A)T

and view this as preconditioned operator.
To choose the parameters 1,..., l in such a way that the preconditioned op-

erator (30) is as close as possible to the identity operator, we must minimize p(Tt).
Again, this leads to the ADI parameter problem

(31) min max
qEHl XEa(A)

(see [33], [28]).
Let us consider the case 2 to illustrate that (30) can indeed be interpreted as

a preconditioned version of (1). With

q2(z) (z l)(Z 2) =: Z2 T1 z + TO,
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we obtain

X q2(-A)[q2(A)]-lX[q2(A)] -Tq2(-A)T
-2TI[q2(A)]-I[A(AXAT + ToX) + (AXAT + ToX)AT][q2(A)]-T

Thus, (right) ADI preconditioning of degree 2 has the form

A[q2(A)]-I(AYAT + ToY)[q2(A)] -T

(32) +[q2(A)]-(AYAT + "roY)[q2(A)]-TAT DTD,

X -[q2(A)]-[AYAT + ToY][q2(A)] -T.

In this form, evaluating the ADI preconditioner of degree 2 consists of the following
four steps:

compute AYAT 4- ToY;

solve q2(A) ];
solve q2(A)T= ;
compute Z A 4-AT.

Thus, one iteration with this ADI preconditioner involves four matrix-matrix multi-
plications of size N (two with A from the left and two with AT from the right) and
the solution of two matrix equations of the form q2(A)Y Z. Since q2 can have
(conjugate) complex roots, it is preferable, to stay in real arithmetic, to actually form
the matrix q2(A) instead of using it in factored form. From (30) we see that an al-
ternative way for evaluating this preconditioner consists of carrying out one step of
the ADI iteration and computing the difference between the two consecutive iterates.
Obviously, the cost of this implementation is exactly the same as for the one based
on (32). A similar observation can be made for ADI preconditioning of degree 1 using
(26) and (27).

Let us now turn to the problem of choosing the parameters ,..., t to fulfill
(31). With respect to compact sets containing o’(A), this minimization problem is
studied in [33] for the symmetric and in [28] for the nonsymmetric case. Explicit
formulas for the optimal parameters for 1 and 2 are known for special regions,
e.g., rectangles, enclosing a(A) (see again [2]). Since the dimension of the matrix
A is small compared to the complexity of the overall problem here, we may assume
that the eigenvalues of A (or good approximations to them) are known. Then, for
small l, the parameter problem (31) can be solved using minimization procedures.
We restrict ourselves to 1 and 2 in our computations. The corresponding
parameter problems are given by

A4-(5 A2 4-TIA4-T0(33) min max and min max
A2ve e(A) A ro,le e(A) T1A + -0

The restriction to real parameters and TO, T, respectively, is justified by the fact
that, for real matrices A, a(A) is symmetric with respect to the real axis.

For Lanczos-based methods (like QMR) each iteration also involves the transposed
(preconditioned) operator. It is easy to see from the Kronecker product representation
that the adjoint operator S of St from (30) is given by

]NN ]NN,S’[ X X qt(-A)T[qt(A)]-TX[qt(A)]-lqt(-A).
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The following theorem states that, under similar conditions as before (cf. Cor. 2.2),
ADI preconditioning also has the desirable property that, starting with a symmetric
matrix, the QMR iterates are all symmetric.

THEOREM 4.1. Let the polynomial qt have real coefficients. Then, starting with
symmetric matrices Xo, So E NN, the QMR method using ADI preconditioning
(30) produces symmetric iterates Xn.

Proof. From Theorem 2.1 we know that it is sufficient to show (16), i.e., that the
operators St and S map symmetric matrices to symmetric matrices. Since qt is a
real polynomial we have, with X XT and Y := StX,

yT ZT ql(_A)[ql(A)]-lXT[ql(A)]-Tql(_A)T
X qt(-A)[qt(A)]-lZ[qt(A)]-Tqt(-A)T Y.

The analogous result for S follows along the same lines. [:]

5. Computational results. Recall from the introduction that one important
application area for large order Lyapunov matrix equations comes from model reduc-
tion for dynamical systems described by finite element or finite difference discretiza-
tions of elliptic differential operators. As a test problem we consider a dynamical
system that is derived from the discretization of an elliptic boundary value problem
of the form

(34) it u" + T(X)U’ + f(x)g(t)

for x e (0, 1) with u(0) u(1) 0 (cf. Saad [24], [25]). Here is a function that we
assume to be continuous on (0, 1). Discretizing (34) by central differences with grid
sizes h 1/(N + 1) results in a tridiagonal matrix A ]NN which is itself sparse
and of special block tridiagonal structure.

In our computational experiments we compared different preconditioners for the
solution of such problems. We restricted ourselves to ADI and (point) SSOR precon-
ditioning since, as we have shown in the previous sections, starting with a symmetric
matrix, all the iterates are then also symmetric. As pointed out in 4, ADI precon-
ditioning is based on the solution of linear systems with the coefficient matrix A. In
the two- or three-dimensional case, the solution of these linear systems would be done
by methods that exploit the sparsity and, if possible, special structure of A. It might
even be attractive to solve linear systems with the discretized operator A iteratively
leading to an inner-outer iteration for the overall problem.

As a basic iterative method in our experiments, we use QMR since it combines
short recurrences with a weakened residual minimization property. Short recurrences
are especially important for these problems since, for large enough N, we cannot afford
to store too many consecutive iterates Xn INN. On the other hand, we would
also prefer a method with a provable convergence bound depending on the spectrum
of the operator since we based the construction of our ADI preconditioner on that
property.

In our examples, we consider

(35) it u" + Txu’ + f(x)g(t)

where / is still to be chosen. We discretized this problem in (0, 1) using central
differences on a grid with N 127. Note that the reformulation of (1) using the
Kronecker sum representation (2) would already lead to a linear system of dimension
16129 here. We also emphasize once more that the computational work for direct
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FIC. 1. QMR convergence curves for Example 1.

methods grows like O(N3) here. Following [25], we did our experiments for (1) with
the special right-hand side -bbT, where we chose b to be a random vector with
entries uniformly distributed in [-1, 1].

Example 1. The choice of - 100 leads to a Lyapunov matrix equation (1) where
A is nonsymmetric but has real spectrum.

Example 2. Now we choose - 500 leading to a nonsymmetric A with complex
spectrum.

Figures 1 and 2 show the norm reduction of the relative residual norm

versus the number of operations (Mflops).
Clearly, the computation of the Lyapunov operator LX AX+XAT requires two

matrix-matrix multiplications of size N (where the structure of A might be utilized).
For SSOR preconditioning, the computation can be arranged in such a way that
the number of operations is exactly the same as for the evaluation of the Lyapunov
operator (see Eisenstat [7]). However, it should be noted that SSOR preconditioning
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FIG. 2. QMR convergence curves for Example 2.

is a purely sequential task, so, in contrast to the unpreconditioned problem and also in
contrast to ADI, higher level BLAS routines cannot be utilized here. It is well known
that the use of Level 3 BLAS, for example, can significantly speed up computations,
particularly on vector and parallel machines (see [6, 5.1]). Figures 1 and 2 show that
the use of SSOR preconditioning does not lead to significantly improved convergence
here.

Figures 1 and 2 show that all the preconditioners lead to significantly improved
convergence in our examples. Clearly the ADI(2) preconditioner outperforms all the
other methods in terms of flops. We expect the gain from using ADI preconditioning
to become more dramatic in terms of computing time on parallel computers and/or
when higher level BLAS is used. Finally, we would like to mention that the difference
in the convergence rate between the unpreconditioned equation, ADI(1) and ADI(2)
preconditioning becomes more significant as h gets smaller. From the analysis in

[30], it can be shown that the number of iterations without preconditioning grows
like O(N), while with ADI(1) preconditioning this is reduced to O(N1/2) and with
ADI(2) preconditioning even to O(NI/4).
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TRIDIAGONAL EIGENPROBLEM*
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Abstract. The authors present a stable and efficient divide-and-conquer algorithm for comput-
ing the spectral decomposition of an N N symmetric tridiagonal matrix. The key elements are
a new, stable method for finding the spectral decomposition of a symmetric arrowhead matrix and
a new implementation of deflation. Numerical results show that this algorithm is competitive with
bisection with inverse iteration, Cuppen’s divide-and-conquer algorithm, and the QR algorithm for
solving the symmetric tridiagonal eigenproblem.
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1. Introduction. Given an N N symmetric tridiagonal matrix

/2 (2 3

N-1 0N-1 N
N N

the symmetric tridiagonal eigenproblem is to find the spectral decomposition T
XAXT, where A is diagonal and X is orthogonal. The diagonal elements of A are the
eigenvalues of T, and the columns of X are the corresponding eigenvectors. In this
paper we propose an arrowhead divide-and-conquer algorithm (ADC) for solving this
problem.

ADC divides T into two smaller symmetric tridiagonal matrices T1 and T2, each
of which is a principle submatrix of T. It then recursively computes the spectral
decompositions of T1 and T2 and constructs an orthogonal matrix Q such that T
QHQT, where

H= (a zT )z D

with D a diagonal matrix and z a vector, is a symmetric arrowhead matrix. Finally
it finds the eigenvalues of T by computing the spectral decomposition H UAUT,
where U is an orthogonal matrix, and computes the eigenvector matrix of T as QU.

Since error is associated with computation, a numerical spectral decomposition of
T or H is usually defined as a decomposition of the form

T 2/2T + O(e IITI[2) or H /irT + O(e IIHI[2),
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This strategy has previously appeared in [I], [3], [13], [15], [19], and [22].
172.
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where e is the machine precision,/ is diagonal, and ) or is numerically orthogonal.
An algorithm that produces such a decomposition is said to be stable.

While the eigenvalues of T and H are always well conditioned with respect to
a symmetric perturbation, the eigenvectors can be extremely sensitive to such per-
turbations [14, pp. 413-414]. That is, A must be close to A, but and can be
very different from X and U, respectively. Thus one is usually content with stable
algorithms for computing the spectral decompositions of T and H.

Finding the spectral decomposition of a symmetric arrowhead matrix is an inter-
esting problem in its own right (see [3], [4], [26]-[28] and references therein). Several
methods for solving this problem have been proposed [3], [15], [26], [28]. While they
can compute the eigenvalues to high absolute accuracy, in the presence of close eigen-
values they can have difficulties in computing numerically orthogonal eigenvectors,
unless extended precision arithmetic is used [24], [29]. In this paper we present a
new algorithm for computing the spectral decomposition of a symmetric arrowhead
matrix. It is similar to previous methods for finding the eigenvalues, but it uses a
completely different approach to finding the eigenvectors, one that is stable. The
amount of work is roughly the same as for previous methods, yet it does not require
the use or simulation of extended precision arithmetic. Since it uses this algorithm,
ADC is stable as well.

ADC computes all the eigenvalues of T in O(N2) time and both the eigenvMues
and eigenvectors ofT in O(N3) time. We show that by using the fast multipole method
of Carrier, Greengard, and Rokhlin [10], [16], ADC can be accelerated to compute
all the eigenvalues in O(N log2 N) time and both the eigenvalues and eigenvectors in
O(N2) time. These asymptotic time requirements are better than the corresponding
worst-case times (O(N2) and O(N3)) for’ bisection with inverse iteration [21], [23] and
the QR algorithm [8]. Our algorithm for finding all the eigenvalues of H takes O(N2)
time as do previous methods [3], [15], [26], [28]. By using the fast multipole method,
it can be accelerated to compute all the eigenvalues in O(N) time.

Cuppen’s divide-and-conquer algorithm (CDC) [11], [121 uses a similar divid-
ing strategy, but it reduces T to a symmetric rank-one modification to a diagonal
matrix rather than to a symmetric arrowhead matrix. However, in the presence of
close eigenvalues it can have difficulties in computing numerically orthogonal eigenvec-
tors [11], [12], unless extended precision arithmetic is used [5], [24], [29]. In contrast,
ADC is stable and is roughly twice as fast as existing implementations of CDC (e.g.,
TREEOL [12]) for large matrices due to the differences in how deflation is implemented.2

ADC is also very competitive with bisection with inverse iteration [21], [23] and the
QR algorithm [8].

Section 2 presents the dividing strategy used in ADC; 3 develops an efficient
algorithm for the spectral decomposition of a symmetric arrowhead matrix and shows
that it is stable; 4 discusses the deflation procedure used in ADC; 5 discusses the
application of the fast multipole method to speed up ADC; and 6 presents some
numerical results.

2 Our techniques [17], [20] can be used to stabilize CDC without the need for extended, precision
arithmetic; our deflation procedure can be adapted to CDC, as can the fast multipole method.
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We take the usual model of arithmetic3

o o +

where x and y are floating-point numbers; o is one of +,-, , and +; fl(x o y) is the
floating-point result of the operation o; and I1 <: e. We also require that

for any positive floating-point number x. For simplicity we ignore the possibility of
overflow and underflow.

2. "Dividing" the matrix. Given an N x N symmetric tridiagonal matrix T,
ADC divides T into two subproblems as follows:

(2) T

where 1 < k < n, T1 and T2 are k k and (N-k- 1) (N-k-l) principle
submatrices of T, respectively, and ej is the jth unit vector of appropriate dimension.
Usually k is taken to be [N/2J.

Let QiDiQiT be a spectral decomposition of Ti. Substituting into (2), we get

(3)
0 1 0 )TQ 0 0
0 0 .r

where 11T is the last row of Q1 and f2T is the first row of Q2. Thus T is reduced to
the symmetric arrowhead matrix H by the orthogonal similarity transformation Q.

ADC computes the spectral decomposition H UAUT using the algorithm de-
scribed in 3. The eigenvalues of T are the diagonal elements of A, and the eigenvector
matrix of T is obtained by computing the matrix-matrix product X QU. To com-
pute the spectral decompositions of T1 and T2, this process ((2) and (3)) can be
recursively applied until the subproblems are sufficiently small. These small subprob-
lems are solved using the QR algorithm. There can be at most O(log2 N) levels of
recursion.

Equations (2) and (3) also suggest a recursion for computing only the eigenvalues.
Let fT be the first row of Q and let 12T be the last row of Q2. Suppose that Di,
fi, and li are given for 1, 2. Then after finding the spectral decomposition of H,
the first row of X can be computed as (0, flT, 0) U and the last row of X can be
computed as (0, 0, 12T) U. There is a similar recursion for CDC [11].

This model excludes machines like CRAY and CDC Cyber that do not have a guard digit.
ADC can easily be modified for such machines.
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3. Computing the spectral decomposition of a symmetric arrowhead
matrix. In this section we develop a stable and efficient method for finding the spec-
tral decomposition of an n n symmetric arrowhead matrix

z D

where D diag(d2,..., dn) is an (n- 1) (n- 1) matrix with d2 <_ d3 <_ <_ dn,
z (z2,..., Zn)T is a vector of length n- 1, and a is a scalar. The development closely
parallels that in [17] and [20] for finding the spectral decomposition of a symmetric
rank-one modification to a diagonal matrix.

We further assume that

(4) dj+l dj >_ TIIH]I2 and ]zil >_ TIIHII2,

where T is a small multiple of e to be specified later. Any symmetric arrowhead matrix
can be reduced to one that satisfies these conditions by using the deflation procedure
described in 4.1 and a simple permutation.

The following lemma characterizes the eigenvalues and eigenvectors of symmetric
arrowhead matrices.

LEMMA 3.1 (Wilkinson [30, pp. 95-96], O’Leary and Stewart [26]). The eigen-
values {Ai}= of H satisfy the interlacing property

A1 < d2 < A2 <’" < dn < An

and the secular equation

n 2

+
y=. d-A

For each eigenvalue Ai of H, the corresponding eigenvector is given by

(5) Z1 Zn Z
ui= -1,

d_Ai, ’d-Ai
1+

(d-Ai)

The following lemma allows us to construct a symmetric arrowhead matrix from
its eigenvalues and its shaft.

{}i=LEMMA 3.2 (Boley and Golub [6]). Given a set of numbers n and a diagonal
matrix D diag(d2,..., dn) satisfying the interlacing property

(6)

there exists a symmetric arrowhead matrix
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whose eigenvalues are {i}n
given by

The vector (2,..., n)T and the scalar & are

-1 (j di) nl (j di)(7) Iil (di 1) (n di) H (dj di) (dj+ di)
j--2 j--i

n

j=2

where the sign of can be chosen arbitrarily.

3.1. Computing the eigenvectors. If Ai were given exactly, then we could
compute each difference, each ratio, each product, and each sum in (5) to high relative
accuracy, and thus compute ui to componentwisehigh relative accuracy. In practice
we can only hope to compute an approximation Ai to Ai. But problems can arise if
we approximate ui by

i --1 Z1 Zn Z
d2 i dn- i

1+
.= (dj i)2

(i.e., replace Ai by i in (5), in [3], [15], and [26]). For even if i is close to Ai, the
approximate ratio zj/(dy ) can be very different from the exact ratio zy/(dy Ai),
resulting in a i very different from ui. And when all the approximate eigenvalues
(i}i are computed and all the corresponding eigenvectors are approximated in this
manner, the resulting eigenvector matrix may not be numerically orthogonal.

Lemma 3.2 allows us to overcome this problem. After we have computed all
the approximate eigenvalues (i}i of H, we can find a new matrix whose exact

and then compute the eigenvectors of using Lemma 3.1.eigenvalues are { i}i=,
Note that each difference, each product, and each ratio in (7) can be computed to high
relative accuracy, and the sign of i can be taken to be the sign of zi. Thus i can be
computed to componentwise high relative accuracy. Substituting the exact eigenvalues
Ai}i= and the computed into (5), each eigenvector of H can be computed to

componentwise high relative accuracy2 An, after all the eigenvectors are computed,
the computed eigenvector matrix of H will be numerically orthogonal.

To ensure the existence of , the approximations (i}i must satisfy the inter-
lacing property (6). But since the exact eigenvalues of H satisfy the same interlacing
property (see Lemma 3.1), this is only an accuracy requirement on the computed
eigenvalues and is not an additional restriction on H.

We can use the spectral decomposition of as an approximation to that of H.
Since

z D =+ z- 0

we have

Thus such a substitution is stable (see (1)) as long as & and are close to a and z,
respectively (cf. [17], [20]).
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3.2. Computing the eigenvalues. To guarantee that is close to z and & is
close to c, we must ensure that ( i}i=l are sufficiently accurate approximations to
the eigenvalues. The key is the stopping criterion for the root-finder, which requires
a slight reformulation of the secular equation (cf. [9], [17], [20]).

Consider the eigenvalue Ai E (di, di+), where 2 < _< n- 1; we consider the cases
1 and n later. /i is a root of the secular equation

n 2

f(A)--A-+ zy

let
We first assume that4 hi E (di, di.q-d+l

2 ). Let i di- (x and ij dj -d, and

Since

and
n

j=i+l

f(# q- di) # + oi + i(#) + i(#)

we seek the root # A -d (0, dii+1/2) of g(#) 0. Let/2i be the computed root
so that i di +/2i is the computed eigenvalue.

An important property of gi(#) is that each difference 5j # can be evaluated
to high relative accuracy for any # (0,5i+/2). Indeed, since 5i 0, we have
fl(5 #) -fl(#). Since fl(5+) fl(d+ d) and 0 < # < (d+ d)/2, we can
compute fl(dii+l #) as fl(fl(di+l di) fl(#)). In a similar fashion, we can compute
5j # to high relative accuracy for any j = i, + 1.

Because of this property, each ratio z/(hj -#) in gi(#) can be evaluated to high
relative accuracy for any # (0,i+1/2). Moreover, c can be computed to high
relative accuracy. Thus, since both (#) and i(#) are sums of terms of the same
sign, we can bound the error in computing gi(lz) by

where r/is a small multiple of e that is independent of n and #.
We now assume that Ai [(di +di+l)/2, di+l). Let ci di+l- a and 5j

dy di+l, and let

and
n 2

j=+ J p

We seek the root #i )u di+l [5i/2, 0) of the equation

gi(#) =_ f(# + di+) # + o + i(#) + i(#) 0.

4 This can be checked by computing f(diTdi+l +di’. If f( ’i 2-v’) >O,then

otherwise ,ki e [d+d+l di+l)2
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Let i be the computed root so that i di+l + ti. For any # E [5/2, 0), each
difference 5j # can again be computed to high relative accuracy, as cn each ratio

zy/(5 ) and the scalar a, and we can bound the error in computing g() as
before.

Next we consider the case 1. Let a d2 a and 5y dj d2, and let

1() 0 and 1()
j .

j=2

We seek the root d2 e (-llzl12 -lall, 0) of the equation

Let be the computed root so that d2 + g. For any e (-][z2 -a[, 0),
each ratio zy/(hj ) can be computed to high relative accuracy, s can al, and we
can bound the error in computing g() as before.

Finally we consider the case n. Let an dn a and 5j dj dn, nd let

n 2

n() .= 5j -z nd Cn()0.

We seek the root n A dn e (0, [z[[2 + [an) of the equation

f(, + z + + + 0.

Let n be the computed root so that n dn + n. For any p e (0, ]z2 + ]an]), each
2rtio zj/(hj p) can be computed to high relative accuracy, as can a, and we can

bound the error in computing g() as before.
In practice the root-finder cannot make ny progress at a point where it is

impossible to determine the sign of gi() numerically. Thus we propose the stopping
criterion

(9) [gi()[ n( + lai[ + i()[ + [i()),

where, as before, the right-hand side is an upper bound on the round-off error in
computing gi(p). Note that for ech i, there is at least one floating-point number
that stisfies this stopping criterion numerically, namely, fl(pi).

We hve not specified the method used to find the root of gi(). We used a modi-
fied version of the rational interpolation strategy in [9] for the numerical experiments,
but bisection and its variations [26], [28] or the improved rational interpolation strate-
gies in [15], [25] would also work. What is most important is the stopping criterion
and the fct that, with the reformulation of the secular equation given above, we can

find a that satisfies it.

3.3. Numerical stability. In this subsection we show that & and re indeed
close to a and z, respectively, as long as the root-finder guarantees that each gi
satisfies the stopping criterion (9).

Since f(Ai) 0, we have

j=2
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and

( )f(,) f(,) f(A,) (- A) 1 +
.= (dd ,)(d A)

Since the computed eigenvalue i satisfies (9), we have

so that

(0)

Note that for any and j,

Substituting these relations into (10), we get

or

1 r/n

i.e., all the eigenvalues are computed to high absolute accuracy. Applying (8) in
Lemma 3.2 to both H and H, we have

n n

a 1 + E (Aj dj) and & 1 -- E (Xj dj),
j=2 j=2

and therefore

(11)
n

( i)
j=l

n

1 nj=l
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and

To show that is close to z, we further note that for any and j, we have

+ < +

Substituting these relations into (10) and using the Cauchy-Schwartz inequality, we
get

< 2n
-1 .= I(d )(d a)ll/:

Since I.1 + I111 IIHIIN, w have

1- n I"il2 + IlzllN 1 +
.= I(dj Xi)(dj

2nllHll2 l(d )(d

( 1 )
Letting llgl/((1 -)lzl), this implies that

for every 2 E j 5 n, provided that y < 2.
Let X A a(dy $)/z for all and j. Suppose that we pick r 6n2

in (4). Then ]zyl k 6n211Hl12, Assume further that n < 1/100. Then E 2/5,
and (12) implies that I1 nllgiI2 for 11 and j. Thus

I1 YIy2,j# (dj di) Ij=2,j# (dj di) Izl 1 +
j--1 Zi ]

and, since 2i and zi have the same sign,

(()n _1)
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(13) <lz, exp --1 < (e--1) an/2

where we have used the fact that an/(2[zi[) < 1 and that (ex- 1)/x < e- 1 for
0<x<l.

One factor of n in T and the bounds (11) and (13) comes from the stopping
criterion (9). This is quite conservative and could be reduced to log2 n by using a

binary tree structure for summing the terms in i(#) and @(#). The other factor
nof n comes from the upper bound for y=l (Aj j) in (11) and Hj=(1 + aji/zi)

in (13). This also seems quite conservative. Thus we might expect the factor of n2 in
T and the bounds (11) and (13) to be more like O(n) in practice.

4. Deflation.

4.1. Deflation for symmetric arrowhead matrices. Let

z D

where D diag(d,..., d) and z (z,..., z). We now show that we can reduces

H to a symmetric arrowhead matrix that further satisfies

[d-dy[ k TI[H[]2, for #j and [zi k 7[[g[[2

(cf. (4)), where z is specified in 3.3. We illustrate the reductions for n 3, 3,
and j 2.

Assume that Izil < TIIHII2. Then

(14) H z2 d2 z2 d2
z3 d3 0

0 I + O(TIlHII2)
d3 ]

We perturb zi to zero. Then H is perturbed by o(IIHIIe), di is an eigenvalue of the
perturbed matrix and is deflated. The (n- 1) x (n- 1) leading principle submatrix of
the perturbed matrix is another symmetric arrowhead matrix with smaller dimensions.
This deflation rule is stable (see (1)).

Now assume that Idi- djl < TIIHII2. Apply a Givens rotation G to H to zero out
Zi:

(5)

GHGT c s z2 d2
-s c z3 d3

I Ir d2c2 A- d382 c8(d3 d2)
0 cs(d3-d2) d2s2+d3c2

(r d22 A- d382
0

o / + O(rllHII2),
d282 -b d3c2 ]

5 These rules have previously appeared in [1,51 and [19].
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42 2 /r, and zi/r. We perturb cs(di dj) to zero. Thenwherer- zi + z, c= zj s-

GHGT is perturbed by O(TIIHII2). djs2 + dc2 is an eigenvalue of the perturbed
matrix and can be deflated. The (n- 1) (n- 1) leading principle submatrix of the
perturbed matrix is another symmetric arrowhead matrix with smaller dimensions.
This deflation rule is also stable (see (1)).

4.2. Local deflation. In the dividing strategy for ADC (see (a)), we write

(16) T- 1 0 0 3k+lll DI 0 Q 0 0
0 0 Qg. 3k+9.f: 0 De 0 0 Q2T

(QU)A(QU)T,
where Q is the first matrix in (16) and UAUT is the spectral decomposition of the
middle matrix.

Note that Q is a block matrix with some zero blocks. When we compute the
matrix-matrix product QU, we would like to take advantage of this structure. Since
the main cost of ADC is in computing such products, we get a speedup of close to a
factor of two by doing so. This is not done in any current implementation of CDC.

If the vector (k+lT1, /3k+2f2T) has components with small absolute value, then
we can apply reduction (14). The block structure of Q is preserved. If D1 has two
close diagonal elements, then we can apply reduction (15). The block structure of Q
is again preserved. We can do the same when D2 has two close diagonal elements.

However, when D has a diagonal element that is close to a diagonal element in D2
and we apply reduction (15), the block structure of Q is changed. To illustrate, assume
that after applying a permutation the first diagonal element of D1 is close to the last
diagonal element of D2. Let Q (ql, (1) and Q2 ((2, q2); let D1 diag(d2, 1)
and 02 diag(2, dN); and let 3k+llT (Z2, 51T) and /k+2f2T (52T, zg). By
assumption, d2 and dN are close. When we apply the Givens rotation

1

to the middle matrix in (16) to zero out ZN, we create some nonzero elements in the
second and Nth columns of Q"

Ok-f-1 Z2
T T

2 ZN
0 1 0

T 1 0 0 0 0 GTG 1 bl GTG QT 0 0
o o o o o

zN dN 0 0 qT2

Ok+ r T 2T 0 0 1 0

(o o o
1 0 0 0 0 1 /)1 (1T 0 0
0 sq2 0 2 cq2 2 2 0 0

0 dN --sq 0 cq
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+ O(TllTll2),

where d2 d2c2 + dN82 and aN d2s2 + dNc2.
Note that g is an approximate eigenvalue of T and can be deflated. The corre-

sponding approximate eigenvector is the last column of the first matrix. The leading
(N- 1) x (N- 1) principle submatrix of the middle matrix is again a symmetric
arrowhead matrix and can be deflated in a similar fashion until no diagonal element
of/)1 is close to a diagonal element of/)2.

Thus, ignoring permutations of the columns of Qi and the diagonal elements of
Di, after a series of these interblock deflations T can be written as

(17) T: (-271 2) (/1 ) (1 2)T-t-O(TllTII2)A2

/2 is a diagonal matrix whose diagonal elements are the deflated eigenvalues and the
columns of X2 are the corresponding approximate eigenvectors. HI is the symmetric
arrowhead matrix

o Do
51 D1
52 D2

where the dimension of/)0 is the number of deflations, /)l and/)2 contain the un-
deflated diagonal elements of D1 and D2, and 5o, 51, and 52 are defined accordingly.
X1 is of the form

(18) .1 1_ 0 p
0 Qo,2 0 Q2

where the column dimension of both (0,1 and Oo,2 is the number of deflations and
the columns of (1 and (2 are those columns of Q1 and Q2 not affected by deflation.

If some diagonal element of/)0 is close to a diagonal element of either/)1 or/)2,
then we can use reduction (15) to deflate without changing the structure of X1. In
the following we assume that no further such deflation is possible.

Let D1/IIT be the spectral decomposition of 1. Then

r--(1 "2) ( r1/171T
/2 ) (.(1 -(2)T+o(TIITII )2

--(z11 2) ( /1
~A2 ) (lrl 2)T-"O(TllTII2)"

Thus (.(11, -J’2) is an approximate eigenvector matrix of T. The matrix -1 rl can
be computed while taking advantage of the block structure of Jl.

We refer to these deflations as local deflations since they are associated with
individual subproblems of ADC.
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4.3. Global deflation. To illustrate global deflation, we look at two levels of
the dividing strategy (see (2)); for simplicity, we denote unimportant entries of T by
x:

where T1, T2, TI,, and T,2 are principle submatrices of T of dimensions (i + j + 1)
(i + j + 1), (N j 2) (N j 2), i, and j x j, respectively.

Let Q1,2D1,2QIT,2 be the spectral decomposition of T1,2, and let fl,T and /1T,2 be
the first and last rows of Q,2, respectively. Then

TI,1
x

T= /i+2e Q1,2D1,2QIT,2

Xel T2
TI,1 xi

x
(19) = Y i+2fl,2 D1,2 i+j+211,2

x
Xl T2

where Y diag(Ii, 1, Q1,2, 1, IN-i-j-2).
Let ds be the sth diagonal element of D,2, and let f8 and 18 be the sth components

of f,2 and/1,2, respectively. Then, ignoring all zero components, the (i + s + 1)st
row of the middle matrix in (19) is (i+2fs, ds, i+j+21s). Thus if both Ii+2fsl and
Ifli+y+2/-sl are small, then we can perturb tlem both to zero. d-s is an approximate
eigenvalue of T and the (i + s + 1)st column of Y is the corresponding approximate
eigenvector. This eigenvalue and its eigenvector can be deflated from all subsequent
subproblems. We call this global deflation.

Consider the deflation procedure for computing the spectral decomposition of T
in 4.2. If I/i+2f[ is small, then it can be perturbed to zero. This is a local deflation
if only I/i+2jl is small, and a global deflation if [/i+j+2s[ is also small.

5. Acceleration by the fast multipole method. Suppose that we want to
evaluate the complex function

n

(:0)
j=l

at rn points in the complex plane, where {cy}yn__ are constants and () is one of
log(C), 1/, and 1/2. The direct computation takes O(nm) time. But the fast
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multipole method (FMM) of Carrier, Greengard, and Rokhlin [10], [16] takes only
O(n + m) time to approximate (I)() at these points to a precision specified by the
user.6 In this section we briefly describe how FMM can be used to accelerate ADC.
A more detailed description appears in [17] and [18] in the context of updating the
singular value decomposition.

Let

z D

where D diag(d2,..., dn) is an (n- 1) (n- 1) matrix with d2 < d3 < < dn,
z (z2,..., Zn)T is a vector of length n- 1, and a is a scalar. Let UAUT denote the
spectral decomposition of H, with U (ul,..., Un) and A diag(A1,..., AN).

Consider computing VTq for a vector q (q,... ,qn)T. By (5) in Lemma 3.1,
the ith component uq of UTq can be written as

where

T
zti q

-q + (Ai)

n
zkqk()

dk A
and

n 2

(I)2(A)
(dk A)2"

k=2

Thus we can compute UTq by evaluating (I)I(A) and (I)2(A) at n points. Since these
functions are of the form (20), we can do this in O(n) time using FMM. To achieve bet-
ter efficiency, we modify FMM to take advantage of the fact that all the computations
are real (see [17]-[19]).

Let T be an N N symmetric tridiagonal matrix. When ADC is used to compute
all the eigenvalues and eigenvectors, the main cost for each subproblem is in forming
)1U (see (17)), where 1 is a column orthogonal matrix.7 Each row of IU is of the
form qTu (UTq)T and there are O(n) rows. Thus the cost of computing U is

O(n2) using FMM. There are log2 N levels of recursion and 2k-1 subproblems at the
kth level, each of size O(N/2k). Thus the cost at the kth level is 0(N2/2k) and the
total time is O(N2).

We may also have to apply the eigenvector matrix of T to an orthogonal matrix Y,
e.g., when T is obtained by reducing a dense matrix to tridiagonal form [14, pp. 419-
420]. For each subproblem, we can apply the eigenvector matrix of the corresponding
symmetric arrowhead matrix directly to Y. The cost for each subproblem is O(Nn)
using FMM, and there are O(N/n) subproblems at each level. Thus the cost at each
level is O(N2) and the total time is O(N2 log2 N).

When ADC is used to compute only the eigenvalues, the main cost for each
subproblem is computing two vectors of the form qTu, finding all the roots of the
reformulated secular equation, and computing 2. We now show how to find all the
eigenvalues of H and all the components of in O(n) time.

6 The constant hidden in the O(.) notation depends on the logarithm of the precision.
7 )1 is also a block-structured matrix (see (18)). Here we view it as a dense matrix to simplify

the presentation, even though FMM is more efficient when it exploits this structure.
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A root-finder computes successive approximations to each eigenvalue Ai. The
main cost is in evaluating the functions

n 2

+
j=2

dj )

To compute new approximations to all the eigenvalues simultaneously, we must eval-
uate f(,k) at n points. Since this function is similar to the form (20), we can do this
in O(n) time using FMM. Thus, assuming that the number of approximations to each
eigenvalue is bounded, all the eigenvalues of H can be computed in O(n) time.

To compute 2, note that (7) can be rewritten as

where

Iil v/(d- il)(in- di) exp(3(di))

i-1 n-1
1 log(j d) log(dj d) Z log(dj+l d)3(d)
\j=2 j=2

Thus we can compute all the components of in O(n) time using FMM.
We have shown that when computing all the eigenvalues of T using ADC, we can

solve each subproblem in O(n) time. Since there are O(N/n) subproblems at ech
level, the cost at each level is O(N) and thus the totM time is O(N log2 N).

6. Numerical results. In this section we compare ADC with three other algo-
rithms for solving the symmetric tridiagonal eigenproblem.

B/II: Bisection with inverse iteration [21], [23] (subroutines DSTEBZ and DSTEIN
from LAPACK [2]).

CDC: Cuppen’s divide-and-conquer algorithm [11], [12] (subroutine TREEQL
from netlib).

QR: The QR algorithm [8] (subroutine DSTEQR from LAPACK [2]).
ADC solves subproblems of size N 6 using the QR algorithm. Since none of the
test matrices is particularly large, FMM was not used.

All codes are written in FORTRAN and were compiled with optimization enabled.
All computations were done on a SPARCsttion/1 in double precision. The machine
precision is e 1.1 x 10-16.

Let [,,] denote the N N symmetric tridiagonM matrix with on the off-
diagonals and ,...,N on the diagonM. We use the following test matrices, most
of which are taken from [21]"

a random mtrix, where the diagonal nd off-diagonM elements are uniformly
distributed in [-1, 1];
the Wilkinson matrix W [1, w, 1], where w ](N + 1)/2- i];
glued Wilkinson matrix W" 25 25 block mtrix, where each diagonal

block is the Wilkinson matrix W and the off-diagonal elements k+ g,
for 1,...,24;

s For simplicity we consider the original secular equation. See [17] and [18] for a version of
FMM that can compute each gi(P) (and i() and i() and their derivatives) at a different point in

O(n) time. This is needed for the root-finders in [9], [15], [25] and to check the stopping criterion (9).
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Matrix

type

Random

W/
10--14

[1, 2, 1]

[1, Yi, 11

[1/100, 1 -t- "i, 1/100]

TABLE 1
Execution time.

Order Execution time (seconds)

128 3.12 8.50 3.90 11.63
256 10.43 33.35 14.88 85.86
512 20.89 133.61 34.31 654.52
129 1.44 6.54 1.46 9.87
257 3.43 25.00 3.74 66.86
513 8.26 97.57 14.76 497.55
125 0.63 5.88 * 5.12
275 2.22 28.83 * 47.35
525 8.23 121.84 * 353.41
128 3.91 8.49 3.72 10.21
256 21.89 33.68 22.77 72.40
512 138.79 144.43 213.01 545.05
128 4.48 8.54 6.66 10.17
256 24.20 33.64 43.02 72.14
512 148.95 I35.48 302.06 544.65
128 4.57 16.93 6.86 9.83
256 24.45 102.81 43.01 70.65
512 149.50 692.64 301.58 539.48

Matrix

type

Random

W+
10--14

[1,2,1]

[1,%, 1]

[1/100, + , 1/100]

Order

N

128

256

512

129

257

513

125

275

525

128

256

512

128

256

512

128

256

512

TABLE 2
Residual.

max/

ADC B/II CDC QR

0.49 I0-I
0.43 10-1

0.23 10-1
0.67 10-1

0.17 10-1

0.44 10-2

0.11 100
0.27 10-1
0.15 x I0-I
0.41 I0"1

0.22 x 10-I

0.12 10-1

0.46 x 10-1

0.23 x 10-1

0.12 x I0-I
0.22 x i0-1
0.12 x 10-1

0.59 10-2

0.11 10-1

0.47 10-2

0.28 10-2

0.86 10-2

0.3,9 10-2

0.21 x 10-2

0.16 x 100
0.36 10-I
0.66 x I0-I

0.70 10-2

0.12 10-1

0.35 10-2

0.16 10-1

0.11 x 10-1

0.79 10-2

0.79 10-2

0.42 10-2

0.21 10-2

0.I0 101
0.74 100
0.13 101
0.59 x 100
0.15 x I0

0.67 100

0.31 i0-I

0.25 10-1

0.20 10-1
0.67 10-I
0.47 x 10-1

0.36 I0-I

0.11 10-1

0.11 I0-I

0.64 10-2

0.16 100
0.82 10-1
0.69 10-1

0.61 x I0-I

0.35 10-1
0.21 10-1

0.22 100
0.11 100
0.14 100
0.52 10-1
0.35 x 10-1
0.25 10-1

0.90 i0-I

0.64 10-1

0.47 10-I
0.60 10-1
0.38 I0-I

0.28 10-1
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TABLE 3
Orthogonality.

Matrix

type

Random

W+
10--14

[1,-i, 1]

[1/100, + /i, I/I001

Order

N ADC

128 0.94 x 10-1
256 0.66 x 10-1
512 0.35 x 10-1

129 0.78

257 0.39

513 0.19

125 0.64

275 0.33

525 0.20

128 0.70

256 0.47

512 0.39 x i0-1
128 0.62 x 10-1

256 0.49 x I0-1
512 0.35 x 10-1

128 0.78 x I0-1
256 0.62 x 10-1
512 0.61 X 10-1

N
B/II CDC

0.30 x 100
0.86 x 10-1
0.72 x 10-1

10-1

I0-I

10-1 0.12 x
10-1 0.56 x

10-1 0.16 x
10-1 0.34 x

10-1 0.78 X

10-1 0.35

0.35 10-I
0.19 I0-I

10-1

10-1

I0o

10-1

100
100

0.54 10"I
0.17 I0

0.30 100
0.54 10-1

0.89 I0-I

0.72 x i0-I

0.36 x l0

0.18 x 10o

QR

0.59 100
0.54 10

0.47 x I0

0.80 I0

0.13 101
0.13 101
0.38 "x 1’
0.31 i0

0.32 10

0.13 100
0.70 x 10-1

0.21

0.92

0.12

0.55

10o

100
101
100

0.35 10-1
0.23 i0-I

0.21 x 10-1

0.14 i0

0.17 x 10o

0.21 x 10o

0.76 x 10o

0.91 10-1

0.11 I0

0.93 10-I

0.44 I0-i
0.12 100
0.62 10-1

0.48 10-1

0.12 x 100
0.78 I0-I

0.40 10-i

the Toeplitz matrix [1, 2, 1];
the matrix [1, 7i, 1], where /i x 10-6",
the matrix [1/100, 1 + -y, 1/100], where 7 10-6;
the test matrices of types 8-21 in the LAPACK test suite.9

WN+ has pairs of close eigenvalues, W+ hasclusters of 50 close eigenvalues, [1, 2,1] has
no close eigenvalues, [1, ai, 1] and [1/ 100, 1 + ai, 1/100] do not deflate, and [1/100, 1 +
(xi, 1/100] forces B/II to reorthogonalize all of the eigenvectors.

The numerical results are presented in. Tables 1-4. An asterisk means that the
algorithm failed. Since the numerical results in Tables 1-3 suggest that CDC and
QR are not as competitive, we only compare ADC with B/II for the LAPACK test
matrices (see Table 4).

The residual and orthogonality measures for ADC are always comparable with
those for QR and B/II, and ADC is roughly twice as fast as CDC for large matrices,
due to the differences in how deflation is implemented (see 4.2). In most cases ADC is
faster than the others by a considerable margin and in many cases is more than 5-10
times faster. When ADC is slower than B/II (by at most 10%), the matrix size is
large (N 512) and there are few deflations. These are cases where FMM would
make ADC significantly faster.

Acknowledgment. The results in 3 were first announced in a preprint of [20].
Using the ideas there, Borges and Gragg [7] independently derived similar results.

9 Types 1-7 are all diagonal matrices.
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Order Execution time

N ADC B/II
128 4.64 8.68

256 24.27 33.63

512 140.04 133.58

128 2.32 12.66

256 9.37 76.99

512 44.62 517.45

128 0.01 12.36

256 0.04 84.54

512 0.17 613.86

128 5.24 8.64

256 25.88 33.52

512 144.37 132.32

128 4.54 8.75

256 24.44 33.94

512 141.57 133.83

128 4.61 8.66

256 23.49 33.53

512 131.57 132.03

128 5.16 8.61

256 24.88 33.55

512 134.86 131.96

128 4.50 8.71

256 23.44 33.99

512 131.71 133.53

128 4.54 8.68

256 24.18 33.73

512 139.29 132.47

128 2.67 12.88

256 11.78 76.55

512 63.23 521.70

128 0.01 12.34

256 0.04 83.95

512 0.17 614.26

128 5.08 8.58

256 25.47 33.32

512 142.16 131.26

128 4.46 8.68

256 24.12 33.72

512 139.29 132.75

128 1.85 12.86

256 6.26 75.81

512 21.07 517.17

TABLE 4
LAPACK test matrices.

max/

g

ADC B/II ADC B/II
0.82 x 10-2

0.54 x 10-2

0.30 x 10-2

0.14 x 10-1

0.30 x 10-2

0.92 x 10-1
0.10 x 10-1

0.70 x 10-2

0.21 x 10-2

0.11 x i0-1

0.53 x 10-2

0.29 x 10-2

0.85 X 10-2

0.54 x 10-2

0.31 x 10-2

0.69 x 10-2

0.53 x I0-2

0.24 x 10-2

0.79 x 10-2

0.50 x 10-2

0.24 x 10-2

0.73 x 10-2

0.45 x 10-2

0.26 x 10-2

0.87 x 10-2

0.41 x 10-2

0.19 x 10-2

0.30 x i0-2

0.31 x 10-2

0.17 x 10.2

0.78 x 10-2

0.39 x i0-2

0.19 x 10-2

0.79 x 10-2

0.40 x 10-2

0.20 x 10-2

0.75 x 10.2

0.47 x 10-2

0.21 x 10-2

0.47 x 10-1
0.27 x 10-1
0.17 x 10-1

0.13 x 100
0.28 x 10-I
0.12 x 10-1

0.II x 10-1

0.45 10-2

0.38 x I0-2

0.45 x 10-1

0.28 x 10-1
0.17 x 10-1

0.46 x 10-1
0.25 x 10-1

0.16 x 10-1
0.43 x I0-i
0.20 x I0-1
0.13 x I0-i

0.46 x 10-1

0.24 x 10-1
0.12 x 10-1

0.49 x 10-1
0.24 x 10-1

o.13 x 10-1

0.22 x 10-1
o.13 x 10-1

0.14 x 10-1

0.30 x 10-1
0.38 x 10-1
0.16 x 10-1

0.13 x I0-I
0.98 x 10-2

0.44 x 10-2

0.25 x I0-1

0.14 x 10-1

0.13 x 10-1

0.20 x 10-1

0.13 x 10-1

0.13 x 10-1

0.45 x I0-1

0.38 x I0-1
0.15 x 10-1

0’34 x 10-2

0.27 x 10.2

0.12 x 10-2

0.86 x 10-1

0.66 x 10-1
0.47 x 10-1
0.12 x I0

0.53 x I0-I

0.33 x 10-1

0.14 x i0-I

0.78 x 10-2

0.78 x I0-2

0.62 x I0-I
0.55 x I0-1

0.41 x 10-1

0.86 x 10-1

0.51 x 10-1

0.47 x 10-I
0.62 x 10-1
0.70 x 10-1

0.41 x 10-1

0.12 x 100
0.51 x I0-I

0.43 x 10-1
0.78 x 10-1
0.41 x 10-1

0.41 x 10-1

0.11 x 100
0.64 x 10-1

0.35 x I0-I

0.II x 100
0.51 x I0-1

0.33 x I0-1
0.16 x 10-1

0.59 x 10-2

0.20 x 10-2

0.90 x 10-1

0.70 x 10-i
0.31 x I0-I

0.62 x 10-1
0.51 x 10-1

0.33 x 10-1
0.70 x I0-1

0.35 x 10-1

0.31 x I0-1

0.16 x 100
0.25 x 100
0.21 x 100
0.20 x I0-I

0.27 x I0-1

0.84 x 10-1
0.70 x i0

0.52 x I0-1
0.21 x I0-I

0.22 x 10

0.17 x 100
0.20 x 10

0.19 x I0

0.30 x i0

0.20 x 10

0.33 x i0

0.15 x 100
0.25 x 100
0.28 x i0

0.39 x I0

0.29 x 10

0.12 x I0

0.17 x 100
0.13 x 100
0.11 x 100
0.93 x 10-1

0.15 x 100
0.58 x 10-1
0.82 x 10-1
0.29 x i0-I

0.39 x 10-1
0.29 x I0-I

0.16 x 100
0.92 x 10-1
0.16 x 100
0.97 x i0-I
0.10 x 100
0.17 x 100
0.12 x i0

0.45 x i0-I

0.16 x 10-1

0.20 x 10-1
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ALGEBRAIC ANALYSIS OF THE HIERARCHICAL BASIS
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Abstract. The use of the hierarchical basis in finite element discretizations of two-dimensional
elliptic partial differential, equations produces matrices with condition numbers of order O((log h-1 )2).
Standard proofs of this result are functional analytic in style. In this paper, it is shown that for uni-
form grids the result can be obtained using a purely linear algebraic argument.

Key words, hierarchical basis, preconditioning, condition number, elliptic problems
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1. Introduction. Consider the two-dimensional elliptic partial differential equa-
tion

(1) Au f on (0, 1) (0, 1), u 0 on &.

When this problem is discretized using standard finite element techniques, e.g., the
Galerkin method with piecewise linear nodal basis functions on a uniform mesh of
triangles of width h, the result is a linear system of equations

(2) By=c,

where the condition number of B is of order O(h-2) [1], [6], [7].
An alternative discretization strategy is to use a "hierarchical basis," in which the

basis functions are defined in a hierarchical manner. Given a basis for a discretization
on a (coarse) grid of width 2h, the basis for the grid of width h is determined by
augmenting the coarse grid basis with functions centered at nodes in the new grid
and having support on the fine grid elements. In the resulting linear system

(3) Ax b,

the stiffness matrix A has condition number" of order O((log h-l)2) [2], [8].
In this paper we present a purely algebraic analysis of the condition number of the

matrix A, for problems derived from uniform meshes. We derive an upper bound on
the largest eigenvalue of A that is independent of the mesh size by explicitly examining
the nonzero structure of A. For a lower bound on the smallest eigenvalue, we use the
fact that A STBS where S represents a change of basis from hierarchical basis to
nodal basis. The smallest eigenvalue is the inverse of the maximum of the Rayleigh
quotient (v, Qv)/(v, Bv), where Q (ssT) -1 and (v, w) denotes the Euclidean inner

prodUct. A loose statement of the derivation of the bound is as follows. Suppose j
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Greenbaum, August 17, 1993.
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Level 1

Level 2

Level 3

FIG. 1. Hierarchical basis functions for h 1/8.

log h-i, so that a sequence of j hierarchical refinements produces the discretization
mesh. We show that the operator Q satisfies

(4) Q B q- B1 +"" q- Bj-1,

where Bi can be thought of as a discrete Laplacian operator restricted to the grid at
refinement level i. The bound is obtained by showing that (v, Biv)/(v, Bv) <_ c(j -i).
A related analysis for multigrid methods is given in [4].

An outline of the paper is as follows. In 2, we present a condition number analysis
for the coefficient matrix arising from one-dimensional problems discretized using a
hierarchical basis. The two-dimensional analysis is presented in 3. Unless otherwise
specified, the natural nodal ordering is used for both A and B, i.e., degrees of freedom
are ordered using the natural ordering of the underlying fine grid.

2. Analysis of the one-dimensional problem. Consider the one-dimensional
problem

(5) u" f on (0, 1), u(0) u(1) 0.

Examples of the hierarchical basis functions for a mesh of width h 1/8 are shown
in Fig. 1. It is straightforward to show [9] that these functions are orthogonal with
respect to the energy inner product

a(u, v) U/V

Consequently, the global stiffness matrix A is a diagonal matrix, and it can be trans-
formed via a symmetric scaling TAT into the identity matrix, where T is also a diag-
onal matrix. Equivalently, the use of appropriately scaled hierarchical basis functions
produces a perfectly conditioned global stiffness matrix.

To motivate the two-dimensional analysis, we present an algebraic derivation of
this result. Let B denote the coefficient matrix for the standard nodal basis on a
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uniform mesh of width h 1/2j. B is a tridiagonal matrix of the form

(6:)

2 -i
-i 2 -I

-I 2

of order n 2j 1. It is shown in [8] that the hierarchical basis matrix is

(7) A-- STBS,
where

S ’2_,...
and the computation -- Sa represents a change of basis in which nodal basis
functions on the mesh of width 1/2 are replaced by nodal basis functions on the
mesh of width 1/2+i. These matrices have the form

S I + R,

where for 1 <_ i <_ j 1, R is defined by

(8) [R]rs { .50 otherwise.ifs is divisible by 2j- and r s 4- 1/22j-,

Examples of {S} in the case j 4 (n 15) are shown below.

1 .5
1

1
1

1
1

1
1

.5 1

\ 1
1

$2

1 .5
1

1
1

.5 .5
1

1
1

.5 .5
1

1
1

1
lJ

[ 1 .5
1
.5 1 .5

1
.5 1 .5

1
.5 1 .5

1
.5 1 .5

1
.5 1 .5

1
.5 1 .5

.15 1

From (7), the matrix Q (ssT)-i can be viewed as a preconditioner for B, and
bounds on the condition number of A can be obtained from bounds on the Rayleigh
quotient

(9) (v, Bv) (v, Bv)
(v, Qv) (v,
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We establish such bounds as follows.
LEMMA 2.1. The off-diagonal parts of {Si} satisfy

Ri1Ri -0 for _< i2, RRi. 0 for 7 i2.

Proof. By (8), any column index s for which Ril contains a nonzero entry has
the form s k 2j-i and any row index for which Ri. contains a nonzero entry has
the form r (l-t- 1/2) x 2j-i:. Therefore,

s k 2

r l+1/2
For <_ i2, the numerator of this expression is an integer and the denominator is not,
which implies r 7 s. Consequently, there cannot be any nonzero entries in Ri Ri.

Similarly, if rl is a column index for which R contains a nonzero and r2 is a row
index for which Ri. contains a nonzero, then

(k+1/2)
+ 1/2) x l+1/2

x2i-i.

If il i2 then this expression cannot equal 1, so that RT. Ri. O.
LEMMA 2.2. The change of basis operator S satisfies

(10) S-1 I (R1 +"" + Rj-1),

and the preconditioning operator satisfies

(11) (ssT)-1 I --[(R1 + R) +"" + (Rj-1 + Ry_I) + RT R1 +... + RT_IRj-1.

Proof. It follows from the first equality of Lemma 2.1 that S1 I- Ri. There-
fore, using this equality again, we have

SflS (I- R1)(I- R2) I- (R1 + R2).

Assertion (10), for S-1 Si-1S-1... S;_11, then follows using a straightforward induc-
tive argument. Assertion (11) follows immediately from (10) and the second equality
of Lemma 2.1.

For 1 _< <_ j, let Di denote the identity matrix restricted to level i; that is,
[Di]rr 1 if r is divisible by 2j-i, and [Di]r8 0 otherwise. Let Ci be defined by

1 if r is divisible by 2j-i and s r =l= 2j-i,
[Ci]r8 0 otherwise.

Note that

1
(12) Ri -- RTi -Ci+l and

1
RRi - (2Di + Ci).

Let Bi 2Di-Ci. This matrix has the form of a discrete Laplacian operator restricted
to the grid of level i, and in particular, Bj B of (6). Combining (11) and (12) gives

(13)
1 1(ssT)-I
4
(B1 -[-’" -[- Bj_ nt- -Bj--7
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That is, the preconditioner has the form Q 1/2B + R where R 1/4 -i=lJ-1 Bi. R is
positive semidefinite, so that an upper bound for (9) is obtained from

(14) (v, By) /(v, Qv) (v, Rv))(v, Q,) (v, Qv) (vl Q,,) <-

For the lower bound, note that

() (v, Qv) (v, By) 1 (,,,
(v, Bv) - (,, B,,) + - -:

The following result determines an upper bound for (v, Qv)/(v, Bv).
LEMMA 2.3. For 1 <_ <_ j, the generalized eigenvalue problem Biv ABv has

eigenvalues :k 2j-i of multiplicity 2 1 and 0 of multiplicity 2J 2i.
Proof. For each i, Bi has order 2j 1 and rank 2i- 1, so that zero is an eigenvalue

of multiplicity 2J 2i. Now consider the nonzero eigenvalues. The case j is trivial.
For j 1, the generalized eigenvalue problem can be.stated as

-v8-2 + 2v8 v+2 (-v-I + 2v v+l)
0 (-v_ + 2v v+)

for s even,
for s odd,

where 1 _< s _< n. Therefore, for all even s,

Vs-2 + Vs Vs Vs+2
Vs-1 2 Vs+I 2

and substitution of these expressions into the equation centered at v8 gives

-v_ + 2v v+ (-v_. + 2v v+)

Consequently, the only nonzero generalized eigenvalue for j- 1 is A 2. An
identical argument shows that for j 2, when s is divisible by four,

-v-4 + 2v vs+4 (-v-4 + 2v8 v+4)

giving 4 as the only nonzero eigenvalue. More generally, for j k, when s is
divisible by 2k, we have

-vs_2k + 2v -v+2k - (-%-2 + 2Vs -v+2),

and A 2k.
This result implies that

(v, Qv)
(,, B,)

j-1

<- - 1 2j_ 2j_2

i-----1

Combining this with (14)and (15)gives

< (v, By)
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Consequently, we have the following condition number bound for the unscaled one-
dimensional hierarchical basis.

THEOREM 2.4. The condition number of the stiffness matrix A derived from the
hierarchical basis is bounded by (n + 1)/2.

Now let A represent the coefficient matrix derived from a scaled hierarchical basis,

A (ST)TB(ST),

where T Tj... T2T1, and Ti is a diagonal matrix associated with a scaling of the
basis functions of level i,

if r/2j-i is an odd integer,
otherwise.

As in the derivation of (13), it can be shown that

(16) Q [(ST)(ST)T]_I -1 T(_2 - --2 Bi + --Bj.Tj-2
When T2 2r2+1, the first j- 1 terms of (16) are zero, giving the following result.

THEOREM 2.5. If the scalings of the hierarchical basis satisfy T2 2T2+,
Tj 1/X/, then [(ST)(ST)T]- B and the coefficient matrix A derived from the
hierarchical basis is the identity matrix.

3. Analysis of the two-dimensional problem. We will consider a sequence
of two-dimensional hierarchical meshes each consisting of a set of triangles of width

hi=l/2i,withnodesx =(khi, lhi), 1 <_k,l_<ni-2i-1. At leveli, l_<i_<j,

there is a set of piecewise linear basis functions i.(i)
tWkl } whose support is defined by

(i) { 1
(x)

0

ifx=x

if x x(i) x(i)
k=t=l,l or x k,l:l=l or x X_l,/_l or x "k+l,/+l"

Examples of the supports of such functions are shown in Fig. 2. The hierarchical
basis of level i consists of the hierarchical basis of level i- 1, together with those basis

functions ,(i) associated with mesh points x not in the mesh of level i- 1"t’kl
The main result of the paper is as follows.
THEOREM 3.1. The condition number of the coefficient matrix derived from the

hierarchical basis of level j is of order O((log h-)2).
The proof consists of deriving upper and lower bounds on the eigenvalues of A.

3.1. Upper bound. The following results will be used in the derivation of the
upper bound. For the moment, let A denote an arbitrary matrix.

LEMMA 3.2. Suppose A is blocked into submatrices as A [Ars], and let A(b)

[llArsll2], the matrix whose entries are the norms of the blocks of A. Then IIAII2 <_

Proof. Let

V("mex) w(Smax)
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hi

FIG. 2. Supports of basis functions for meshes of width hi (light and dark shading) and hi+l
hi/2 (dark shading).

where the sizes of the component vectors v(r) and w(s) are the same as the numbers
of rows and columns, respectively, of Ars. Using

max
I(v’

.,0

we have

I(v, Aw)l (v(),Aw())

Thus, IIAII. _< IlA()lle.
For A Jars], let IIA,,II denote the Euclidean norm of the vector consisting of

the rth row of A.
LEMMA 3.3. If A Jars] has at most Mcol nonzero elements in any column, then

IIAII < Mco max IIA,,II2.
r

Proof. Let ers Isign(as)l, i.e., er 1 if ar =fi 0 and 0 otherwise. Then the
number of nonzeros in column s is r, and

2(17) ars _< Mcol, ers ers.

Using the Cauchy-Schwarz inequality and (17), we have

r
a =maxllA,,ll2 es v

Mcol max lAr,,ll lv. S
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Now, let A denote the coefficient matrix for the hierarchical basis with a hierar-
chical ordering of rows and columns. That is, A has the block structure JArs] where

,(s) )] k and k range over all indices for levels r and s, respectively,At8 [a(( ’k’t’
and a(u, v) fa uxvx + uyvy.

THEOREM 3.4. The maximum eigenvalue of A is bounded by a constant indepen-
dent of hi.

Proof. We use Lemma 3.3 to bound [[drsII2. Let fl(k denote the support of
0(8) disjoint, then the entry of A8 derived fromwkt’(i)" If the interiors of Ft(k and "k’t’ are

a()
’kt wk’t’) is zero. Moreover, if t(8)k,t, is wholly contained in one of the triangles

determining t(k), then this entry of A8 is also zero, because ’k’t,’(8) is harmonic in

k’t" Therefore, for s >_ r, we need only consider the case where the interior of

intersects an edge of one of the triangles defining t(k). For fixed k, l, there are at

most O(hr/hs) examples of such "k’t’, so that the row of At8 corresponding to mesh
index (k, l) (call it row t) contains O(h,./hs) nonzero entries. Any such entry satisfies

Consequently,

(18) [Arslt,.l122 <- c-- c-,
where here and in the sequel c represents a generic constant. The number of nonzero
entries in a column of A8 corresponding, say, to mesh index (k’,l’), is bounded

by the number of subdomains Ft(k whose interiors intersect "k’t’; this is at most
CT (one plus the number of edges of vertex xk,t,) _< 7. It follows from (18) and
Lemma 3.3 that

(19)

Then, by Lemma 3.2 and Gerschgorin’s theorem,

Lj/2J
1 /i=1

+1<c
/-1

Remark. Inequality (19) is analogous to Lemma 2.7 in [8]. Similar bounds can be
derived for general conforming finite element discretizations and problems in higher
dimensions.

3.2. Lower bound. Now, let A again denote the hierarchical basis matrix with
the nodal ordering of rows and columns, i.e., degrees of freedom are ordered using
the natural ordering of the underlying fine grid. As in the one-dimensionM case, this
matrix satisfies A STB,. where B is the coefficient matrix derived from the nodal
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basis,

T -I 4 -1
-I T -I -1 4 -1

B= T=
"’. -I "’. -1

-I T -1 4

and S Sj-I’.. $2S. A and B are of order n2 where n 2J 1. The change of
basis matrix Si represents the effect of replacing basis functions associated with the
mesh of width 1/2 (referred to here as the coarse mesh) with those for the mesh of
width 1/2i+l (the fine mesh, whose nodes include the coarse mesh nodes). The finite
element solution on the fine mesh can be represented as a linear combination of coarse
mesh functions and fine mesh functions,

t E Okl(ki)l + E .(i+1)
{klWkl

Xk Ecoarse Xk Efine--coarse

The representation using only fine mesh functions is

h(i+l) A(i+I)

xkt coarse xkt fine-coarse

where /3kt akt for coarse mesh indices, kt akt + 1/2 (aklZ1 + a22) for fine mesh
indices, and (k,/1) and (k2,/2) are indices of the neighboring coarse grid points that
are affected by the change of basis. The coefficients are related by/3 Sia.

Examples of the matrices S and $2 for a 7 x 7 grid are as follows:

I+O1
I

A I
\ I

T2
1+O2
A2 T2

1+O2
A2 T2

1+O2
A2

where

0
0 .5

0
0

0
.5 0

0

0
0

0
0

0

0
0

0
0

0

0 .5
0
.5 0 .5

0
.5 0 .5

0
.5 0

A2 T2
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S I + R is a block matrix of block order n, where each block is itself a matrix of
order n. Considered as a block matrix, R has a nonzero structure similar to that of
the corresponding matrix in the one-dimensional case:

(20) [R]r8 - 0 if and only if { s is divisible by 2j- and
or

r s is divisible by 2j-.

r s =t= 1/22j-i

There are three types of nonzero blocks in R: A below the block diagonal, T above
the block diagonal, and Oi on the block diagonal. The off-diagonal blocks correspond
to the effects of the change of basis in the vertical direction, and the diagonal blocks
to the effects in the horizontal direction. For the nonzero structure of these blocks,
we have

1/2 if s is divisible by 2j-[O]r8 0 otherwise,

1/2 if s is divisible by 2j-(21) [Ai]r 0 otherwise,

1/2 if s is divisible by 2y-[T]r 0 otherwise.

and r=s+1/22j-,

2j-and (r=sorr=s+ ),

and (r- s or r s- 1/22-),

Note that O is identical to R of (8).
Lemma 2.1 for the two-dimensional case follows from (20) and (21). The proof

is essentially identical to the proof from 2. For example, to show that R1R= # 0
for :/: i2, the argument in the proof of 2 shows that there can be no nonzero
contributions of the form AI T. or TA2. An identical argument shows that there
cannot be any contributions of the form OA or OT, i.e., there are no indices s
such that R contains Oil # 0 in position s of the block diagonal and R. contains
either A= or T. in row s. The same reasoning shows that AO TO 0
whenever these figure in the product.

Lemma 2.2 for two dimensions follows immediately from Lemma 2.1. We can
then specify the structure of (ssT)- using the expansion (11). To facilitate the
discussion, we introduce the notation T/(X, Y, Z), to represent a (block) tridiagonal
matrix associated with the grid at level i. Tha is,

X if r is divisible by 2j-i and s r- 2j-i,

[T (X, Y, Z)] Y if r is divisible by 2j- and s=r,
rs Z if r is divisible by 2j-i and s r zt- 2j-i,

0 otherwise.

If the arguments used in place of X, Y, Z contain upper case characters, then T/
represents a block matrix of order n, each of whose entries is itself a matrix of order
n; otherwise T/represents an ordinary matrix of order n. Then, we have

RRi T/(T/TA, T/TTi + o/Toi + A/TAi, A/TTi),

where

1/4,0),
+ + 1/4),

(0,
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That is, RRi has a regular structure. By analogy with the one-dimensional case, it
has the form

(22)
3 1

R R -D + -Cwhere D is the identity opator r2stricted to level i, and C corresponds to the
off-diagonal terms: Ci 2T(A, O, T) with

(23)

3 @i-i + @T_i,

{ 1/2 if s is divisible by 2j-i
[Ai]r8 0 otherwise,

{ 1/2 if s is divisible by 2j-[T]r8 0 otherwise.

(r s or r s + 2J-i),

(r s or r s- 2J-i),

RTR can be represented in terms of a computational molecule as follows"

3/2 I/4

/4

The terms {Ri + RT} of (11) have less regular structure, in that there is no
computational molecule for every grid point. For example, for the 7 7 grid,

(24)

R+R=

where, for 1 _< _< j- 1,

hi Ai+I Ai, Ti Ti+I Ti.

The matrices Ai and T can be thought of as complements to Ai and Ti that produce
the regular operators i+l and i+l; compare (21) and (23). Note that i /T, so
that the right side of (24) is a representation of R1 + R" in the form C2 E2. More
generally, we have

1
R + R Ciq-1 Ei+l,
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where Ei+l contains the values Ai and T in all entries where A or T appear in
12j-i but notRi + RT, and +1 in all diagonal entries (r, r) where r is divisible by

2J-i
Combining this observation with (22), we have for < j,

RTR (R_ / R
3 1

_) -Di- Ci + Ei,

where R0 0; and for j,

(I- (Rj_ + R_) 3Dj Cy (2I- Ej),

1C and Gj (2I i=i Eiwhere Dj is the identity matrix. Let F 3D [

Then, for the two-dimensional problem, (11) can be written as

(25) Q

LEMMA 3.5. The matrix Gj is symmetric positive semidefinite.
Proof. By definition, E is symmetric for each i, so that Gj is symmetric. E

contains at most four nonzeros in any row, with value [, and for i i2, E and E
contain no common nonzero indices. Therefore, Gj is diagonally dominant, whence
positive semidefinite.

Let denote the space of vectors v with value zero in all entries associated with
grid points of level > i. We will represent members ofV as grid functions vk defined
on the two-dimensional grid at level with index values derived from the finest grid.
That is, k and are divisible by 2-, and 1 k/2- n, 1 1/2- n, with

ni 2 1. Let ri 2j-i, the offset associated with the grid at level i, and let Bi
denote the five-point discrete Laplacian on level i, scaled by h"

[Bi]kt 4Vkt Vk-,t Vk+,t Vk,t-, Vk,t+

The following result shows that the operators Bi and Fi are spectrally equivalent.
LEMMA 3.6. For any nonzero v , Bi and Fi satisfy

1 < (v, Fiv) 3
(26) : Biv)

< -’2

Proof. Note that Fi Bi + #i where

1 1

By ordering the grid by diagonals, we find that i is similar to a block diagonal
matrix, each of whose diagonal blocks is irreducibly diagonally dominant. Thus,
is symmetric positive-definite, and the lower bound of (26) follows. For the upper
bound, note that summation by parts [5, p. 213] gives

2

where

[5i)V]kl Vkl Vk-r,,1, [5i)V]kl Vkl Vk,l-r, i k/ri, 1/ri i,
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k-r/2, l+r/2

XXXX

1 2 3 4 5 6 7 8 9
s

FIG. 3. Grid tangle At(k, 1).

and vk0 vk,2 v01 v2,l 0. Similarly,

which leads to (v, Fiv) <_ (v, Biv). B
THEOREM 3.7. The minimum eigenvalue of A is bounded below by c/j2 where c

is independent of j.
Proof. We will show that (v, Qv)/(v, Bv) <_ O(j2). To begin, note that (25) and

Lemma 3.5 imply

(v, Qv) (, Fv)
(-;: By) <- v: By)

1 (v, Fiv)+ (v, B)

Application of Lemma 3.6 gives

(28)

(v, Qv)
max
,,#o (v, By) )(v, Fyv) 1 (v, Fiv) (v, Biv)< max + max max

-,,o (v By) - vev (v, Biv) ,#o (v By)

< 3 3 (v, Bv)+ max
vo -Cv; By)

Thus, we seek an upper bound on (v, Biv)/(v, By), where B Bj.
To simplify notation, we drop the subscript from ri 2j-i. Let Ar At(k, l)

denote the set of grid points contained in the triangle determined by the indices (k,/),
(k-r, 1) and (k-r/2,1+r/2). An example for the case r 8 is shown in Fig. 3. Using

(27), we will relate (v, Biv) to (v, By) by bounding [5(xi)v]t and [5(yi)V]t in terms of a
2partial sum from Ar contributing to [[5()vl[ and [[(yJ)v[[ 2.

Let v(s) denote the average of the entries of v in the sth grid column of A, i.e.,

r/s

V() 1 E Vk-r+s-l,l+t
fIs t=O

where r/8 min(s, r + 2 s) is the number of grid points in this column. (See Fig. 3.)
Then

v(r+l) (1) E(v(S+I) ,v(S))[(fv] v v_,
8--1
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Multiplying and dividing the sth term by (r/+ 1) /2 and applying the Cauchy-Schwarz
inequality gives

(29)

The first sum on the right side of this inequality is bounded by

r

(30) E -----1 < 2 log(r/2 + 2) < c log r.
7]tl

To obtain a bound on the second term, we simplify notation by letting m ms
k r + s, the index of the sth grid column of At. Consider the case where we are in
the left side of Ai, i.e., s _< , so that 8 s and r8+1 s + 1. Then

v(s+l) 1
s + 1 Vm,l+t

t=0

s--1

v() 1 E Vm_
8

t--0

s--1 s--1
1 1E Evm-l’l+s

8 2_ 1
t=O

vm’l+t 2F
8(8-- 1) t=o

1
+ (v.,+ v._,+)
s+l

s--1 s--1
1 1E Vm--l’l+t -I- t0

Vm--
s + 1

t=0 s(s + 1) 1,l+t"

Thus

v(s+1) _V(s)
8

1 y(Vm,t+t-- Vm-l,t+t) +
s+l

t--0

s-1

s(s + 1) E(Vm--l’l+s Vm--l’l+t)"
t=0

The second term of this expression is bounded in absolute value by

s(s + 1)

s--1 s--1

EE(Vm-l,lTq+l --Vm-l,l+q)
t--0 q--t

Consequently,

v(+) v()[ <_

which implies

2

2s+ 1 )< ([((xJ)Vlm,l+t) 2 -I- ([(yJ)Vlm-l,l+t+l
s+l

t=0

< 2 ([(v],+t) / -([(v]-,+t+l
t=o t=o
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Essentially the same argument applies for the case s > 5, so that

(3) E(r/s -+- 1)(V(s+l) v(S))2 < 2 [5(xJ)Vl2st q- E[5(yJ)V]2st
s=l /x

where the sum for the horizontal differences [5(xJ)v]st is over all indices (s, t) E At, and
the sum for the vertical differences [5(yJ)v]Bt is over indices such that (s,t- 1) E At.
Combining (29), (30), and (31) gives

(32) () (-.[5()v]t + --[5()v] )[Sx ]kL < c log r
Ar A

An analogous bound holds for r,(012 Hence, summing over all k, l, recalling thatWY kl"
r-- 2j-i, and using (27) with j, we have

(v, Bv) < c (j i) (v, Bjv).

The assertion then follows from (28). [:]

Remark. Inequality (32) is a variant of the discrete Sobolev inequality

IlUhlIL <_ c(logh-1) 1/2 IlUhllH1
for finite element functions in two dimensions; see, e.g., [3, Lem. 3.2] and [S, Lem. 2.1].

REFERENCES

[1] O. AXELSSON AND V. A. BARKER, Finite Element Solution of Boundary Value Problems: Theory
and Computation, Academic Press, Orlando, FL, 1984.

[2] R. E. BANK, T. F. DUPONT, AND H. YSERENTANT, The hierarchical basis multigrid method,
Numer. Math., 52 (1988), pp. 427-458.

[3] J. H. BRAMBLE, A second order finite difference analogue of the first biharmonic boundary value
problem, Numer. Math., 9 (1966), pp. 236-249.

[4] M. GRIEBEL, Multilevel algorithms considered as iterative methods on indefinite systems, SIAM
J. Sci. Comp., 15 (1994), pp. 547-565.

[5] E. ISAACSON AND H. B. KELLER, Analysis of Numerical Methods, John Wiley & Sons, New York,
1966.

[6] C. JOHNSON, Numerical Solution of Partial Differential Equations by the Finite Element Method,
Cambridge University Press, New York, 1987.

[7] G. STRANG AND G. J. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood
Cliffs, NJ, 1973.

[8] H. YSERENTANT, On the multi-level splitting of finite element spaces, Numer. Math., 49 (1986),
pp. 379-412.

[9] O. C. ZIENKIEWICZ, D. W. KELLY, J. GAGO, AND I. BABUKA, Hierarchical finite element ap-
proaches, error estimates and adaptive refinement, in The Mathematics of Finite Elements
and Applications IV, J. R. Whiteman, ed., Academic Press, London, 1982.



SIAM J. MATRIX ANAL. APPL.
Vol. 16, No. 1, pp. 207-217, January 1995

1995 Society for Industrial and Applied Mathematics
014

CONSTRUCTING A HERMITIAN MATRIX FROM ITS DIAGONAL
ENTRIES AND EIGENVALUES*

MOODY T. CHU

Abstract. Given two vectors a, .k E Rn, the Schur-Horn theorem states that a majorizes A if and
only if there exists a Hermitian matrix H with eigenvalues A and diagonal entries a. While the theory
is regarded as classical by now, the known proof is not constructive. To construct a Hermitian matrix
from its diagonal entries and eigenvalues therefore becomes an interesting and challenging inverse
eigenvalue problem. Two algorithms for determining the matrix numerically are proposed in this
paper. The lift and projection method is an iterative method that involves an interesting application
of the Wielandt-Hoffman theorem. The projected gradient method is a continuous method that,
besides its easy implementation, offers a new proof of existence because of its global convergence
property.

Key words. Schur-Horn theorem, majorization, inverse eigenvalue problem, lift and projection,
projected gradient

AMS subject classifications, 65F15, 65H15

1. Introduction. The well-known Schur-Horn theorem [14] deals with the re-
lationships between the main diagonal entries and eigenvalues of a Hermitian matrix.
For the reference, we restate the theorem in the following form [15, Thms. 4.3.26,
4.3.32, and 4.3.33].

THEOREM 1.1 (Schur-Horn Theorem). 1. Let H be a Hermitian matrix. Let
[i] E Rn and a [ai] E Rn denote the vectors of eigenvalues and diagonal entries

of H, respectively. If the entries are arranged in increasing order ajl <_ <_ aj,

Am1 <-"’" <- Am, then

k k

(1) E
i=1 i=1

for all k 1, 2,..., n with equality for k n.
2. Given any a, Rn satisfying (1), there exists a Hermitian matrix H with

eigenvalues and diagonal entries a.
The notion of (1) is also known as a majorizing , which has arisen as the precise

relationship between two sets of numbers in many areas of disciplines, including matrix
theory and statistics. There are extensive research results on this subject. See, for
example, [2], [16], and the references contained therein. The Schur-Horn theorem itself
has many important applications. For instance, through the Schur-Horn theorem the
total least squares problem can be seen to be equivalent to a linear programming
problem [3]. Some other applications can be found, for example, in [6] and [7].

The second part of the Schur-Horn Theorem gives rise to an interesting inverse
eigenvalue problem, namely, to construct such a Hermitian matrix from the given
eigenvalues and diagonal entries. For convenience, we shall refer to this problem as

(SHIEP). The proof of existence is usually known as the harder part of the Schur-
Horn Theorem. One point worthy of note is that there are far more variables in the

Received by the editors January 19, 1993; accepted for publication (in revised form) by N. J.
Higham, November 9, 1993.

Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-
8205 (chumath.ncsu.du). This research was supported in part by National Science Foundation
grants DMS-9006135 and DMS-9123448.
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(SHIEP) than constraints, which presumably implies that the solution is far from
unique. It turns out that most of the proofs in the literature are not practicable
for the (SHIEP) in that a construction by mathematical induction, if possible at
all, would be overwhelmingly complicated. See, for example, [14], [15], [17]. In this
paper we propose numerical algorithms that are different from the classical ways of
authenticating the existence.

Henceforth, we shall denote the diagonal matrix whose main diagonal entries
are the same as those of the matrix M as diag(M) and the diagonal matrix whose
diagonal entries are formed from the vector v as diag(v). This notation will prove
to be convenient in the discussion. Any ambiguity can be clarified from the context.
Also, we shall define

(2) "Y(a) := {T e Rnnldiag(T diag(a)}

and

(3) A/[(A) "= {QTAQIQ e (.O(n)},

where A := diag(A) and O(n) is the group of all orthogonal matrices in Rnn.
Our algorithms are based on the idea of finding the shortest distance between

T(a) and A/I(A), i.e., we want to olve

min lit- ZIIF(4)
TeT(a),ZeM(A)

where I1" lie means the Frobenius norm. Clearly, the Schur-norn theorem attests that
T(a) and A/I(A) intersect and hence the minimal value of (4) should be zero. Our goal
is, starting with an arbitrary point on either T(a) or A/I(A), to find the intersection
point.

The (SHIEP) is fundamentally different from a classical inverse eigenvalue prob-
lem (CIEP) that has been discussed, for example, in [12]. Given symmetric matrices
A0, A1,..., An, the (CIEP) is to find a vector c e Rn such that the matrix A(c) where

(5) A(c) := Ao + clA +... + cndn

has the prescribed spectrum . In relating the (CIEP) to the (SHIEP), one must
specify each Ai of the basis matrices. To characterize the matrices A,..., An a priori
so that a solution to the (SHIEP) may be written in the form of (5), however, is by no
means easy. One may select, for example, A0 diag(a) and all other Ai, 1 <_ <_ n,
such that diag(Ai) 0. Even so, the off-diagonal entries of Ai are still completely
free. Picking the remaining part of Ai arbitrarily would be an absurd thing to do since
the resulting (CIEP) may very well not have a solution at all. In fact, one can easily
construct a 2 2 example to demonstrate a near miss case where Ai’s are such that a
certain combination A(c) from a special c is very near a solution of the (SHIEP), yet
the entire atone subspace of A(c) from every possible c does not intersect A/I(A). One
may then wonder why not to exploit the freedom in the (SHIEP) by further restricting
the structure of the matrix. For example, it seems to be a sensible requirement that
the matrix being constructed should be a Jacobi matrix, since there are really 2n- 1
given data elements (both a and have the same sum.) Again, one can easily check
that there are no real numbers bl, b2 so that the 3 3 matrix

[1 bl 0]bl 2 b2
0 b2 3
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will have eigenvalues {-5,-4, 15}. That is, the (SHIEP) for structured matrices is not
necessarily solvable. It is an interesting question to study what additional conditions
must be imposed so that a more specified problem has a solution; however, in this
paper attention is paid only to the (SHIEP) that arises from the Schur-Horn Theo-
rem. Consequently, until A1,..., An are properly selected, any numerical techniques
proposed for (CIEP) are not directly applicable for the (SHIEP).

In contrast, a much easier iterative method that alternates points between 2-
and J/I(A) is possible. This procedure, called lift-and-projection for the reason that
will become clear from the geometry, is discussed in 2. The lift and projection
method is essentially the same as the so-called alternating projection method [4], [8],
[11], [13] except that the latter requires the underlying sets to be convex. The set
A/I(A) is not convex. Nevertheless, we shall see for our problem that the so-called
proximity map can still be formulated. In particular, the projection is almost free and
the Wielandt-Hoffman theorem makes the action of lifting possible at the cost of a
spectral decomposition per step. We think this connection is worth mentioning even
though the rate of convergence is expected to be linear only.

Our main contribution in this paper is in the construction of a gradient tiow
on the surface A/I(A) that moves toward the desired intersection point. No spectral
decomposition is needed. Our approach is similar to that developed in [9] with slight
modifications, but the application to the Schur-Horn theorem is apparently new. The
gradient tiow is derived in 3. We should emphasize that our goal in this paper is not
to redo the proof of the Schur-Horn theorem, but rather to develop an algorithm that
can compute the results promised by the theorem. On the other hand, if we can show
that our algorithm always finds a solution, then in return we have indeed offered a
different proof for the Schur-Horn theorem. Numerical examples are demonstrated
in 4.

2. Lift and projection. In [10] we introduced a notion that interprets numerical
methods proposed in [12] for the (CIEP) as a coordinate-free Newton method. For the
(SHIEP), however, one quickly discovers that the same idea does not work. The search
for a r-intercept of a tangent array from A/I(A) amounts to a nonlinear system of
n(n + 1)/2 equations in n(n- 1) unknowns. When n > 3, this is an underdetermined
system. Unlike those methods discussed in [12], there is no clear strategy on how the
this system could be solved. In this section, we replace the concept of "tangent" by
that of "projection" and propose an analogous but easier iteration method called lift
and projection.

The main idea is to alternate between q" and jI(A) in the following way: From
a given T(k) E 7, first we find the point Z(k) J/I(A) such that liT(k) Z(k)ll F
dist(T(k), A/I(A)). Then we find T(k+) e T such that IIT(k+l)--Z(k)llF dist(T, Z(k)).
Here, as usual, the distance is measured in the Frobenius norm. A schematic diagram
of the iteration is illustrated in Fig. 1, even though the topology of A/I(A) is much
more complicated. We call Z(k) a lift of T(k) onto jI(A) and T(k+l) T a projection
of z(k) onto T.

The projection is easy to formulate. In fact, the projection T [tij] of any
Z [zij] A/I(A) onto T must be given by

zij, if - j
tij

hi, if j.

The Wielandt-Hoffman theorem [15, Thm. 6.3.5], on the other hand, furnishes a

mechanism for lifting. For demonstration purposes, we assume that both A and the
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(k)
T

T
(k+l)

FIG. 1. Geometric sketch o.f lilting and projection.

given T E T have simple spectrum. (For the case of multiple eigenvalues, the result
only needs a slight modification.) Suppose T QTDQ is a spectral decomposition of
T where D is a diagonal matrix of eigenvalues. Then the shortest distance between
T and A/(A) is attained at the point (i.e., the lift of T onto

Z := QTdiag(Al,..., An)Q,

where is a permutation so that I1,...,A are in the same algebraic ordering as the
diagonal entries in D. The justification on why this assertion is correct has already
been proved in [7] and [9].

Since in either step of lifting or projection we are minimizing the distance between
a point and a set, we have

(8) lIT(k+) Z(+)II<IIT(+) Z(k)II2F < ]IT()

The lift and projection clearly is a descent method. The sequence {(T(k), Z(k))} will
converge to a stationary point for the problem (4).

Because J(A) is not a convex set, a stationary point for (4) is not necessarily an
intersection point of 7" and M(A). This is a major difference between our method and
the alternating projection method [4], [8], [11], [13]. On the other hand, the applica-
tion of the Wielandt-Hoffman theorem to formulate the proximity map despite of the
non-convexity is remarkably simple and quite interesting. The rate of convergence
being expected to be linear only, this method might not be very efficient.

3. Gradient flow. We now consider a continuous approach for the (SHIEP)
that does not need any spectral decomposition. Similar to (4), our idea now is to
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solve the problem

min(9)
Qeo()

1
F(Q) ’= lldiag(QTAQ)

The Schur-Horn theorem guarantees that there exists a Q at which F vanishes. We
now explain how to improve the matrix Q when F(Q) is not minimal.

In terms of the Frobenius inner product

(10) (A,B> := E aijbiy,
i,j

the Frdchet derivative of F at Q acting on an arbitrary matrix U E Rnxn
calculated as follows:

can be

(11)
F’(Q)U 2<diag(QTAQ) diag(a), diag(QTAU)>

2<diag(QTAQ) diag(a), QTAU>
2(AQ(diag(QTAQ) diag(a), U>.

The second equality in (11) follows from the observation that the first entry in the
inner product is a diagonal matrix that results in the same inner product with either
diag(QTAU) or QTAU. The third equality follows from the adjoint property of the
inner product. The gradient VF at Q can now be represented as

(12) VF(Q) 2AQ(Q)

with/3(Q) diag(QTAQ) diag(a).
Once we have (12), the entire framework developed in [9] for projected gradient

method can be applied. In particular, the projected gradient is readily available.
THEOREM 3.1. The projection g(Q) of VF(Q) onto O(n) is given by

(13) g(Q) Q[QTAQ, 3(Q)],

where [A, B] := AB- BA is the Lie bracket.
Proof. See [9, formulas (20), (21), and (22)].
We may also calculate the projected Hessian as follows.
THEOREM 3.2. Let Q O(n) be a stationary point of (9). Any tangent vector H

of the manifold O(n) at Q is of the form H QK for some skew symmetric matrix
K. The projected Hessian g’(Q) acting on H is given by

(14) <g’(Q)QK, QK> <diag[QTAQ, K] [fl(Q), K], [QTAQ, K]>.

Proof. See [9, formulas (27), (28), and (29)].
The vector field

defines a steepest descent flow on the manifold O(n) for the function F(Q).
X := QTAQ and a(X)"= (Q) diag(X) -diag(a), then correspondingly

2 IX, [.(x), x]]

Let
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defines an isospectral flow on j4(A) that moves to decrease the distance between
diag(X) and diag(a).

The algorithm for solving the (SHIEP) is then simply to integrate the differential
equation (16) from a starting point X0 E Ad(A).

We now take a closer look at where the flow of (16) will converge. By the way we
construct (16), a natural Lyapunov function

(17)
1

G(t) := lldiag(X(t))- diag(a)ll

exists. Lyapunov’s second method [5, Thm. 5.5] implies that a limit point of (16)
must satisfy [c(X), X] 0. For simplicity, we consider only the generic case where
all A1,..., An are distinct. The case with some eigenvalues equal to each other is a
little bit more complicated to analyze, although our numerical experiences seem to
indicate that the convergence behavior should be similar. Under our assumption, a
stationary point Q of (9) necessarily corresponds to an equilibrium point X QTAQ
of (16) and vice versa.

Recall that (Q) diag(QTAQ)- diag(a). Obviously if (Q) 0 at a stationary
point Q, then the corresponding X QTAQ is a solution to the (SHIEP). Indeed, we
have the following observation which shows that the stationary point Q in this case
satisfies the second order necessary condition for being a minimum of (9).

THEOREM 3.3. If (Q) 0 for some Q O(n), then for all skew symmetric
matrices g it is true that < g’(Q)QK, QK >= Ildiag[QWhQ, K]ll >_ 0. In other
words, the projected Hessian of F at Q is positive semidefinite.

Proof. The result follows directly from (14) and the definition of Frobenius inner
product (10). fl

The strict inequality is not true in the above theorem. In fact, if we denote
f :- diag[Z, K] diag{wl,..., (.dn}, then

i--1 n

(18) wi xsiksi- xitkit.
s=l t--i+

Let X be fixed. Since n-’i=1 wi 0, the system wi 0 for i 1,..., n contains only
n- 1 independent equations in the n(n-1)/2 unknowns kij. We should be able to
find a nontrivial skew symmetric matrix K that makes gt 0. However, we now show
that only those matrices X at which/(Q) 0 are the possible asymptotically stable
equilibrium point for (16).

THEOREM 3.4. If (Q) 7 0 at a stationary point Q, then there exists a skew
symmetric matrix K such that (g’(Q)QK, QK) < O. Thus, Q cannot be a local
minimum of (9).

Proof. Transforming similarly by a permutation matrix if necessary, we may
assume that (Q) is of the form

(19) (Q) diag{lln,..., kIn},

where In is the ni x ni identity matrix and 1 >"" >/k. Since [QTAQ, (Q)] 0,
it follows that X QTAQ must be block diagonal of the form

(20) X diag{Xll,..., Xkk},

where each Xii is a real. symmetric matrix of size ni x hi. Define E := Q(Q)QT.
Since [A, E] 0 and all entries of A are distinct, E is a diagonal matrix whose entries
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E diag(el,..., en) are simply a permutation of those of/(Q). Note that (T is the
orthogonal matrix of eigenvectors of X. So Q must also have the same structure as X.
For any n n skew symmetric matrix K [Kij] partitioned in the same way as in (20)
that satisfies Ki 0 for all 1,..., k, it is easy to check that diag[QTAQ, K] O.
The projected Hessian now becomes

(g’ (Q)QK, QK) -([(Q), K], [QTAQ, K])
-(ER- RE, AR-

"2(21) -2 E(Ai Aj)(ei ej)kiy,

where R [:ij] := QKQT is still a skew symmetric matrix with the same structure
as K. From (21), we pick up values of iy so that (g’(Q)QK, QK < O.

Theorem 3.4 implies that at a stationary point Q where/(Q) 0, there exists a
certain direction along which the functional value F is increasing. The corresponding
equilibrium point X QTAQ, therefore, has at least one unstable (repelling) direc-
tion. To converge to such an unstable equilibrium point, the descent flow X(t) must
stay on very special directrices that form a measure zero, nowhere dense subset in Rn.
From the numerical analysis standpoint, this kind of equilibrium point will never be
realized because computation along the directrix can easily be derailed by round-off
errors and hence pushed away from the unstable equilibrium point.

4. Numerical examples. Since c(X) is a diagonal matrix, all diagonal matrices
on Ad(A) are equilibrium points for (16). Thus one should avoid using A as the initial
value X0. One way to generate a reasonable initial value is by defining X0 := QTAQ
with Q a random orthogonM matrix. There are many techniques for generating such
a Q [1], [19].

All the following computations are done on a DECstation 5000/200 with double
precision. We display all the numbers with only five digits so as to fit the data
comfortably in the running text.

Example 1. To simulate reasonable test data, we start with a randomly generated
symmetric matrix

4.3792x10- 4.3055x10- 1.2086xlo+ 1.0968x10+
4.3055xI0- 1.0388xi0+ 1.5021xi0+ 7.2134xi0-1.2086xi0+ 1.5021xi0+ 1.5396xi0-2 9.7239xI0-1.0968xi0+ 7.2134xi0- 9.7239xi0-I 1.8609xi0+
1.4616xi0+ 1.4543xI0- 7.2076xi0- 1.2622xi0+

1.4616x10+o
1.4543x10-7.2076xi0-1.2622x1.0+
1.4024x10+

The diagonal entries

a [4.379210-I 1.038810+, 1.539610-2, 1.860910+, 1.402410+]

and eigenvalues

A [- 1.416910+, -5.669810-I ,4.389010-I ,1.416210+, 4.884210+]

of M0 are used as the test data. Now we randomly generate an orthogonal matrix

Q1

-6.4009x10-1 -5.3594x10- -1.8454x10-1 -3.3375x10-2 -5.1757x10-2.1804xI0- -1.2359xI0- -5.0336xi0-1 -8.2193xI0- 9.0802xi0-2

-7.2099xI0- 5.6072xI0-I 1.4302xi0-2 -2.4876xI0- 3.2199xi0-2.8417xi0-3 -1.9828xI0- 8.440110-1 -4.9375xI0- -6.7297xi0-2

-1.5134xi0-1 -5.8632xi0-1 3.0406xi0-3 1.3284xi0-1 7.8464xI0-
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and define Xo QTAQ1. We use the subroutine ODE in [18] as the integrator where
local control parameters ABSERR and RELERR in ODE are set to be 10-12. We
examine the output values at a time interval of 1, and assume the path has reached an
equilibrium point when two consecutive output points are within a distance of 10-l.
At t 11, the gradient flow converges to the matrix

4.3792x10-1 2.6691x10-1 -1.9178x10-1 -6.1356x10-1 -1.5920x10+o
2.6691x10-1 1.0388x10+o -7.2845x10-1 -8.6726x10-1 -1.9618x10+o

-1.9178x10-1 -7.2845x10-1 1.5396x10-2 -6.3601x10-1 1.6256x10-1

-6.1356x10-1 -8.6726x10-1 -6.3601x10-1 1.8609x10+o 1.5032x10+
-1.5920x10+0 -1.9618x10+0 1.6256x10-1 1.5032x10+0 1.4024x10+o

The flow in theory should stay in the surface A//(A). The eigenvalues of M1 are
checked to agree with A to 10 digits.

If we use another random orthogonal matrix

--4.787910-1 8.794810-2 --4.142410-3 3.004110-I

--4.109910-1 --5.7368x10-I --6.875010-1 --7.045510-2

1.722510-1 6.151110-1 --6.152110-1 --4.228110-1

--7.1440x10-I 2.565610-1 3.232510-I --5.022610-I

2.486010-I --4.679510-1 2.106010-I --6.8830x10-I

then at t . 13, the gradient flow converges to the matrix

4.379210-1 -1.408710+o 4.881110-1 -2.088210+o
-1.408710+o 1.038810+o 2.306710-1 1.116010+o

M2 4.881110-I 2.3067i0-1 1.5396I0-2 -7.295810-2

-2.088210+o 1.116010+o -7.295810-2 1.860910+o
1.228510+0 -8.854310-I 7.205410-I -3.760110-1

8.202210-
--1.560710-1

1.863410-1

--2.589510-1

4.484510-

1.228510+0

-8.8543i0-1

7.205410-1
--3.7601x10-I

1.4024xi0+

whose eigenvalues again agree reasonably well with A.
Example 2. Under the same stopping criterion, we repeat the experiment in Ex-

ample 1 with 2,000 test data. The diagonal entries a and eigenvalues A are generated
from symmetric matrices with normal distribution entries. The orthogonal matri-
ces Q are generated from the QR decomposition of other stochastically independent
(nonsymmetric) random matrices [19]. We collect the length of integration required
for reaching convergence in each case. This length should be inherent only to the
individual problem data (and the stopping criterion), but should be independent of
the machine used in computation. The histogram of the lengths is presented in Fig. 2
where for better display the frequency distribution is plotted in its natural logarithm.
When there is no distribution for a particular length (so the logarithm is negative
infinity), the plot is left blank. As can be seen, about 77% of the cases converge with
the length of integration less than 7 and about 93% converge with length less than
17. The maximal length of integration that occurred in this test is 296. It is perhaps
also interesting to note that all the 2,000 cases converge to a desirable solution. Con-
firming our previous argument over Theorem 3.4, none of the cases gets trapped at a
point where F(Q) ?t O, although this kind of equilibrium points do exist.

Example 3. In this example, we experiment with the case when multiple eigenval-
ues A [1, 1, 1, 1, 4] are present. We take a [1.0749, 1.3309, 1.1197, 2.3035, 2.1709].
Using the random orthogonal matrix

-4.871310-2 -1..335410-1 9.463910-1 -1.141910-1 2.666610-1

9.879010-1 -4.330710-2 7.218710-2 -5.168110-2 -1.195510-1

Q _6.987310-2 -4.295710-1 1.817610-1 6.518510-1 -5.938410-1

3.0930xi0-2 -8.5347xi0-1 -2.5445xi0-I -8.1527xi0-2 4.4637xi0-I

1.2584xi0-I 2.5953xi0-I -3.6892xi0-2 7.4347xi0-1 6.0225xi0-1
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FIG. 2. Histogram on the lengths of integration required for convergence.

we find that a limit point exists at

1.0749x10/o -1.5748x10-1 -9.4707x10-2 3.1254x10-1

-1.574810-1 1.3309x10+ 1.9903x10-1 -6.5679x10-1

-9.4707x10-2 1.9903x10-1 1.1197x10+ -3.9499x10-1

3.1254x10-1 -6.5679x10-1 -3.9499x10-1 2.3035x10+
2.9622x10-1 -6.2250x10-1 -3.7437x10-1 1.2354x10/

2.9622x10-1

-6.2250xI0-I

-3.7437xI0-1.2354x10+
2.1709xi0+

when t 41.

Example 4. In this example, we consider the case when multiple diagonal entries
a [1, 1, 1, 1, 1] are present. Using A [1.9747, 2.3050, 3.8938,-0.8128,-2.3608] and
the random orthogonal matrix

--3.3399xI0-I 2.6628x10-I --2.3522xi0-1 --6.690410-I 5.6089xi0-1

--3.5191xi0-I --8.8924xI0-I 2.0821xi0-I --1.9279xi0-I 6.9964xi0-2

2.6488x10-I 3.3460x10-I -8.6998x10-I 1.8120x10-I 1.6787xI0-I

6.2901xi0-I --1.2402xi0-I 2.8591xi0-2 --6.7641xI0-I --3.6141xi0-1

5.4662xi0-I --I.0493xI0-I 3.7899xi0-I 1.5765xI0-I 7.2230xi0-I

we find a limit point exists at
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l.O000xlO/ -1.490510+o 1.125710-1 -1.430110- -1.6216x10+o
--1.4905x10+ 1.000010+0 --8.101510-2 --4.578410-1 --7.5669x10-I

1.1257x10- -8.101510-2 1.000010+o 1.474910+o --2.1841x10+o
--1.430110-1 --4.578410-1 1.474910+0 1.0000x10+ 4.3081x10---1.621610+0 --7.566910-1 -2.184110+o 4.3081x10-I 1.0000x10+

when t 8.

5. Conclusion. The Schur-Horn theorem guarantees that the inverse eigenvalue
problem of constructing a Hermitian matrix with prescribed diagonal entries and
eigenvalues always has a solution. The numerical methods described in [12] will
not work generally for finding such a solution. We propose two methods. The lift-
and-project method makes a connection with the Wielandt-Hoffman theorem. The
gradient flow method can be integrated by any available ordinary differential equation
solver. We show the gradient flow method always converges. Numerical experiment
seems to suggest that the method works reasonably well.

Acknowledgments. The author wishes to thank Professor Leonid Faybusovich
for pointing out a discussion in a paper by Professor Roger Brockett [20].
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APPLICATION OF THE SMITH NORMAL FORM TO THE
STRUCTURE OF LATTICE RULES*

J. N. LYNESS AND P. KEAST$

Abstract. Two independent approaches to the theory of the lattice rule have been exploited
at length in the literature. One is based on the generator matrix A of the lattice A whose elements
provide the abscissas of Q. The other, based on the t-cycle form Q(A)f of Sloan and Lyness [Math.
Comput., 52 (1989), pp. 81-94], leads to a canonical form for Q. In this paper, a close connection
between these approaches is demonstrated. This connection reflects the close relation between the
Kronecker decomposition theorem for Abelian groups and the Smith normal form of an integer
matrix. It is shown that the invariants of the canonical form of Q(A)f coincide with the elements
of the Smith normal form of B (AT)-1, the reciprocal lattice generator matrix. This fact may be
used to provide a straightforward solution to the previously intransigent problem of identifying and
removing a repetition in the general t-cycle form.

Key words. Smith normal form, lattice rule, multidimensional quadrature, good lattice points

AMS subject classification. 65D32

1. Background and introduction. A lattice rule is a multidimensional quadra-
ture rule for integrating over an s-dimensional hypercube. In this section we provide
a brief introduction to the theory followed by an outline of the contents of the rest of
the paper. Without loss of generality we shall take the hypercube of integration to
be [0, 1) s.

A lattice A is an infinite array of points. The standard definition demands that
these points satisfy: (a) p, q E A implies p-q E A and (b) there exists no limit point;
that is, there exists a positive e(A) such that IP- ql >- e(h) unless p q.

Of special note is the s-dimensional unit lattice A0 that comprises all points
whose components are all integers. An s-dimensional lattice, which contains the s-
dimensional unit lattice as a sublattice, is known as an integration lattice. A lattice
rule Q(A) is defined only in terms of an integration lattice A. It has an abscissa set
comprising all the points of this integration lattice A that lie in [0, 1) 8 and applies an
equal weight to each abscissa.

Matrix algebra is a useful tool for determining some of the properties of lattices
in general and integration lattices in particular. A key concept is the generator matrix
A of A. This is an s x s matrix, whose rows ar are elements of A having the property
that the lattice comprises all points p of the form

(1.1) p . Afar AA,
r=l

where Ai are integer and A- ()1,2,...,,s).
The s x s unit matrix I is a generator matrix of the unit lattice A0.
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Corresponding to an s-dimensional lattice A is its reciprocal lattice A+/-; this plays
a key role in the discretisation error theory of Q(A) [Lyness 1989]. In the present
context, it is convenient to define A+/- as the lattice having a generator matrix B
(AT) -1. It is relatively straightforward to show that the condition for A to be an
integration lattice is that B, the generator matrix of A+/-, be an integer matrix, i.e.,
every element of B be an integer. From this it follows immediately that every nonzero
element of an integration lattice generator matrix A is a rational whose denominator
is a factor of N, given by

(1.2) N IdetA1-1 detB I.
N is of course an integer and it can be shown that it coincides with the number of
lattice points in the hypercube [0, 1) 8. These N points form the abscissa set of the
lattice rule Q(A) based on the integration lattice A. This rule applies an equal weight
1/N to each abscissa.

A generator matrix of a lattice A is not unique. A cursory examination of (1.1)
above shows that the same set of points p is obtained when ar is replaced by -at,
when ar and at are interchanged, and when ar is replaced by ar + at with t#r.
These modifications to expression (1.1) may be effected by elementary integer row
operations on the generator matrix A. Any such individual operation has the same
effect on A as premultiplication by an integer matrix of very simple structure. This
matrix is one of a type termed unimodular.

A unimodular matrix V is a square integer matrix of determinant +1. The product
of unimodular matrices is itself unimodular. The inverse of a unimodular matrix is also
unimodular, and elementary integer row (column) operations on a general matrix may
be accomplished by pre (post) multiplication by a unimodular matrix. In particular,
when A is a generator matrix of A, so is VA, where V is any unimodular matrix and
all other generator matrices of A are of this form. (Note that the lattice generated by
AV is generally different from A.)

The approach to the theory of lattice rules based on lattice generator matrices is
described in more detail in [Lyness 1989], where the connection between the reciprocal
lattice and the accuracy of the rule is described. A key result is that an integration
lattice can be specified uniquely by the Hermite normal form of B. This has led
to results about the number of distinct lattice’rules [Lyness and Srevik 1989] and
the structure of embedded lattice rules [Lyness, Srevik, and Keast 1991], and has
provided much of the underlying theory needed to construct a complete search for
good (cost-effective) lattice rules [Lyness and Srevik 1991].

However, the original approach to the theory of lattice rules (e.g., see [Sloan 1985]
and [Sloan and Lyness 1989]) is quite different in character. It appears to make no
use whatever of matrix algebra, relying on a notation that is more appropriate to a
quadrature rule. This notation is a development of a standard form for the number
theoretic rule

(1.3) Qf N f N z e A0,
j=l

where {x} has its conventional meaning as the vector whose components are the
fractional parts of those of x. Specifically,

(1.a) {x} e {x} x e A0.



220 J.N. LYNESS AND P. KEAST

It is customary to define f(x) as a unit periodic extension of f(x) that coincides with
f(x) in the hypercube [0, 1) 8. Thus f(x) f({x}) and, using this notation, (1.3)
takes the form

(1.5) Qf f z e A0.
j-’l

Number theoretic rules have been the subject of continuous and thorough investigation
since their introduction by Korobov in 1959 [Korobov 1959]. A recent survey of this
work appears in [Niederreiter 1988].

The number theoretic rule is itself a lattice rule. The key to understanding form
(1.3) or (1.5) is to note the use Of f in place of f. It appears that this has the
effect of taking a set of N points arranged at equal intervals along a line in R,
and translating each point individually so as to end up with a set of points that
are distributed in [0, 1) 8. It can be readily shown that these points are part of an
s-dimensionM integration lattice A and comprise all the points of A that lie in [0, 1) 8.
One motivation for this paper is to illuminate the connection between this lattice A
and any of its generator matrices A.

In the rest of this paper, t is a positive integer, D is a diagonal t t matrix whose
elements di are positive integers, and Z is a t s integer matrix whose rows are the
vectors zi. What we term a t-cycle D-Z form of an s-dimensional lattice rule is an
expression in the form of the right-hand side of

(1.6) Qf d d2 dt - f -- + -2 + + -t
jl:l j2:l jt:l

It is shown in Theorem 2.1 of [Sloan and Lyness 1989] that, so long as t >_ 1 and D
is not singular, this form represents a lattice rule. This may be done by showing that
all points lie on a lattice, that all points are in [0, 1) s, and that each point is assigned
equal weight. The first two items are trivial. The thirdis straightforward, but leads
us to one of the problems associated with this approach. It may well happen that the
same point occurs more than once in the summation. However, if this happens, then
every point is repeated the same number of times. The form is termed k-repetitive, or
simply repetitive, when each point is repeated k > 1 times, in which case (Q), the
number of abscissas required by the rule, is given by dld2.., dt/k which is of course an
integer. Unfortunately, the proof given in [Sloan and Lyness 1989] is not constructive.
No immediate way of determining k from the elements of D and Z was then available.

It is important to bear in mind that the same rule may be represented using
many different D-Z forms. Several examples of this are given in [Sloan and Lyness
1989]. Relatively trivial variants may be obtained by replacing any particuiar zi
in (1.6) by kzi where k is any integer prime to di. When several components are
linearly dependent, clearly they can be recombined into fewer components following
the rules of linear algebra. However, operations reducing the number of components
and changing their form are possible when all components are linearly independent.
A very simple example of this is provided by the product trapezoidal rule. Thus, so
long as d and d2 are mutually, prime, we have

1
f d + de dd2 .:

f
j(d2,d)

(1.7) Qf
dld: jl: j2=1

lld-
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However, this equation is not valid unless gcd(dl, d2) 1.
It appears then that the same rule may be expressed in a t-cycle D-Z form in

many different ways employing different values of t. The rule Q is defined to be of
rank r r(Q) if it can be expressed in an r-cycle D-Z form, but not in an (r- 1)-cycle
D-Z form. An r-cycle form of Q is termed a minimal form. The principal result in
[Sloan and Lyness 1989] is as follows. It is possible to express a rule of rank r in a
nonrepetitive minimal form in such a way that di+lldi 1, 2,..., r- 1. When this is
the case, the z are linearly independent, and the elements di are known as invariants.
These are unique; that is, every lattice rule Q has a unique rank and unique set of
invariants.

This nomenclature is taken from group theory. The abscissa set of a lattice rule
forms an Abelian group under addition modulo 1. The t-cycle D-Z form (1.6) corre-
sponds to an ex.pression of this group as a direct sum of cyclic groups in accordance
with the famous decomposition theorem of Kronecker in 1877. See also [Hartley and
Hawkes 1970, pp. 153-162]. Many of the results of Sloan and Lyness are obtained as
applications of the group theory based on this theorem.

Any minimal D-Z form of Q in which the nonzero elements of D are the invariants
is known as a canonical form. In this case the corresponding vectors z in (1.6) are
linearly independent, but are not specified uniquely.

A trivial modification of this definition of a canonical form is employed in 4. It is
clear from (1.6) that when any dj 1, the corresponding sum (over one element) may
be omitted, whatever the corresponding vector zj may be. In the sequel, on occasion,
there will arise naturally what we term an s-cycle canonical form, where the rank of
the rule is r _< s. Such a canonical form has dj 1, j [r + 1, s]; we may obtain a
standard r-cycle canonical form by removing the final s- r rows of D and Z and the
final s- r columns of D.

In this section, we have described very briefly the two principal approaches to
lattice rule theory. These are through the lattice generator matrix A; see (1.1) and
through the t-cycle D-Z form (1.6), respectively. This description provides a proper
background and a. coherent list of definitions.

In 2 we outline the theory as it exists for relating one approach to the other. This
is not a long section, as this problem has not been treated seriously before. Sections
3 and 4 contain new results, based on the Srhith normal form of a matrix having
rational elements. In 3, we show how to obtain a canonical form directly from B,
a generator matrix of the reciprocal lattice. In 4 we describe a shorter calculation
to obtain a canonical form from a possibly repetitive form that bypasses the explicit
calculation of either B or A. Section 5 contains numerical examples.

2. Some relations between the two approaches. In the preceding section,
we described two distinct ways of specifying a lattice rule. One requires a single
generator matrix A; the other requires a pair of matrices, D and Z. Sections 3
and 4 are concerned with developing an elegant connection between these different
specifications of the same rule and between different D-Z specifications of the same

rule. This section is devoted to the somewhat pedestrian methods currently available.

We note first that the lattice A formed by Qf in (1.6) includes all t points zi/d
i 1, 2,..., t together with all points generated by them. These t points by themselves
may not happen to generate an integration lattice. However, the expression (1.6) uses

f in place of f. This implies that the fractional part of any of these t points also lies
on the lattice A. The effect of this is hat the lattice must contain the points of A0,
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and so in total includes all points of the form

(2.1) p Ejizi/di + kiei,
i=1 i=1

and any point expressible in this form is a member of A. (Here, as is conventional, ei
is the ith unit s-vector.) In other words, the lattice A is generated by the rows of the
(t + s) x s matrix

(2.2) A*=( D-IZ )I

However, as mentioned above, the same lattice is generated by any matrix obtainable
from A* by using elementary integer row operations. These have the same effect as
premultiplying A* by a unimodular (t + s) (t + s) matrix V*. Thus A is generated
by the rows of any s s matrix A satisfying

(2.3) ( A Z ).
A natural approach is to put A* in upper triangular form, but any construction that
results in t ero rows is sufficient.

Occasionally, one can pick out s rows from (2.2) by inspection. The following
lemma may justify such a result.

LEMMA 2.1. Let Q(A) be given by an s-cycle D-Z representation, and set
D-Z; then ifA() is an integration lattice,~it is the integration lattice of Q.

Proof. A(A) is generated by the rows of A. Thus it includes all points of the form

(2.4) p- jizi/di j E A0.
i--1

Since ft. is an integration lattice, it includes all points ei i 1, 2,..., s. Thus, speci-
fication (2.4) coincides with specification (2.1) of the lattice A.

For example, if Z is known to be unimodular, the following theorem allows us to
write down a generator matrix directly.

THEOREM 2.2. Let Q(A) be given in an s-cycle D-Z representation with Z
unimodular. Then this representation is nonrepetitive, and A D-1Z is a generator
matrix of A.

Proof. Clearly,

B (AT)-1 D(zT)-,
being the product of two integer matrices, is an integer matrix. Thus, A generates an

integration lattice and, in view of the previous lemma, is the generator matrix of A.
Moreover, since det Z 1, we find

dd2.., ds det D det A[- N,

where N is the number of distinct abscissas used by Q(A). Thus, the D-Z form is
not repetitive.

The reverse process, that of obtaining an s-cycle D-Z form of Q(A) from a given
generator matrix A of the integration lattice A is also straightforward. Let ar be
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row of A and dr be the smallest integer (or any integer) for which zr drar E A0.
Then an s-cycle D-Z specification is given by the s s matrix Z whose rows are zr
and D diag{dl, d2,... ,ds}. (Unfortunately, this simple approach gives, in general,
a highly repetitive D-Z form.)

We believe that Theorem 2.2 is new and in simple examples may be helpful in
recognizing a nonrepetitive form. But what is particularly noticeable in the results
of this section is the absence of any general procedure for avoiding or recognizing a
repetitive form or for producing a canonical form. A new way of carrying out these
tasks, which leads directly to a canonical form, is given in the next section.

3. Reduction of B to D-Z form. We noted earlier that the same lattice may
have many different generator matrices. These are related by elementary integer row
operations. In particular, when B is any generator of a reciprocal lattice A+/-, this same
lattice is also generated by B VB when V is any unimodular matrix. Successive
row operations may be used to put B into upper triangular lattice form (utlf), in
which all elements are nonnegative, and the largest element in any column lies on
the diagonal. This is essentially the Hermite normal form. It has been exploited in
previous papers to count the number of lattice rules, to obtain information about
sublattices and superlattices, and to form the basis of a search program for good
lattice rules (see, e.g., [Lyness, Srevik, and Keast 1991].

As mentioned earlier, integer column operations applied to B (or postmultiplication
by unimodular matrices) result in a matrix that represents a different lattice. Never-
theless, if one allows column operations as well as row operations, one may diagonalize
B. There are generally several ways of doing this though, of course, any such diago-
nal form has the same determinant (or product of nonzero diagonal elements). This
procedure is significantly more involved than the procedure for the Hermite normal
form but is reasonably straightforward. Since elementary operations may be used to
interchange rows and columns, it is apparent that we may rearrange the order of these
diagonal elements. However, there are, in addition, generally different possibilities for
the set of diagonal elements. For example, the matrix given by

(71421)(3.1) B= 35 73 117
7 2O 66

can be reduced to diagonal form in many ways by using unimodular matrices. Two
ways are as follows:

(5-1 0)( 7 14 21) ( 2 1 5)(3 0 0)(3.2) 1 0 0 35 73 117 -1 0 -4 0 7 0
9 -2 1 7 20 66 0 0 1 0 0 21

and

(a.a) -as 7 0 35 73 117 1 7 -4 0 21 0
9 -2 1 7 20 66 0 0 1 0 0 21

where the pre and postmultiplying matrices are unimodular.
Apart from sign changes and from reordering the diagonal elements, these are, in

fact, the only possibilities for diagonalizing this particular matrix B by unimodular
transformations. This may be shown from theory developed in the nineteenth century.



224 J.N. LYNESS AND P. KEAST

The Smith normal form of B, denoted by snf(B), is a diagonalization of B using
integer elementary row and column operations in which the nonzero diagonal entries
satisfy dj,j/di,i integer for all j >_ i. If the restriction that the diagonal entries be
in nondecreasing order is removed, then the diagonal form is not unique. However,
any ordering can be achieved by pre and postmultiplication by permutation matrices,
which are unimodular.

THEOREM 3.1 ([Smith, 1861]). Given a ts matrix fl whose elements are rational
numbers, there exist unimodular matrices V and U of sizes t t and s s, respectively,
such that

(3.4) 5 snf(A)= VAU

is a t s diagonal matrix having t nonzero elements which are rationals satisfying

(3.5) 5+,+/5, integer 1, 2,...,- 1.

The matrix 5 is unique and is known as the Smith normal form ofA. (But the matrices
V and U are not unique.)

A convenient, accessible modern reference to this theory, which contains a brief
proof of this theorem, is found in [Schrijver 1986, pp. 50-51] A deeper treatment, set
in the appropriate number theory context, appears in Newman 1972. Algorithms to
obtain the Hermite normal form and the Smith normal form have been published; see,
for example, [Bradley 1971] and [Kannan and Bachem 1979]. In addition, [Maple V
1991] contains a procedure for finding D for integer matrices (but not U or V), while
the group theory language Cayley [Cannon 1984] has the facility to compute D, U,
and V.

The key theorem of this paper, which is a simple application of the theorem
defining the Smith normal form, follows.

THEOREM 3.2. Let Q(A) be an s-dimensional lattice rule and let B be a generator
matrix of the reciprocal lattice A+/-. Then an s-cycle canonical form of Q(A) is given
by Z and D, where

(3.6) D=snf(B)=VBU and Z UT,
U and V being unimodular.

Proof. Note that since B is an integer matrix, the elements of D are integers. Let
us consider the lattice rule Q(A) whose D-Z form comprises these particular matrices
D and Z. Since Z is unimodular, we may invoke Theorem 2.2 to establish that D-Zis a generator matrix of A. This being so, since VT is unimodular A VTD-1Z is
also a generator matrix of A and so, by elementary manipulation B is a generator
matrix of A’+/-. Since the lattice generated by B is unique and its reciprocal is unique,
A coincides with A in the theorem. To establish the theorem, we note that, in view of
Theorem 3.1, the elements of D have the divisibility property required for a cnonical
form. [:]

COROLLARY 3.3. Every lattice rule Q(A) has an s-cycle canonical form with Z
a unimodular matrix.

COROLLARY 3.4. The invariants (and rank) of Q(A) coincide with the nonunit
elements (and their number) of the Smith normal form of any generator matrix B of
the reciprocal lattice of A.

Let us now return to the numerical example. The lattice rule Q(A), whose recip-
rocal lattice is generated by B in (3.1), is of rank 2, has invariants nl n2 21, and
may be expressed in canonical D-Z form with zl (-8, 7, 0) and z2 (5,-4, 1).



APPLICATION OF SMITH NORMAL FORM TO LATTICE RULES 225

Note that by means of permutation matrices (which are unimodular), we can
rearrange the order of the diagonal elements in the Smith normal form. And, if we
abandon the divisibility property, we can usually find other sets of diagonal elements.
In example (3.1), only the two possibilities arise, because these two diagonal matrices
are the only ones with determinant 441 that have the correct Smith normal form.
The diagonal matrix diag{3,3,49}, for example, cannot be obtained from B since it
has Smith normal form diag{1,3,147}. This fact is worth mentioning, because when
D VBU and D is diagonal but not necessarily in Smith normal form, the rule Q(A)
is also defined by D and Z UT. This is also an s-cycle nonrepetitive form but is
not necessarily canonical.

It is almost self evident that the Smith normal form of the reciprocal of any
nonsingular square matrix M is the reciprocal of the Smith normal form of M. It
follows that the Smith normal form of the generator matrix A (BT) -1 is the
reciprocal of D in (3.6). One can write down immediately the correspondents of
Theorem 3.2 and Corollary 3.4. These are given in Theorem 3.5 and Corollary 3.6.

THEOREM 3.5. Let A be a generator matrix of A, and let snf(A) VA U, V
and U being unimodular, then an s-cycle canonical form of Q(A) is given by D 5-1
and Z U-.
Naturally, the unimodular matrices V and U occurring here are the transposes of the
inverses of those in (3.6).

COROLLARY 3.6. The invariants (and rank) of Q(A) coincide with the inverses of
the nonunit elements (and their number) of the Smith normal form of any generator
matrix A of A.
Theorems 3.2 and 3.5 were discovered independently by Langtry in [Langtry 1995].

In this section we have provided a general method for obtaining a D-Z canonical
form from a generator matrix A. in 2 we showed how to derive a generator matrix
from a general t-cycle D-Z form. Taken together, we have an algorithm for finding
the rank, invariants, and canonical form of any lattice rule expressed in t-cycle D-Z
form. It is convenient to list the main steps of this algorithm here.

ALGORITHM I
(a) Construct the (t + s) s matrix (), where . D-Z.
(b) Put this matrix into upper triangular form; i.e., construct an s s matrix A such
that

(Note that A is a generator matrix of A.)
(c) Construct the Smith normal form of A; thus VAU.

Then Dc -1 and Zc U-.
If one simply requires the invariants (perhaps to determine the rank), one does

not need to calculate U. However, in the Smith normal form reduction, the calculation
of U (or of U-1 or both) can be effected in situ.

This algorithm is essentially the same as one proposed in [Langtry 1995]. We give
a numerical example in 5 comparing it with another algorithm.

4. A shorter algorithm for the canonical form. We have used Algorithm
I described above extensively as a service routine. Since most of our work has been
theoretical in nature and speed is no object, we have found it quite satisfactory.
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However, further analysis, developed in this section, leads to a faster and we believe
a more elegant algorithm that is given at the end of this section.

A casual inspection of Algorithm I suggests that there may be room for improve-
ment. To fix ideas, suppose that s is very much larger than t. The algorithm starts
with a diagonal t x t matrix and a full t x s matrix and ends up with a diagonal
r x r matrix and a full r x s matrix, where the rank r _< t. In between, only integer
row and column operations take place. One may be left wondering whether there is
really any need to bring in the larger (t + s) x s matrix, operate on this to get an
s x s matrix; then operate on this to end up with the smaller matrices? To be more
specific, suppose t 1. If the rule is not repetitive, it is already in canonical form. In
the unlikely event that one applied Algorithm I, it would approach this almost trivial
problem by forming an (s + 1) x s matrix and putting it in upper triangular form.
The present authors are not suggesting that a user would actually use this algorithm
in such a trivial case. The challenge is to provide an algorithm which, when presented
with a trivial situation, carries out its task correspondingly quickly. Algorithm II, at
the end of this section, is more streamlined. It uses almost exclusively t x s matrices.

We start the theory by considering the Smith normal form

(4.1) snf(.2.) VfiU

of the matrix A D-1Z. We recall from Theorem 3.1 that is a t x s diagonal
matrix whose only nonzero elements are rationals satisfying

(4.2) 5i+1,i+1/5i,i integer 1, 2,...,- 1,

where <_ min(s, t) is the number of nonzero elements of 5.
LEMMA 4.1. Let the nonzero diagonal elements of in (4.1), expressed in their

lowest terms, be

(4.3) 5i,i mi/ni 1, 2,..., .
Then

(4.4) ni+llni 1,2,... ,- 1.

Proof. The proof is elementary. From (4.2) we have

mi/ ni

ni+ mi
integer.

Since ni+ has no factor in common with mi+l, it follows that ni+l divides ni. D
To proceed, we introduce s equations, each of which is an identity, and rewrite

(4.1) in the form

(4.5) ( V 0
o u-)(

Here, as previously, I and U are s x s matrices and 5 is a t x s diagonal matrix. The
nonzero diagonal elements of 5 satisfy (4.3) and (4.4) above, with (mi,ni) 1. We

note that the (t + s) x (t + s) matrix on the left is unimodular. The thrust of the next
lemma will be to provide a reduction in which the rational elements 5i,i are replaced
by integer inverse elements 1/ni.
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LEMMA 4.2. For all m,n such that (m, n) 1, there exists a 2 2 unimodular
matrix V such that

(4.6) V ( m/n 1/n
1 )-(0).

Proof. Since (m, n) 1, there exist integers a, such that am + n 1. It is
trivial to verify that

(4.7) V= (
satisfies (4.6) and has unit determinant.

COROLLARY 4.3. Let A be the (t + s) s matrix on the right-hand side of (4.5),
its elements satisfying (4.3) and (4.4). Then there exists a (t + s) (t + s) unimodular
matrix V() such that V()A differs from A only in the (w,w) element, which is
replaced by 1/nw and in the (w + t, w) element, which is replaced by zero.

Proof. V() differs from the unit matrix I only in that the four elements required
to carry out row operations on rows w and t + w are replaced by the four in Lemma
4.2, with mv and n replacing m and n.

THEOREM 4.4. Given a t x s rational-valued matrix A, there exists an s s
unimodular matrix U and a (t + s) (t + s) unimodular matrix having the property
that

(4.8)

where is a diagonal t x s matrix whose nonzero elements satisfy

ii 1 1, 2,...,<_ t

with integer Hi, where

(4.9) ni+l Ini 1, 2,..., -- 1,

and each row of J either is 0 or is eu with u > t.
Proof. As mentioned before, (4.1) is equivalent to (4.5). We may premultiply

successively by V(1), V(2),..., V(t-), these being defined in Corollary 4.3. The effect
on the left-hand side of (4.3) is to replace (y v

0
0 1) by

(4.10) v(t-) V(-_I) V(2)V(1)(V0 U-1

which is obviously a (t + s) x (t + s) unimodular matrix. The effect on the right-hand
side is to successively replace the only nonzero element in the wth row by 1/n, and
the (w + t)th row by zero leaving a matrix of the form given by the left member of
the right-hand side of (4.8). This establishes the theorem.

Our major result follows simply from Theorem 4.4.
THEOREM 4.5. Let Q(A) be given in a t-cycle D-Z form, and let D-IZ.

Let the Smith normal form of be VftU and the nonzero elements of be
6,i m/n, 1, 2,..., in their lowest terms. Then an s-cycle canonical form of
Q(A) is given by

(4.11) Dc=diag{nl,n2,...,n,l,...,1} and Zc=U-1.
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Proof. As discussed in 2, the lattice A is generated by the rows of
Since this is invariant under premultiplication by a unimodular matrix, this lattice

is generated by the rows of the (t + s) s matrix on the left-hand side of (4.8), which
coincides with the (t -t- s) s matrix on the right-hand side of (4.8). The zero rows
of J clearly play no part in this lattice generation and may be removed. The other
s- rows may be reordered in a natural way. We may identify D[ and Zc with the
matrices remaining on the right-hand side of (4.8). [:]

In the expression for Dc in (4.11), there are s- unit elements displayed. Besides
these, some of the integers denoted by ni may also be unity. Rank r is, of course, the
number of nonunit diagonal elements in Dc and may be less than , which itself by
definition cannot exceed min(s,t).

With this theorem at hand, we summarize the main steps of an algorithm in which
an s-dimensional lattice rule Q(A) given in a t-cycle D-Z form is put into canonical
form.

ALGORITHM II

(a) Construct the t s matrix . D-1Z.

(b) Construct the Smith normal form 5 VfiU of . This is a diagonal t s matrix.

(c) Put the elements of 5 in their lowest terms, that is, 5i,i m-A with (m, n) 1.
ni

Then a canonical form of Q(A) is given by

Dc diag{nl, n2,..., n, 1,..., 1} and Z U-1.

If one simply requires the invariants (perhaps to determine the rank), one does
not need to calculate U. However, in the Smith normal form reduction, the calculation
of U (or of U-1 or both) can be effected in situ.

(d) If one requires a generator matrix of A or of A+/-, one calculates A DIu-1

B DcUT.
or

5. Numerical examples. The first example in this section illustrates the solu-
tion of the same simple problem using in turn Algorithms I and II.

Example 1. Find a canonical form of

+ 9
jl=l j2=l

Here we have

D=(9 0)(0 8 4)0 9
Z-

6 5 7

and step (a) of both algorithms requires

0 8/9fI=D-1Z= 6/9 5/9
4/9
7/9 )"
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Example 1 using Algorithm I. In step (b) of Algorithm I we reduce I to upper
triangular form to find

(5.3) ( A

0 0 0 8/9 4/9
0 1/9 5/9 6/’9 5/9 7/9
0 0 1 V* 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

The 5 5 unimodular matrix V* is not retained. The reduction is carried out
using integer elementary row operations.

Step (c) requires us to find 5 snf(A) VAU. Thus

(5.4) 0 1/3 0 V 0 1/9 5/9 U.
0 0 1 0 0 1

This step is carried out using unimodular row and column operations. The 3 3
matrices U and V are not calculated, but U-1 is assembled as the calculation proceeds
in a standard way and is given below. Thus we find

(5.5) Dc=-1-- 0 3 0 Zc=U-I= 1 0 0
0 0 1 0 0 1

Since this is of rank 2, the third component may be discarded, giving

Qf -- E E i 9 + j2(1,0,0)
There are, in fact, many alternate choices for Z1 and z2
Example 1 using Algorithm II. This is shorter. Starting as before from (5.2), we

proceed immediately to the Smith normal form. Thus

( ) ( 0 8/9 4/9)(5.6) = 1/9 0 0 VftU= V 6/9 5/9 7/9 U.
0 4/3 0

As before, our program retained U-1 in situ. In accordance with step (c) of the
algorithm, we obtain Dc from the denominators of by disregarding the 4 in 2,2
4/3 and filling in the diagonal with units. This gives

(5.7) De= 0 3 0 Z=U-I= -2 3 0
0 0 1 1 -1 0

This corresponds to (5.5) obtained using Algorithm I. Different vectors z and z2
are obtained, but the resulting rule is the same and is in canonical form.

A minor variant of this problem, mentioned briefly in 2, is that of finding the
integration lattice of lowest order which contains some specified points. In this prob-
lem one simply defines A as an array of these points. There is no need to define D
and Z. The following example illustrates this.
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Example 2. Find a canonical D-Z form of the three-dimensional integration lattice
of lowest order that includes the five points

1 1 1
(5.8) zj= 3j-l’3j’3j+l

j=1,2,3,4,5.

We shall determine in passing whether the lattice generated by these five points is an
integration lattice; that is, are the unit vectors ei already included? The matrix A in
part (a) of our algorithm above is

1/2 1/3 1/4 360360 240240 180180
1/5 1/6 1/7 1 144144 120120 102960
1/8 1/9 1/10 90090 80080 72072
1/11 1/12 1/13 720720 65520 60060 55440
1/14 1/15 1/16 51480 48048 45045

We now construct the Smith normal form. This is a 5 3 diagonal matrix with
principal diagonal given by

5 VftU diag{1/720720, 1/280, 3/20},

and the inverse of the matrix U used in the reduction

(5.11)
385164 148148 99

Zc U-1 -33120301 -12739230 -8513
11831180 4550687 3041

The invariants are given by the denominators in 5. That is,

Dc diag{720720, 280, 20}.

D and Z give a canonical form in D, Z notation.
Note that the lattice generated by the five rows of ft. in (5.9) is not an integration

lattice. We know this because the diagonal elements of 5 in (5.10), in their lowest
terms, are not all inverse integers. Ignoring the numerator 3 in the element 533 3/20
has the effect of increasing the density of lattice points by this factor.

6. Concluding remarks. From a technical point of view, the results in this pa-
per merely show how to carry out various standard tasks relating to the manipulation
of lattice rules. The tool is a standard technique to obtain the Smith normal form
of an integer matrix. Using this normal form, we can readily find a Sloan-Lyness
canonical form of Q(A) from a generator matrix of A. And we can determine whether
a given form of Q(A) is repetitive by reducing it to a canonical form.

However, we believe that this paper has wider implications. The Smith normal
form of an integer matrix is in fact the link between two apparently almost indepen-
dent approaches to the theory of lattice rules. This is because the Smith normal form
is a standard tool in the proof of the Kronecker decomposition theorem. The referee
has pointed out that there is a sense in which this paper is, in effect, traversing a part
of the proof of the decomposition theorem. In our opinion the principal virtue of the
theorems in this paper is that they unite these two parts of the same theory to their
mutual benefit.
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STRICT APPROXIMATION OF MATRICES*
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Abstract. This paper describes a mechanism that includes the well-known strict approximation

of a real vector which can be applied in the case of spectral approximation to define a unique strict
spectral approximant of a matrix. For this purpose a new ordering is introduced.

Key words, strict approximation, lexicographic ordering, minimal elements, approximation of
matrices
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1. Introduction. It is well known that if I1" II is a norm on a finite-dimensional
linear vector space and K: is a nonempty closed convex subset of this space, then the
minimum of lall over a in K: is attained. Moreover, it follows from the convexity of
the norm that the set ci of minimizers is convex.

Ifthe norm is strictly convex, then the set cl must consist of a single point. This
(a + b) is againis true because if a and b are minimizers in E, then the midpoint

in K:, and the norm of this point is lower than the common value of I[all and I[bl[, so
that a and b cannot be two distinct minimizers.

When the norm is not strictly convex, there may be more than one minimizer. It
can be difficult to compute an element that is not uniquely defined, and for this reason
it is useful to define a tie-breaking mechanism to distinguish exactly one minimizer.

For the case of the approximation of a real vector in the norm, such a tie-
breaking mechanism has been introduced by Rice [4], who called the resulting ap-
proximant a strict approximant. This is a special type of Chebyshev approximation;
therefore we call it a strict Chebyshev approximation (compare [1]).

In this paper we introduce a generalization of this mechanism that can be applied
to the important problem of the best approximation of a matrix in an operator norm.

Let j be a nonempty closed convex set in the space Cmn of m X n matrices,
and let C be a given member of this space. Let I1" II be the spectral norm of a matrix.
The norm IA]I is equal to the square root of the largest eigenvalue of the matrix
AHA.

The problem of spectral approximation of a matrix C consists of minimizing
lib CII over B in J4. This is, of course, equivalent to minimizing IAII over A in
the nonempty closed convex set

(I)

Because all the matrices diag(1,a,..., a) with -1 <_ a <_ 1 have the spectral norm
equal to 1, this norm is not strictly convex. Therefore the set of all spectral approxi-
mations of C may contain more than one point.

We describe a tie-breaking mechanism that includes strict Chebyshev approxima-
tion and can be applied in the case of spectral approximation to define a unique strict
spectral approximant.

Received by the editors June 4, 1992; accepted for publication (in revised form) by H. F.
Weinberger,. September 22, 1993.

Institute of Computer Science, University of Wrodaw, ul. Przesmyckiego 20, 51-151 Wroctaw,
Poland (zietak@ii. uni. wroc. pl).
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2. Lexicographic minimization. We first consider the general problem of min-
imizing some norm lall over a nonempty closed convex set K; in a finite-dimensional
linear vector space. As we mentioned at the beginning of the Introduction, the set $1
of minimizers for this problem is convex and nonempty. However, it may contain more
than one point if the norm is not strictly convex. We define the following algorithm
for shrinking the set of minimizers.

Denote the original norm to be minimized by I1" II1" Introduce a finite sequence of
other norms I1"11,..., I1 I1, with the property that the norm II’ll /" "/11" I1, is strictly
convex. Let $1 be the set of minimizers of lalll on E. Since S1 may contain more
than one point, we attempt to break the tie between the elements of ’-1 by minimizing

lal12 on the convex set $1. Let 2 denote the (nonempty) set of minimizers for this
problem.

We continue this process by induction to obtain the sequence
_

of nonempty convex sets, where qj is the set of minimizers of lallj over a in

There is another simple way to characterize the last set . We define the total
ordering a

_
b to mean that for some 0 <_ k _< t, we have lallj lbllj for j _< k and

Ilallk+l > Ilbllk+l if k < n. For obvious reasons we cM1 this the lexicographic ordering
with respect to the sequence of norms I1" II1,..., I1" lie. Then S is the set of minimal
elements of/C with respect to this ordering.

We observe the following simple but useful fact, which states that our sequence
of norms succeeds in breaking the tie in the minimization of

THEOREM. If the norm I1" [11 +"" + I1" lie is strictly convex, then the set
consists of a single point.

Proof. Since the values of the first g- 1 norms are fixed on 8-1, the set St can
be characterized as the set of minimizers of the norm I1" II1 +"" +11" I1 on the convex
set S-1. Because this norm is strictly convex, St consists of a single point. This
completes the proof.

Let be determined as in (1) and let t min{m, n}. To define the strict spectral
approximation, we let t t and construct the sequence of norms as follows. Let the
singular values 0.1

_
0"2 -- -- 0"t

_
0 of an m by n matrix A be ordered. They are

defined by saying that the eigenvalues of the Hermitian positive semidefinite matrix
AHA are 0"2 _> 0"22 _> _> 0"t2. Then 0"1 is the spectral norm of A. We denote
0"(A) [0"1,..., 0"t]T e Rt. The function

(2) iiAiik :__ {0"12 __,,, __
0"}1/2

is a norm for each k, k _< t. This is a particular case of the Ky Fan p- k norm for
p- 2 (see [2, p. 195]). For k t (2) is the Frobenius norm.

We now define the nested sequence of minimizing sets as above, with S0 , and
the set Sk of the minimizers of IIAIIk_l over Sk-1. Because IIAIIk_l has a fixed value
on Sk-1 when k > 1, the set Sk can alternatively be defined as the set of minimizers
of the singular value 0"k on Sk-1. Let B from A4 be such that B C belongs to St.
Then B is called a strict spectral approximant of a given matrix C.

From (2) we see that IIAIIt is the Frobenius norm of A, and it is therefore strictly
convex because this is just the Euclidean norm of the vector whose entries are the
elements of A. Consequently, the sum of the norms I]" Ilk for k from 1 to t is also
strictly convex, and from the above theorem we obtain the following corollary, which
is our principal result.

COROLLARY 1. In a given nonempty closed convex set A/[ of m n complex
matrices there is exactly one strict spectral approximant B to any given matrix C.
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Let us consider the lexicographic ordering

_
with respect to the sequence of the

norms (2). It is easily seen that A1

_
A2 if and only if a(A1) >_ a(A2), where _>

denotes the ordinary lexicographic ordering in Rt. Therefore we obtain the following
corollary.

COROLLARY 2. A matrix B E J4 is the strict spectral approximation of C if
and only if the vector a(B C) is minimal with respect to the ordinary lexicographic
ordering in the set {a" a a(B C), B

The characterization given in the Corollary 2 was used in [7] as the definition of
the strict spectral approximation for the case in which J4 is a linear subspace of real
matrices.

Remark. If the vector space is Rn with the/ norm, applying the above algorithm
with the sequence of norms

I }/IIallk max

leads to strict Chebyshev approximation and the Theorem gives another proof of the
well-known fact that the strict Chebyshev approximant exists and is unique (see, for
example, [5, p. 243]; compare [3]).

At the end we mention that for the special case of square matrices with A/I the
convex set of positive Hermitian matrices, it is easily verified that the strict spectral
approximation coincides with the Cp-minimal positive approximant of Rogers and
Ward [6].
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Abstract. This paper is concerned with the distributed parallel computation of an ordering for
a symmetric positive definite sparse matrix. The purpose of the ordering is to limit fill and enhance
concurrency in the subsequent Cholesky factorization of the matrix. A geometric approach to nested
dissection is used based on a .given Cartesian embedding of the graph of the matrix in Euclidean
space. The resulting algorithm can be implemented efficiently on massively parallel, distributed
memory computers. One unusual feature of the distributed algorithm is that its effectiveness does
not depend on data locality, which is critical in this context, since an appropriate partitioning of
the problem is not known until after the ordering has been determined. The ordering algorithm is
the first component in a suite of scalable parallel algorithms currently under development for solving
large sparse linear systems on massively parallel computers.

Key words, parallel algorithms, sparse linear systems, ordering, Cartesian coordinates, nested
dissection, Cholesky factorization
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1. Introduction. The ordering of the equations and unknowns in a sparse sys-
tem of linear equations can have a dramatic effect on the computational work and
storage required for solving the system by direct methods. The reason is that most
sparse systems suffer fill during the factorization process; that is, matrix entries that
are initially zero become nonzero during the computation and the amount of such fill
depends strongly on the ordering of the rows and columns of the matrix. Thus, or-
dering sparse matrices for efficient factorization is an important step in solving many
large-scale computational problems in science and engineering, such as finite element
structural analysis. In general, finding an ordering that minimizes fill is a very difficult
combinatorial problem (NP-complete) [22]. Practical sparse factorization algorithms
are therefore based on heuristically chosen orderings that are reasonably effective in
limiting fill, but much less costly to compute than the optimum. Some of the most
commonly used ordering heuristics are minimum degree, nested dissection, and vari-
ous schemes for reducing the bandwidth or profile of the matrix [5].

In addition to determining fill, the orderirig also affects the potential parallelism
that can be exploited in factoring the matrix. These two considerations--reducing fill
and enhancing parallelism--are largely compatible, but by no means coincident objec-
tives. Sparsity and parallelism are positively correlated to some extent, since sparsity
implies a lack of interconnections among matrix elements that often translates into
computational subtasks that can be executed independently on different processors.
This relationship is extremely complicated, however, and parallel efficiency depends
on many other considerations as well, such as load balance and communication traf-
fic. Thus, for example, minimum degree is in many cases the most effective heuristic
known for limiting fill, but may produce orderings for which the natural load bal-
ance is uneven in parallel factorization. As another example, band-oriented methods,
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Gilbert, October 13, 1993. This research was supported by the. Defense Advanced Research Projects
Agency through Army Research Office contract DAAL03-91-C-0047.

Department of Computer Science and National Center for Supercomputing Applications, Uni-
versity of Illinois, 405 N. Mathews Ave., Urbana, Illinois 61801 (heathncsa.uiuc.edu).

National Center for Supercomputing Applications, University of Illinois, 405 N. MatheWs Ave.,
Urbana, Illinois 61801. Current address: Department of Computer Science, University of Tennessee,
Knoxville, Tennessee 37996 (padma@cs. utk. edu).
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however effective they may or may not be in limiting fill, tend to inhibit rather than
promote concurrency in the factorization.

In this paper we are concerned with the problem of computing fill-reducing order-
ings for symmetric positive definite sparse matrices that will enable efficient Cholesky
factorization on large-scale, distributed-memory parallel computers. Perhaps the most
important consideration is that the ordering itself be computed in parallel on the same
multiprocessor machine. Most previous work on parallel sparse matrix factorization
has focused on the more costly (and more easily parallelized) numeric phases and has
simply assumed that an appropriate and effective ordering could be precomputed on
a serial machine (see [7] for a survey of this work). Such an approach is not scalable,
however, as any such serial phase will eventually become a bottleneck as the problem
size and number of processors grow. We therefore seek a distributed parallel ordering
algorithm that can be integrated on the same machine with the subsequent parallel
numeric computation and maintain reasonable efficiency over a wide range of parallel
architectures and number of processors. Additional issues that concern us are the fill
(and hence work and storage) that results from a given ordering, and also the result-
ing concurrency, load balance, and communication traffic in computing the Cholesky
factor on such a parallel computer.

Designing an efficient, scalable, distributed ordering algorithm for sparse matrices
presents a formidable challenge. The best serial ordering algorithms have evolved over
an extended period of time and are very ecient. Much of this efficiency results from
sophisticated data structures and algorithmic refinements that are dicult to extend
to a distributed parallel setting. Moreover, many of these algorithms involve inher-
ently serial precedence constraints and have relatively little computation over which
to amortize the communication necessary in a parallel implementation. Perhaps most
daunting of all, we seem to have a bootstrapping problem in that the efficiency of
most distributed parallel algorithms depends on having a high degree of data locality,
but we do not know how to partition our problem and distribute it across the pro-
cessors until after we have an ordering. We therefore propose an ordering algorithm
that lends itself to a distributed parallel implementation whose effectiveness does not
depend on initial data locality.

2. Background. Throughout this paper we assume familiarity with numerous
basic concepts in sparse matrix computations. Such background material can be
found, for example, in the textbook by George and Liu [5]. In particular, we use the
standard graph model for sparse Gaussian elimination, which we briefly explain here.
The graph of an n n symmetric matrix A is n undirected graph having n vertices,
with an edge between two vertices and j if the corresponding entry ay is nonzero
in the mtrix. We use the notation G (V, E) to denote the vertex and edge sets,
respectively, of a graph G. The structural effect of Gaussian elimination on the mtrix
is easily described in terms of the corresponding graph. The fill introduced into the
matrix as a result of.eliminating a variable adds fill edges to the corresponding graph
so that the neighbors of the eliminated vertex become a clique. A small example
graph and corresponding matrix A are shown in Fig. 1. Also shown is the fill in the
Cholesky factor L of the example matrix, where A LLT.

2.1. Nested dissection. Nested dissection is a divide-and-conquer strategy for
ordering sparse matrices, originally due to Alan George [3]. Let V be a set of vertices

(called a separator) whose removal, along with all edges incident on vertices in V, dis-
connects the graph into two remaining subgrphs, G (V, E) nd G2 (V2, E2).
If the matrix is reordered so that the vertices within each subgraph are numbered
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FIG. 1. Example of finite element graph (top) and the nonzero patterns of the corresponding
sparse matrix (left) and its Cholesky factor (right) with fill indicated by +.

contiguously and the vertices in the separator are numbered last, then the matrix has
the bordered block diagonal form

A1 0 SI ]0 A2 $2

sT
The significance of the above partitioning of the matrix is twofold: first, the zero blocks
are preserved in the factorization, thereby limiting fill; second, factorization of the
matrices A and A2 can proceed independently, thereby enabling parallel execution
on separate processors. This idea can be applied recursively, breaking each subgraph
into smaller and smaller pieces with successive separators, giving a nested sequence
of dissections of the graph that inhibit fill and promote concurrency at each level.

Figure 2 shows our original example reordered by nested dissection. In the subse-
quent Cholesky factorization, the reordered matrix suffers considerably less fill than
with the original ordering and also permits greater parallelism. For example, columns
1, 2, 3, 7, and 8 of the Cholesky factor depend on no prior columns, and hence can

be computed simultaneously, whereas in the original ordering every column of the
Cholesky factor depends on the immediately preceding column.
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FIG. 2. Finite element graph reordered by nested dissection (top) and the nonzero patterns of
the corresponding sparse matrix (left) and its Cholesky factor (right) with fill indicated by +.

The effectiveness of nested dissection in limiting fill depends on the size of the
separators that split the graph, with smaller separators obviously being better. For
planar problems (e.g., two-dimensional finite difference or finite element .grids), suit-
ably small separators can usually be found [10]. For problems in dimensions higher
than two, or for highly irregular problems with less localized connectivity, nested
dissection tends to be less effective, but so do most other ordering heuristics, which
explains why iterative methods are often preferred over direct methods in such cir-
cumstances. In this paper we focus on problems for which an embedding of the graph
in the two-dimensional Euclidean plane is given, but whose graph is not necessarily
planar. Such a problem might result, for example, from two-dimensionM finite element
structural anMysis. Indeed, our test problems are obtained from standard commercial
structural analysis packages that routinely supply Cartesian coordinates for the ver-
tices. Our approach generalizes to three dimensions in a reasonably straightforward
manner [17].

In addition to the’size of a separator, the relative sizes of the resulting subgraphs is
also important. Maximum benefit from the divide-and-conquer approach is obtained
when the remaining subgraphs are of about the same size; an effective nested dissection
algorithm should not permit an arbitrarily skewed ratio between the sizes of the pieces.
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In a parallel setting, this criterion takes on additional significance in that it largely
determines the load balance of the computational subtasks assigned to individual
processors. Thus, the choice of separators should take into account both size and
balance.

Nested dissection algorithms differ primarily in the heuristics used for choosing
separators. A typical approach to automatic nested dissection for irregular graphs
[4] involves first finding a "peripheral" vertex, generating a level structure based on
the connectivity of the graph, and then choosing a "middle" level of vertices as the
separator. Such an approach is difficult to implement efficiently on a distributed
parallel computer for a number of reasons, including the necessary serialization of
some of the steps, and the communication required to assess the connectivity of the
graph, especially before the graph has been partitioned so that data locality can be
maintained (i.e., contiguous pieces are assigned to individual processors and "nearby"
pieces assigned to "nearby" processors). More recent heuristics for computing graph
separators include spectral methods [9], [16] and methods based on geometric pro-
jections and mappings [13]-[15], [20]. These may have greater potential for parallel
implementation, but this has yet to be demonstrated in practice. An explicitly par-
allel implementation of the Kernighan-Lin algorithm for computing graph separators
can be found in [6].

In this paper we present a nested dissection algorithm based on a new approach
to computing separators, one that is designed to be effective in a distributed par-
allel environment. Our approach differs from standard graph-theoretic methods for
computing separators in that it uses an embedding of the vertices in Cartesian space
to facilitate an efficient parallel implementation that does not depend on initial data
locality. For this reason, coordinate information has previously been used in other
contexts to partition problems (particles, grids, etc.) across multiple processors. For
example, such a coordinate-based "recursive bisection" approach has been used for
load balancing of parallel computations [2, p. 430], [21] and for domain decomposition
in solving partial differential equations on regular [1] and irregular [19] domains. In
matrix factorization, however, potential fill must also be taken into account, in ad-
dition to the numerical balance of the partitioning. A key feature of our approach
is that it permits one to exploit the tradeoff between fill and parallelism by finding
better separators when unbalanced partitions are acceptable.

2.2. Cartesian representation. One motivation for our use of a Cartesian rep-
resentation of the graph is to make the data "self identifying." This will be important
when we consider implementing the algorithm on distributed memory parallel com-

puters. In particular, the data can be scattered randomly across the local memories of
the processors, yet we can still tell where (geographically) any given piece of data lies
within the overall problem, without needing any communication to establish context.
In effect, this approach makes the distributed memory "content addressable," thereby
reducing much of the problem of computing separators to relatively simple counting
and searching operations, which can be done very effectively in a distributed manner.

For each vertex v E V, we assume that we are given a pair of Cartesian coor-
dinates, which we denote by x(v) and y(v), representing the horizontal and vertical
coordinate directions, respectively, in the Euclidean plane. One might wish to apply
a rotation to the coordinate system to place the graph into some more advantageous
orientation; we assume that this has already been done, if desired. As several authors
have observed, e.g., [21], one possible way to determine good orientation would be
to compute the axis of minimum inertia of the vertices as a collection of points in
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(1,5) (2,5) (3,5)

(5,3) (7,3)

(I,i) (2,1) (4,1) (5,1) (7,1)

FIG. 3. Finite element graph with Cartesian coordinates of nodes shown.

the plane. For ease of handling of list structures, we use an integer representation
of the original coordinate values. Treating each coordinate dimension separately, the
original coordinate values are sorted and then each coordinate value is represented by
its position in the sorted sequence. Figure 3 shows our example graph with Cartesian
coordinates for the nodes.

3. Cartesian separators. We now describe our strategy for computing a vertex
separator in a Cartesian labeled graph G (V, E). Let s be a coordinate value chosen
in one of the two coordinate dimensions, say x. We refer to s as a "separating value"
because it is used to dissect the graph along the given coordinate dimension. Let U1,
U2, and U8 be the sets of all vertices whose x coordinate is less than s, greater than
s, and equal to s, respectively. This partitibning of the nodes in the graph does not
necessarily give us a vertex separator, because there may still be paths connecting
vertices in U1 and U2. However, any such path must contain an edge that "straddles"
the separating value s. Let Es be the set of all such straddle edges, i.e.,

E {(Ul,U2) E: ’it Vl,lt2 U2}.

For each edge (Ul, U2) 6 E, arbitrarily select one of its two associated vertices
for inclusion in the set C, which we refer to as the "correction set" for V. We now
define the following sets:

v=u\c, v.=u\c, v,=uuc.

The set Vs is a vertex .separator for the graph, since each vertex in V1 is connected
only to vertices in Vs or other vertices in V1, and similarly for V2. We refer to such a
separator as a "Cartesian separator"; henceforth, when we use the term separator we
will mean a Cartesian separator.

We illustrate these concepts for the example of Fig. 3. Using s 3 as a separating
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value in the x dimension, we get the initial sets

U1= {1, 2, 6, 8,12,13,14}, U2={3,4,5,7,10,11}, Us={9,15}.

The set of straddle edges is the singleton set Es {(2, 3)}. Choosing one of the
endpoints of this edge, say node 2, we get the correction set Cs {2}. Thus, the final
subgraphs and separator are given by

V1= {1, 6, 8,12,13,14}, V2={3,4,5,7,10,11}, V {2, 9,15}.

It is not difficult to devise graphs for which even the best Cartesian separator
is much larger than necessary. For example,
spiral in the plane will be cut many times by any bisecting line, but can be separated
evenly by removing a single vertex. Similarly, a planar graph consisting of n concen-
tric squares whose corresponding corners are connected can be separated evenly by
removing only four vertices, yet any bisecting line will cut 2n edges, giving a separator
of size n. However, we have found Cartesian separators to be very effective for sep-
arating graphs that arise in practice (see the computational results in 7 below and
also in [17]). In the next sections we proceed to discuss the two main subproblems in
computing a Cartesian separator:

(i) Determining an appropriate choice for the separating value s;
(ii) Determining the correction set

3.1. Choosing a separating value. As we observed earlier, the two main cri-
teria for choosing a separator are that the separator be small and that the resulting
subgraphs be well balanced (i.e., about equal in size). These criteria are generally
in conflict, so there is a tradeoff between them. In choosing a separating value s for
computing a Cartesian separator in a given dimension, the balance between the sizes
of the resulting subgraphs is determined by the relative numbers of vertices having
coordinates less than s or greater than s in that dimension. Thus, we can attain
any desired degree of balance, including optimal balance, simply by counting vertices
(assuming that vertices are chosen appropriately for the correction set Cs to main-
tain the initial balance). Determining the size of a Cartesian separator, on the other
hand, is more difficult, since the initial set Us of vertices with coordinates equal to
s is merely an initial approximation that must" be augmented by the correction set
Cs, whose size is not so easily determined. In seeking a small separator we will, for
efficiency, merely estimate the eventual separator size rather than compute it exactly.
For a given coordinate value s, we define the quantity

where the sets Us and Es are as defined previously. Clearly, (s) is an upper bound on
the separator size; it may be an overestimate because a single vertex may "cover" more
than one straddle edge in E,, so that IC l may be smaller than Nevertheless,
r/(s) is sufficiently accurate for our purposes, and we will use it as an estimate for the
separator size in seeking an approximate minimum.

The desired balance between the two subgraphs resulting from a single dissection
is given by a user-specified quantity, a, 0 < a < 1, which is interpreted as a limit
on the relative proportion between the sizes of the two subgraphs. Specifically, we
require that the separating value s be chosen so that

 lVI lull (1- cr)lVI, i-- 1,2.
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A value of a 1/2, for example, means that one subgraph can be at most twice the size
of the other. There may be many potential separating values that satisfy this balance
condition, with some values resulting in smaller separators than others. We choose
the value s that minimizes the estimate ri(s) for the separator size. We handle the

separately, since it requires perfect balance (as closely as possible)special case (
regardless of the resulting separator size, and hence the estimate ri(s) need not be
computed.

We illustrate these concepts for the example of Fig. 3, working with the x dimen-
sion. If c 1/2, then a separating value of either s 3 or s 4 satisfies the balance
criterion. Calculating the estimated separator size for each of these values, we get
7(3) 3 and r(4) 2, so that we would choose s 4 as the best separating value
in this case. If a instead, then any separating value in the interval [2], [5] would
satisfy the balance criterion, but the estimated separator sizes would still give s 4
as the best choice.

We now sketch an algorithm for computing a separating value that minimizes the
approximate separator size subject to the specified balance constraint. Our algorithm
is formulated in terms of traversing sorted lists and computing suitable counts. This
relatively simple serial algorithm serves to introduce appropriate terminology, nota-
tion, and data structures, providing a framework for our subsequent development of
a distributed parallel algorithm. For definiteness, assume that we are working with
the x coordinate dimension; similar definitions and procedures are also applicable to
the y dimension. In general, we process both dimensions in the same fashion and use
whichever yields the smaller separator. When this procedure for computing separa-
tors is used repeatedly in nested dissection, a different coordinate dimension may be
selected at each stage.

For a given graph G (V, E), the vertices in V are maintained in a vertex list, in
increasing order of their x coordinate values. The vertex list is traversed to compute
a vertex count list of counts of vertices in G at each coordinate value, in increasing
order in the x dimension. The vertex count list is traversed in increasing order and
the cumulative count of vertices incremented until the first value is found, say a, that
satisfies the balance condition. Traversal of the list then continues until a value is
found at which the balance condition is no longer satisfied; we denote by b the last
value at which the balance condition was still satisfied. Alternatively, depending on
which would give the smallest expected running time, b could instead be found by
traversing the vertex count list in decreasing order from the top. In either case, we
will have identified the block [a, b] of potential separating values, all of which satisfy
the balance condition.

We must now compute the estimate (i) for each value E [a, b]. Let (u, v) be an

edge in E, with x(u)

_
x(v). Such an edge can be thought of as beginning at x(u)

and ending at x(v). Let /(i) and (i) denote the number of edges that begin and
end, respectively, at i. Edges in E are maintained in an edge list in increasing order
of the x coordinates of their associated vertices. An edge (u, v) is entered into the
ordered edge list at positions given by x(u) and x(v), where x(u) < x(v), and marked
respectively as a begin and an end entry. The edge list is traversed to compute an

edge count list containing the and e values. If a(i) denotes the number of edges that
cross i, then a(i) a(i- 1) +/(i- 1)-e(i). This fact is used to compute a(i) for each
value in the block [a, b] by traversing the edge count list. We note also that the size of
the initial approximation to the separator, IUil, can be computed for each coordinate
value by scanning the vertex count list. Finally, we note that for each coordinate
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value i, our estimate for the final separator size is given by z?(i) IUil + (i). Having
computed the value of (i) for each i E [a, b], we select the coordinate value s with
the minimum value of (s) as the separating value for that dimension. A separating
value is similarly computed for the other coordinate dimension, and the one yielding
the smaller estimated separator size is selected as the separating value for computing
a Cartesian separator.

3.2. Constructing a separator. Having chosen a separating value s in one of
the coordinate dimensions, we now proceed to construct a Cartesian separator. Again,
for definiteness, assume that we have chosen the x coordinate dimension. According to
our earlier definition, the desired separator Vs is the union of the initial approximate
separator Us and the correction set Cs. The set Us is easily computed using the vertex
list. The construction of the correction set Cs requires that we compute the set Es of
edges that straddle the separating value s. A. simple way to search for these straddle
edges would be to traverse the edge list in increasing order up to value s. For each
beginning edge (u, v), with x(u) <_ x(v), we add the edge to Es if x(v) > s. Upon
reaching value s in traversing the edge list, we have completed the computation of
ms. We initialize the set Vs to be Us, then for each edge in Es such that neither of its
endpoints is already in Vs, we augment Vs by one of those endpoints. The choice of
which endpoint to include in V can be made arbitrarily, or the choice can be governed
by requiring that the balance condition be maintained.

In the worst case, the computational cost of this simple algorithm for finding
straddle edges is proportional to the number of edges in the subgraph. This cost can
be reduced by using the concept of a group tree [18], which enables more efficient
searching for intervals that contain a given point s. In the group tree approach,
we associate each edge in the subgraph with the interval whose endpoints are the
coordinate values in the given dimension of the corresponding pair of vertices. The
two resulting group trees (one for each coordinate dimension) are formed initially
for the entire graph G, and thereafter can be modified easily for use in the searches
at successive levels of nested dissection. Not counting this initialization cost, the
cost of finding the straddle edges for a given subgraph Gi using a group tree search
is proportional to log2 VI plus the number of edges found. This is a substantial
improvement over the cost of the simpler algorithm described earlier, which is linear
in IEil. With initialization costs included, the two methods have the same order of
complexity, but the group tree approach may still provide a substantial savings in the
constant factor, especially in the balanced case (c 1/2).

4. Cartesian nested dissection. Having described an algorithm for computing
a Cartesian separator for a given graph, we can use the algorithm repeatedly to derive
an algorithm for Cartesian nested dissection to order a sparse matrix. The most
natural way to implement such an algorithm is to invoke the separator algorithm
recursively on successively smaller subgraphs of the initial graph. For reasons that
will become clear later, we take a breadth-first approach, dealing with all of the
subgraphs at a given level of dissection before moving on to the next level.

We introduce some notation here that we will find useful later on in formulating
the parallel algorithm. For any given level of the nested dissection process, we let
GL denote the set of subgraphs of the initial graph at level 1. We begin at level 0 with

G0 {G}, where G (V, E) is the graph of the given sparse matrix to be ordered.
The vertices and edges of G are scanned to construct the working vertex and edge lists,
and these lists are used in turn to generate the corresponding count lists. A separating
coordinate value s and Cartesian separator Vs are then computed for G as described
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previously, which yields two subgraphs G1 and G2. The vertices in the separator V8
are numbered IVI- IVI + 1 through IYl, completing level 0 of the dissection process.
At level 1, we apply the Cartesian separator algorithm to each of the two subgraphs
in G1 {G, G2}. Working lists are constructed for each subgraph, and separating
coordinate values s and s2 and corresponding Cartesian separators Vsl and V are
computed. The vertices in the two separators are numbered and the four remaining
subgraphs are then similarly processed at level 2, and so on. This process continues
until all vertices in the original graph have been numbered. At most log2(IVI) levels of
nested dissection are required to number all of the vertices, since the/th level results
in 2 subgraphs.

4.1. Serial complexity. We now estimate the serial time complexity of the
foregoing Cartesian nested dissection algorithm. Consider a Cartesian labeled graph
G (V, E) with N vertices and M edges. We assume that any subgraph of G has
at least as many edges as vertices. To compute the cost of ordering G we compute
bounds for the cost of initialization and the cost of each level of dissection.

In the initialization step, vertices are sorted in increasing order of both x and y
coordinate values. The complexity of this step is O(N log2 N) using heap sort. These
sorted lists are used to construct the working lists of vertices, in time proportional to
N. The sorted lists of vertex coordinates are also used to construct the edge lists in
time proportional to M. A group tree is constructed for each dimension by mapping
edges to intervals. Each group tree can have at most N groups. Entering an interval
into a group tree takes time proportional to log2 N. The cost of forming group trees
is therefore proportional to M log2 N. The overall cost of the initialization step is
therefore O(M log2 N).

The cost of separating a subgraph Gi (V, Ei) is given by the sum of the costs of
computing a separating value and then constructing and numbering the corresponding
separator. Computing a separating value that satisfies the balance condition requires
the formation and traversal of the vertex count lists. The cost of forming these
lists is proportional to IVI. The cost of traversing them depends on the number of
actual coordinate values in the graph, which is obviously at most ]]. Computing the
estimate for the separator size requires the formation and traversal of the edge count
lists, resulting in cost proportionM to Ei. Computing the set of edges that straddle
the separating value involves searching one of the group trees and deleting edges
selected. This can be accomplished in time proportional to log2 N and the number
of edges found. Computing and numbering the actual separator can be performed in
time proportional to the size of the separator, which is much smaller than ]]. The
cost of separating Gi is therefore of the form cEi], where c is a small constant. The
cost of separating all subgraphs at level of nested dissection is therefore given by

c lEvi csM.

It remains to estimate the costs of forming working lists and group trees for each
resulting subgrph. Each list for G can easily be decomposed into two lists, one for
each resulting subgrph, in time proportionM to the length of the list. This is possible
since it cn be decided which subgraph n entity belongs to by simple comparison
of the appropriate coordinate value with the separating vMue. Such a decomposition
will yield lists that re still in increasing order of the respective coordinate value
since the original sorted order is not affected by deletions. Accordingly, this cost is

A group tree for G can be decomposed into group trees for each of the
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resulting subgraphs. Each interval in a group tree for Gi is examined. It can be
easily determined if the interval lies in Gil or G. by comparing it with the separating
value. The interval can then be added to the appropriate group tree. Including the
overhead of allocating and initializing groups, the cost is proportional to lEvi. Over
all subgraphs in Gt, the total cost of updating lists and group trees is therefore c,M,
where cu is a small constant.

It follows from the above paragraphs that the cost of one level of nested dissection
is coM, where Co is a suitable constant. Thus, a single initialization step followed
by at most log2 N levels of nested dissection results in a serial time complexity of
O(M log2 N).

5. Computing separators in parallel. We now adapt the Cartesian separa-
tor algorithm for use on a distributed memory parallel computer. Our goal is to
distribute the computation evenly across the processors while keeping the volume
and frequency of interprocessor communication low. For the resulting parallel algo-
rithm to be scalable, both higher and lower order costs should be shared among all
processors, and all data structures should be distributed across all memories. The
distributed parallel algorithm will have the same general form as the serial algorithm,
but the work of forming lists and counting and searching will be shared by all of
the processors. In effect, each processor will own a portion of the data and will be
responsible for any counting or searching involving that portion. Coordinating such
joint activities among the processors and reporting the results will obviously require
some interprocessor communication, but we try to limit this for good efficiency.

Let the number of processors be P. We assume that the set of vertices V of
the original graph is distributed among the processors so that each processor has
approximately IVI/P vertices. For ease of implementation, we distribute the set of
edges E among the processors so that each edge is assigned to a processor holding
one of the two vertices at its endpoints. This may not result in an even distribution
of edges for all graphs, but for most graphs arising in practice, such as finite element
graphs, the number of edges on each processor will be at most a constant times
In mapping the problem data to processor memories, we make no assumption that
locality is preserved, nor do we assume any correlation between the topology of the
graph and the topology of the processor interconnection network. Indeed, the parallel
algorithm we propose tends to perform best wih a random data distribution, since
such a distribution tends to balance the computational load in forming and searching
the various lists required.

The data distribution described above results in each processor’s having vertices
and edges at almost all coordinate values, but not having all of the vertices and edges
associated with any one coordinate value. As a consequence, in determining a sep-
arating value, vertex and edge count lists must be accumulated over all processors
and traversed in increasing order of coordinate values to identify a separating value
satisfying a balance condition and/or minimizing r/, and finally.this computed sepa-
rating value must be disseminated to all processors. Obviously, these steps require
several phases of interprocessor communication, as well as a significant amount of
computation. For effective parallelization, we will distribute lower order costs, such
as computing separating values over subgraphs at a given level of nested dissection,
as well higher order costs, such as constructing the vertex and edge count lists, across
all of the processors, and will also try to minimize communication costs.

In dealing with distributed data structures, we will adopt the notation that the
portion of a given entity that resides on processor rk will be indicated by appending
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(rk) to the usual notation for the global object in question. Thus, for example, V(rk)
denotes the portion of vertices in subgraph Gi that reside on processor rk, and so on.

5.1. Computing separating values in parallel. We now describe the process
of computing separating values in parallel. We formulate the computation in terms
of various global list operations, each of which requires a communication pattern akin
to parallel prefix. For many distributed memory parallel computers, the startup cost
for communication is relatively high, and therefore it pays to minimize the number
of messages required to send a given volume of data. For this reason, we will con-
catenate together all of the data to be exchanged among processors over all of the
subgraphs at a given level of nested dissection, so that a single set of communications
will suffice for computing a global list operation. Grouping communications in this
manner represents a substantial saving in the number of messages over computing the
separating value for each subgraph individually, which would incur a separate round
of communication for each. This is one reason we chose a breadth-first rather than a
depth-first approach.

As we have seen, the determination of appropriate separating values requires node
counts for each of a series of coordinate values. In a parallel setting, the necessary
count information is distributed over all of the processors. Thus, for each coordinate
value, the counts must be accumulated across the processors, the resulting separating
values computed, and this information must then be made available to all of the
processors. These three steps are required for each subgraph in {G1,..., Gr} at
a given level of nested dissection, and each step requires global communication. To
reduce the number of messages, and hence the total communication startup overhead,
we will combine all of the relevant data for all of the subgraphs at a given level for
each communication step. Of course, for good parallel efficiency, we must also share
the computational work among all of the processors as well.

We first consider the process of accumulating count information across all pro-
cessors. We will allocate this global accumulation among the processors by making
each processor responsible for a block of coordinate values. Let L denote the set of
coordinate values along a given dimension over all subgraphs in t, and let L be par-
titioned into P contiguous blocks of values, L(0),..., L(P- 1), such that each block
covers about the same number of vertices (which is always possible for reasonably
well-behaved graphs). Processor rk will be responsible for accumulating the counts
for each value in block L(k) for all Gi. Each processor initially has counts over all
the coordinate values L, but only for its own portion of each subgraph, whereas we
want each processor rk to contain the counts over each entire subgraph, but only for
its own assigned block of coordinate values L(k).

The best implementation of such a global information exchange operation depends
on the interconnection network among the processors. One example is dimensional
exchange in a hypercube network, in which processors exchange data pairwise in
successive dimensions of the hypercube. In the current context, the exchange of infor-
mation between each pair of processors involves splitting and merging their respective
lists. The lists are structured so that they can be merged in time proportional to the
sum of their sizes. After d steps, where d is the dimension of the hypercube, each
processor has the desired information, namely, processor contains the counts over
all subgraphs for the kth block of coordinate values.

The pairwise accumulation process described above effectively spreads the work
of accumulating counts for the coordinate values across all of the processors, but we
must still traverse the resulting count lists and compute the cumulative vertex counts
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to determine a separating value for each subgraph. The set of coordinate values
spanned by an individual subgraph Gi may intersect more than one block of values
L(k), and hence the corresponding count lists may be spread over multiple processors.
Thus, the necessary list traversals and cumulative vertex counts will require further
interprocessor communication. For a given subgraph G, let L {l,...,r} be
the ordered set of coordinate values spanned by V, and let Li(k) Li g L(k)
{/(rk),... ,ri(rk)}. To determine if a separating value lies within L(k), processor
rk requires a cumulative count of vertices in Gi over all previous coordinate values
/i,..., li(rk) 1. Furthermore, processor rk requires such cumulative counts over all
subgraphs in

Computation of the required cumulative counts is an example of a parallel prefix
computation, which can be implemented in a number of ways, with the best choice de-
pendent on the interconnection network among the processors. Our implementation,
which we refer to as cascading, is again based on dimensional exchange and requires
log2 P communication steps and P log2 P messages. An alternate implementation of
parallel prefix can reduce the number of messages required, but it does not reduce the
number of steps and requires nonneighbor communication in a hypercube.

Once cumulative counts have been cascaded, each processor can now determine,
for each subgraph, the set of values within block L(k) that satisfies the balance con-
dition. These sets of values must then be aggregated over all processors to arrive at
the full set of values satisfying the balance condition for each subgraph. This global
aggregation of sets can again be computed by a dimensional exchange process having
d steps, at step of which each processor exchanges information with its neighbor in
the ith dimension and the information received is combined with previous information
by set union.

For each subgraph in z, the above three-stage process determines a block of
coordinate values satisfying the balance condition. A similar three-stage process is
used for each subgraph to compute a value that minimizes 7. Each processor can then
determine the final separating value for each subgraph by making a local comparison
of the computed separating values in each coordinate dimension.

5.2. Constructing separators in parallel. Having determined a separating
value, we must now construct a separator for each subgraph. Portions of each sepa-
rator can be computed locally, but communication would be required to compute the
complete sets. However, we can avoid some of the overhead that would be required
by taking a different approach in which the processors cooperate to number their
portions of each separator without ever forming the set union explicitly. Since the
numbering of vertices within a single separator is arbitrary, we adopt the convention
that the vertices in V(rk) are numbered after those in Vs(rk-1) for 0 < k < P. To
determine the range of numbers to use for each processor’s portion, a variant of the
previous cascade algorithm is used.

The fact that the union over all processors is not explicitly constructed may result
in a separator that is somewhat larger than strictly necessary. Consider two edges
having a common vertex and residing on different processors. In the serial case, the
common vertex could be selected to cover both edges, but in the distributed case a

different vertex may be selected from each edge, thereby increasing the size of the
separator.

6. Parallel Cartesian nested dissection. The algorithm given in the previ-
ous section computes a set of separators for all of the subgraphs at a given level of
nested dissection. Thus, the algorithm could be applied repeatedly, beginning with
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the original graph G, to produce a complete nested dissection ordering in at most
log2(IVI) steps. In a distributed parallel setting, however, it may be advantageous
not to follow this process all the way to the end, since each step requires a significant
amount of communication. Instead, the dissection process can be stopped as soon as
a level has been reached at which there are at least as many subgraphs as processors.
The data can then be reorganized to place whole subgraphs on each processor, so that
a serial ordering algorithm can be applied to the remaining subgraphs on each pro-
cessor from that point on, with no further communication required.. We now describe
such a two-phase approach in greater detail.

The first phase consists of carrying out the first D levels of Cartesian nested
dissection as described earlier, where D is the first level at which the number of
subgraphs is at least tP, with t >_ 1 a parameter specified by the user. The choice
t 1 yields less overall communication, since it shifts more of the work to the second,
communication-free phase. However, a choice of t > 1, by producing more subgraphs
than the number of processors, may allow more flexibility in achieving a good load bal-
ance across processors during the second phase. Thus, there is a problem-dependent
trade-off in choosing a value for t. Whatever the choice for t, after D steps the Carte-
sian nested dissection process is stopped, and we must then redistribute the problem
data so that each subgraph is assigned in its entirety to only one processor. This re-
distribution step requires a significant amount of global communication, which must
be taken into account in assessing the total cost of the algorithm.

The necessary redistribution of problem data can be accomplished by a variant of
the pairwise accumulation algorithm described earlier. In our earlier use of pairwise
accumulation, we used the blocks of coordinate values, L(0),..., L(P- 1), as a means
of organizing the accumulation so that at each step of dimensional exchange the
computation would be shared among processors and the resulting data would be
assigned to processors in a systematic way. For purposes of redistributing problem
data between the global and local phases of the hybrid ordering algorithm, numerical
accumulation is not required, but we can still use the same organization as pairwise
accumulation to direct the flow of data to the appropriate destinations. Specifically,
the labels of the subgraphs to be redistributed, G(0),..., G(P- 1), play the same
role that the coordinate blocks played previously.

6.1. Parallel complexity. We now provide estimates of the communication and
computational complexity of the parallel Cartesian nested dissection algorithm for a
graph G (V, E) with N vertices and M edges using P processors. We assume
that each processor holds at most cN/P vertices and cM/P edges, where c is a small
constant. In the remainder of this section, the letter c is used to denote a suitable
constant.

We estimate the communication complexity in terms of Nmsgs, the number of
messages communicated by each processor. Communication is limited to the dis-
tributed phase comprising D levels of nested dissection, where D log2(tP and t is
a small constant. At each level of distributed nested dissection, a few accumulation,
cascading, and global aggregation operations are performed. Each of these operations
involves log2 P messages per processor. Over D levels, this amounts to O((log2 p)2)
messages per processor. Since redistribution is simply a variant of pairwise accumu-
lation, it also requires log2 P messages. Accordingly,

Nmsgs _< c (log2 p)2.
To estimate the computational complexity, we observe that the cost of a single
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level of nested dissection is proportional to the maximum number of edges on a pro-
cessor, excluding the overhead associated with pairwise accumulation, cascading, and
global aggregation operations. The one-time cost of redistribution must also be taken
into account. But for these exceptions, the cost of nested dissection would amount
to c(M/P)log2 N. The overhead associated with cascading and global aggregation
operations is proportional to the amount of information communicated. For these op-
erations, the lists communicated contain a few values for each graph at that level of
nested dissection. The communication volume is of the form c log2 PIGI for each level
1. Since IGI doubles for each successive level of nested dissection, the communication
volume is given by

c(log2 P){1 + 2 + 4 + 8 +... + tP} <_ 2ctP(log2 P).

It can be seen from this result that the associated cost is O(P log2 P). Using accu-
mulation (without explicit merging at each stage) results in O(1) overhead for each
pairwise communication step. At the end of log2 P such steps, each processor rk must
merge count information over values in L(rk). Recall that the sets L(rk) were chosen
so that each contains approximately NIP vertices. Therefore, the cost of merging
is proportional to NIP. Likewise, there is only a constant overhead associated with
the redistribution operation, since a processor simply forwards a portion of a received
message. Following redistribution, new data structures must be set up on each pro-
cessor for use in further processing, but this work is perfectly parallel and spread
more or less evenly across the processors. Thus, the parallel arithmetic complexity is
O((M/P) log2g).

7. Test results. In this section we present some empirical test results for the
parallel Cartesian nested dissection algorithm. In Table 1 we show the number of
vertices and edges for two types of test problems. The first type, labeled Gxxx, are
regular square grids of the given size; for example, G100 is a 100 100 square grid. The
second type, labeled Lx, are L-shaped finite element problems generated by ANSYS,
a standard commercial software package for finite element analysis. A small example
is shown in Fig. 4. These L-shaped graphs are highly irregular; for example, in L3
the ratio of the longest-to-shortest edge is 3420, which is comparable to the number
of nodes.

TABLE 1
Description of test problems.

Problem N M
G100 10,000 19,000
G200 40,000 79,000
G300 90,000 179,400
G400 160,000 319,200
L3 12,864 37,983
L6 25,728 76,086
L12 42,880 127,170

We give test results for the Cartesian nested dissection (CND) algorithm using two
different options. By CND-bal we mean the CND algorithm using only the "exact"
balance criterion a 1/2, and by CND-opt we mean the CND algorithm using the
approximately optimal separator size within the balance range permitted by a value
of a 1/2. The latter choice for a is heuristic; it is simply intended to give the algorithm
some freedom to reduce the separator size, yet not allow the splitting of the graph
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FiG. 4. Example of small L-shaped graph.

to become too skewed. We note that this value has been used in theoretical work on
graph separators [10]. CND-bal does not require estimation or optimization of the
separator size, and hence is less costly to compute than CND-opt. CND-bal should
produce well-balanced subgraphs but may suffer a great deal of fill. CND-opt, on the
other hand, incurs much less fill but may not maintain good balance. We have also
implemented a hybrid algorithm that uses CND-opt for the highest levels of nested
dissection to keep those critical separators small, then switches over to the cheaper
CND-bal for the remaining levels of dissection. We do not provide results for this
hybrid approach, however, as they simply fall between those for pure CND-opt and
CND-bal, mimicking one or the other more closely depending on the crossover point
chosen for switching criteria. For comparison with CND-bal and CND-opt, we also
give results for two well-known serial ordering algorithms, automatic nested dissection
(AND) [5], and multiple minimum degree (MMD) [11].

Tables 2 and 3 compare the orderings, with respect to sparsity preservation by
considering the resulting number of nonzeros in the Cholesky factor L and the total
number of floating point operations required to compute L. There is no need for
a sparsity comparison for the regular grids, since CND-bal produces theoretically
ideal orderings for such problems. For the L-shaped problems, we see that CND-bal
compares well with AND, and that CND-opt compares reasonably well with MMD,
which is usually considered the best heuristic known for irregular problems.

TABLE 2
Thousands of nonzeros in Cholesky factor L.

Problem CND-bal CND-opt AND MMD
L3
L6
L12

462 401 458 381
957 858 949 779
2444 1819 2112 1476

Tables 4 and 5 compare the orderings with respect to two theoretical measures
of parallelism, namely, the height of the elimination tree (see, e.g., [12]) and the
work, measured in millions of floating point operations, along the critical path in
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TABLE 3
Millions of floating-point operations to compute L.

Problem CND-bal CND-opt AND MMD
L3
L6
L12

22 14 24 13
49 35 55 27

278 120 219 66

the elimination tree (essentially tree height weighted by the number of floating point
operations at each node). These measures have commonly been used to give a rough
idea of the potential running time of parallel sparse Cholesky factorization using a
given ordering. Both measures are rather pessimistic, however, in that they do not
take into account the available data parallelism, nor the differing abilities of dense
kernels to exploit it. Nevertheless, we see that CND-opt produces shorter elimination
trees than AND or MMD, and the critical cost for CND-opt is also very competitive
with the other orderings. We expect the elimination trees produced by CND-bal to
be very well balanced, but the larger separators incurred can cause the total height of
the tree and the critical cost to be significantly higher than those for the other three
orderings.

TABLE 4
Elimination tree height.

Problem CND-bal CND-opt AND MMD
L3
L6
L12

632 441 581 580
672 668 675 915
1626 995 1444 1397

TABLE 5
Work along critical path.

Problem CND-bal CND-opt AND MMD
L3
L6
L12

11 2.7 11 3.0
13 6.8 21 4.6

134 31.0 77 13.0

Tables 6 and 7 show the ordering times for the CND algorithm using various
numbers of processors P on an iPSC/860 hypercube multicomputer. The blank entries
in the tables indicate cases that were not run because the problem would not fit in
memory for that number of processors. We cannot give comparative results for AND
and MMD, since they are not parallel algorithms. In Table 6 we show results only
for CND-bal, since it already produces ideal orderings for square grids, and hence
there is no need to use the optimal criterion. As expected for any fixed problem
size, we see a diminishing gain as more processors are used. Yet, in light of our
previous experience with sparse matrix algorithms on such parallel machines, we find
it encouraging that we continue to see any speedup at all as we reach as many as
128 processors. In particular, these results suggest that communication costs are not
growing unreasonably as the number of processors increases.

It should be noted that all of these test problems are relatively small, as even the
largest problems still fit on only four processors. The size of our test problems was lim-
ited by the logistic difficulties of generating large problems, transferring them across
national networks, and getting them into and out of the parallel machines through the
relatively primitive and cumbersome parallel input/output (I/O) facilities currently
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TABLE 6
Time in seconds for ordering regular grids.

P G100 G200 G300 G400
2.4 12.3 36.7

2 2.1 8.3 24.9
4 1.1 5.1 12.0 22.8
8 0.6 2.6 6.9 11.2

16 0.4 1.6 3.6 5.9
32 ).3 1.0 2.0 3.5
64 0.3 0.7 1.3 2.1
128 0.3 0.5 0.9 1.4

TABLE 7
Time in seconds for ordering L-shaped graphs.

P
1
2
4
8
16
32
64
128

CND-bal CND-opt
L3 L6 L12 L3 L6 L12
9.1
5.9 14.6
4.0 8.9
2.1 4.4
1.3 2.5
0.9 1.6
0.7 1.1
0.6 0.9

20.0
10.1

15.2 6.9
8.5 4.4
4.7 3.0
3.0 2.3
2.0 1.8
1.6 1.5

19.8
13.2 25.7
8.7 19.1
5.5 11.1
3.7 8.9
2.8 6.2
2.4 5.0

available. Eventually the algorithm we have developed will be integrated into an over-
all distributed parallel software environment, such as a structural analysis package,
so that the problem can be generated and solved in place on the parallel machine,
with problem size limited only by the total memory available on the entire ensemble
of processors. Our preliminary results with much smaller problems encourage us to
expect the CND algorithm to be very effective in such an environment.

8. Future work. We are encouraged by our results to date, but a considerable
amount of work remains to be done along these lines. More extensive experimentation
is needed, both in solving much larger and more diverse problems and in comparing the
results with other competing algorithms. The ordering algorithm could be extended
in several ways. For example, it may compute a separator that is unnecessarily large,
and it would be desirable to reduce the separator to one of minimal size. We would
also like to experiment with random sampling techniques to reduce the computational
cost of the algorithm. Another area for further research is the use of rotations, con-
formal mappings, or other transformations of the input graph that might enhance the
effectiveness of the Cartesian nested dissection algorithm.

The ordering algorithm has recently been generalized to handle problems in three
dimensions and also nonsymmetric matrices [17]. The subsequent numeric factoriza-
tion and triangular solution are developed in [8]. We are currently engaged in inte-
grating the entire suite of algorithms into a usable software library format, porting
it to additional parallel machines, and exploring its use in conjunction with software
packages for specific applications areas, such as finite element structural analysis.
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ON THE ITERATIVE SOLUTION OF HERMITE COLLOCATION
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Abstract. Collocation methods based on bicubic Hermite piecewise polynomials have been
proven to be effective techniques for solving general second order linear elliptic partial differential
equations (PDEs) with mixed boundary conditions [ACM Trans. Math. Software, 11 (1985), pp. a79-
412]. The corresponding system of discrete collocation equations is generally nonsymmetric and
nondiagonally dominant. Methods for their iterative solution are not known and are currently solved
using Gauss elimination with scaling and partial pivoting. Point iterative methods like those in
ITPACK [Tech. Report CNA-216, Center for Numerical Analysis, Univ. of Texas at Austin, April
1988] do not converge even for the collocation equations obtained from the discretization of model
PDE problems. The development of efficient iterative solvers for these collocation equations is
necessary for the case of three-dimensional PDE problems and their parallel solution, since direct
solvers tend to be space bound and their parallelization is difficult. In this paper block iterative
methods are developed and analyzed for the collocation equations corresponding to elliptic PDEs
defined on a rectangle and subject to uncoupled mixed boundary conditions. For these types of PDE
problems certain boundary degrees of freedom of the collocation approximation can be predetermined
symbolically [Houstis, Mitchell, and Rice]. The remaining equations are called "interior" collocation
equations. The system of all discrete equations is referred to as "general" collocation equations.
Papatheodorou [Math. Comp., 41 (1983), pp. 511-525] was first to determine the exact parameters
of accelerated overrelaxation (AOR)-type iterative methods for the case of "interior" collocation
equations associated with a model problem. This paper generalizes the results of Papatheodorou
for the "interior" collocation equations and presents new results for a particular class of "general"
collocation equations. Specifically, in the case of a model elliptic PDE problem with uncoupled mixed
boundary conditions, analytic expressions are derived for the eigenvaiues of the block Jacobi iteration
matrix based on a new partitioning of the interior collocation matrix, and the optimaloverrelaxation
factors are determined for the block successive overrelaxation (SOR) iterative method. A number of
numerical results are presented to verify the theoretical analysis of the block SOR method and to
compare its convergence behavior with those of the block Jacobi, Gauss-Seidel and the optimal AOR
of Papatheodorou. Furthermore, the authors compare the time and memory complexity of the block
SOR, LINPACK Band GE, and generalized minimal residual (GMRES) mathematical software for
solving the Hermite collocation equations obtained from the discretization of several PDE problems.
The numerical results indicate that the block SOR is an efficient method for solving these equations.

Key words, elliptic partial differential equations, collocation methods, SOR iterative method
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1. Introduction. We consider the discrete equations obtained from applying
the collocation method based on bicubic Hermite piecewise polynomials to discretize
a general second order linear elliptic partial differential equation of the form

(1) Lu =_ auxx + cuyy + dux + euy / fu g, (x, y) e R,

subject to the boundary conditions

Z e OR,(2) Bu =- ou + On
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where R is a general domain and the coefficients and the right-hand sides in (1)-(2)
may depend on x and y. It is an open problem to find iterative methods to solve these
equations.

The main objective of this paper is to theoretically and experimentally analyze
iterative methods for the solution of Hermite collocation equations associated with
the PDE (1) on a rectangular domain with Dirichlet or Neumann conditions on parts
of the boundary. A "natural" ordering of the collocation equations and unknowns [11]
leads to a banded coefficient matrix that is generally nonsymmetric and nondiagonally
dominant and whose diagonal elements are almost all zero. Thus a straightforward
application of the classic point iterative methods to solve these equations is not possi-
ble. These systems are currently solved by Gauss elimination with scaling and partial
pivoting [3]. Some "customized" direct and iterative solvers have been developed
for solving the Hermite collocation equations for special elliptic PDE operators and
boundary conditions on the unit square [2], [1].

The iterative solution of the Hermite collocation equations was first addressed
in [12] and [17] for the case of interior Hermite collocation applied on the Poisson
problem with Dirichlet boundary conditions defined on the unit square. The iterative
methods were based on a special reordering of the equations and the unknowns, which
resulted to a block tridiagonal coefficient matrix. In this paper we extend the itera-
tive approaches proposed in [12] and [17] for a class of "general" Hermite collocation
equations. These extensions are based on a new partitioning of the corresponding "in-
terior" collocation matrix that allows us to derive analytically the eigenvalues of the
corresponding block Jacobi iteration matrix and determine the optimal overrelaxation
factor of the SOR iterative method [21], [22]. In addition, we improve several of Pa-
patheodorou’s theoretical results for the "interior" collocation equations. We present
experimental results that show that the SOR method converges well, as expected, for
the model problem and also for a more general PDE. Comparisons are made with
other iterative methods (preconditioned conjugate gradient) and direct solvers; the
SOR method is seen to be the most efficient.

The organization of this paper is as follows. In 2, we introduce a notation
for defining the various block partitionings of collocation coefficient matrices used
in the spectral analysis of the Jacobi iteration matrix. Moreover, we give a brief
description of the Hermite collocation method. In 3, we describe the new ordering
of the interior collocation equations and the unknowns, present a block partitioning
of the coefficient matrix, and carry out the spectral analysis of the corresponding
Jacobi iteration matrix. These results are applicable for Dirichlet model problems
on the unit square. In 4, we establish similar results to those in 3 for general
Hermite collocation equations. Moreover, the spectral analysis of the Jacobi iteration
matrix associated with a new partitioning of interior collocation matrix is used to
analyze the convergence of the block SOR for model problems with some types of
uncoupled mixed boundary conditions on a rectangle. In 5, we use the results of
4 to study the convergence analysis of the block SOR method. Moreover, we make
some comparisons concerning the two block Jacobi iteration matrices and develop
the corresponding optimal block SOR iterative method. Finally, in 6 we study the
numerical behavior of several block iteration methods including optimal and adaptive
SOR, Jacobi, and Gauss-Seidel. We verify some of the theoretical results obtained
in this paper. In addition, we compare the performance of the optimal block SOR
solution, three preconditioning conjugate gradient methods based on GMRES software
and the LINPACK Band GE solver. Data are given for the iterations, time, and
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memory required to solve for a model PDE problem with several types of boundary
conditions and a more general PDE problem. The numerical results indicate that
the block SOR method developed is an efficient alternative for solving the Hermite
collocation equations obtained from the discretization of general elliptic PDEs on
rectangular regions subject to uncoupled mixed boundary conditions.

2. Preliminaries. In this section we introduce some special notation for parti-
tioning matrices and give a brief formulation of the Hermite collocation discretization
approach for the PDE problems considered in this paper. First, we introduce the
block form

[AIB] Jail a12 bll b12]a21 a22 b21 b22

which we subsequently use to construct the (2n) x (2n) matrix

aB
AB

a22 b22
A B
Ab

Note that if all aij and bij are (2m) x (2m) matrices, then A and B are matrices of
2 x 2 block form and of order 4m. So the new matrix is of order 4mn.

Next we present a brief description of the Hermite collocation method for PDE
problems defined on the unit square. For simplicity, we consider the case of a uniform
grid with spacing h l/n, where n is the number of subintervals in the x- and y-
directions and with a set of nodal points bordering the unit square at a distance h. For
this mesh the coordinates of the nodal points are (xi,yj), where xi (i 1)h, yj
(j 1)h, i, j 0, 1,..., (n + 2). It is known that the basis functions of nermite cubic
piecewise approximate space are generated by the following two cubic polynomials on

(0,1): (t) := (1 t)2(1 + 2t), (t) := t(1 t)2. Specifically, the one-dimensional
Hermite cubic piecewise basis functions are

(-a) if ti_l <_ t <_ ti, (-h(-a) if t_ <_ t <_ t,
B2i-1 (ai) if ti <_ t <_ ti+l, B2i I h(ai) if ti <_ t <_ ti+l,

0 otherwise, 0 otherwise,

where 1,2,..., (n+l), ai(t) (t-ti)/h, and t x or y. In this paper we consider
the "fast" determination of an approximate solution to (1)-(2) defined as

(3)
2(n-t-l)

 n(X,
i,j=l

The unknown coefficients (degrees of freedom (dof)) cj are determined so that Lun
f is satisfied exactly at interior collocation points (the four Gauss points of each mesh
subrectangle) and Un satisfies the boundary conditions at the two Gauss points of
each boundary subinterval plus at the four corner points. This system of algebraic
equations with respect to ciy is called general Hermite collocation equations.

It is worth noticing that the structure of the collocation coefficient matrix depends
on the numbering of the collocation points and the numbering of the four unknowns
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associated with each node (xi, yj). Based on the definition of the basis functions
one can easily show that the values of the unknowns coincide with the values of the
approximate solution and its partial derivatives at each nodal point. Specifically,
using the standard derivative operator notation, we have c2i-1,2j-1 Un(X,yj),
a2,2j-1 Dxun(x,Y.i), (2-1,2j Dyun(xi, yj), a2,2j D2xyUn(X,Yj).

For Dirichlet or Neumann conditions on part of rectangular boundary, some of
the unknowns can be determined symbolically from the boundary collocation equa-
tions. In this case, we are left with a linear system of size (4n2) x (4n2); its coefficient
matrix is referred to as the "interior" collocation matrix and the whole procedure is
called the "interior" collocation method [11]. In the case of mixed boundary conditions
such a priori elimination of unknowns is not possible symbolically.

3. The case of interior collocation equations. The analysis of the iterative
solution of the "interior" Hermite collocation equations associated with Dirichlet
model problem on the unit square was first considered in [12] and [17]. It is based
on the spectral analysis of the corresponding Jacobi matrix under a new block pr-
titioning of the "interior" collocation coefficient matrix. The results obtained in [17]
assume that n 2 where n is the number of subintervals in each coordinate direc-
tion. In this section we generalize the spectral analysis of the Jacobi matrix for any
n _> 2. Furthermore, we extend the ordering and prtitioning introduced in [17] for
uncoupled boundary conditions on part of the boundary. The main result is presented
in Theorem 3.2.

3.1. The reordering and partitioning of interior collocation equations.
The ordering of collocation equations is crucial for the convergence of iterative meth-
ods. Here we extend the reordering proposed in [17] for the interior Hermite col-
location equations corresponding to the PDE problem (1)-(2) with the "uncoupled
boundary conditions"

Ou
u=bon0RCOR, =5 on0R2=0R-0R.On

In Fig. 1(c) we depict the structure of the collocation equations for a specific mesh
and the so-cMled "natural" ordering [11] described in Fig. l(a). This system is gener-
ally banded and is neither symmetric nor diagonally dominant. Papatheodorou [17]
introduced an ordering of the interior collocat’ion equations and unknowns so that
the coefficient matrix of the resulted system has nonzero diagonals. This ordering
is depicted in Fig. l(b) for the mesh nx ny 3 assuming Dirichlet conditions on
x 0 and y 1 and Neumann conditions on x 1 and y 0. The structure of the
corresponding linear system is shown in Fig. l(d).

From the above example we can easily conclude that for the general case nx
ny) and any uncoupled boundary conditions, the interior collocation coefficient matrix
A associated with the new ordering has the following block structure:

(4) A

X X X 0
0x x’xX 0
0x x x x 0

0 X X X,
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xxxx..xdxx..xxxx..xxxx
xxxx..xxdx..xxxx..xxxx
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xxx...xxx...dxx...xxx
xxx...xxx...xdx...xxx
xxxx..xxxx..xdxx..xxxx
xxxx..xxxx..xxdx..xxxx
xxx...xxx...xdx...xxx
xxx...xxx...xxd...xxx

xxx...dxx...xxx...
xxx...xdx...xxx...
xxxx..xdxx..xxxx.
xxxx..xxdx..xxxx.

..: xxx...xdx...xxx
xxx...xxd...xxx

xxx...xxx...dxx...
xxx...xxx...xdx...
xxxx..xxxx..xdxx.
xxxx..xxxx..xxdx.

xxx...xxx...xdx
xxx...xxx...xxd

(d)

FIG. 1. An example of the structures of interior collocation equations for the mesh nx ny 3
using "natural" ordering (a) and Papatheodorou’s ordering (b) of equations and unknowns. The 36
collocation points are shown in bold; the numbering indicates the ordering of the equations. The
unknowns are associated with nodal points and numbered in light type. Those unknowns eliminated
symbolically are denoted by x. In (c) and (d) we display the structures of the collocation matrices
associated with the orderings (a) and (b), respectively, where d denotes a nonzero diagonal element.

where x denotes a (2ny) (2ny) matrix. Apparently, under this partitioning, A is
a block 2-cyclic consistently ordered matrix (aft [21, p. 102]) of order 4nxny. This
property motivates us to explore the use of block iterative methods to solve the
Hermite collocation system. Specifically, we are interested in studying some special
cases of these systems in which the block Jacobi iteration matrix associated with the
partitioning in (4) has certain properties as described in [17]. In the next section we
briefly present the generalization of the results in [17] for nx, ny >_ 2 following a much
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simpler analytical approach.

3.2. Spectral analysis of the Jacobi matrix. We consider the interior Her-
mite collocation coefficient matrix for the case of a Poisson equation on a rectangle
with Dirichlet boundary conditions and a uniform grid. To simplify the notation in
the theoretical results that follow, we use n and m instead of nx and ny, respectively.
In this case the collocation coefficient matrix is of the form

(5) A=IA1 A2 A3-A4]A3 A4 A1 -A2 (R)(2n)

with each Ai being of order 2m. Note that the partitioning in (4) allows us to write
A as

D1 -U
-L D -U

(6) A "..

where

A2 A3 D1 -L1 -U1--(7)D= A4 A A4 -A2 0 A3 A2 0

In the subsequent analysis we assume that D, D are nonsingular. Furthermore, we
introduce the matrices

R21 R22 A4 A1 A2 A3

(9) R32 A4-A A3

and note that

(10) I-A4 A]=A2A3 A4 A 0

From the relations (8) and (10), we obtain

[R-l__
L
a

Consequently, we have

(11) R- [ RI -R12 1-R21 R22

If R2 is invertible then from (11), Rll (- R2R22R) is similar to R22 and the
following lemma holds.

LEMMA 3.1. If R21 is nonsingular, then R31 =-RI.
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Proof. First we observe that (8) implies

A4 A1 R21 R22 -A2 A3

From (9) we have that A2R3- A4R32 A1 and A4R3- A2R32 A3. If we use the
previous expressions for A and A3 in (12), we obtain

A4 -A2 0 -R3 R21 R22 A4 -A2 I R32

Since D is invertible, the above equation can be simplified as follows:

0-R31 R2 R22 I R32

Comparing both sides, we readily obtain that -R3R2 I. Hence our assertion is
established.

The block partitioning (6) of A corresponds to the splitting A D L U
where D diag(D1,..., D1, D) and L and U are strictly lower and upper triangular
matrices. Let J D-I(L + U) be the block Jacobi matrix associated with this
partitioning. A calculation using (7)-(9), and Lemma 3.1 shows that the spectrum
a(J) of J satisfies a(J) a(J1)t2 {0} because the first and last block columns of J
are zero columns.

(13) J1

0 R21 0
R12 0 0 R
R22 0 0 R2 0

0 R2 0 0 R

0 R2 0 0
R22 0 0

0 -RI

Rll
R21
0

Note that J1 has only (n- 1) diagonal blocks. Using (11) we obtain that

(14) j{-1

-R Re
0 0 0
0 0 -R21 R22
R -R2 0 0

RI -R2
0

0

0 0
0 0
R -Re

0
-R
0
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Then from (13) and (14) we have that

(5) j + j-i

0 0 R22
R* 0 0 Rll
R22 0 0 0 R22

Rll 0 0 0 R

Rll 0 0 0
R22 0 0

Rll -R*

Rll

where R* R12 + RI1. Consider now the directed graph associated with J1 + J{-

1 2 3 4 (2n-5) (2n-4) (2n-3) (2n-2)

From this graph it is seen that a similarity permutation transformation transforms
J + J{- to

(16)

0 R22
R22 0 R22

R22
R22

R22

0
Rll

Rll
Rll

Rll
Rll

Rll

Let K tridiag(1, 0, 1) be of order (n- 1). Note that from (11), R22 is similar to
Rll so we have that a(J) a(G), where G K (R) R22. The symbol (R) denotes
Kronecker product (cf. [10] and also [15] where tensor products were used for the
first time in connection with discretized PDE problems). Some of its properties used
here are (A (R) B)(C (R) D) (AC) (R) (BD) and (A (R) B)- A- (R) B-1. For
the first property to hold, it is assumed that AC and BD are well defined, while
for the second one, it is assumed that A and B are square and nonsingular. The
existence of nonsingular matrices X and Y such that KX XDK and R22Y YJR
(OK diag(2cos ,...,2cos (n-l))) and JR being the Jordan canonical form of
R22 implies that G(X (R) Y) (Z (R) Y) (DK (R) JR). Note that DK (R) JR is upper
triangular and the nonsingularity of X and Y implies that X (R) Y is nonsingular.
Hence we conclude that a(G) n-1Uk=l{2pcos lp e a(R22)}. The above observations
are summarized in the following theorem.
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THEOREM 3.2. Let J be the block Jacobi iteration matrix corresponding to (5)
based on the partitioning in (4) and assume that relations (7), (8), and (9) hold. Then
the spectrum of J is given by the expression

(17) a(J)={O} U #l#+-=2pcos, pea(R22)
k=l # n

The following observations are a direct consequence of this theorem.
Remark 1. Zero is an eigenvalue of J of multiplicity 4m.
Remark 2. The corresponding result in [17] can be obtained as a special case of

Theorem 3.2. To see this, denote by/ the corresponding matrix R in [17] and assume
that 2 is the order of J. Then the corresponding result in [17] can be stated as follows:

2 cos0, where p E a(/11) andFor every # e a(J) such that # = 0 then # +
2k k- 1 2, If we seth=2 in Theorem 3.2,0=(2m 1)r/2k,m 1,2,...,

then we can show that RR22 --I and

1)} { (2rn-1)rim 1 2, 2k k 1,2, l
2k

...,
j

which proves our assertion.

4. The case of general collocation equations. In this section we consider
the reordering, partitioning, and the spectral analysis of the block Jacobi matrix
corresponding to the general collocation equations obtained from the discretization
of a model PDE problem on the unit square. In the case of uncoupled boundary
conditions, the solution of the general collocation equations turns out to be equivalent
to the solution of the corresponding interior collocation ones. Thus, it is sufficient
to carry out the spectral analysis of the block Jacobi matrix associated with the
interior collocation equations. This analysis is quite different from the one presented
in the previous section. It is based on a new partitioning of the general and interior
collocation equations. This partitioning leads to an always convergent block Jacobi
iteration matrix. It is worth remembering that this was not the case for the block
Jacobi matrix of 3. Our main result is presented in Theorem 4.3, which is exploited
further in 5 to derive the optimal SOR method for the Poisson equation problem
under (i) Dirichlet and (ii) Neumann boundary conditions.

4.1. The reordering and partitioning of the general collocation equa-
tions. As in the case of interior collocation, we observe that the use of the "natural"
ordering of the general collocation equations and unknowns yields the collocation ma-
trices whose structure is not suitable at least for point iterative solvers. To overcome
this difficulty, we propose a new ordering that is depicted in Fig. 2 for a specific mesh.
In the general case of mixed boundary conditions, the collocation coefficient matrix
corresponding to this ordering has no zeros on the diagonal.

With this new ordering scheme, the general collocation matrix has the block
tridiagonal structure as in (18)(a), where x denotes a 2(ny + 1) x 2(ny + 1) matrix.
The whole matrix is block 2-cyclic consistently ordered of order 4(ny + 1)(nx + 1).
Since interior collocation matrices may be produced from general collocation matrices
by eliminating symbolically the uncoupled boundary conditions, the partitioning in
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1516 23 24

13 14 2122

Ii 12 19 20

31 32 39 40

29 30 37 38

27 28 35 36

47 48 55 56

45 46 53 54

43 44 51 52

63 64

61 62

59 60

8 16 24 32 40 48 56 64

15 23

14 22

13 21

12 20

11 19

10 18

31 39

30 38

29 37

28 36

27 35

26 34

47 55

46 54

45 53

44 52

43 51

42 50

63

62

61

6O

59

58

i0 17 18 25 26 3334 4142 49 50 57 58 1 9 17 25 33 41 49 57

(a) (b)

FIC. 2. The new numbering of the general collocation unknowns (a) and equations (b) for a
mesh with n= ny 3. Note that there are 28 equations associated with the boundary collocation
points and the corresponding set of unknowns that are not eliminated symbolically.

(18)(a) leads to the decomposition (18)(b) of the interior collocation matrix in (4).

(18)

X X X X

X X X X

X X

X

-x x
XXX X

X X X X XXX X

(b)

For most of the cases we have studied, we have found experimentally that block
adaptive SOR iterative methods (cf. [9]) and some standard block iterative methods
do not converge under the partitioning defined in (4). However, they do converge
if the new partitioning (18)(b) is used. We investigate this issue in 5. Next we
obtain some useful properties of the block Jacobi iteration matrix associated with the
partitioning defined in (18)(b).

4.2. Spectral analysis of the Jacobi matrix. First we apply the block parti-
tioning in (18)(5) to the interior collocation matrix (5) and consider the corresponding
splitting A D-L-U. If we assume that A1 and A2 of (5) are nonsingular, then D is
invertible and the Jacobi matrix associated with the above splitting is J D-(L+U).
Moreover, it is clear that the spectra of J and J’ (L + U)D- are the same. Since
J’ is easier to study, we turn our attention to a(J’). The block partitioning and the
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definition of J’ imply that

(19) J’

OPQ
P-QOO

ooP
QPO

OPQ
POO
OOP-Q
QP o

where P -1/2(A3A[-I+ A4AI), Q -1/2(A3Ai-1- A4AI). Since P and Q are
2m x 2m matrices, it is not an easy task to find a(J’) directly. Instead, we determine
a(J’) when P and Q are real scalars and use this result to find a(J’) in the general
c&se.

LEMMA 4.1. If P and Q are real scalars, then the eigenvalues # of J’ in (19)
are either # (P Q) or satisfy the equation #2 2Q# cos 0 + Q2 p2 o, where
O= k k=l 2, (n-l)n *’’

Proo This proof is based on the analysis in [4, pp. 218-230] that has been
successfully used in [20] and [13]. For this reason we retain the notation established
in [4]. For the sake of convenience, we assume that PQ(P Q) 0 without loss
of generality. The problem of determining the eigenvalues and eigenvectors of J is
equivalent to solving the boundary value problem of the matrix difference equation

BoZ_ + (B I)Z + BZ+ O, k 1, 2,..., n,

(20) z2,0 -Zl,1, Zl,n+l --Z2,n,

B0= 0 Q B= P 0 0 z,k

where is an eigenvalue of J. This can be solved by the nonmonic matrix polynomial
theory. The nonmonic matrix polynomial that corresponds to (20) is given by

(21) L(A) ": B22 + (Be- .Z) + B0 [Q2_ . p]
om Theorem 8.3 in [4], we know that the general solution of (20) is given by

0,1,

where (XF, dy) (of. [4, Chaps. 1, 7]) is a ordan pair of the matrix polynomial L(),
g C" and is the degree of det(L()). From (21) it is readily obtained that

We distinguish two cases according to whether or not is zero.
If, 0, th,n it cn b proved that 0 (J’) ( [14, m. 4.11).
If 0, then the eigenvalues of L() are given by the expressions

X0 0,
+ Q P +( +Q P)

2Q

#e + Q. pe v/(# + Q. pe)e 4Qe#e
2Q#
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It is clear from (23) that A1A2 1 and (A1 + A2)Q# #2 + Q2 p2.
If A A2, the eigenvectors of L(A) associated with Ai i=0,1,2, are

:Co= 0 z= 1 z= 1 Wl= p, w= p.
Since all the eigenvalues of () have only one eigenvector each, the finite Jordan pair
is

1 Wl wX= 0 1 1 = 0 0 9= 9
0 0 A2 g2

It is easy to check that the vectors Zk defined by (22) satisfy the mtrix difference
equation (20). For the vector g [g, g2]T that satisfies the boundary conditions in
(20), we hve

+ Wl + W2 g2 0

If g [0, 0]T, then Zk = O, k 0, 1, 2, Since there exists a nonzero solution to
(24), we must have

(1 + + 0.

If we assume 1 + wiAi 0, then we get Ai Q-P. Moreover, solving Q#A (2 +
Q2 p2) Ai + Q 0 with respect to , we obtain (Q P) for P # 0.
This implies A 2 1 which contradicts the assumption A A2. Hence from
(25), we conclude A-A 0 and determine that A e A2 e- k

n

k 1, 2,..., n- 1 since 12 1. It is worth noticing that for each pair of A’s there
are two p’s obtained from equation 2 2Q cos 0 + Q2 p2 0.

In the case of A A2, similar analysis leads to the determination of p (Q-P)
which completes the proof (see [14, Lem. 4.1]).

It is difficult to determine det(L(A)) explicitly when P and Q are real matrices.
This is due to the fact that (21) is not a 2 x 2 matrix. Thus, applying the above
analysis to obtain a(J) is not an easy task. Instead, we determine p from each

k

known A from the scalar case. Specifically, we can show that for A ew, the
equation det(n(A)) 0 can be simplified into

which is equivalent to determining the eigenvalues of

S=
Qe P
P Qe-

To eliminate the complex numbers involved, we perform the similarity transformation

RkSkR1, where

Rk
I -eI ]kiIiI



266 Y.-L. LAI, A. HADJIDIMOS, E. N. HOUSTIS, AND J. R. RICE

Then the problem at hand is transformed into that of determining the spectrum a(Tk)
of

(Q P)cos - (Q P)sin - ]Tk=
-(Q+P) sin- (Q+P) cos-

Lemma 4.1 gives the basic idea as to how to tackle the matrix problem case.
Lemma 4.2 states the corresponding result. Its proof is presented in [14, Lem. 4.2].

LEMMA 4.2. Let J’ be the matrix in (19) with P and Q being real matrices. Then
its spectrum is given by a(J Uk=l a(Tk) U a(P Q) u a(Q P).

Note that (19) implies that Q P AA and Q + P -A3A. We now
present our main result for the general collocation equations.

THEOREM 4.3. Let J be the block Jacobi iteration matrix corresponding to (5)
with the partitioning in (18)(b). Then its spectrum is given by

[ 1n--1 A4AI cos - A4A sin
a(J) k=lU a(Tk)Ua(AnAI)ua(-A4AI)’ Tk A3A_I sin - -A3A- cos -Remark. Note that (5) was obtained from a particular class of general collocation
equations after eliminating some unknowns symbolically.

5. Iterative methods for the solution of a model problem. In this section
we consider the collocation equations obtained by the discretization of the model PDE
problem with Dirichlet or Neumann boundary conditions defined on the unit square.
Using the analysis of the previous sections, we derive the eigenvalue spectra of the
block Jacobi iteration matrices J and J2 corresponding to the block partitionings
in (4) and (18)(b). Then the analysis of the optimal SOR method for the Dirichlet
problem is made and optimal results are obtained for the method based on the (18)(b).
For the block SOR method based on the (4) partitioning, optimal results are already
known [8]. We conclude this section with the analysis of the optimal SOR method for
Neumann boundary conditions.

5.1. The Dirichlet case. We consider the iterative solution of the interior col-
location equations associated with the Dirichlet boundary value problem

(27) uxx --tyy f in R (0, 1) x (0, 1), u g on OR

and a uniform mesh (hx 1/nx hy). After applying Papatheodorou’s ordering
scheme (see Fig. 1) and factoring out (1/9h2), the collocation matrix is the same as
the matrix A in (5). For this particular problem, the entries of Ai, i 1, 2, 3, 4, are
independent of h and have the same structure as A. Specifically, we have

(28) Ai=[al a2 a3-a4]a3 a4 al a2 (R)(2n)

The values of aj, j 1, 2, 3, 4, corresponding to the Ai’s are listed below (see [17]).

al a2 a3 --a4

A1 -24 18x/- -12 8v/- 24 -3

A2 -12-8xfl -3-2x/ 3- 0

A3 24 3 xfl -24 + 18x/r 12 8xfl
A4 3 + V/- 0 -12 + 8V/- 3 2-
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To find analytic expressions for the elements of a(J), some preliminary analysis is
needed.

LEMMA 5.1. Let the matrices A and B be defined as

a3 a4 ai -a2 (R)(2n) ba b4 bl -b2 (R)(2n)

and suppose that B is nonsingular and a2b4 7 a4b2. Then the generalized eigenprob-
lem (cf. [5, pp. 251-266]) ATx ABTx has eigenvalues given by the following
expressions:

(i) A a2+a4 associated with the eigenvector x [1, 1,-1 -1,.. .IT.b2+b4
(ii) a.-a4 associated with the eigenvector x [1,-1, 1,-1,...ITb2 --b4
(iii) A satisfies the equation

()()- A()4() k
-cos/?, 0=, k-l,2,...,(n-1),

fl (A)f4() f2(A)fa()

with associated eigenvector x [Pl + P2g, wlpl +w2P2g, p’ + p’g, wipe{ +w2pg]T,
where fi(A)= ai- Abi, 1,2,3, 4, pl ei -i

p2-e

plf2(A)- f4(A) 1 wlf2(A) + f4(A)
wl= f2(A)-plf4(A)’ w2= and g=-

Wl w2f2() + f4(A)

Proof. The solution of the eigenproblem ATx BTx is equivalent to solving
the matrix difference equation BoZk-1 + B1Zk + B2Zk+I 0, k 1, 2,..., n, where

0 0 f3()Q fl (A) fl () f3()

with the boundary conditions

BoZo 0, fl(A) fa(A) Z+I -f(A) f4(A) -fl(A) f(A)

Then, the assertions of this lemma follow from an analysis analogous to that in the
proof of Lemma 4.1. The details are presented in [14, Lem. 5.1].

LEMMA 5.2. Let A, 1,2,3,4, be the matrices in (28). Then there exists a

nonsingular matrix X such that ATa x AT2 XD and AT3X ATI X), where

(29)
D diag(Al, A2, A2n)

=diag(3-2v/- 3-2V al+,a + )3 + 2x/’ -3- 2x/’ ,’",an-l,an-1

(3o)
D diag(Ai, A2,..., A2n)

-diag(9-7x/- 15-9v/- )n--1, ---1
9 + 7v/ -15 9V/- 31+’/3{- +

3x/- + x/43 + 40 cos Ok 2 cos2 Ok
(-28- 16x/-)+ (V/- + 1)cos0k
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kT"(37 + 8 cos Ok) =k 3XflV/43 + 40 cos Ok 2 COS2 Ok and
(-64- 361/)+ (19 + 9-)cos Ok n

Proof. The proof is given in [14, Lem. 5.2].
5.1.1. Spectra of the block Jacobi iteration matrices. Let J1 and J2 be

the block Jacobi iteration matrices associated with the partitionings in (4) and (18)(b)
of the interior collocation matrix. We now derive analytic expressions for a(J1) and
a(J2).

First from Lemma 5.2, we have that A1 and A2 are nonsingular and AaAIA3A
is invertible. Therefore, the blocks of R in (8) can be found explicitly. Specifically, we
get R22 (A A4AIA3)-(-A4AAI + A3). Then, an obvious calculation shows
that a(R22) a((-A4AA + A3)(A A4AA3)-) a((-A4A +A3A)(I
AaAIA3A)-I). After applying Lemma 5.2, we conclude that

a(Rg.2)
1- AiAi’ 1,2,...,2n},

since ATAT and A-TA commute. Lemma 5.2 implies that XTA4A (xT)- D
and XTA3A (xT)- D. By a similarity transformation using diag(XT, XT) and
an obvious permutation of rows and columns, it is seen that Tk of Theorem 4.3 is
similar to diag(D1, D2,..., Dn), where

Ai cos A sin
D=

sin -cos-
So, we have

(T) {,I,: -(-)cos- AiAi 0, 1, 2,...,2n}.
n

Combining the above results with those of Theorems 3.2 and 4.3, we conclude that

i=1,2,...,2n}},
(32)

o(j:) {+,...,+.} u
Uk=l (ttltt2 (i- Ai)tt COS - XiAi 0, 1, 2,..., 2n}

where Ai, Ai are the ones of Lemma 5.2. Note that 0 E a(J) with multiplicity 4n.
It can be proven that for i 1,..., (2n), Ai and i of (29) and (30) are real

numbers with magnitudes less than 1. This implies that tt+ is real and has absolute
value less than 2 and all eigenvalues of J, except 0, are complex and lie on the
circumference of the unit circle. Therefore, the spectral radius p(J1) of J1 is equal to
1. On the other hand, based on (32), we can show that the spectral radius p(J2) of
J2 is equal to

(33)
1

(A3-A)cos-+P(J2) a :=
n
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and bounded above by A31, where A3 and A3 are those of Lemma 5.2. Thus, we
conclude that for any discretization grid size n, the following relation p(J2) < IA3[ <
p(J1) 1 holds. Consequently, for the model problem in 5.1, the Jacobi iterative
method associated with the partitioning (18)(b) converges. This is not the case for
the partitioning (4).

5.1.2. Optimal SOR. The optimal SOR method with the Jacobi matrix J1 has
been derived in [8]. In this paper we consider the determination of SOR overrelaxation
parameter when the Jacobi matrix is J2. Recall that J2 is consistently ordered weakly
cyclic of index 2. Therefore, the algorithm of Young and Eidson [23] (see also [22,
pp. 194-200]) can be applied to determine the optimal SOR method. To apply this
algorithm the hull (smallest convex polygon) of a(J2) is required. From (32) we obtain

(34) cos +/- cos + /2.n n

For real # we have already found that max I#1- a in (33). However, # may be
a complex number only when AjAj < 0. Furthermore, all complex eigenvalues of J2
associated with them must lie on the circumference of the circle centered at (0,0) with

radius /-)Uj. Let b be the maximum value of /-Ajj among those j such that

-Aj Aj > 0. Then

(35) b max -a-/3-, e cos cos-l(10 6x/)
k n 59

can be obtained from (29)-(30). It follows that all complex eigenvalues of J2 lie inside
or on the circumference of the circle with center at (0,0) and radius b. On the other
hand, from (33) we have a P(J2) E a(J2). If n is even then k in (34) implies
that bi or(J2), where is the imaginary unit. Thus, the ellipse with semiaxes a and
b is the optimal capturing ellipse of a(J2) and the optimal value of Wop is given by

(36) w
1 + (1 + b2 a2)l/2’

a+bP(’)=
1+(1+b2-a2)a/2

where is the associated block SOR iteration matrix with overrelaxation parameter
w. However, if n is odd then bi . a(J2). In this case the value of w in (36) is still a
very good approximation to Wopt, because b is only slightly greater than the imaginary
semiaxis of the corresponding optimum-capturing ellipse and tends to the optimal one
(b 0.0237973) when n - c. Two examples of a(J2) for each of the two cases of n
even and odd are depicted in Fig. 3.

5.2. The Neumann case. Here we consider the iterative solution of the interior
collocation equations associated with the following Neumann boundary value problem
and a uniform mesh

(37) ux, + Uyy f in R- (0, 1) x (0, I), On/On- g on OR.
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FIG. 3. The spectrum a(J2) of the Jacobi matrix J2 associated with the partitioning in (18)(b)

of the interior collocation matrix.

For the analysis below we introduce a similar notation to that in 2, namely,

aB
AB

A B
Ab

that differs only in the definition of the vectors a and b.

Using Papatheodorou’s ordering of 3.1,and factoring out (1/9h2), the interior
collocation matrix has the form

A2A
A3 A4

A -A4 ]A1-A2

For this particular problem, the entries of Ai, 1, 2, 3, 4, are independent of h and
have the same structure a before, namely,

r

Ai i al a2

k a3 a4
a3 --a4 ]al-a2 (R)(2"n)

The values of aj corresponding to Ai are those given in 5.1. Following the analysis
developed in 4.2, we obtain that the corresponding block Jacobi iteration matrix J’
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is given by

P+Q 0

QPO

OPQ
PO0
OOP+Q
QP o

where P and Q are defined in the same way as in (19). Using the similarity trans-
formation SJtS-1 with S diag(1, 1,-1,-1, 1, 1,...), Jt is transformed to J". The
matrix J" is of exactly the same structure as Jt in (19) with the only difference being
that -Q is replaced by Q. On the other hand, we have

P1 [al a2

a3 a4
P2- [a2 al

a4 a3
a4 --a3 Ja2 --al (R)(2n)

with P1 diag(I,-I, I,-I,...) and P2 diag(1,-12,12,-12, I2,..., (-1)n), where
I is the 2 2 identity matrix and 12 [0 0]" Now applying Lemmas 4.2, 5.1, and 5.2,
we get

(38)
a(J’) {+/-il,...,+/-i2n} U

U={I (, a).o- Xa o, ,,...,}

where

(,1,2,... 2n)--( 15--7X/- 9--9X/- + a_)-15 7x/-’ 9 + 9x/-’ c+’ 01 On--l’

( 48 18x/- 18x/- )3n-- 1,3---(,k,2,..., 2,)
-48 18x/’ -18-’ 3+’3- +

3V +/- x/’43 + 40 cos Ok 2 cos2 Ok
(--28- 16X/-)+ (X/- + 1)COS0k

k"(37 + 8 cos Ok) +/- 3X/-V/43 + 40 cos Ok 2 COS2 0k 0k
(-64 36/) + (19 + 9V/-)cos O n

From (38), it is clear that all the eigenvalues of J except +/-1, which are simple, have
magnitudes less than 1. Therefore p(g’) I and index(I-g) 1 (i.e., rank(I-J’)2

rank(/- J)). Moreover, J’ is a block 2-cyclic matrix. The analysis in [7] and 5.3
allows us to obtain the optimal SOR overrelaxation parameter for n even and its
"close" approximation for n odd by means of the formulas (36). Note that b is exactly
the same as in the Dirichlet case while a A3.
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6. Numerical results. In this section we present numerical results to verify the
formulas and the convergence behavior of various iterative methods considered in this
paper. We also compare the time and space performance of optimal SOR, LINPACK
Band GE, and GMRES software [19] for solving the interior and general collocation
equations. All numerical computations were carried out on a Sun Sparc IPX 4/470
with 32 Mbytes of main memory in double precision. The execution times estimated
are given in seconds and the space is measured in words.

First, we attempt to verify numerically the formulas (32) and (38). For this we
choose nx ny 3 and find the eigenvalues of the block Jacobi iteration matrices

J2 and J by using the .subroutine EVLRG from the IMSL/MATH library. The
eigenvalues are presented in Tables 1 and 2, respectively. They agree with those
obtained from the formulas (32) and (38) at least up to the the number of the decimal
digits displayed in these tables.

TABLE 1
The 36 eigenvalues of he Jacobi matrix J2 for nx ny 3.

+/-0.5726 +/-0.3272 -4-0.3169 -4-0.2411 -4-0.2136 +/-0.1741
-4-0.1238 -4-0.0858 -4-0.0718 -i-0.0718 -4-0.0526 +/-0.0499
-4-0.0374 -t-0.0263 +/-0.0260 +/-0.0123 -+-0.0079 +/-0.0014

TABLE 2
The 36 eigenvalues of the Jacobi matrix J for nx ny 3.

+/-1.000 +/-0.753 :t:0.732 +/-0.573 +/-0.401 +/-0.366
+/-0.327 +/-0.317 +/-0.214 +/-0.212 +/-0.179 +/-0.126
+/-0.058 +/-0.037 +/-0.026 +/-0.012 +/-0.001 +/-0.001

Second, we verify some of the convergence results obtained in this paper. For this
we apply the INTERIOR and GENERAL HERMITE COLLOCATION subroutines
from the ELLPACK system [18] to discretize several PDE problems on the unit square.
For the solution of these equations, we have developed three new solution modules in
ELLPACK based on block AOR, SOR, and adaptive SOR methods (cf. [9]) and new
indexing modules based on the orderings introduced in this paper. Depending on the
initial value of w0 selected for the adaptive SOR, we introduce the following notation:

SOR1 if w0 1.0, SOR2 if w0 is equal to the optimal w for a model problem, and
SOR3 if w0 is the final adaptive w found by solving the same problem on a coarser
mesh unless nx ny 2 in which case we take w0 1.0. Since SOR1 gives no
better performance than SOR2 and SOR3, we do not include it in the tables that
follow. Throughout, we denote the semi-optimal SOR with w the optimal value for
a model problem by SOR0. We have implemented the adaptive procedure used by
the ITPACK routines [16]. For completeness, we note that the AOR method for the
solution of Ax b is defined by

(D rL)Xn+l [(1 w)D + (w r)L + wU]xn + wb,

assuming the splitting A D L U. Its convergence properties depend on the
choice of the pair of parameters (w, r) [6]. For comparison purposes we use AOR
with (w, r) (0.5, 1.0), which is the optimal pair of parameters found and used by
Papatheodorou in [17].

The iterative solvers implemented depend on the block partitioning of the colloca-
tion coefficient matrix. In this study we consider three different matrix partitionings
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TABLE 3
The convergence behavior of four block iterative methods for solving the interior and general

collocation equations obtained by discretizing the equation uxx + uyy f with Dirichlet boundary
conditions (u g). The functions f and g are selected so that u(x, y) (x)(y), where (x) 0,
if x <_ 0.35, or if x >_ 0.65, otherwise (x) is a quintic polynomial determined so that it has two
continuous derivatives. In (a) The AOR is based on PI and the rest on the PII block partitioning
of the interior collocation matrix. In (b) all methods implemented use the partitioning (18)(a). The
initial vector xo [.5,.5,...,.5]T was used in all iterative methods. The data displayed include
number of iterations required to achieve specified tolerance, maximum discretization error, and the
exact or estimated value of the SOR parameter w.

()
Interior Hermite collocation

mesh AOR (0.5,1.0)
size iter error
2 x 2 17 1.21
4 x 4 17 1.28e-2
8 x 8 41 7.56e-2
16 x 16 200 2.59e-2

Jacobi
iter error
9 1.21
29 1.28e-
94 7.55e-2
305 2.63e-2

Gauss-Seidel
iter error
6 1.21
15 1.28e-1
48 7.56e-2
154 2.62e-2

Optimal SOR
03opt iter error
1.0314 6 1.21
1.1786 9 1.28e-1
1.4271 9 7.56e-2
1.6536 40 2.59e-2

(b)
General Hermite collocation

mesh
size
2x2
4x4
8x8
16 x 16

Jacobi Gauss-Seidel
iter error iter error
12 1.19 7 1.19
32 1.28e-1 18 1.28e-1
104 7.56e-2 56 7.56e-2
344 2.63e-2 182 2.61e-2

Optimal SOR
Oopt iter error
1.0314 6 1.19
1.1786 11 1.28e-1
1.4271 21 7.57e-2
1.6536 46 2.59e-2

(c)
Interior collocation General collocation

mesh Optimal SOR
size 0)opt iter error
2 x 2 1.0314 6 1.21
4 x 4 1.1786 9 1.28e-1
8 x 8 1.4271 19 7.57e-2
16 x 16 1.6536 40 2.59e-2

AdaptiveSOR3 Optimal SOR
w iter error iter error
1.0131 6 1.21 6 1.19
1.0131 15 1.28e-1 11 1.12e-1
1.2685 32 7.56e-2 21 7.57e-2
1.5821 59 2.59e-2 46 2.59e-2

AdaptiveSOR3
w iter error
1.0176 7 1.19
1.0176 15 1.28e-1
1.2829 31 7.57e-2
1.6528 68 2.59e-2

depicted below for a specific mesh size nx ny 3.

x x
x x
x
x
x
x x x

x x

x]x x

X X X X

X X]X

Plii

x]xxX X]X

X X]X

They are denoted by PI, PlI, and PlII where each x denotes a 6 x 6 matrix and has
the same structure as the global one. P1 and PH correspond to partitionings in (4)
and (18)(b), respectively.

The efficiency of the block iterative methods depends on the time required to
solve the linear subsystems Dix b, where Di is the ith block diagonal element of
A. In general we expect the bandwidth of the matrices Di to be small. However,
for the block partitionings above, the upper and lower bandwidth of some Di’s is

(2n+2). For these Di’s, instead of solving the corresponding linear subsystem Dix b
directly, we solve the transformed one PDip-ly Pb, where y Px and P
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TABLE 4
The time and memory complexity of five solvers for solving the discrete equations obtained by

applying the INTERIOR HERMITE COLLOCATION procedure to the equation ux -t-uyy f
with nirichlet boundary conditions. The function f is selected so that u(x, y) 10(x)(y), where

(x) e-1(x-’1) (x2 x). The optimal SOR is based on PII block partitioning and Band GE
was applied with partial pivoting and "natural ordering" of the equations. The GMRES software
was applied with three different preconditioners consisting of the diagonal matrices of the matrices
PI, PxI, and PIII. The Band GE could not run for mesh size 128 128 on the machine used due
to memory limitations. The initial value xo used for all iterative methods was determined using the
multigrid-type approach. The times include the cost of estimating xo.

mesh
2x2
4x4
8x8
16x16
32x32
64x64
128x128 65536

equations time
16
64
256
1024
4096
16384

Optimal SOR
iter workspace error

0.02 5 264 2.905e-1
0.14 10 1136 1.456e-1
1.02 19 4704 1.563e-2
6.22 27 19136 6.083e-4
50.35 57 77184 5.795e-5
360.28 99 310016 2.035e-6
3031.63 213 1242624 1.263e-7

Band GE
time workspace error
0.02 464 2.905e-
0.07 2624 1.456e- 1
0.53 16640 1.563e-2
5.03 115712 6.082e-4
60.77 856064 5.795e-5
797.75 6569984 2.035e-6
NA NA NA

(b)
GMRES (restarted every 50 steps)

mesh equations error
2x2 16 2.905e-1
4x4 64 1.456e-1
8x8 256 1.563e-2
16x16 1024 6.082e-4
32x32 4096 5.766e-5
64x64 16384 2.056e-6
128x128 65536 1.1400e-7

PREC1
time iter
0.02 3
0.20 15
1.87 28
19.52 64
108.25 79
1255.03 244
9134.46 4002

PREC2
time iter
0.03 6
0.16 10
1.15 18
9.56 33
48.96 36
371.66 66
2571.77 106

PREC3
time iter
0.03 7
0.24 18
1.80 28
14.89 48
83.65 66
559.91 107
5685.47 282

Approximately the same error is found by using any of the three preconditioners
as long as the same stopping criterion is satisfied.
2 At this step the stopping criterion was not satisfied. The corresponding error
was 1.18e-7

[el, en-t-1, e2, en/2,..., en, e2n] with ei being the standard unit vectors. It is easy to see
that the bandwidth of PDiP-1 is only 5. Thus the transformed diagonal subsystem
can be solved much faster using Band GE without pivoting.

In the following tables we display the maximum discretization error lu- Uhll
based on a 65 65 grid, where u is the exact solution of the PDE problem and Uh is
the computed Hermite cubic piecewise polynomial solution given by (3). To compare
the efficiency among various iterative solvers considered, we assume the same initial
solution x0 and the same stopping criterion, namely,

< eps- 5 10-6.

Table 3(a) indicates the convergence of four block iterative methods applied to
the system of interior collocation equations corresponding to different mesh sizes.
The AOR implemented is based on the partitioning PI, while the rest of the block
methods are based on the partitioning PII. The optimal parameters of AOR used are
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TABLE 5
The performance and convergence data of optimal SOR and adaptive SOR3 based on PII block

partitioning and the Band GE with partial pivoting and "natural ordering" for solving the discrete
equations obtained by applying INTERIOR HERMITE COLLOCATION procedure to solve the Pois-
son equation uxx W uyy f with Neumann boundary conditions (Tables (a) and (b)) and uncoupled
mixed boundary conditions (Table (c)). The function f is selected as in Table 3. The data displayed
include number of iterations required to achieve specified tolerance, maximum discretization error,
the exact and estimated value of the SOR parameter w used, and execution times. For mesh size
128 128, the Band GE could not run on the machine used due to memory limitations.

Optimal SOR
mesh O3opt time iter error
2x2 1.2926 0.03 10 2.48
4x4 1.3042 0.18 13 3.22e-1
8x8 1.5498 1.17 22 1.40e-1
16x16 1.7392 9.56 46 4.76e-2
32x32 1.8550 79.09 94 1.40e-2
64x64 1.9153 664.84 197 2.18e-3
128x128 1.9413 7746.36 599 8.05e-4

Adaptive SOR3
w time iter error
1.091 0.02 9 2.48
1.091 0.25 23 3.22e-1
1.436 1.64 31 1.40e-1
1.704 12.21 58 4.69e-2
1.800 82.21 94 1.15e-2
1.600 467.76 125 6.21e-3
1.800 1584.63 77 5.24e-3

Band GE
time error

0.02 2.48
0.07 3.22e-
0.52 1.40e-1
5.01 4.76e-2
58.03 1.40e-2
797.97 2.20e-3
NA NA

(b)
mesh Optimal SOR
size iter error
2x2 10 2.48
4x4 13 3.22e-1
8x8 22 1.40e- 1
16x16 46 4.76e-2
32x32 94 1.40e-2
64x64 197 2.18e-3
128x128 599 8.05e-4

Adaptive SOR2
w iter error
1.2926 10 2.48
1.3042 13 3.22e-1
1.5498 22 1.40e-1
1.600 55 4.63e-2
1.800 93 1.14e-2
1.600 125 6.15e-3
1.800 77 5.19e-3

time
0.02
0.17
1.17
11.39
80.49
481.64
1592.89

GMRES(50)
iter error time
7 2.48 0.02
12 3.22e-1 0.17
19 1.40e-1 1.21
35 4.76e-2 10.23
91 1.40e-2 113.95
194 2.19e-3 1188.78
684 8.02e-4 14505.91

(c)
with boundary condition u gl at x 0 or y and un g2 at x or y 0

SOR0
mesh w time iter error
2x2 1.162 0.02 9 1.22
4x4 1.2414 0.27 26 1.31e-1
8x8 1.4885 1.64 31 7.38e-2
16x16 1.6964 12.48 60 2.60e-2
32x32 1.8304 68.5 75 7.78e-3
64x64 1.903 520.75 150 1.27e-3
128x128 1.9364 5773.44 434 4.35e-4

Adaptive SOR3
w time iter error
1.150 0.03 11 1.22
1.150 0.35 32 1.31e-1
1.494 2.21 43 7.38e-2
1.750 14.83 70 2.59e-2
1.900 100.65 116 7.44e-3
1.600 437.67 108 2.52e-3
1.800 1601.95 81 2.07e-3

Band GE
time error

0.00 1.22
0.07 1.31e-1
0.53 7.40e-2
5.02 2.57e-2
59.15 7.28e-2
794.17 1.14e-3
NA NA

(w, r) (0.5, 1.0) according to the analysis in [17]. The optimal SOR parameter )opt
was obtained based on the analysis presented in 5. The data in these tables suggest
that the block SOR has the fastest convergence. Table 3(b) depicts the convergence
behavior of three of the four iterative methods considered in Table 3(a) for the general
collocation equations. AOR (0.5,1.0) is not efficient for this type of equation, so we
do not present any data here. It is worth noticing that the spectral analysis of the
Jacobi iteration matrix for interior and general collocation equations has shown that
Wopt is the same for both cases. The data in these tables suggest that the block
SOR has the fastest convergence. Table 3(c) depicts the convergence data (number
of iterations and discretization error) of optimal SOR and adaptive SOR3 for both
general and interior collocation equations. These data suggest that the adaptive SOR
behaves almost as the optimal SOR for the model problem considered for relative
coarse meshes.
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TABLE 6
The performance and convergence data of SOR0 (w takes the optimal values for the Dirichlet

model problem in Table 3), Adaptive SOR3, Band GE, and GMRES (restarting every 50 steps) for
solving the interior collocation equations obtained from the discretization of the equation [2 T (y-
1)e-ua ]uxx+[l+]uyyl +5[x(x-1)+(y-O.3)(y-O.7)]u f, with boundary conditions (u g).

Th tio d td o h( V) + ( + )(u 1)- +( + u)cos(u)l2x
All applied solvers were based on PII block structure with multigrid-type initialization. The data
displayed include maximum discretization error and execution times.

mesh Band GE
size time error
2x2 0.05 7.67e-3
4x4. 0.25 1.57e-3
8x8 1.80 1.24e-4
16x16 15.95 8.61e-6
32x32 66.21 6.06e-7
64x64 849.99 4.35e-9

Adaptive SOR3
time
0.O3
0.17
0.84
3.05
12.15
56.58

error
7.67e-3
1.57e-3
1.25e-4
1.24e-5
9.30e-6
8.92e-6

SOR0
time error
0.0 7.67e-3
0.12 1.57e-3
0.67 1.24e-4
4.59 8.62e-6
31.58 6.06e-7
216.13 8.58e-9

GMRES(50)
time error
0.02 7.67e-3
0.15 1.57e-3
0.97 1.24e-4
8.07 8.61e-6
70.23 6.06e-7
466.88 1.26e-8

Table 4(a) depicts the time and memory complexity of optimal SOR and the
LINPACK Band GE with partial pivoting, and Table 4(b) depicts GMRES [19] under
three different preconditioners to solve the interior collocation equations associated
with a model problem under different mesh sizes. In SOR and GMRES, the initial
guess of the solution corresponding to an n n mesh is estimated from the previous
collocation approximation based on an (n/2) (n/2) mesh. Throughout we refer to
this scheme of initialization as the multigrid-type initialization. The execution times
of iterative methods include the total time to estimate the initial guess. The direct
solver is applied to the system obtained using the natural ordering while the block
SOR utilizes the above-mentioned transformations to diagonal subsystems. These
subsystems were solved using Band GE without pivoting. It should be added that
generally Band GE with partial pivoting is necessary to solve the general collocation
systems. In these experiments, which are simply the block diagonal matrices associ-
ated with the block matrices PI, PxI, and PIIX of the collocation matrix, we consider
right preconditioning for GMRES. We refer to the matrices as PREC1, PREC2, and
PREC3. The GMRES procedure is restarted every 50 steps and the stopping criterion

is set to be ],lb-A.xnll < eps 5 10-5 The data suggest that the iterative methodsIIb-Axol,..
have much smaller memory requirements. This of course was expected. However, we
were surprised that the time efficiency of the optimal SOR was better than the rest of
the solvers considered and occurred at a level of relatively coarse meshes. In the case
of GMRES, the preconditioner based on the block diagonal matrix corresponding to
PIt block structure had the best performance.

Table 5 compares the performance and convergence behavior of optimal SOR,
adaptive SOR3, Band GE, and GMRES(50) for a model problem with Neumann
(Tables 5(a) and 5(5)) and uncoupled boundary conditions (Table 5(c)). Again we
observe that for fine meshes optimal SOR outperforms the rest of methods, especially
with respect to the accuracy, with GMRES(50) being the slowest. All iterative solvers
used the previous most accurate solution to estimate their initial solution.

Table 6 indicates the performance of SOR (w takes the optimal values for the
Dirichlet model problem in Table 3), adaptive SOR3, Band GE, and GMRES (restarted
every 50 steps) for solving the interior collocation equations obtained from the dis-
cretization of a general elliptic PDE with Dirichlet boundary conditions on the unit
square. All applied solvers were based on PII block structure. The multigrid-type
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approach was used to start the iterations. It is clear that the semi-optimal SOR is
the fastest for fine meshes without affecting the discretization error. Adaptive SOR3
appears to affect the discretization error.
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Abstract. Questions regarding minimal representations of perturbations of discrete systems lead
to the study of perturbations of lower triangular partial matrices and their minimal rank completions.
Distance to the set of lower triangular partial matrices having minimal ranks smaller than a given
integer is given in terms of (suitably generalized) singular numbers. Minimal ranks of lower triangular
partial matrices in an arbitrary small neighborhood of a given lower triangular partial matrix are
identified. The results are applied to minimal representations of discrete systems.
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1. Introduction. Consider the finite horizon discrete system 0 given by

xk+l=Akxk+Bkuk, x0=0, k 0,1,. ,n -1;

Yk+l CkXk+l.
Here }k=o is a sequence of vector inputs, (Xk}=0 is the sequence of vector states
in the state space Rp, and (Yk}’= is the sequence of vector outputs; Ak, Bk, Ck are
matrices of appropriate sizes. The dimension p of the state space is called the order of
the system 0. In [W] the question was addressed: What is the smallest order among
all systems with the same input-output behaviour as 07 In this paper we address the
question whether the order may be lowered even further in case one allows a slight
perturbation of the input-output behaviour. This leads to the study of minimal ranks
of perturbations of lower triangular partial matrices.

Recall that a lower triangular partial matrix is defined to be a block matrix of
the form

AI A. Aln

A A. Ann
where for i

_
j, Aij is a pi x mj matrix with entries in F (F is either the field of real

numbers or the field of complex numbers), and the entries of the blocks Aij (i < j)
are independent free variables that take values in F. The blocks Aij (i

_
j) are

thought of as given, or specified, blocks, while the blocks Aij (i < j) are considered
unspecified and will be often designated by question marks. Note that the set of
lower triangular partial matrices of a given size forms a vector space. A block matrix
B [Bij]in,j=l, where Bij is a Pi x mj matrix with entries in F, is called a completion
of the lower triangular partial matrix (1.1) if Biy Aij for _> j (in other words, B
is obtained from A by specifying the unspecified entries in A). The lowest possible
rank of completion of A is called the minimal rank of A and will be denoted mr(A).
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In this paper we start with the study of the behaviour of mr(A) under pertur-
bations of 4. One of the main results is Theorem 2.1, which gives a formula for the
distance from a given lower triangular partial matrix to the set of lower triangular
partial matrices having prescribed minimal rank. This result is obtained using the
spectral norm (maximal singular value). In 3 we show that for a large class of unitar-
ily invariant norms (different from multiples of the spectral norm) the formula given
by Theorem 2.1 does not work. This formula is related to the celebrated Arveson
distance formula (see [A]). In 4 we describe all minimal ranks of lower triangular
partial matrices that are arbitrarily close to a given one. Finally, we return in the last
section to the application of the results to the problem of minimal representation of
perturbed discrete systems.

Throughout the paper, we denote by sk(X), k 1,2,... the singular values of
the matrix X arranged in nonincreasing order.

2. Distance to the closest partial triangular matrix with prescribed
minimal rank. Let

(2.1) 4

All ? ?
A21 A22 ?

Anl An2 Ann
be a lower triangular partial matrix as in (1.1). We define the norm 11411p as follows
(the subscript p stands for partial)"

i=l,...,n

Here IIBII denotes the largest singular value of the matrix B. It is easy to check that

I1" lip is a norm for lower triangular partial matrices. We call a lower triangular partial
matrix B an e-perturbation of A if lib- ,Allp _< e. Let

/k(4) inf{e > 01 there exists an e- perturbation/3 of ,4 with mr(B) < k}.

We shall prove the following result.

THEOREM 2.1. Let A be a lower triangular partial matrix. Then for all k,

(2.3) k(A) max sk(A(i)),
i--1,...,n

where

i= 1,...,n.

Theorem 2.1 can be regarded as an extension to the lower triangular partial
matrices framework of the well-known fact that st:(X) coincides with the distance
from X to the set of matrices having rank less than k.

The proof is based on the following result obtained in [GSRW].
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PROPOSITION 2.2. For k 1, 2,..., we have

infsk(Ac) max sk(A(i)),
i-1,...,n

where the infimum is taken over all completions Ac of 4.

Proof of Theorem 2.1. Let e > 0. By Proposition 2.2 there exists a completion A
of A such that

sk(A) < + max sk(A(i)).
i-1,...,n

Choose B (Bij)n with rank k so thati,j--1

IlA- B[[ < sk(A)+ -.
Let B denote the lower triangular partial matrix

Bll

Bnl

Then mr(B) < k and

I]A- B[Ip _< [[A- Bll < e + max 8k(A(i)).
i:l,...,n

This proves the inequality _< in (2.3).
Conversely, let B be a lower triangular partial matrix with mr(B) < k. Then,

using Weyl’s inequality (note that s2k(C) the kth eigenvalue of C’C), we obtain

sk(A()) sk(B(i) + (A() B(i)))
<_ sk(B()) + s (A() B())

0 + sl (A() B()) <_ 11,4- Blip.

Taking the maximum over 1,..., n, we obtain

max sk(A()) <_ II.A- llp.
i--1,...,n

Since B was arbitrary with mr(B) < k, we consequently obtain the desired inequality
_> in (2.3). V1

In view of Theorem 2.1 and Proposition 2.2, the numbers/3k(A) can be alterna-
tively described by

(2.4) /3k(A) inf s(Ac),

where the infimum is taken over all completions A of ,4. The equality (2.4) can be
interpreted as follows. For a given norm II1" III on the vector space V of lower triangular
partial matrices j[ [Aij]i>_j, where the size of Ai is pi >( m, define the s-numbers
sk(J[; II1" III) as the distance (in the norm II1" III) from j[ E V to the set of lower triangular
partial matrices having minimal rank less than k. In this notation,

lip),
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where the norm I1" lip is defined by (2.2). Another natural norm on V is

[[Al[c min{[[Ac[[ Ac is a completion of A}

(again, IIBII stands for the maximal singular value of B). It turns out that

Indeed, in view of (2.4) we need only to verify that

sk(A; [[. I[) inf{sk(A) A is a completion of ,4}.

But this equality follows easily upon unraveling the definition of sk(A; ][. I[c).
3. Other norms. In this section we consider general unitarily invariant norms,

not just the spectral norm, as in the previous section. The main result here is that
Theorem 2.1 is not valid for a large class of unitarily invariant norms.

Recall that a norm [11" [1[ on the set of rn n matrices is called unitarily invariant
if IIIXIII IIIUXVIII for any m n matrix X and any unitary matrices U and V. It is
well known ([SS, II.a], [GK, Chap. III]) that any unitarily invariant norm is given by
a symmetric gauge function (I)(al,..., ak), k min(rn, n):

IIIXlll (I)(81(x),..., 8k(X)).

Since we must work with unitarily invariant norms of matrices of various sizes, it will
be convenient to assume that

(3.1) I[Ixlll

where (I)(al, a2,..., an,...) is a symmetric gauge function defined on the set of non-

increasing sequences {ai} of nonnegative numbers such that only finitely many of
the ai’s are different from 0. By convention, sk(X) 0 if k > rank X.

From now on, we assume that the norm ]1]" I]1 is given by (3.1).
Given a matrix norm ]]1" I]], we define for a matrix A:

Slll.lll,k(A) min{lllA Bill: rank B < k},

k 1, 2, For a lower triangular partial matrix 4 as in (2.1), we let

(3.2) 111.,4111- max
i--1,...,n

where

Define also the s-numbers as in the previous section with respect to the norm (3.2):

inf{e > 0 there is a lower triangular partial matrix

with mr(B) < k and Ilia- Ulli _< d
for k 1, 2,
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PROPOSITION 3.1. For any lower triangular partial matrix ,4, we have

max sill.ill, (A(i))(3.3) s(A; Ill" 111)
i=1 n

and

(3.4) sk(A; Ill" Ill) >_ max slll.lll,k(A(i) for k > 1.
i--1,...,n

Proof. The equality (3.3) is trivial since zero is the only lower triangular partial
matrix with minimal rank less than one. To prove (3.4), analyzing the proof of the
inequality >_ in (2.3), it is seen that we only need

(3.5) s III. III, k (A + B <_ s II1" III, k (A) + s II1’ III, (B)

for all matrices A and B having the same size. In turn, (3.5) easily follows from the
triangle inequality. (If . has rank < k and IliA- "111 < slllA-,4111,k (A)+ e, then we have

that +0 is a matrix of rank < k at most with distance e+ slll.lll,k(A + slll.lll,l(B from
A+B.) D

It turns out that for a large class of norms of the form (3.1) that are not multiples
of the spectral norm, the equality in (3.4) cannot be guaranteed (in contrast with
Theorem 2.1). To state this result precisely, we introduce the following definition. A
norm II1" III given by (3.1) will be called regular (or, more exactly, q-regular) if there
exists an integer q >_ 2 with the property that for every pair of sequences c1 >_ >_
Cq _> 0, 1 _> _> q _> 0 such that aj >_ j (j 1,...,q) and aj > j for at
least one j (1 _< j N q), the inequality (a,..., aq, 0, 0,...) > q)(/,... ,q, 0, 0,...)
is valid. Many commonly used norms are regular, e.g.,

(a,..., a,, 0, 0,...) a
j=l

p >_ 1, k >_ 2 fixed, but the spectral norm is not. An example of a nonregular
nonspectral norm that coincides with the spectral norm on the set of matrices of rank
not exceeding rn is given by

((a,..., am, 0,...) max o1, (m 1) -1 Oj
j=l

(This example was communicated to us by C.-K. Li .ILl.)
THEOREM 3.2. Assume that II1" III is a q-regular norm. Then there exists a lower

triangular partial matrix jt [Aij]in,j=l such that

(3.6) Sq(4; Ill" [11) > max Slll.lll,q(A(i))).
i--l,...,n

The proof is based on the following lemma.
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LEMMA 3.3. Let Iii" III be as in Theorem 3.2. Then for every pair of matrices Y, Z
of sizes q q and m q, respectively, such that Z O, the inequality

holds.
Proof. Let T2 > T >’.. and a2 > a >... be the eigenvalues of[ Y*Z] [z]Y and

Y’Y, respectively (we assume Tj aj 0 for j > q). Clearly, Tj >_ aj (j 1,..., q)
and q q 2=1 T] > ’y=l a (by comparing the traces of [Y Yz] [z] and Y’Y). Thus,
T > a for some j, and since ]1[" [][ is q-regular, the inequality (3.7) follows.

Proof of Theorem 3.2. Without loss of generality we assume (I)(1, 0, 0,...) 1.
Let

.a
a 1 ? ]Iq_l O a*
0 0 1

where a is a 1 (q- 1) row of the form a [0... 0x], Ixl > 1. Thus,

[a 1](3.9) A()= Iq_ 0 A(2)--

0 0

Let t be the set of all matrices

81 82
(3.10) S-- s3 sa

85 86

such that rank S < q and

(The partition in (3.10) is consistent with the partition of ,4 in (3.8).) By Lemma
3.3, s5 0, s6 0 for every S E gt. Also, s4 0. Indeed, for every matrix

tl t2 ]t3 0
0 0

(where t3 is (q- 1) (q- 1) and t2 is 1 1) of rank < q, we have that at least
one of t3 or t2 is singular. Say, t3 is singular. Then s (Iq_ t3) _> 1 and therefore

IlIA() TII[ _> 1. On the other hand, letting b be the (q- 1) 1 column [0... Ox-]T,
we have

[ol]rank Iq_ b
q-1

and

i[q-- 0 q--1 b
0 0 0 0
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This verifies that 84 0 for every S E ft. Since t is closed and compact, we conclude
that for every e > 0,

Slll.lll,q(A(1) < min IIIA()- Till" T t3 t4 rank T < q and at least
t5 t6

(3.11)
of the inequalities IIt411 <_ e and lilt5 t6]ll >_ e holds.one

Analogous considerations for A(2) (note that A(2) is the adjoint of A(1) after certain
permutations of columns and rows) lead to the following inequality for every e > 0:

(3.12)

It5 ]">_eholds.}.one of the inequalities lit411 <_ e and
t6

(The partition of T in (3.12) is consistent with the partition of A(2) in (3.9).)
Let now

rn= 1,2,...,

be a sequence of lower triangular partial matrix having the same sizes of corresponding
blocks as A and such that mr(Bin) < q and such that

Passing to a subsequence, if necessar.y, we can assume that the limits bj
limm-.c bm)(j 1, ,8) exist. Clearly rank B(m1) < q and rank B(m2) < q. If
b5 7 0 or b6 7 0, then by (3.11),

(A(2))}.II1" III) > max{slll.lll,qA(1) slll.lll,q

If b5 0, b6 0, then by (3.12) the same inequality follows.

4. Minimal ranks of perturbed partial triangular matrices. In this sec-
tion the norm under consideration is the spectral norm. Let 4 be a lower triangular
partial matrix. Define the set

M(4) {k" for every e > 0 there exists an e-perturbation A of 4
such that rnr(A)= k}.

THEOREM 4.1. We have

M(A) {a,a + 1,...,/- 1,3},
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where

I I All Aii
max rank l<_i_<n

An1 Ani

and 1 is some integer.
The proof is based on the following lemma.
LEMMA 4.2. Let jI and jI’ be lower triangular partial matrices with the same

pattern of specified entries and such that 4 and 4’ differ in only one specified entry.
Then

Proof. Let B’ be a minimal rank completion of jr’, so that rank B’
Let B be a completion of ,4 that coincides with B’ in the unspecified entries. Then
B and B’ differ in only one entry, and hence IrankB rankB’ <_ 1. So

mr(A) <_ rankB <_ rankB’ + 1 mr(A’)+ 1.

Analogously, mr(jr’) <_ mr(A)+ 1.

Proof of Theorem 4.1. That k M(A) for every k < a follows from the definition
of a and from the fact that a rank of a matrix can only become larger if the matrix

is,perturbed in a sufficiently small neighborhood. Furthermore, we have

Ail
0 for 1,...,n,

and therefore by Theorem 2.1, a+l(Jl) 0. In other words, for every e > 0 there
exists an e-perturbation 4 of ,4 with mr(A) <_ . Since for small e > 0 we obviously
have mr(Jt) >_ , it follows that c E M(A).

Now let Bi be an e-perturbation of ,4 with mr(B) ki, 1, 2. Say kl _< k2.
There exists a continuous path B(t), 0 _< t <_ t, of lower triangular partial matrices
such that B(t) is an e-perturbation of jt for all t, and for some partition 0 < tl <
t2 < < tp < 1, we have that B(t) differs from B(s) in exactly one specified entry
if t _< s < t _< ti+l, for 0,...,p (by definition, to 0, tp+l 1). By Lemma 4.2,
we have

ImrB(t ) _< o,..., p.

Therefore, for every integer k such that kl _< k _< k2, there is at least one index such
that mrB(t) k. This completes the proof of Theorem 4.1. E]

It is possible that for every e > 0 there exists a lower triangular partial matrix B
in an e-neighborhood of jt such that mr(B) < mr(A) (in contrast with the well-known
property of the rank of a matrix) as illustrated by the following simple example:

mr
0 "1 =2, mr

e "1 =1 (e # O).

It is interesting to identify the integer in Theorem 4.1. We have a lower bound.
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PROPOSITION 4.3. Let A [Aij]in,j=l be a lower triangular partial matrix, where
Aiy is pi my. Then

n n--1 Ai+I, A+, ]
(4.1) -> Ei E rank Ji=1 i=1 An1 Ani

where

min mi + rank

An,1

Ai,i-
pi + rank

An’i-1 An,1 An,i-

Proof. By [CJRW], the maximal rank of completions of the lower triangular
partial matrix

AI Ai,i_ ?
Ai+,l Ai+l,i- Ai+,i

Anl An,_ A,i

is equal to /i. It is easy to see that the set of pi mi matrices X for which

All A,_ X
Ai+, Ai+,i- Ai+,i

(4.2) rank i

A,I An,i-1 An,i

is dense. Therefore, for every e > 0 there exists B [Biy] in the e-neighborhood of
,4 such that Biy Aiy if > j and (4.2) holds with X Bii. Now the formula for
the minimal rank of lower triangular partial matrices [W] shows that mr(B) coincides
with the right-hand side of (4.1). v1

We conjecture that equality holds in (4.1).
5. Application to minimal representation of discrete systems. Consider

the finite horizon discrete system

Xk+l AkXk + BkUk,

Yk+l CkXk+l,
X0=0, k--0,1,...,n-1;

with {uk n-1 x n}k=0 the sequence of vector inputs in R, { k}k=O the sequence of vector
states in the state space Rp, and {Yk}=l the sequence of vector outputs Rm. As
stated in the introduction, the dimension p of the state space is called.the order of
the system. The input-output map is given by

(5.1)
yl CoBo 0 0 0 0 uo
Y2 C1AIBo CB 0 0 0 u

y3 C2A2ABo C2A2BI C.B 0 0 u

y, Cn-IA,-I ABo Cn_A_ A2B C,_IB_I u,_
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With any matrix X whose lower triangular part is equal to

(5.2)

CoBo
C1A1Bo C1BI

Cn-A,- ABo Cn-IA,-I A2B1 Cn-lBn-1

we can associate a system with the same input-output behavior as the original system,
as follows. Write q- rank X, and make a rank decomposition

Z-- Go Gn-1

of X, where Fi and Oi are of sizes m x q and q x n, respectively. Then the system

Xk+l xk zc Gkuk, x0 0, k 0,..., n 1,
Yk+ FkXk+

has the same input-output behaviour as the original system (for the continuous analog
of this argument see Proposition 4.1 in [GK2]). This leads to a problem of choosing
a completion X of (5.2) of minimal possible rank. The references [KW], [GK1],
and [GK2] give a more complete background on system-theoretic applications of the
minimal rank completion problem. If the original system is allowed to be slightly
perturbed, then it is exactly the problem solved in previous sections. Thus, the result
of Theorem 4.1 (concerning c) can be applied to such systems.

THEOREM 5.1. Given the finite horizon discrete system

Xk+l Akxk + Bkuk, x0 0, k 0,..., n 1,
Yk+l CkXk+l.

Let

max
0<i<n-1

Then for every e > O, there exists a finite horizon discrete system

Akxk + BkUk,/?2
Yk+l CkXk+l

=0, k=o,...,n-,

of order a such that when 01 and 02 are fed the same inputs {ul,..., Un-1}, their
outputs {y, y} and {y,..., y}, respectively, satisfy

ui-1

i= 1,...,n- 1.

Moreover, a is the smallest number with this property.
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Proof. Let e > 0. According to Theorem 4.1 there exists a lower triangular partial
matrix ) [Dij]l<_i<_j<_n such that mr(T)) a and

where A is defined in (5.2). Using the reasoning given before the theorem, we know
that there exists a finite horizon discrete system 82 of order a whose input/output
map is given by

Dll 0 0
D21 D22 0

Dnl Dn2 Dnn

Comparing now the outputs {yl,..., Yn} and {y,..., Yn} of the systems 01 and 02,
respectively, both with inputs {u0,..., u-l}, we obtain

Yi Y [Ci-IA-I A1Bo C-IB-I] [DI Di]
lti-- ti--

But then, since IIA-  11, < , we obtain

i= 1,...,n.

The final statement in the theorem follows immediately from the fact that c is the
smallest number in M(,4) (see Theorem 4.1).
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IMPLICIT SYSTEMS*
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Abstract. This paper studies the relationship between staircase forms and normal external
descriptions in implicit systems. The authors show how to compute the proper and nonproper
controllability indices of an implicit system using the reachability Hessenberg form and the corre-
sponding normal external description. The normal external description of the system is computed
using embedding techniques. Finally, the differences and similarities between the normal external
descriptions computed are shown using the reachability and controllability Hessenberg forms of an
implicit system.

Key words, normal external description, staircase form, unimodular matrix
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1. Introduction. The use of input-output descriptions in system theory has a
long history. Kuera in [5] extensively studied structural properties of linear systems
using the polynomial approach as a tool. Furthermore, he showed [5], [6] how to
formulate design problems in terms of Diophantine equations, the solutions to which
characterize feedback controllers. Although, this body of work focused on the detailed
structure and solution of Diophantine equations, the computational aspects of the
problem were not addressed.

The results proposed in this paper tackle the following problem. Given an implicit
realization (E,A,B} how can we compute in a computationally efficient manner,
the proper and nonproper controllability indices [7] of such a realization from the
stairs of the generalized Hessenberg form. Although computing the reachability and
controllability indices of such systems using the Hessenberg form has been studied
by van Dooren [17], [18], there is no information on how to compute the proper and
nonproper controllability indices. To connect the length of the stairs to these indices
we first compute a minimal polynomial basis for the controllability pencil using the
Hessenberg form. If this minimal basis also satisfies some further properties, it will
be called a normal external description of the system (cf. 2). The computation of
the normal external description is motivated by the fact that one can read out the
proper and nonproper controllability indices. As a result, once a relation between
the Hessenberg form and the computed normal external description is established, we
are able to directly use the Hessenberg form to compute and distinguish between the
proper and nonproper controllability indices. To further motivate these results we
draw some attention to the pole placement problem in implicit systems. The most
detailed and unified approach to date is given in [20]. The results in [20] exploit this
fine distinction between the controllability indices to state Rosenbrock’s theorem for
implicit systems. The computation of such state-feedback controllers is based strictly
on the polynomial approach and the solution of a Diophantine equation involving
normal external descriptions. Therefore, our results can be viewed as a first step in
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solving the same problem from a computational point of view. Another application
of the normal external description is the computation of coprime matrix fraction
descriptions in implicit systems, which can be generalized using the results of this
paper and also by extending the algorithm in [13]. These applications are not discussed
in this paper since such results are still far from complete.

There are two important tools in this problem; one is the staircase (reachability,
controllability) form of the implicit system {E,A,B} and the other is the use of
embedding techniques. In particular, we embed the controllability pencil in a square
unimodular matrix, which we invert. The proposed embedding technique ensures the
minimality of the controllability and reachability chains of the system, and therefore
the feedback invariants are preserved under the embedding. In addition, the structure
of the computed normal external description shows how to compute the proper and
nonproper controllability indices of the system using the length of the stairs of the
reachability Hessenberg form.

Finally, we show the differences and similarities of the controllability and reach-
ability Hessenberg forms in computing a normal external description. All these ideas
are clarified in a simple example.

2. Preliminaries and basic concepts. We shall consider a linear, time invari-
ant system described by

(2.1) E Ax + Bu,

where E, A are n n matrices, where E is generally singular and B is an n m matrix
over IR, the field of real numbers. Without any loss of generality, assume that rank
B m. Furthermore, we assume that the system is regular, i.e., det(sE- A) 0.

We first recall the definitions of reachability, controllability given in [7]-[9], [11],
[16], [19].

DEFINITION 2.1 (controllability; see [19]). The system (2.1) is said to be control-
lable if the pencil [sE- A B] has neither finite nor infinite (except those of order
1) elementary divisors.

Here, we use the concept of controllability in the sense of Verghese [19].
DEFINITION 2.2 (reachability; see [16]). The system (2.1) is said to be reachable

if it is controllable and rank [E B]- n.
We use these definitions of controllability and reachability to connect the proper

and nonproper controllability indices with the block Hessenberg form. For more de-
tails concerning these definitions, see [8] and references therein. It easily follows that
reachability implies controllability, but not vice versa.

The description of system (2.1) we have used up to now is very often called the
description in an internal form. On the other hand, the relationship

shows that the vector

[sE- A B] N(s)D(s)] =0

D(s) ]
where N(s), D(s) are polynomial matrices, reflects the input-output or external be-
havior of (2.1). Hence, under the assumption of the controllability of (2.1), a basis of

N(s)ker[sE- A,-B] serves as a generator of all possible input-output vectors [0(8)] or,
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in other words, such a basis describes the system as well as the description (2.1). We
refer to such a basis as an external description of (2.1).

DEFINITION 2.3 (normal external description). Given E,A,B in (2.1), then the
polynomial matrices N(s) and D(s) of respective sizes n m and m m form a normal
external description if the following is true.

N(s)(i) [D(s)] is a minimal polynomial basis of Ker[sE- A,-B];
(ii) N(s) is a minimal polynomial basis of KerP(sE-A) where P is a maximal

annihilator of B;
N(s)(m) [D(s)] is nonincreasingly column-degree ordered, i.e., cl >_ c2 >_... >_ Cm,

N(s)where c stands for the degree of the column of D()].
Remark 2.1. A normal external description of (2.1) is not unique. If N(s),D(s)

and N’ (s), D’ (s) form normal external descriptions of (2.1), then they are related by

N(s) N’

where U(s) is a unimodular matrix.
A normal external description can now be used for a definition of controllability

and reachability indices. We define

and

ki degc, N(s)

Ci degc N(s)D(s)]
for 1, 2,..., m where degc (.) denotes the degree of the ith column.

DEFINITION 2.4. The integers ri 1 + ki, 1,2,...,m are said to be the
reachability indices of (2.1), while the integers ci, 1, 2,..., m are said to be the
controllability indices of (2.1). When ci > ki, then ci is said to be a proper controlla-
bility index, otherwise it is said to be a nonproper one.

There are many other ways to define the reachability and controllability indices
and we refer the reader to [7], [9], and [11] for details. The one used here allows the
connection between the proper, nonproper indices and the stairs of the Hessenberg
form. Furthermore, the generalized version of Rosenbrock’s theorem is based on these
indices and therefore for state-feedback applications it is important to distinguish
between them and compute them.

THEOREM 2.1. The system (2.1) is reachable if and only if
m

(2.2) -r =n
i--1

and controllable if and only if
m

(2.3) ci rankE.
i--1

Under the assumption of reachability (see Definition 2.2) there exist unitary trans-
formations Q, Z such that [1], [12], [17], [18]

A B]
[|ZQ[sE 0

0 ] =[sEr-Ar -B]
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where (Er, At, Br) are in lower generalized block Hessenberg form; that is

(2.4) Ar

A1,1 A1,2 0 0
A2, A2,2 0 0

Ak-l,1 Ak-l,k-1 Ak-l,k 0

Akl Ak,k- Ak k Ak,k+l

(2.5) E

EI, 0 0
E2,1 E2,2 0

Ek-l,1 Ek-l,k-1
Ekl Ek,k-1 Ek k

where [17] we have the following.
Aj,j+I are of dimensions tj tj+, j E {1,2,...,k} and have full row rank tj.

Moreover, Ak,k+l has full row rank tk, but from our assumption that B is of full
column rank (tk tk+l m) it follows that A,k+ is a square nonsingular matrix of
dimensions rn m. This guarantees the absence of finite unreachable modes.

Ej,j, are of dimensions tj tj j E {1, 2,..., k- 1} and have full rank tj. This
guarantees the absence of infinite unreachable modes. Furthermore, dim ker Ekk
dim ker E p.

The matrices Ej,j are chosen lower triangular, that is Ej,j Rj,r, where Rj,r are
lower triangular and the matrices Aj,j+I are chosen lower triangular in the bottom
corner, [12], i.e.,

Ajj+I [SI,j+I 0],

where S,j+ is a lower triangular matrix of dimensions tj tj. We put the matrices in

Aj,j+I in lower triangular form at the bottom corner for reasons that will be clarified
in 3.

The reachability indices of (2.1) are computed as follows:

ti+ ti reachability indices ry of order k i,

where to 0.
We mention here that the reachability Hessenberg form is obtained by first com-

pressing the rows of B and second by performing the staircase algorithm in the pencil
M(sE- A) sE- A, where M is the maximal annihilator of B. This remark will
be further explained when we study the controllability Hessenberg form.

In the presence of infinite elementary divisors that is when there exist unreachable
modes at infinity, there exist unitary transformations Q, Z such that [17], [18]

q[sE- A B] rl Z0L Im * sEt-At -Br

where the pencil [sEr-Ar -Br] has dimensions or x or+m and contains the reachable
part of the system. In addition (Er, At, Br) are in the form described by (2.4) and
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(2.5). The pencil (sEo Ao) has dimensions oo x oo, contains the structure of the
unreachable part at infinity, and is of the form

-S, 0 0
SJl,o N, -$2,o 0

* sJ2, N2, 0

. -S,oo 0
, sJt,o Nt,o -S+1,o

where [17] the following are true.
Jj, are of dimensions sj+ sj, j E {1,2,... ,/} and have full column rank
Sy, are of dimensions sy x sy j E {1, 2,..., l} and have full rank sj.
The matrices Sj,o are chosen lower triangular and the matrices Jy, are chosen

lower triangular in the top corner, i.e.,

where R,o is a lower triangular matrix of dimensions sj x sj.
The infinite elementary divisors are computed as follows:

8iq-1 8i infinite elementary divisors dj of order + 1,

where so 0.
We denote dim ker Er as pr and dim ker Eo as po.
To this end we propose the controllability Hessenberg form of the system (E, A, B).

In this case the initial step is different from the one in the reachability form. Here, we
treat the controllability pencil as an augmented nonsquare pencil, that is, (s[E 0]
[A B]). Applying the staircase algorithm proposed in [17], on the augmented pencil
we get

Q IslE 0] [A B]] Z [sEc Ac],

(2.7) A

A, A,2 0 0
A2,1 A2,2 0 0

Ak-l,1 Ak-l,k-i Ak-l,k 0
Akl Ak,k-1 Ak,k Ak,k+l

(2.8) Ec

Ei,1 0 0 0
E2,1 E2,2 0 0

Ek-l,1 Ek-l,k-1 0 0
Ekl Ek,k-1 Ek,k 0

where [17] the following hold.
A,j+ are of dimensions sy tj+, j {1,2,... ,k} and have full row rank s.
E,j, are of dimensions sj tj j {1,2,... ,k 1} and have full column rank t.
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The matrices

where Rj,c are chosen lower triangular and the matrices Aj,j+I are chosen lower
triangular in the bottom corner, i.e.,

Aj,+I [S,j+ 0],

where S,j+ is a lower triangular matrix of dimensions s s.
Notice that in the controllability form the initial compression is performed on the

columns of [E 0] as opposed to the reachability form where the initial compression is
performed on the rows of B.

The following theorem is due to van Dooren [17] and we briefly review it here.
THEOREM 2.2. Let (E, A, B) be a controllable system, then there are

ti+ si controllability indices cj of order k and
si+ ti+ infinite elementary divisors dj of order k i,

where So 0 and ti, si O, 1,..., k- 1 are the dimensions of the stairs in the pencil

In the rest of this section we show that, under the assumption of reachability,
we can use the stairs of the reachability Hessenberg form to compute not only the
controllability indices but also to distinguish whether they are proper or nonproper.
Before showing how to do that, we present two ancillary results.

LEMMA 2.1. Let (E, A, B) be reachable. Then the. system (E,A,B) has only
trivial chains at infinity or equivalently has only infinite elementary divisors of order
one. Moreover, it has

q 8k tk

nonproper controllability indices that are equal to the number of trivial chains at in-
finity.

Proof. The proof follows easily from the condition rank [E B] n and Theorem
2.2.

Since (E, A, B) has only trivial chains at infinity it follows from Theorem 2.2 that

Furthermore, we assume that (E, A, B) has no column minimal indices of order zero

(rank B m). This assumption implies that

8k tk+l.

Therefore, q tk+ tk.
LEMMA 2.2. Let (E, A, B) be a reachable system, then

Proof. Since

kq-1

Z ti n T m and
i--i i--I
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then

k+l k+l

i=1 i=1

The main result of this section can now be stated using Lemmas 2.1 and 2.2 as
follows.

THEOREM 2.3. Let (E,A,B) be a reachable system then there are ti+l -ti
controllability indices cj of order k i, O, 1,..., k 1 from which

q tk+l tk

are nonproper.
This result just gives the order of the controllability indices and also shows how

many of them are proper and how many are nonproper in a quantitative way. However,
it does not reveal the finer structure that we are interested in. In particular, we want
to know the order of the proper and also the nonproper ones. This extra information
is contained in every normal external description, as we have already mentioned, but
still is not obvious from the Hessenberg form. Therefore, in the next section we show
how we can reveal this structure from the Hessenberg form. To do that we use the
Hessenberg form to compute the normal external description; therefore we are able to
relate the column degrees of the external description to the stairs of the Hessenberg
form. Once this relation is known then we show how to use the stairs of the Hessenberg
form to get a qualitative information about the controllability indices.

3. Computing a normal external description.

3.1. Reachability Hessenberg forms, normal external descriptions. The
procedure described in this section is very similar to the one proposed in [15] for state-
variable systems. However, there are fine differences at the final step of the algorithm
that are quite important since we are able to extract all the information needed.
To compute a normal external description N(s), D(s), we first embed the pencil
[sEh Ah Bh] in a unimodular pencil as follows. Assume a matrix Ch E ]Ptmxn

(3.1) Ch [* Cr],

where Cr is of the form

(3.2)

C1 0
C

Cr--

* C

vhere C1 is a square nonsingular matrix of dimensions tl x tl and Ci E ]R(ti-ti-1)xti

for 2,..., k. Moreover, Ci for 2,..., k satisfy the following:

C’ i=2,...,k

are nonsingular matrices. In particular, we can select Ci’s as follows:

(3.4) Ci [. S2,i], 1, 2,..., k,
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where Sl,i’s are lower triangular matrices of dimensions (ti ti-1) (t t-l); thus

Ci * S2,i Si,r, i 2,...,k,

and C1 Sl,r. At this point we mention that Si,r is lower triangular. This is
due to the fact that we put Ai-l,i in lower triangular form at the bottom corner in
the Hessenberg form. The form of Si,r, i.e., lower triangular, is exploited later in
the algorithm, computing a normal external description. It is pointed out that the
selection of Ci is similar to the one proposed in [2] and is far from unique.

Due to the selection of the matrix Cr, the pencil

(3.5) Ur(s) [sEr-Ar_cr -Br]o
is unimodular. That is det Ur(s) const =/= 0. Therefore, the inverse of Ur(s) exists
and is a polynomial matrix. By denoting the inverse of U(s) as V(s) and partitioned
&S

(3.6) Vr(s)= Gr(s) Dr(s)

it is clear that the pair Nr(s), Dr(s) is a basis for the kernel of [sEt
Hence the problem of determining a normal external description has been reduced to
the inversion of the unimodular pencil

sEh--Ah Bh]U(s) Ch 0 J
Remark 3.1 (see [15]). The selection of the sizes of Ci is not arbitrary. The lengths

of the Jordan chains of the infinite elementary divisors of U(s) must be kept minimal,
namely, equal to the number of stairs in the Hessenberg form. This guarantees the
desired relationship between the column minimal indices of the pencil [sE- A B]
and the infinite elementary divisors of the unimodular pencil. This fact is crucial
to obtain a normal external description. A different relationship will not produce
normal external description. Therefore, though the selection of C is not unique, the
size of the blocks must comply with the rule used in (3.2).

PROPOSITION 3.1. Let (2.1) be regular, i.e., det(sE-A) 0 and the pair Nr(s),
Dr(s) described as in (3.6). Then, we have the following:

Nr(s), Dr(s) are right coprime;
Dr(s) and set Ar have the same nonunity invariant polynomials;
Nr(s), Dr(s) are column-degree ordered.
Proof. The first two statements can be shown in a similar way as in [15]. The

fact that Nr(s), Dr(s) are column-degree ordered will be shown constructively from
the proposed algorithm.

The next step in this section is twofold. First, we determine in detail the struc-
ture of the normal external description using the Hessenberg form, and, second, we
show that the resulting normal external description is indeed column-degree ordered.
We point out that the main concern here is the structure of the resulting normal
description rather than the inversion of the unimodular matrix U(s), which can be
computed as in [2]. This is because our goal is to determine the relation between the
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stairs of the Hessenberg form and the column degrees of the computed normal exter-
nal description. Finally, this relation shows how to compute the proper/nonproper
controllability indices using only the stairs of the Hessenberg form.

It is clear that such a method will provide computationally efficient techniques for
the computation of the pair N(s), D(s). For this purpose we use the block Hessenberg
form of the pair (E, A, B). By defining P to be a permutation matrix we can bring
the pencil

pT [ SEr Br

to the following form

(3.7)

sJ, ,

,

where

0 0
0 0
0 0

sJk-l,r Nk-l,r --Sk,r 0

* sJk,r Nk,r -Sk+l,r

Sl,r--C1, Sk+l,r--Ak,k+l, gk,r’-Ekk, i,r-- [R’r] for/= 1,...,k- 1

Sir=[ Ai-’i] fori=2 k
Ci ’"

The infinite elementary divisors of the unimodular pencil U(s) are computed as
follows [17]

ti+ ti infinite elementary divisors 5j of order k + 1.

Therefore

(3.8) 0 pT U(s) sJ- S.
* sJr Sr

The lower triangular structure of (sJ- N) implies a lower triangular structure of its
inverse description as follows

, s&- S V(s) I,

where

F() N() ](3.10) Vr(s)= Gr(s) Dr(s)

Due to this structure a normal external description for the system (Eh,Ah,Bh) is of
the form

(3.11) D(s) * Nr(s)
Dr(s)
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This lower triangular structure implies that we can compute the N(s) and
(Nr(s),Dr(s)) independently and, in the sequel, compute the off-diagonal terms.
Equation (3.9) shows that

N(s) (sJ S)-1.

Since / 1 is the infinite elementary divisor in (sJ S), then

(3.12) sl(s i)-1

,o 0 00,1

o( o) 01,18 - 0,2

//,oo 8:2 + + ) ". 0

where O(si) denotes polynomial terms of power less or equal to and

o,1+1

The procedure for computing the expression in (3.12) is parallel to that proposed in
[15]. In addition, the form of all the submatrices in (3.14) can be derived by using
similar techniques to the ones used in [15].

Though we can argue that the computation of Nr(s) and Dr(s) can be performed
in parallel to that in [15], we analytically compute the normal external description
since in this case fine differences in the algorithm are important to the determination
of the proper and nonproper controllability indices.

The largest reachability index in the pencil [sEt-At -Br] is k [17]. This implies
that the largest infinite elementary divisor in (sJr St) is equal to k + 1. Then

Vr(8) -1 Yr(8) _-1(1
_
8 - Jr- Skfik )PT

Vo, + Vl,S +... + V,s,(3.13)

where

0 0 0 0
(,, 0 0 0

* N2,r "" 0 0

* * k,r O

and

i’r- Oti+l--ti
By denoting Nr (s) and Dr(S) as

N(s) No, + sN,, + sN, +... + sN,,
Dr(s) Do,r + sDl,r + s2D2,r +"" + skD,r,
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we can compute

[0](3.14) N,r--[Io. O]V,r Im

[0](a.la) D, -[0 I,]1/4, I, 1, ,..., .
In the sequel, we show that the pair N(s), Dr(s) is column-degree ordered. For

this purpose we use the special form of the matrices N and S to compute the leading
column coefficients of N(s) and D(s). It can be shown that the powers of N have the
form

(3.16) = i,r 0

where i,r are lower block triangular matrices and have dimensions oi x oi where

oi or + m- Y=I tj. The block diagonal elements of i,r are computed as follows:

(3.17) 1f. H 2qr, j + i- 2,3,...,k + l.
q--i+j--1

Using the special form of the powers of N we see that

(3.18) s;l(8r i)-1

The pair Nr(s), Dr(s) can be easily computed by carefully applying the appropriate
column permutations in (3.20). In particular, the pair Nr(s), Dr(s) has the form

(3 19) [ Nr(s)Dr(s)]
Hr 0 0 00,1

Hr O(s Hr 0 0,s + o,.

Hr s2 O(s) Hr "’.., + ,2s + O(s) 0 0

r 8k-1 (8k-2 Hr 8k-2 Hr 0H_, + 0 -2, + O(s-a) o,
H,Isk + 0(8k-l) H_l,2sk-1 + 0(8k-2) H ks + O(s) Hr

0,k+l

where

O,i Si,r I$i__:i__l i- 1,2,...,k + 1, to=O
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(3.21) Hr r.H0,i, i, jeZ+ i+j=2 k+l.,J 3

Equation (3.21) shows that Dr(s) is column-degree ordered. The next step is to find
the highest column coefficient of Dr(s), D,hc. From (3.21) we know that

Hr H_ H" Hr ],--, , , o,+

and therefore if we determine the structure of H,i, for i 1, 2,..., k + 1 we have
actually computed Dr hc. We note here that H does not occur in our case, since0,k+l
we assumed that B has full column rank. Using (3.23) we can compute each H+I_j,j
for j 1, 2,..., k as follows:

H+1--j,j SkA- 1,r Otq+1-tqq=k

which results in

j 1,2,...,k,

(3.22)

D:,I 0 0 0
Dr,2 0 0

--1 rTk,rDr,hc Sk+l, ..
* * Dr,k-1 0

* * * Itk--tk_l

where Dt, are full rank lower triangular matrices of dimensions t t_ x t t_l,
1,..., k- 1. This is due to the property that T,, 1, 2,..., k- 1 enjoy; namely,

they are lower triangular matrices. The matrix Tk, is singular and

dim ker Tk, dim ker Rk,Sk-, dim ker Ek,k p

since Sk,r is nonsingular. Moreover, Tk,r is of the form

where Tk, is a full rank triangular matrix of dimensions (tk p) (tk p).
The structure of D,h reveals the correspondence between the length of the stairs

of the Hessenberg form and the column degrees of the normal external description and
is given as follows.

THEOrtEM 3.1. Let (E,A,B) be reachable. Then the controllability indices of
(E, A, B) are given as follows:

If tk Pv < ti ti-1, then there are

tk Pr proper controllability indices of order k + 1

and

(t t_l) (tk p) nonproper controllability indices of order k i;

if tk Pv > ti t_i, then there are

t t_l proper controllability indices of order k + 1 i,
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where ti, 1, 2,..., k are the dimensions of the stairs in the pencil [sEr- Ar -B]
and p dim ker E.

Proof. Since Nr(s) is column degree order, we examine the highest coefficient
matrix of

r 8k-1 (8k-2[Hk_l, + 0
which is given by

and

Hr 8k-2 (8k-3 Hr+ 0

Hk-2,2 O,k]

Hk-J’J Sk’r Otq
q--k-1 + --tq

j 1,2,...,k- 1;

0,k--Sk,r Itk-k_
Therefore, the highest coefficient matrix is given by

N:,I 0 0
N, 0

N,hc Sk-,r "..
$ * gt,k-1

0
0

where Nt,i are full rank lower triangular matrices of dimensions ti ti-1 ti ti-1,
i 0, 1,..., k- 1. This is due to the property that Ti,, 1, 2,... ,k- 1 enjoy;
namely, they are lower triangular matrices of full rank.

The proof now follows easily from the definition of the controllability indices and
the form of N,hc and Dr,hc (see (3.22)). [:]

Note that in the case when E is nonsingular p 0 and tk

_
’i- ti-1, for all

E {1,2,...,k} since

and therefore the controllability indices coincide with the reachability indices.

3.2. Controllability Hessenberg forms normal external descriptions.
In this section we use again, as before, the idea of embedding the pair (Ec, A) in a
unimodular matrix U(s) by selecting an appropriate matrix C. The construction of
C is along the same lines of those for the reachability Hessenberg form. An obvious
difference in this case is that Cc E ]Rm(n+m) as opposed to the selection of C where
C IRmn. In addition the structure of the Cc is now dictated by the stairs of the
controllability form. Therefore, the unimodular pencil under investigation is

0

Since the procedure for computing a normal external description is very similar to
the one studied for the case of the reachability form, we only streamline the differences
of the two procedures.

I;k --tk--1
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We denote

(3.24) Vc(s)=Uc(s)_ [ Fc(s)N(s) ]Gc(s)D(s)

An important difference between Dr(s) (cf. 3.1) and D(s) is the dimensions.
From the structure of the reachability Hessenberg form we can see that Dr(s) E
]Rmm[s], while the structure of the controllability Hessenberg form implies that
Dc(s) lRtk+l m[s]. It is quite simple to determine the structure of the highest
coefficient matrix Dc,hc of Dc(s) using similar arguments as in 3.1. Here, we simply
present the form without giving any details;

(3.25) D,h= k+l,c

D:,I 0 0 0
Dr,2 0 0

* * Dr,k-1 0

* * * Dt,k, , , *

where Dt,i are full rank lower triangular matrices of dimensions ti ti_ ti t-l,
i 1,..., k. This is due to the fact that the initial compression in the controllability
Hessenberg is performed on [E 0], as opposed to the reachability Hessenberg form
where the initiM compression is performed on B. This difference results in a non-
square highest coefficient matrix for D(s). Using the controllability Hessenberg form
results in loss of information, in the transformed system, about the input matrix. In
particular, even in the case when the system is reachable, although we can determine
the controllability indices of the system and also see how many nonproper/proper
controllability indices exist, we cannot distinguish them. Note that in the case of a
controllable, but not reachable system, even this is not true. Here is an example that
clarifies these ideas. Let

-1 s 0 0 0][sE- A B] 0 -1 s 0 1
0 0 -1 1 0

This reachable system has only one nonproper controllability index and one infinite
elementary divisor of order one. Now let

[sE- A B]

-1 s 0 0 0 0
0 -1 s 0 0 1
0 0 -1 0 1 0
0 0 0 -1 0 0

This controllable but not reachable system has the same controllability indices as the
above-mentioned system; however it has two infinite elementary divisors of order one.

That is, the normal external description of the transformed system does not
provide this extra information, as in the case of the reachability Hessenberg form.
Therefore, we must bring the normal external description back to the original system
coordinates and read out the column degrees.

Another remark that we would like to make is that the dimensions of the Dt,
]p(ti-ti_l)x(ti-ti_) give the number of the controllability indices. The order of the
controllability indices easily follows from the corresponding powers of s; that is, the
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Dt,i E ]l:(ti-ti-1)(tl-ti-1) corresponds to t- t-i controllability indices of order
(k + 1 i).

Finally, as we have already mentioned, the index of nilpotency of N is minimal.
Although this is true, the algorithm can produce misleading results when N is ill
conditioned. However, the algorithm provides a direct and reliable solution to the
problem in the case of a well-conditioned/9.

4. An example. Consider the following reachable im

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

E=
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

licit linear system.

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

A=
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

B-’-

0 0 0
0 0 1
0 0 0
1 0 0
0 0. 0
0 1 0

4.1. Reachability Hessenberg forms, normal external descriptions. The
reachability Hessenberg form of {E, A, B} is

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 -1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Br-"

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

the steps of which are tl t2 3. Therefore, the system {E,A,B} has three
reachability indices of order two; namely, rl r2 r3 2. We can now use the
procedure described in Theorem 3.1 to compute the controllability indices of {E, A, B}
as follows:

t2 Pr 1 < 3 tl to,

hence there are

t2 Pr 1

proper controllability index of order k + 1 2; namely,

c1--2

and

tl to (t2 pr) 2

nonproper controllability indices; namely,

c2 c3 1.

The computed normal external description for {Er, At, B}, using the algorithm
described in 3, is

Nr(s)= Dr(s)= 0 0 0
0 0 0

1 0 0
0 1 0
0 0 1
s 0 0
0 s 0
0 0 s
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Note that

[ ]100
Dr,hc 0 0 0

000

as expected.
A normal external description for {E, A, B} is

N(s)

0 0 --s
oo_1

[o oo]s o o
D(s)= 0 0 0

1 0 0
s2 0 1

0 s 0
0 1 0

4.2. Controllability Hessenberg forms, normal external descriptions.
The controllability Hessenberg form of {E, A, B} is

1 00000000 0 1 0000000
010000000 00 -1010000
0 0 1 0 0 0 0 0 0

Ac=
0 0 0 0 0 1 0 0 0

Ec=
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

The steps of the controllability Hessenberg form are sl 1, s2 5, tl 1, t2 3,
t3 5. Therefore, {E, A, B} has tl to 1 controllability index of order k + 1
2; namely, cl 2 and t2 t 2 controllability indices of order k + 1 i 1;
namely, c2 c3 1. Furthermore, we know that there exist t3 t2 2 nonproper
controllability indices.

The computed normal external description for the pair {Ec, Ac} is

s2 1 0
1 0 0

0 s 0
s 0 0 De(s)= 0 0 sN(s)= 0 1 0

0 0 0
0 0 1

0 0 0

and the highest order coefficient matrix is

100
010

Dc,hc 0 0 1
000
000

A normal external description for {E, A, B} is

0 -s 0

N(s)

0 -1 0
0 00]D(s)= 0 00
s2 1 0

s 00
1 00
0 0 s
0 01



EXTERNAL DESCRIPTIONS AND HESSENBERG FORMS 305

which shows that cl 2 is a proper controllability index and c2 53 1 are
nonproper controllability indices.

All the algorithms in this paper have been implemented in MATLAB [10].

5. Conclusions. In this paper we presented a computationally efficient method
for computing normal external descriptions using staircase forms and embedding
techniques in implicit systems. The structure of the computed normal external de-
scription revealed the relationship between the reachability Hessenberg form and the
proper/nonproper controllability indices of the system. That is, it was shown how to
compute and distinguish the proper/nonproper controllability indices from the length
of the stairs of the reachability Hessenberg form. Finally, we studied the controlla
bility Hessenberg form and the corresponding computed normal external description
and compared it with the one computed using the reachability Hessenberg form of
the system.

Future research along these lines can be performed by developing an alternative
algorithm for the computation of normal external descriptions in implicit systems by
generalizing Patel’s algorithm in [13]. This observation is motivated by the fact that
in the regular state-space case (E I), the algorithm in [15] and Patel’s algorithm use
the same principles. As a matter of fact, both algorithms start from the Hessenberg
form.
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A REMARK ON MINC’S MAXIMAL EIGENVECTOR
BOUND FOR POSITIVE MATRICES*

GEOFF A. LATHAMt

Abstract. A maximal eigenvector bound resembling that of Minc [SIAM J. Math. Anal., 7
(1970), pp. 424-427] is derived for structured nonnegative matrices which, when applied to certain

positive matrices, improves on the estimate derived from Minc’s bound.

Key words, nonnegative matrices, positive matrices, Perron-Frobenius theory, maximal eigen-
vector bounds
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1. Introduction. It is a classical result of Frobenius that any nonnegative ma-
trix A E Rnn with positive spectral radius p(A) possesses a nonnegative eigenvector
x, called a maximal eigenvector, corresponding to the so-called maximal eigenvalue
p(A), i.e., Ax p(A)x. The importance of the theory of nonnegative matrices, and
this result in particular, derives from the fact that, in many applications, the require-
ment for physical solutions leads naturally to a nonnegativity constraint, both for the
matrix A and solutions of systems of equations involving A. In some applications
(cf. [1]), it is important to obtain estimates of the ratios of components of a maximal
eigenvector in terms of easily computable functions of the matrix elements. Indepen-
dently, the problem of estimating the ratio maxi,j xi/xj for a positive maximal
eigenvector has been examined theoretically in some detail [3]-[5].

In this note, a new estimate is derived for an upper bound of the ratio of maximal
eigenvector components. This bound is derived using a technique due to Minc [3]. As
well as being applicable to all positive matrices, the bound holds for certain structured
nonnegative matrices. In this sense, the bound has slightly wider applicability than
its counterpart in [3]" Examples of the use of the estimate to bound are also given.

2. A maximal eigenvector bound. The main result of this note is the follow-
ing theorem.

THEOREM 1. Let A In’, n >_ 2, be a rionnegative matrix and x any maximal
eigenvector of A satisfying Ax p(A)x with p(A) > O. For fixed distinct indices i
and i, let I i and I be any index sets such that xj <_ xi_ for all j I_ and xj >_ x7
for all j I. Let Io {j a 0}. Assume that

(i) axy > 0 for all j I_ U Io,
(ii) aij > 0 for some j I,

x_ > 0 and x7 > O. Then the ratio X xT/x_ satisfies the estimate

(1)
where

X -< 1/2(M + v/M2 + 4a),

(2) M= max a- and a=
-jel aj

jt/u0 ai ea
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Before proving Theorem 1, we first state the useful elementary estimate that
underlies the results in [3]. It proves to be the key to our proof of Theorem 1.

LEMMA 1. If ql, q2,... qn are positive numbers, then

(3) min P <_ Pl +"" + Pn
_
max P--/,

qi ql +"" +qn

for any real numbers p,p2,... ,pn. Equality holds on either side of (3) if and only if
all the ratios pi/qi are equal.

For a proof of this lemma, see [2, p. 79] or [1].
Proof of Theorem 1. Because xi > 0, the eigenvalue equation can be used to form

the quotient X giving

from which we arrive at the quadratic inequality

(5) X2 MX c <_ O,

(using Lemma 1)

(6) X-<+ where +=1/2(M+v/M2+4a),
which proves the theorem. V

Remark 1. Only certain nonnegative matrices with special structure satisfy the
conditions of the theorem. In particular, (i) means that.zero entries in row / can only
lie in columns from /LJ I0, while (ii) requires at least one nonzero entry in row / in
some column from I. If A is nonnegative and irreducible, it is a result of Frobenius
that. the maximal eigenvector x is positive, and so condition (i) reduces to a/> 0 for
all j /t_J I0, and the requirements xi > 0 and x7 > 0 can be dropped. Furthermore,
if A is positive, then I0 is empty, and conditions (i) and (ii) are automatically satisfied
indicating that the theorem applies for any positive matrix. For nonnegative matrices
that are not positive, there is only a slight loss of generality by omitting I0 from the
theorem altogether, since this affects only the structural assumption (i) and not the
size of M.

Remark 2. The most obvious application of Theorem 1 is the estimation of an
upper bound for xT/xi_ for some given fixed indices / . In this case, with no prior
knowledge of the ordering of the components in the maximal eigenvector, one can
simply take I {i} and /= {/}, in which case condition (ii) of the theorem reduces
to a_/ > 0.

Remark 3. It is evident that, for given fixed and , the best bound in (1) (or
(6)) is obtained by optimizing the choice of index sets. The smallest upper bound in
(1) will be obtained for that choice of index sets that simultaneously minimizes M

where M and a are as given in (2). If + denotes the positive root of the left-hand
side of (5), then
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and a. However, these requirements can be contradictory. Requiring M to be small
suggests taking / as large as possible; yet requiring a to be small suggests taking / as
small as possible and I as large as possible (see (2) and Example 2 below).

Remark 4. Usually, a complete knowledge of the index sets / and I, as defined in
the theorem, is not available. However, for certain matrices, such index sets are easily
identified (see 2.2 below). The more information that is known about the ordering of
maximal eigenvector components, then the better is the potential of (1) to give tighter
upper bounds, with the best situation occurring when the complete ordering of the
maximal eigenvector is known.

2.1.
(4) yields

Positive matrices. If A is positive, then the application of Lemma 1 to

(7) X - max aj,

which is a result of Minc [3, p. 425], [4, p. 42]. Because 7+ :>. M, it is clear that
the bound given by 7+ in (6) will exceed that in (7) whenever / does not contain all
indices j for which the maximum on the right-hand side of (7) is attained. However,
if the reverse is true, then it is possible for (6) to give a better estimate of X than does
(7). For example, if the maximum in (7) occurs only in the column j =/, then (6),
applied with _/- {/}, can give a better estimate.

If I C_ {ilx maxj xj} and I C {ilx mini xj}, then both (6) and (7) give
bounds for 7 maxi,j xi/xj. Of course, to apply these estimates directly requires a
knowledge of these index sets, something which for arbitrary positive A is not available.
Hence, overestimating in (6) gives

(8) 7 < max 7+,
j

where the maximum is taken over all /= {i}, I {j} for j, while overestimating
in (7) gives

(9) 7 -< max aij

i,j,k akj

which are two easily computable bounds for 7. The estimate (9) is again due to Minc
[3, p. 425], [4, p. 42]. The right-hand side of (8) exceeds the right-hand side of (9).
This is because the largest M as given by (2) and taken over all _/= {i}, I {j}
(and I0 empty), equals the right-hand side of (9). Since 7+ > M, the largest 7+ must
exceed the largest M, which is the right-hand side of (9).

Remark 5. Of course, if a single index i, for which xi is, respectively, either a
maximum or minimum, is known, then the maxima in (8) and (9) may be taken over
all other indices with this index fixed and equal to / if xi is a minimum, or if xi is a
maximum.

2.2. Ordered matrices. One class of matrices for which it is easy to identify,
at least partially, the ordering of maximal eigenvector components and hence suitable
index sets / and I, are those whose column entries are ordered across rows. An easy
result that aids in the identification of maximal eigenvector ordering for this class is
the following lemma.

LEMMA 2. If A is nonnegative and Ax p(A)x with p(A) > 0 and x > O, then
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for any index i* satisfying ai.j > 0 for all j,

(10) min aij ai,j

_
xi xi,

_
max

J ai.j xi. J ai.j

for all and i’. Moreover equality can occur on either side of (10) if and only if
aij ai,j )ai.j for all j and some E I.

Proof. Because xi. > 0, the eigenvalue equation can be used to form the quotient

Xi Xi’ j(aij ai,j)xj
xi. -j ai.jxj

Since x > 0 and ai.y > 0 for all j, an application of Lemma 1 then gives (10). Lemma
1 also implies that equality can hold on either side of (10) if and only if (ay -a,j)/ai.y
is constant for all j.

3. Examples. Here we illustrate the use of (1), and in the case of positive
matrices, compare the estimates from (1) and (7).

Example 1. Consider estimating X3/X2 for the nonnegative irreducible matrix

2 9 1 1

/2 0 6 0
3 1 8 1
2 0 6 0

for which an estimate using (7) is not possible. From Lemma 2, it follows that X3 > X2
and that x4 x2. It is therefore possible to take / {2,4}, I {3}, i 3,
/ 2, and so I0 is empty. The definitions (2) imply a 1/3 and M 3/2, and
using these in (1) gives ,+ (3 + V/43/)/4 .. 1.696. For this matrix, it happens
that , x3/x2, so _< (3 + V/43/3)/4. The actual value of x3/x2 (and of -),) is

(59+26x/)/(28+20x/) 1.540 while p(A) 5+ 2x/. The same procedure used
to estimate xl/x2 gives the bound xl/x2 <_ (1 + x/)/2 2.791, while the actual
value is xl/x2 113/(28 / 20v/) 1.198.

Example 2. Consider the positive matrix

3 2 3 3 3
2 1 2 2 2
2 1 2 2 2
2 1 2 2 2
3 2 3 3 3

It is clear by Lemma 2 that {1, 5} and {2, 3, 4} are the index sets for which the
components xi are, respectively, the largest and the smallest, so the choice 2 and

1 is appropriate. Mina’s bound (7) then gives _< 2. Choosing / {2} and
I { 1 } in (1) gives, using (6), /+ 2, the same as Mine’s bound. If however we take
instead = {1,5} and/= {2} in (2), then (6) gives ,+ (3+ v/)/4 1.781, which
improves the previous bound. The actual value of , for this matrix is (1v+ 1)/8
1.545. This illustrates how the bound can be improved by optimising the choice of
the index sets I and I as well as the selection of indices i and i from them.

Remark 6. If two indices and are known for which X xT/x_ .y-l, then
either of (1) or (7) can be used to obtain a useful lower bound for /whenever the
resulting bound for X is less than one. However, there are other results, due primarily
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to Ostrowski [5] (but see also [4]), for obtaining lower bounds for /for any nonnegative
irreducible matrix.

Acknowledgment. The author would like to thank Bob Anderssen for useful
discussions that led to this work.
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DISPLACEMENT DECOMPOSITION*
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Abstract. The authors extend some recent results of Di Fiore and Zellini [Linear Algebra Appl.,
to appear], obtaining new classes of formulas for the displacement operator-based decomposition
of matrices. It is shown how an arbitrary matrix can be expressed as the sum of products of
matrices belonging to matrix algebras associated with certain versions of sine and cosine transforms.
Applications to the representation of the inverse of a Toeplitz and a Toeplitz plus Hankel matrix,
with and without symmetry, are presented. Implications on the computation of the product of these
matrices by a vector are discussed.

Key words. Toeplitz matrices, Toeplitz plus Hankel matrices, inversion formulas, displacement
operators, sine transform, cosine transform
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1. Introduction. The concept of displacement rank, introduced in [18] and
thereafter studied by various authors [2], [3], [5], [9], [13]-[16] has important applica-
tions in the field of computations with Toeplitz and other types of dense structured
matrices both in a sequential and a parallel environment.

The main idea is as follows. Given a matrix A we look for a linear operator 7)

such that we can easily recover A from its image 7)(A) in terms of simple structured
matrices. Formulas of Gohberg-Semencul [16], hmmar and Gader [2], Bini and Pan
[9], [5], and Gohberg and Olshevsky [14] are all examples of the application of this
strategy. These formulas involve various kinds of matrices belonging to commutative
algebras (Toeplitz triangulars, circulants, and others) that can be efficiently multiplied
by a vector using the tool of the fast Fourier transform.

In a recent paper on this subject [12], Di Fiore and Zellini study the representation
of an arbitrary square matrix as the sum of products of matrices belonging to matrix
algebras generated by a Hessenberg matrix (Hessenberg algebras (HA)): This way,
they are able to find a unifying approach to derive all the formulas listed above.
Moreover, they propose new formulas in which an arbitrary n n matrix is expressed
as the sum of products of T-class matrices.and of matrices having a T-class submatrix
of order n- 1 or n- 2.

As is well known, T-class is a commutative matrix algebra widely used in the
study of spectral and computational properties of Toeplitz matrices [6], [7], [23].
Matrices belonging to 7-class are simultaneously diagonalized by the matrix of a
discrete transform known as sine transform. For this reason T-class is said to be
associated with sine transform. The computations of the sine transform and of the
Fourier transform of a real vector have approximately the same cost [19]. Besides
the sine transform, other important discrete trigonometric transforms are the cosine
transform [19] and the Hartley transform [8]. Different versions of these transforms
exist [22] and various fast algorithms for their computation have been proposed.
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In this paper we extend some results found in [12], obtaining new classes of
decomposition formulas. As an important case of the new formulas, we show how an
arbitrary matrix can be expressed as the sum of products of matrices belonging to
algebras associated with certain versions of sine and cosine transforms. In particular,
the algebras that we consider are those generated by

for some values of , 7 E {0, 1,-1}. Obviously these algebras are HA, and for these
we use the symbol T7.

The formulas presented here fit naturally in the framework that Di Fiore and
Zellini set and have the computational advantage that all the transforms to be com-
puted have the same size, say n. Actually, fast transform algorithms achieve their
best efficiency when n is a power of two, and the need for computing transforms of
sizes n and n- 1 or n and n- 2 may be a serious drawback as noted in [19]. In
addition, in the particular case of an n n real symmetric Toeplitz matrix T whose
(n- 1)-order principal minor is nonzero (for example, a real positive definite Toeplitz
matrix), we are able to exploit our formulas to compute the product of T-1 by a
vector with eight real fast Fourier transforms of order n, thus improving both [12]
and [2] and matching the best result known so far given in [3].

The paper is organized as follows. In 2 we recall some results from [12]. In
3 we obtain formulas for representing a matrix as the sum of products of matrices
belonging to HAs generated by persymmetric, symmetric, persymmetric tridiagonal,
and symmetric-persymmetric Hessenberg matrices. In 4 we introduce TST classes
and the transforms with Which they are associated. In 5 we discuss applications to
Toeplitz and Toeplitz plus Hankel matrices, and in 6 we discuss the computational
implications of the derived formulas.

We borrow the notations from [12]. In particular throughout the paper we indicate
with n and C the real and the complex field, respectively, with ek the kth vector of the
canonical basis, for k 1,..., n, with J the reversion matrix J (5n-j+l), and with
Z the downshift matrix Z (5j+1), i, j 1,... ,n. Given a vector x, we indicate
Jx with . Unless otherwise stated matrices are square of order n.

2, Preliminaries. In this section we recall some results from [12].

n--12.1. Hessenberg algebras. Let A Cnn and let HA {k=O akAk}, where
the ak are complex parameters, be the algebra generated by A. Standard properties
of HA are the following [11].

PROPOSITION 2.1. 1. Every matrix in HA i8 symmetric (persymmetric, cen-

trosymmetric, diagonalizable) if and only ifA is symmetric (persymmetric, centrosym-
metric, diagonalizable).

2. The dimension of HA is equal to the degree of the minimal polynomial of A.
In particular dim HA n if and only if A is nonderogatory.
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Now let X E Cnn be a Hessenberg matrix

(2) X

rll bl 0

r21 r22

bn-1
rnl rn2 rnn

The algebra Hx is called Hessenberg algebra (HA). Note that if b :/: 0 for all i, then
X is nonderogatory so that in this hypothesis dim Hx n.

Generalizing some ideas presented in [4], Di Fiore and Zellini are able to provide
a convenient basis for Hx. Let Ak pk-(X), where Pk(A), for k 1,...,n, is
the characteristic polynomial of the k k top-left submatrix of X and P0(A) 1.
Clearly Hx {-’]=1 akAk}. Moreover, the matrices Ak have the following important
property.

THEOREM 2.2 ([12]). We have

k-1

eTAk ek H b.
i--1

Thus, ifb -fi 0 for all we can set X (1/ k- )l-I= b Ak. Being the Ak a basis for

Hx, the Xk are a basis as well. Given a vector a (ak) C.n we set

n

Hx(a) E akXk,
k=l

this notation being motivated from the fact that eTHx(a) aT. The following
properties of the Xk are important.

THEOREM 2.3 ([12]). Let bi 0 for all i.
1. We have XjXk XkXj i=n [Xj]kiZi and therefore eXk ekXj IfX

is symmetric then Xkej Zjek. If X is persymmetric then Xkej Xn+l-jen+l-k.
2. If X is symmetric Xn is nonsingular.
3. If X is centrosymmetric then Xn J.

2.2. Orthogonality conditions. Let us recall a result of Gader [13]. Let A
be an n n matrix with entries in an arbitrary ring with identity and let P
ZT + eneT1 Gader considers the linear operator C(A) A- pTAp and shows that

X Tif C(A) -= mYm, then for the vectors Xm and Ym the following orthogonality
conditions hold: -n=(pkxm)Tym 0, for k 0,..., n 1.

Di Fiore and Zellini obtain a generalization of this result for linear operators of
the form

7)v(A) AV- VA,

assuming only that V is a matrix with entries in C() = {r lsr- rs for all 8 }.
They prove what follows.

LEMMA 2.1 ([12]). We have

n n

E [T)v(A)]J[p(VT)]iJ E p(vT)]iJ[I)v(A)]iY O,
i,j--1 i,j=l
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where p is any polynomial whose coeJficients are in .
Lemma 2.1 leads to the following result.
THEOREM 2.4 ([12]). If:Dr(A) ETn= xmyTm then

0,
m=l

where p is any polynomial whose coe]:ficients are in C().
The orthogonality conditions stated in Theorem 2.4 are used for the proof of a

number of decomposition formulas both in [12] and in 3.
3. Displacement decomposition formulas. In this section we describe how a

square matrix A with entries in an arbitrary ring with identity (so that, for example,
we allow the elements of A to be matrices) can be expressed as the sum of products
of matrices belonging to particular HA. Let X be the Hessenberg matrix defined in
(2) with [X]id E and consider the linear operator

I:)x(A) AX XA.

Let C() {r e lsr rs for all s e }. Observe that C() is a commutative
ring with identity (the identity of ). Throughout this section we make the following
assumptions.

(i) The entries of X are in C().
(ii) bi has inverse in for all i.

(iii) The kernel of/)x is Hx {)-’=1 akZkl ak e }.
By using (i) and (ii) it is possible to generalize the results in 2.1 and, in particular,
Theorem 2.3 to the case where X has entries in C(). Clearly, each matrix Xk is a
polynomial in X with coefficients in C(), i.e., Xk C()nxn. Moreover, if Xk is
invertible in C()nxn (see [10, p. 16]) then X-1 is a polynomial in X with coefficients
in C(). This can be easily proved by applying the Cayley-Hamiltom theorem to the
matrix Xk (remember that the Cayley-Hamilton theorem is valid for matrices with
entries over any commutative ring; see [10]). In particular, if X is tridiagonal and

ri+l i, for 1,..., n 1, have inverse in , then Xn is invertible in C()nxn. In the
case where X is symmetric, the proof of this assertion is in [12]. In our case the proof
is analogous. If lI( or C, (iii) is impli6d by (ii) and (i) is always verified.

In Theorem 3.1(i) of [12] a class of decomposition formulas is obtained involving
the HA Hx and Hx,, with X’ defined by X X+(r-fl)eneT and X persymmetric.
These formulas include the Gohberg-Olshevsky type of formulas exploiting e-circulant
matrices [14].

We first generalize this result by altering a generic element in the secondary diag-
onal of X (Theorem 3.1). Second, we apply this technique in the principal diagonal
of a symmetric (Theorem 3.2) or persymmetric-tridiagonal matrix X (Theorems 3.3
and 3.4) obtaining new classes of decomposition formulas that include, as particular
cases, formulas involving algebras associated to fast discrete transforms (see 4). This
way, we obtain new representations of the inverses of Toeplitz or Toeplitz plus Hankel
matrices for some aspects better than the ones in [2] and [12] (5 and 6).

Set

X X’ -ff (rn+l-j j fl)en+l-jey,
where j is any fixed number in {1,...,[] + 1} and fl C(). Moreover, in the case

nwhere n is even and j + 1 (r + b), fl must be also invertible in .
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THEOREM 3.1. If X is persymmetric, Xj and XJ are invertible in C()nn,
then the equalities T)x(A) n=l xmyTm and T)xr(A) m= XmYmT imply, re-
spectively,

(3)

(rn+-j )A

E Hx’(JX;-xm)Hx(XTym) + (rn+l-jj )Hx(XTATej)
m=l

E Hx(JXIxm)Hx’(X;-Tyro) T (rn+l-jj Z)Hx(JXIAen+-y)
m-1

and

(6)

(r+_y y -/)A

E Hx(XTxm)THx’(JX;-lym)T -t- (rn+l-jj )Hx(XTAej)T
m=l

{-T ,T )T.E Hx,j Xm) Hx(JX;lym)T + (rn+-jy )Hx(JX;1ATen+I-j
m--1

Proof. For (3) using the linearity of T)x and the persymmetry of X and X’, we
have

The last equality follows from the following relations which hold, for 1,..., n, by
Theorems 2.3 and 2.4

T j E[X;TymlkXkei(7) E xTmJHx(X]-Tym)ei E Xm
m:l m:l k:l

E T JXn+ J TYro E TxT x-T-Xm 1--i X; Xm n+l--i j Ym O.
m:l m:l

Now, assumption (iii) yields

(rn+l_jj )A- E HX’(JX-lxm)HX(XTym) Hz(z)
m=l
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Tfor a vector z e n. Since ej Em:l Hx’(JX-Ixm)Hx(XTy,) OT (see (7)), z
is defined by the equality

(rn+l-jj )eyA zTxj,

so that we obtain (3). Regarding (4) we proceed in a similar way. Formulas (5) and
(6) follow, respectively, from (3) and (4) and equality 1)x(AT) -1)xr(A)T.

Observe that if j 1, then Xj X I. Thus the case j 1 [12] is the most
significant.

Set

X X’ + (rii fl)eieT,

where is any fixed number in {1,...,n} and/3 e C().
THEOREM 3.2. If X is symmetric, X and X[ are invertible in C()nn, then

the equality 19x(A) Em: xmyTm implies

(8)

(9)

(rii fl)A E Hz’(X[-xm)Hz(Xi Y’) + (rii fl)Hx(X-ATei)
m=l

E Hx(X-lxm)Hx’(X-lym) + (rii- fl)Hx(Z-lAei).
m--1

Proof. For (8) using the linearity of/:)x and the symmetry of X, we have

gX(m=IHX’(X[-lxm)Hx(X-lym))
(rii- fl) E (Hx’(X-lxm)eie -eieTiHx’(X-iXm))Hx(X-lym)

m=l

x T T -1 T--(rii- fl) mYm ei E xmHx XmYm(X Ym (ri fl)
m--1 m=l m--1

The last equality follows from the following reltions which hold, for j 1,..., n, by
Theorems 2.3 and 2.4

(10) y xTmHX(X-1

m=l

o n

ym)ej E xmE[x-lymlkxkej
m=l k=l

 x x:lXm Ym --0.
m--1

Now, assumption (iii) yields

(r{ fl)A- E Hx’(X-lxm)Hx(X-lym) Hx(z)
m=l

for a vector z e n. Since eTE= Hx’(X[-xm)Hx(Xlym) OT (see (10)), the
vector z is defined by the equality

(ri fl)eT A zTX
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so that we obtain (8). The formula (O) follows from (8) and from the equality
Tx(AT) -Tx(A)T.

Observe that in the case8 1 and n, the assumption8 on X and X are
satisfied.

Now set

TX X’ + (rll fl)(eleT + enen),

where fl E C().
THEOREM 3.3. If X is persymmetric and tridiagonal and ri+ i, for 1,...,

n- 1, have inverse in , then the equalities 79x(A) }-m=l xmyTm and T)xT(A)
( T-rn=l XmYm imply, respectively,

(rll fl)(A + XnAX1)

(11) y Hx,(m)Hx(XTym) + (rl fl)Hx((A + ZnAX)Tel)
m=l

(12) HX(m)HX,(X’n-Tym)+ (rl fl)Hx(J(A + XAZ)e,)
m--1

and

(r )(A + xTAxT
AXn )el)(13) y’ Hx(XTXm)THx’(rm)T -t- (rll fl)Hx((A +XT T T

m=l

-T T T,-T )T fl)Hx(J(A q- Xn AXn) en)T(14) Hx,(Xn xm)THx(rm + (rll
m=l

[12]
Proof. For (11) using the linearity of :Dx, the persymmetry of X and the equality

Xn X’n i, n+l--j bl) -1
/=1

n-1 )H r/+l
l=n-i+l

we have

1)x Hx’ (m)Hx -T

m=l

(rll ) y (Hx,(c.)(eeT1 + eneTn) (eleT1 + ene)Hx,(m)) Hx(XTym)

(rll fl) XxmyX + Xmy
m=l m=l. . )el xJHx(XTym) en xJXHx(XTym)

m=l m=l

(rll ) T -1 mYm (rllXxmYmX. + x T )Ox(A + X.AXg1)
m=l m=l
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The last but one equality follows from (7), which holds also for j n, and from the
relation

Now, assumption (iii) yields

(rll fl)(A + XnAX1) y Hx,(cm)Hx(XTym) Hx(z)
m=l

for a vector z e n. Since e E:I Hx’(m)Hx(X;Tym) OT (see (7) for j n),
the vector z is defined by the equality

(r fl)e(A + XnAX1) zT

so that we obtain (11). Regarding (12), proceed in a similar way. The formulas (13)
and (14) follow, respectively, from (11) and (12) and from the equality I:)x(AT)
-:Dxr (A)T.

If X is also symmetric we can state the following theorem.
THEOREM 3.4. IfX is symmetric and persymmetric andl:)x(A) Y=I TXmYm

then

(5)

(16)

(rll fl)(A + JAJ)

Hx,(xm)Hx(Ym)+ (rll fl)Hx((A + JAj)Te)
m=l

y Hx(xm)Hx’(Ym) + (rll fl)Hx((A 4- JAJ)e).
m--1

Proof. Exploit Theorems 2.3 and’ 3.3.

4. The algebras Teg. In this section we present some matrix algebras strictly
related to T-class. As T-class these algebras are associated with discrete trigonometric
transforms computable with fast algorithms and for this reason their use in matrix
displacement decomposition is attractive. At the end of this section we obtain some
corollaries involving these algebras of Theorems 3.2 and 3.4.

Set

(17)

and set HTg9 Tecp. Now consider the following special cases.

Case 1. Consider 0 and 99 0. We have T00=T-class. The matrix

(18) M00=i 2 (sin ij,r ’n4-1 n+l]’
i,j=l,...,n
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is symmetric and orthogonal. Moreover, the following equality holds:

(19) MooTooMoo 2 Diag cos j 1 n.
+1

Case 2. Consider 1 and -1. The two matrices

_2n ( (2i+l)jr) j=O,...,n-1,(20) M kj cos
2n

(21) M-1-1 (kj sin
(2i- 1)jr)2n

i, j 1,...,n,

where kj 1/x/ for j 0 and j n and kj 1 otherwise, are orthogonal. Moreover,
the two following relations hold:

(22) MTllMll 2 Diag cos j 0,..., n 1,
n

(23) MT_I_IT_I_IM_I_I 2Diag cos-- j 1,...,n.
n

The algebras Tll and T_ 1-1 are strictly related as well as the matrices Mll and M_1-1.

In fact setting D-1 Diag((-1)J) with j 0,..., n- 1, we have

(24)
(e)

T-l-1 -D-1TllD-1,

MllJ D-1M-l-1.

Case 3. Consider 1, -1 and -1, 1. We set

V ( (2i+l)(2j+1)r)(26) M1-1 cos
4n

i,j=O,...,n-1,

(27) M-11--V (sin (2i+ 1)(2j +
4n

i, j 0,...,n- 1.

The matrices M1-1 and M-11 are symmetric and orthogonal and we have

(28) MI-ITI-IMI-1 2Diag (cos (2j + 1)r /2n
j 0,...,n- 1,

(29) M_11T_11M_ll 2 Diag (cos (2j +1))2n
j 0,...,n- 1.

Moreover, we have relations analogous to the (24) and (25):

(30)
(31)

TI-1 -D-IT-lID-I,

MI-IJ D-1M-11.

The matrices in (18), (21), and (27) define three versions of the sine transform, while
the matrices in (20), (26) define two versions of the cosine transform. All these
discrete transforms are computable with fast algorithms [22]. For example, particular
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attention has been devoted to the computation of the cosine transform x -- Mllx
and of its inverse x --. MITlx, for their importance in image and signal processing [1],
[21], [17].

The following proposition will be useful.
PROPOSITION 4.1. For (, 9) E {(0, 0), (1, 1), (-1,-1), (1,-1), (-1, 1)} we have

T(x) MDiag(v o Mx)MT

where o denotes entrywise vector product and where [v]i 1/[MTel]i.
Proof. For (, ) e {(0, 0), (1, 1), (-1,-1), (1,-1), (-1, 1)} the matricesM are

orthogonal. Moreover the vector MTel does not have zero entries. Thus (19), (22),
(23), (28), and (29) imply that T(x) MDiag(y)MT for suitable y. Thus we

have MTx=Diag(y)M"e and the thesis follows. H
We now rewrite the theorems in 3 choosing Hx and Hx, to be T algebras.

From Theorem 3.2, 1, we have the following corollary.
COROLLARY 4.1. If 7:)Te99 (A) En=l xmyTm then

(32)

(33)

( )A E TZ(Xm)T(ym) + ( )T(ATe)
m--1

E reCfl (xm)TBcfl(ym) + (e
m--1

An analogous corollary can be derived from Theorem 3.2, n. We leave this
task to the reader. Prom Theorem 3.4 we deduce the following corollary.

Em=l XmYm and A JAJ, thenCOROLLARY 4.2. If :)Tee (A) T

m=l

E Tee(Xm)TB(Ym) -- 2(e Z)Tee(Ael).
m--1

5. Applications to inverses of Toeplitz and Toeplitz plus Hankel matri-
ces. In this section we show how Corollaries 4.1 and 4.2 can be exploited to represent
the inverse of a Toeplitz or of a Toeplitz plus Hankel matrix. Our treatment will be
concise. We send the reader to [12] for an extensive discussion of the representation
of the inverse of a Toeplitz or Toeplitz plus Hankel matrix by means of displacement
operator-based decompositions.

5.1. Preliminaries. Let T (t_j) and H (hi+j-2), with i, j 1,... ,n, be
a Toeplitz and a Hankel matrix. Let T and T + H be nonsingular, let S T- and
W (T + H)-, and let s. , s. (w. i, w.) be, respectively, the ith column and row
of S (W). Set

a (0 t-n+l t-1
b (tl tn-1 o)T,
C= (0 ho hn-2)T

d=(hn h2n-2 O)T.



322 E. BOZZO AND C. DI FIORE

If " Sa and 5 Sb, then we have [16]
79z(S) sz- zs "rT -s. T,
Vz(S) sz- zs T._ s.,

and, consequently, we deduce the following proposition.
PROPOSITION 5.1. We have

9Tv (S) ( e.)T .( el + ( e)T. .n( e).

Proof. Exploit the equality To Z + ZT 4- eeleT + qoeneT. 1

Analogously setting

xl W(b + c), x2 W(a + d),

X3 WT(t 4- e), x4 WT( + d),
it is known that [16]

T
nX4T.Too (W) XlWT. + x2wnT. w. ix3 w.

It follows that Proposition 5.2 is true.
PROPOSITION 5.2. We have

:DTso(W (xl sel)wT. + (x2 0en)WnT. w. l(X3T selT) w. n(x4T venT).

5.2. Formulas for Toeplitz inverses. At this point the following result is im-
mediate.

THEOREM 5.1. We have

(34)

(35)

(S --/)o TO (’)’ 0en)TSO(. 1) T/0(S. )Ts (’ Sel)

+ ,( Ze)(. n) ,(.)( e)
--s( e)(. ) +(.)( Ze)

TS(5 Sel)T(. n) 4- Ts(S. n)Tl( flen).

Proof. Use Proposition 5.1 and Corollary 4.1.
Now let T be symmetric. In this case we have - and gn_int.1 S for all i.

The above theorem can be readily rewritte in this particular case.
THEOREM 5.2. If T is symmetric we have

(- Z)s
(TZS(/-- Sen)J 4- ’Zs(/-/el))Tss(S. 1) (TBs(S. 1)J 4- TZS(. 1))Tss(’)’ sen)
-Tss("[ Sen)(Ts(. 1) 4- JTs(s. 1)) 4- Tss(S. 1)(Ts(’ --/el) 4- JTS(’)’ Sen)).

Proof. Set s in Theorem 5.1 and use the fact that J E Tee. rl

However, if T is symmetric we can more conveniently exploit Corollary 4.2.
THEOREM 5.3. If T is symmetric we have

(36)
(a)

(S )S TB/( --/el)Ts(S. 1) T/B(S. 1)TSS( sel)
--Tss(’ Sel)TCc(S. 1) 4- Tss(S. 1)TB(’- el).

Remark 1. It is well known [16] that if S is such that s = 0 then

1
-Zs.n.

811

We refer the reader to [12] for a generalization of the preceding relation for S arbitrary.
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5.3. Formulas for Toeplitz plus Hankel inverses. We turn now to the case
of a general Toeplitz plus Hankel matrix.

THEOREM 5.4. We have

(38) (e fl)W Tf(xl ;3el)Tea(w1 .) + Tf(X2 en)’e(Wn .)
T(W. 1)T(X3 el) T(W. n)T(X4 en)

(39) -Te(x ee)TO(w .)- Te(X2 --en)TO(Wn .)
+ T(W. 1)Tv(X3 e) + (w. n)(x4 en).

Proof. We use Proposition 5.2 and Corollary 4.1.
If T TT then T+H is symmetric and we have wi. w. i, x x3, and x2 x.

If JHJ H then T + H is persymmetric and in this case we have wi. @. n-i+,
3 X2, and Xl. If both these conditions hold, then T + H is centrosymmetric
and we can rewrite the preceding theorem as follows.

THEOREM 5.5. If T + H is centrosymmetric we have

( )W (T(Xl el) T T(I en)J)T(W. 1)
((w. )+ z(. )g)(x e)

-(x e)((w. ) + J(. ))

Proof. Set e in Theorem 5.4, and use the fact that J Tee.
However, a more convenient expression for W can be obtained by means of Corol-

lary 4.2.
THEOREM 5.6. If T + H is centrosymmetric we have

(a0) ( Z)w z(x Ze)(w. ) (w. )(x e)
(a) (x e)(w. ) + (w.)(x Ze).

Proof. Use Proposition 5.2 and Corollary 4.2.

6. Applications to the solution of real Toeplitz and Toeplitz plus Han-
kel systems of equations. As is well known, many algorithms for the solution of a
Toeplitz system of equations Tz b have the following two-stage structure.

Stage 1. Given T, compute the information relevant to obtain a displacement
representation for S T-. For example, if T is symmetric and s 0, only s.
must be computed by virtue of Remark 1.

Stage 2. Compute z Sb, exploiting the properties of the matrices involved in
the displacement representation of S.

Obviously the same kind of algorithm can be used for the solution of a Toeplitz
plus Hankel system of equations (T + H)z b.

In this section we look for an efficient implementation of stage 2 using the formulas
of 5 in the case of real systems of equations, making, when possible, a comparison
with the literature on the subject [15], [2], [3], [12].

As is customary, we will use the number of fast Fourier transforms (FFT) that
must be executed as a measure of cost for our algorithms. More precisely with
FFT(n) we denote the cost of the FFT of a real vector of order n. Remember
that FFT(2n) 2FFT(n). Moreover, the computations of the trigonometric trans-
forms x Mx, x Mx, x MlX, and x M_x, where x is a real vector,
also have a cost fFW(n) [21], [22], [17].
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It is worthwhile to distinguish between computations that involve the vector b
and computations that involve only entries of S, which can be embodied in the precon-
ditioning stage [15] if any is performed. So we use the notation xFFTt(n)+yFFT(n)
to indicate a cost of x + y real FFTs, y of which can be performed only once if the
system must be solved for many different known term vectors.

6.1. Toeplitz and Toeplitz plus Hankel general systems. Using formu-
las (34)-(35) and (38)-(39) it is possible to compute Sb or Wb with a cost of
10FFT(n) + 8FFTt(n) + O(n) arithmetic operations. To prove this, consider, for
example, formula (39) and set 99 1, -1. By virtue of Proposition 4.1, this
implies

1
W- Mll {-A(MITI(x-e1))MT11M-11A-11(MT_llW1.)

All(M(x2 en))MM-1IA-11(MT_llWn.)
+ All (MiTiw. 1)MTiiM-11A-11(MT_ll(X3 +el))

n MT MT+ All(Mw. )///M-11A-11( _ll(X4 en))} --11,

where A(x)= Diag(v o x). (See Proposition 4.1.)
6.2. Toeplitz symmetric and Toeplitz plus Hankel symmetric and per-

symmetric systems. If T is symmetric or T + H is symmetric and persymmetric
using formulas (36)-(37) and (40)-(41), respectively, it is possible to compute Sb and
Wb with the cost of 6FFTt(n) + 4FFTt(n) + O(n). In fact, consider, for example,
formula (37) and set 1 and 3 -1. Observe that, by Proposition 4.1, we have

T_I_I(X) M_l_lDiag(v 1--1 M-T1 lX)MT--i--i’
whence, using relation (25) we have

T-I-I(X) D-1MllDiag(vll o MTllD_lx)MTliD_
D_iMiiAll(MD-lx)MD-1.

Formula (37) becomes

1M(42) S ll {-hll(M’(-el))MD-1MllAll(MD-is. )
+ Aii(Ms. i)MD-iMiiAii(MD-i(;{ + el))} MD_i.

Setting 1 and/3 -1 in (41) we have an analogous formula for W. It can be
simply obtained from (42) by replacing - and s. with xl and w. , respectively.

The algorithm that can be obtained from the preceding representation of S
has substantially the same cost of that suggested in [12]. However in some situations
the algorithm has the practical advantage that the transforms to be computed have
the same size, say n. This is particularly favourable when n is a power of two. In the
algorithm proposed in [12] it is necessary to compute sine transforms of size n and
n- 2 and, if n is a power of two, the computation of a sine transform of order n 2
may be more expensive with respect to that of a sine transform of order n.

6.2.1. Toeplitz positive definite systems. Let T be real and symmetric and
let Sll 0. Note that this includes the important special case where T is positive
definite. It is possible to compute Sb with a cost of 6FFT(n) + 2FFT(n) + O(n).
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For this purpose, consider again the representation (42) and take into account that
/ ZTs. 1. (See Remark 1.) Thus,

811

1
S 2-11Mll {All(MTll(ZTs. + 811el))MTllD_IMllAll(MTllD_lS. 1)

All(Ms. 1)MD_lMllAll(MD_l(ZTs. Sllel))} MD_I.
Let us consider the four transforms

Ms. 1,
(43) MZTs. 1,

We note that the following relation holds [1]"

M fRe (Diag(kiPn)(p’)), i, j -0,...,n- 1,

Thus, if we compute

R
F2n RD-1

D_IR )(_I)nD_IRD_I

We deduce that once

(s. 1) and F2nZT (s’l)(44) F2n 0 0

we can recover the transforms in (43) with O(n) arithmetic operations. Moreover

F .,Z F ,(P e .e l ),

where P ZT + e2ne
T is the unit circulant matrix [11] and is such that F2,P

Diag(pi)F2,, 0,..., 2n- 1. Thus

F2nZT --F2ne2neT1 + Diag(p-i)F2n.

F2n IS’l/0
has. been computed, the other transform in (44) can be recovered with O(n) arithmetic
operations.

The present result improves both the bound 6FFT(n)+ 4FFT(n)+O(n) given
in [12] and the bound 7FFT(n)+ 2FFT(n)+ O(n) given in [2], matching the best
result known so far, given in [3].

Acknowledgments. We would like to thank Professors Dario Bini and Paolo
Zellini for proposing the problem and for their suggestions.

where p, e-i being the complex unit. The matrix R (p), with i, j 0,..., n 1,
..2ijis the n n left upper corner of the Fourier matrix of order 2n defined as F2 [P2n ),

for i, j 0,..., 2n- 1. Observe that F2n has the form
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NEW PERTURBATION BOUNDS FOR
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Abstract. Let A be an m n (m >_ n) complex matrix. It is known that there is a unique
polar decomposition A QH, where Q*Q I, the n n identity matrix, and H is positive definite,
provided A has full column rank. This note addresses the following question: How much may Q
change if A is perturbed? For the square case m n our bound, which is valid for any unitarily
invariant norm, is sharper and simpler than that of Mathias [SIAM J. Matrix Anal. Appl., 14 (1993),
pp. 588-597]. For the nonsquare case, a bound is also established for unitarily invariant norm, which
has not been done in the literature.
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Let A be an m n (m _> n) complex matrix. It is known that there are Q with
orthonormal column vectors, i.e., Q*Q I, and a unique positive semidefinite H such
that

(1) A=QH.

Hereafter I denotes an identity matrix with appropriate dimensions that are either
specified or that are clear from the context. The decomposition (1) is called the
polar decomposition of A. If, in addition, A has full column rank, then Q is uniquely
determined also. In fact,

(2) U- (A’A) 1/2, Q A(A*A)-/2,
where the superscript denotes conjugate transpose. The decomposition (1) can also
be computed from the singular value decomposition (SVD) A UEV* by

(3) H VFV*, Q UV*,

where U (U, U2) and Y are unitary, U1 is mn, F (01 and F diag (al,..., an)
is nonnegative.

There are published bounds stating how much the two factor matrices Q and H
may change if entries of A are perturbed. Among the papers written on this subject
are [1], [3], [4], [6]-[10], the perturbation bounds for Q when m n proved by Mathias
[9], cover every unitarily invariant norm, while others cover the Frobenius norm only.
Chen and Sun [6], [3] and Li [8] also deal with the case m _> n as we do here. A
surprise is how heavily the sensitivity of the Q factor depends upon whether the
working number field is real or complex [1], [7], [9].

In this paper, we obtain some bounds for the perturbations of Q, assuming A
is complex. Our bound for the case m n is achievable and improves on that of
Mathias slightly for small perturbations and significantly for big ones.

For the sake of convenience in our presentation, we use A and A for two matrices
having full column rank, one of which is a perturbation of the other. Let

(4) A QH, A QH

Received by the editors September 7, 1993; accepted for publication (in revised form) by N. J.
Higham, November 9, 1993.

Department of Mathematics, University of California at Berkeley, Berkeley, California 94720
(li@math. berkeley, edu).
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be the polar decompositions of A and A, respectively, and let

(5) A UEV*, A UEV*

be the SVDs of A and ., respectively, where 5 (51, 2), 51 is m n, and (o
and 1 diag (,..., ). Assume as usual that

(6)

It follows from (2) and (5) that

Q uv*, uv*.

In what follows, JJX[[2 denotes the spectral norm which is the biggest singular
value of X and IIXIIF the Frobenius norm which is the square root of the trace of
X*X. We shall use II1" III to denote a general unitarily invariant norm [5], [11]. Two
particular ones are I1" 112 and I1" IIF. Consider

(7)

(8)
Ill A-lll-IIIU*<A->III=IllV*-U*lll

_-II1,<-A>vIII--IIl,v-,ull
Define

(9)

(10)

to infer from (7) and (8) that

(11)

Notice that by (9) and (10)

E do=f rv* u*5
j de__.f *V *U

and

(I, 0)E IV*V U;UII and

(, O)E r,V*V UU,

where I is n n. Adding the conjugate transpose of the second equation to the first
yields

(12) E(V* U; 51) -Jr- (V* U’51)1 (./, 0)E -.[- .*
0

This is our perturbation equation to derive our perturbation bounds for Q because
for any unitarily invariant norm

(/ Ill* U;l Ill--II1’- ;1* Ill II1’- *lll.
We shall use Lemma 1, which is a special case of Davis and Kahan [2, Thm. 5.2].
LEMMA 1. Let M and N be two Hermitian matrices and let S be a complex

matrix with suitable dimensions. Suppose there are two disjoint intervals separated
by a gap of width at least 1, one of which contains the spectrum of M and the other



NEW PERTUBATION BOUNDS FOR THE UNITARY POLAR FACTOR 329

contains that of N. If > O, then there is a unique solution X to the matrix equation
MX-XN S, and moreover IIIXIII <_ - IIISIII for every unitarily invariant norm II1" II].

Applying this lemma to (11), (12), and (13) with M El, N -El and
X V*V- UU1 yields Lemma 2.

LEMMA 2. It holds that

When m- n, both Q and are unitary. Thus II1+/-- Q*III- IIIQ-  lll, and
Lemma 2 yields the followingtheorem.

THEOREM 1. Let A and A be two n n nonsingular complex matrices whose polar
decompositions are given by (4), and let an and Yn be the smallest singular values of
A and A, respectively. Then

(5)
O’n -I- O’n

If, however, m > n, then it follows from (9) and (10) that

(O, I)E -UUI-]I

(O,I) -ggll,

and

where I is (m- n) (m- n). Therefore

2 fin O’n

Similarly,

iil  u lll II1<,I> 111 IllA-  111
(Tn O"n

Notice that (UIV*, U2) (Q, U2) and (UV*, U2) (Q, U2) are unitary.
U.Q =0 and

Hence

(6)

Professor R. Bhatia kindly pointed out to me that Theorem would be true in infinite di-
mensions. That is because of the infinite dimensional version of Lemma in [2]. In the infinite

dimensional version of the inequality (15), an and an should be replaced by IIA-111- and IIA-II -,
respectively, where I1" is the operator norm in the Hilbert space where A and A live.
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Similarly, we can prove

Therefore, generally, we have Theorem 2.
THEOREM 2. Let A and A be two m n (m > n) complex matrices having full

column rank and with the polar decompositions (4), and let an and n be the smallest
singular values of A and A, respectively. Then

1

Estimates (16) and (17) can be sharpened a little bit when II1" III I1" IIF. As a
matter of fact, we shall have

< + A- and
O’n + Yn a2n F

A consequence of these two inequalities is the following theorem.
THEOREM 3. Under the conditions of Theorem 2,

We conclude this paper with a few remarks.
Remark 1. The bound in (15) is the best possible, in the sense that the equality

can be achieved. Take the following case for a_n example" Both A and A are n n
unitary matrices. Thus an Yn 1, Q A, Q A, and

(:rn q- rn

It is even achievable in the real number field by taking A and A to be two n n

orthogonal matrices although, as we know, Q behaves quite differently in the real
number field (Remark 5). All previously published bounds do not achieve this!

Remark 2. Bounds (15), (18), and (19) involve both an and Yn. To obtain bounds
involving an alone, one can weaken them by utilizing the following fact:

For example, (15) yields

(20)
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an, then

Although his bound uses slightly different information than ours, it is always a bigger,
sometimes much bigger, bound than (15) (since the left-hand side of (21) could blow
up). To see why this is true, we claim that even (20), the weakened form of (15), is
still no weaker than that of Mathias because their ratio (his/ours) is

ln(1-x) (l_X) ( 1 1)xj

x =1+ j+l 2j
j=2

>1

Remark 4. Chen and Sun [6] studied the case m > n, also. But only the Frobenius
norm was considered. They proved

F-- o"n F

Without loss of generality, assume n <_ an. Then it is easy to see our bound (19) is
sharper than (22) when

n < an < an 6.5n;

otherwise (22) is a little sharper because

1) 2.2

Tn O’n

always. More generally, Sun and Chen [3] and Li [81 treated the cases when A and A
do not necessarily have full column rank. Applied to our full column rank case here,
the perturbation bound for the polar factor in [3] reads exactly the same as (22), and
in [8] reads

which is clearly sharper than (19) and (22) when o"n ,- n. However, it may be very
bad if one of fin and n is much smaller than the other.

Remark 5. Perturbation bounds for the Q factor in polar decomposition illustrate
that the change in Q is proportional to the reciprocal of the smallest singular value
of A when m n and when the working number field is complex. However, it was
discovered by Barrlund [1], Kenney and Laub [7], and Mathias [9] that for the real case
the change in Q is proportional to the reciprocal of the sum of the two smallest singular
values of A if m n, which means Q is (much) less sensitive to perturbations in A
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in the real case than in the complex case. The above derivation of the perturbation
bound (15) for the complex case is very elementary while giving the best among the
derivations that have been published. However the author was unable to extend this
derivation to perform for the real case. It is worth stating (as pointed out by one of
the anonymous referees) that even in the real number field when m > n, the change
in Q is not proportional to 1/(an-1 + an) instead of l/an. The following example
offered by the referee makes this point very clear:

A= 0 0.8x10-6 Q- 0 1
0 0 0 0

A= 0 0.8 10-6 Q= 0 0.8
0 0.6 10-6 0 0.6

Acknowledgments. The author is grateful for the encouragement of Professors
W. Kahan and J. Demmel. He thanks Dr. N. J. Higham for his valuable comments
concerning the manuscript. He is indebted to the referees for their many helpful sug-
gestions, especially the last part of Remark 5 which he had not previously addressed.
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SINGULAR VALUES OF COMPANION MATRICES AND BOUNDS
ON ZEROS OF POLYNOMIALS *

FUAD KITTANEH

Abstract. Let C(p) denote the companion matrix of a monic polynomial p with complex
coefficients. Then the zeros of p are exactly the eigenvalues of C(p). In this paper, the singular values
of C(p) are computed. Applying some basic eigenvalue-singular value majorization relations, several
sharp estimates are obtained for the zeros of p in terms of its coefficients. These estimates improve
some classical bounds on zeros of polynomials.

Key words, zeros of a polynomial, eigenvalue, singular value, companion matrix

AMS subject classifications. Primary 15A18, 15A42, 30C15

1. Introduction. In this paper we are concerned with some estimates for the
zeros of a monic polynomial p of the form

(1) p(z) zn -- anzn-1 --- + a2z + a,

where n _> 2 and the coefficients al, a2,..., an are complex numbers with a 0.
The problem of locating the zeros of a polynomial of the form given in (1) has

attracted the attention of many mathematicians in the past and it is still a fascinating
topic to both complex and numerical analysts. An excellent approach to this problem
using matrix analysis has been demonstrated in [4], [5], [7, pp. 316-319], and [9, pp.
139-146]. The related problem of estimating the distance between the zeros of two
monic polynomials and its connection with the general spectral variation problem has
also been dealt with in the literature (see, e.g., [2, Chap. 5], [3], and [12, Appendices
A, B, and K]). For comprehensive accounts on polynomial inequalities, the reader is
referred to [9, Chap. VII and Viii], [11, pp. 217-235], [13, Part Three], and references
therein.

Recall that the companion matrix of the polynomial p given in (1) is defined by

(e) c(v)

--an --an-1 a2 --al
1 0 0 0
0 1 0 0

0 0 1 0

Since the characteristic polynomial of C(p) is p, it follows that the zeros of p are
exactly the eigenvalues of C(p) (see, e.g., [7, p. 147]).

Throughout the paper we let Zl, z2,..., Zn denote the zeros ofp (or the eigenvalues
of C(p)) enumerated as Izll >_ Iz21 >_ >_ IZnl with multiplicity counted in this
enumeration. Employing the fact that the spectral radius of C(p) is dominated by
any matrix norm of C(p), many of the classical bounds on z, z2,..., zn in terms of

* Received by the editors March 28, 1993; accepted for publication (in revised form) by R. A.
Horn, November 24, 1993.

Department of Mathematics, University of Jordan, Amman, Jordan.
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the coefficients al, a2,..., an have been given very elegant proofs (see [4] and [7, pp.
316-319]). The following bounds are examples of what we have in mind.

(3)

(4) (ii)

(i) (Cauchy bound)IZll 1 + max
<_j<_n

(n)(Carmichael-Mason bound)Izl _< 1 + E laJl 2
j=l

1/2

The proofs of the Carmichael-Mason bound given in [4] and [7, Problem 28, p.
317] are based on the fact that the usual operator (spectral) norm of C(p) is not
greater than

1 + lajl 2
j=l

In this paper we improve this bound by computing the exact value of the usual operator
norm (the largest singular value) of C(p). In view of this computation, some basic
majorization relations between the eigenvalues and singular values of a matrix enable
us to establish several sharp inequalities involving the zeros and coefficients of the
polynomial p.

Let Mn(C) denote the algebra of all n x n complex matrices. For A E Mn(C)
let/kl(A), A2(A),... ,An(A) be the eigenvalues of A and let sl(A),s2(A),... ,sn(A) be
the singular values of A (the eigenvalues of the positive semidefinite matrix IAI
(A’A)1 We enumerate these numbers as IAI(A)I _> IA2(A)I > > IAn(A)I and
sl(A) _> s2(A) _>-.. _> sn(A), where multiplicity is counted in these enumerations. It
is known that if A E Mn(C), then

2(5) sj(A)- A(A*A)= A(AA*) for j 1,2,...,n.

Recall also that 81(A) is the usual operator norm of A (see, e.g., [7, p. 437] and [8,
p. 146]).

2. Preliminary results. To achieve our goal we need the following inequalities
between the eigenvalues and singular values of a matrix.

LEMMA 1. If A Mn(C), then

k k

(6) H IA(A)I < H sj(A) for k 1, 2, n,
j=l j=l

with equality for k n; and

n

(7) II lAy(A)] >_ 1-I sj(A) for k- 1,2,..., n,
j=k j=k

with equality for k 1. In particular we have

(s) sn(A) <_ I,Xy(A)I _< sl(A) for j 1,2,...,n.

It should be mentioned here that equality holds simultaneously in all the relations
(6) (or (7)) if and only if A is normal (see [6, p. 36]).
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LEMMA 2. If A E Mn(C) and r is a positive real number, then

k k

<_
j=l

When k n, equality in (9) holds if and only if A is normal.
LEMMA 3. If A Mn(C) is invertible and r is a nonzero real number, then

(10) [Aj(A)[ _<
j=l j=

Moreover, equality in (10) holds if and only if A is normal.
LEMMA 4. If A Mn(C) and r is a positive real number, then

k k

(11) H (1+ rlAj(A)I <_ H (1 + rsj(A)) for k 1,2,...,n.
j=l j=l

When k n, equality in (11) holds if and only if A is normal.
The famous majorization relations of Lemmas 1, 2, 3, and 4 are due to Weyl (see,

e.g., [6, pp. 35-41] and [8, Chap. 3]). We remark that the inequalities (6) and (7)
of Lemma 1 are equivalent when A is invertible. It should be mentioned here that
the inequality (6) is an essential ingredient in the proofs of more general eigenvalue-
singular value majorization results including (9), (10), and (11) as special cases (see
[6, pp. 39-45] and [8, p. 176 and pp. 182-185]).

Our main results are immediate consequences of Lemmas 1, 2, 3, and 4 applied
to the matrix C(p). To compute the singular values of C(p) we need to recall the
following formula concerning determinants of partitioned matrices (see [7, Prob. 15,
p. 175]).

LEMMA 5. Let A [aij] Mn(C) be written in partitioned form as

where x Cn-1 and Mn-1 (C). Then

(12) det A ann det A x* (adj A)x,

where adj is the adjugate (classical adjoint) of ft.
Note that the characteristic polynomial of C(p)C(p)* is the determinant of the

partitioned matrix

(13) tI- C(p)C(p),

t an an- a3
tn t-- 1 0 0

8n-1 0 t- 1 0

3 0 0 t- 1

t2 0 0 0

a2
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where
n

Now using induction and Lemma 5, one can prove that the characteristic polynomial
of C(p)C(p)* is given by

(14) det(tI- C(p)C(p)*) (t 1)n-2(t2 (c + 1)t + la112).

As an immediate consequence of (5) and (14), we have

(15)

(16)

/ a + 1 + ((a + 1)2 41a112)1/2 1/2
(c(p))81

2

/’ a + 1 ((a + 1)2 4,a1,2)1/2’ 1/2
8n(C(p))

2 ]

and

(17) sj(C(p)) l forj-2,...,n-1.

The following alternative method of computing the eigenvalues of C(p)C(p)* has
been suggested by Roger A. Horn. Using (13), one can easily see that the Hermitian
matrix I- C(p)C(p)* has at most two linearly independent columns, so its rank is
at most two, and hence (at least) n- 2 of the eigenvalues of C(p)C(p)* are equal to
1. The two remaining eigenvalues (call them A and #) are easily determined from the
relations

A + # +1 +... + 1- A + # + n- 2 trC(p)C(p)* o + n- 1,

and

A#1 Ate det C(p)C(p)* lal 12.
n--2

Since A + te a + 1 and Ate ]al] 2, it follows that and te are the roots of the
quadratic equation t2 (a + 1)t + lall 2 0.

For full implementation of Lemmas 1, 2, 3, and 4 we need to know the condition
on p that is equivalent to the normality of C(p). A simple computation shows that
C(p) is normal if and only if lal 1 and aj 0 for j 2,..., n. Thus, C(p) is normal
if and only if p(z) zn + al with lall 1. Note that C(p) is normal if and only if
C(p) is unitary.

3. Main results. Having found the singular values of C(p), we are now in a

position to present our main estimates for the zeros of p. In what follows we let

n

and we simply write sj for sj (C(p)).
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It has been shown in [7, pp. 316-319] that all the zeros of p lie in the annulus
described by

(18)
(1 --O) 1/2 Izl _< (1 + o) 1/2.

The second inequality of (18) is the Carmichael-Mason bound and the first inequality
is the lower bound counterpart of the Carmichael-Mason bound (obtained by applying
the upper bound to the polynomial znp(z-1)/al).

Our first result concerning the location of the zeros of p is a considerable improve-
ment of (18). It also improves some classical estimates of Landau and Specht (see [11,
p. 224] and references therein). Furthermore, the result tells us that all the zeros of p
lie in the annulus given by

(19) 8n <_ Izl _< 81,

which is included in the annulus given in (18).
Since sj 1 for j 2,...,n- 1, the proof of the following theorem follows

immediately from Lemma 1.
THEOREM 1. We have

(20)
k

j=l

for k- 1,...,n- 1,

and

(21) H Izl >_ 8n for k 2,..., n.

Complementing Theorem 1, it should be noted that

n

(22) II Iz l- 818n --lall.
j=l

Moreover, equality holds simultaneously in all the relations (20) (or (21)) if and only
if p(z) z + al with ]el ]= 1.

As an application of Lemma 2 to our investigation we can easily prove the fol-
lowing result.

THEOREM 2. If r is a positive real number, then

(23)
k

E zJlr <s’+k-1
j=l

for k= l,...,n-1.

Since a 0, it follows that the matrix C(p) is invertible. Thus by Lemma 3
applied to C(p) we have Theorem 3.

THEOREM 3. If r is a nonzero real number, then

(24) E IzJl < s[ + s + n- 2.
j=l
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Inequality (24) is an equality if and only if p(z) zn -- al with lall 1.
A useful inequality that is essentially due to Schur (see [14, p. 70]) asserts that

n

(25) H (1 + Izl) -< 2n( 1 + O) 1/2"
j=l

The classical complex analysis proof of (25) given in [14] shows how it is possible
to connect (25) with the Mahler measure of p (see [11, pp. 232-233] and references
therein).

A considerable improvement of (25) that is based on Lemma 4 can be stated as
follows.

THEOREM 4. If r is a positive real number, then

(26)
k

H (1 + rlzl) _< (1 + r)k-l(1 + rsl)
j=l

for k 1,...,n- 1;

and

(27)
n

H (1 + rlzjl) <_ (1 + r)n-2(1 + rsl)(1 + rsn).
j=l

In particular (when r 1), we have

(28) H (1 -k-Izl) _< 2n-2( 1 -- Sl)(1 + Sn).
j=l

The inequality (27) becomes an equality if and only if

p(z) zn + al with lall 1.

4. Related inequalities. Using the fact that two similar matrices have the
same spectral radius, some weighted inequalities generalizing the Cauchy bound (3)
have been given in [7, p. 319]. Following the techniques in [7, p. 319] and invoking
the fact that two similar matrices have the same eigenvalues, we establish a weighted
inequality related to (24) without using the singular values of C(p).

If rl, r2,..., rn are positive real numbers and Q diag (rl, r2,..., rE), then

(29) Q-C(p)Q

r2
--an an-

rl
rl 0
r2

r2
0

r3

0 0

It is known that if A [aij] e ME(C), then

rn- rn
--a2 ----al

rl rl

0 0

0 0

rn’-I 0
rn

(3o)
n

Esj(A)
j=l

n

i,j--1
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(31) E [AJ(A)I2 -< E laiJl2
j--1 i,j--1

with equality if and only if A is normal (see [7, pp.
p. 11]).

By (31) applied to C(p)we have

316, 421], [8, p. 156], or [15,

n

(32) E IzJl2 -< c + n- 1,
j=l

which is a special case of (24). It should be mentioned that (32) can be also concluded
from a closely related result of Ostrowski (see [11, p. 224]).

Applying (31) to the matrix Q-1C(p)Q and using the fact that zj

Aj(Q-IC(p)Q) for j 1,2,..., n, we have

(33)
"= j=l

n

12r2laJ, n-j+1"+ r2

Note that if we let rj 1 for j 1, 2,..., n, then we obtain (32). If we let rj rJ for
some r > 0 and for j 1, 2,..., n, then we have the estimate

n n

(34) E IzYl2 -< n- 1 layl 2
r2 -]-r2nE r2J

j=l j=l

If all the coefficients aj are nonzero, then by choosing

rl for j 2,...,n,rj-- lan_j+ll

we obtain

(35)
n--2

E Izj ]2 n- 1 + lan_ll 2 + lanl 2 + E
j=l j---1

aj

aj+l

On comparing the estimates (32) and (35), it can be verified that (32) is better
than (35) if lajl < 1 for j 2,..., n- 1 with strict inequality for at least one value
of j. On the other hand, (35) is better than (32) if lajl > 1 for j 2,..., n- 1 with
strict inequality for at least one value of j.

5. Remarks. We conclude the paper with the following remarks concerning our
main results.

Remark 1. Observe that while the Cauchy bound (3) relates the max norms (or
lo norms) of (zl,z,... ,Zn) and (hi,a2,..., an) as vectors in Cn, the estimate (32)
relates the Euclidean norms (or 12 norms) of these vectors.

Remark 2. Since we have explicitly found all the singular values of the compan-
ion matrix C(p), we can establish other estimates for the zeros of p. In fact, for every
inequality relating the eigenvalues and singular values of matrices, there is a corre-
sponding inequality relating the zeros and coefficients of polynomials. For a host of
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eigenvalue-singular value inequalities involving different classes of Schur-convex (or
isotone) functions, the reader is referred to [1], [6, Chap. 2], [8, Chap. 3], and [10,
Chap. 9], and is then invited to formulate the corresponding polynomial inequalities.

Remark 3. Our explicit evaluation of Sl and Sn gives an explicit formula for the
spectral condition number of a companion matrix. Recall that if A E Mn(C) is
invertible, then its spectral condition number is given by

s(A)
sn(A)

(see [7, p. 442] or [8, p. 158]).
Acknowledgment. The author is grateful to Professor Roger A. Horn and the
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MATRIX POWERS IN FINITE PRECISION ARITHMETIC*

NICHOLAS J. HIGHAMt AND PHILIP A. KNIGHT:

Abstract. If A is a square matrix with spectral radius less than 1 then Ak 0 as k c, but
the powers computed in finite precision arithmetic may or may not converge. We derive a sufficient
condition for fl(Ak) 0 as k x) and a bound on [[fl(Ak)[[, both expressed in terms of the Jordan
canonical form of A. Examples show that the results can be sharp. We show that the sufficient
condition can be rephrased in terms of a pseudospectrum of A when A is diagonalizable, under
certain assumptions. Our analysis leads to the rule of thumb that convergence or divergence of the
computed powers of A can be expected according as the spectral radius computed by any backward
stable algorithm is less than or greater than 1.

Key words, matrix powers, rounding errors, Jordan canonical form, nonnormal matrices,
pseudospectrum

AMS subject classifications, primary 65F99, 65G05

1. Introduction. Many numerical processes depend for their success upon the
powers of a matrix tending to zero. A fundamental example is stationary iteration
for solving a linear system Ax b, in which a sequence of vectors is defined by
Mxk+l Nxk + b, where A M N and M is nonsingular. The errors ek x xk
satisfy ek (M-1N)keo, so the iteration converges for all x0 if (M-IN) 0 as
k - c. Many theorems are available about the convergence of stationary iteration,
but virtually all of them are concerned with exact arithmetic (for exceptions see [12],
[13] and the references therein). While the errors in stationary iteration are not
precisely modelled by the errors in matrix powering, as matrix powers are not formed
explicitly, the behaviour of the computed powers fl((M-1N)k) can be expected to
give some insight into the behaviour of stationary iteration (indeed, the basic error
recurrences in [12] and [13] involve powers of M-IN acting on vectors of rounding
errors).

In [18, Chap. 20], Ostrowski proveS a theorem about a product of perturbed
matrices A + AAi that he states "assures the theoretical stability of the convergence
of A to 0 with respect to rounding off" as # - x for any matrix A with spectral
radius p(A) < 1. Although Ostrowski’s theorem is correct, its interpretation with
respect to computed powers is not as simple as this statement implies, because for
any finite precision arithmetic, no matter how accurate, there are matrices that are
sensitive enough to perturbations to cause the theoretically convergent sequence of
powers to diverge. To illustrate this point, Fig. 1.1 plots the 2-norms of the first
200 powers of a 14 14 nilpotent matrix C14 discussed by Trefethen and Trummer
[23] (see 3 for details). The plot confirms the statement of these authors that the
matrix is not power-bounded in floating point arithmetic, even though its 14th power
should be zero. The powers for our plot were computed in MATLAB, which has unit
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As in all our plots of norms of powers, k on the x-axis is plotted against Ilfl(Ak)ll2 on the y-axis.
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FIG. 1.1. Diverging powers of a nilpotent matrix, C14.

roundoff u 2-53 1.1 x 10-16. Reichel and Trefethen [19] also give an example
of a matrix that is nilpotent in theory but not power-bounded in practice. In this
paper we determine conditions on a matrix A that ensure that the computed powers
converge to zero.

In 2 we examine the behaviour of matrix powers in exact arithmetic. In partic-
ular, we review a number of bounds on the norms of powers. In 3 we use the Jordan
canonical form of A to bound JJfl(A)JJ and to determine a sufficient condition for
fl(Ak) - 0 as k --. cx. We also show that for certain matrices our bounds are tight.
Finally, in 4 we rephrase our sufficient condition in terms of a pseudospectrum of
A, under certain assumptions, including that A is diagonalizable; the modified re-
sult is not any sharper than the original, but offers an alternative viewpoint that is
intuitively attractive.

In our analysis we use the standard model for floating point arithmetic:

fl(x +/- y)=x(l+a)+y(l+
fl(x op y) (x op y)(1 + 6),

where u is the unit roundoff. This model is valid for machines that do not use a guard
digit in addition and subtraction.

We will use the Frobenius norm, ]IAIIF (i,j laijl2) 1/2, and the p-norms IIAIIp
maxz_:0 IlAxllp/llXllp, where IlX]lp (i [xiIP) lip and 1 < p < . From 3 onwards
we will drop the subscripts on II, lip, since all the norms from that point on are p-norms.

2. Matrix powers in exact arithmetic. We begin by discussing the behaviour
of matrix powers in the absence of rounding errors. In exact arithmetic the limiting
behaviour of the powers of A E Cnn is determined by A’s eigenvalues. If the spectral
radius p(A) < 1 then Ak ---. 0 as k oc; if p(A) > 1, A oc as k cx. If p(A) 1
then ][Ak[[ ec if A has a defective eigenvalue A such that IA[ 1; Ak does not
converge if A has a nondefective eigenvalue A 1 such that [A[ 1 (although the
norms of the powers may converge); otherwise, the only eigenvalue of modulus 1 is the
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nondefective eigenvalue 1, and Ak converges to a nonzero matrix. These statements
are easily proved using the Jordan canonical form

(2.1a) A XJX-1 e Cnxn,
where X is nonsingular and

1

(2.1b) J diag(J1, J2,..., Js), Ji "" "" E Cnin’

where nl + n2 +... + ns n. We will call a matrix for which Ak --, 0 as k --. oc (or
equivalently, p(A) < 1) a convergent matrix.

The norm of a convergent matrix can be arbitrarily large, as is shown trivially by
the example

(2.2) A2(o)--[A o]0 A [A] < 1,

While the spectral radius determines the asymptotic rate of growth of matrix pow-
ers, the norm influences the initial behaviour of the powers. The interesting re-
sult that p(A) lim_.o IIAalI /k for any norm (see [14, p. 299], for example)
confirms the asymptotic role of the spectral radius. An important quantity is the
"hump" maxk IIAklI/IIAII, which can be arbitrarily large for a convergent matrix,
as can be seen from A3(c), the 3 3 analogue of the matrix in (2.2), for which
IIA3(a)211/IIA3(a)II O(c). Figure 2.1 shows an example of the hump phenomenon:
the plot is for A3(2) with 3/4; here, IIA3(2)112 3.57. The shape of the plot is
typical of that for a convergent matrix with norm bigger than 1. Note that if A is
normal (so that in (2.1a) J is diagonal and X can be taken to be unitary) we have
IIAU]]e -Ildiag(A)llu IIAII2k p(A), so the problem of bounding IIAII is of inter-
est only for nonnormal matrices. The hump phenomenon arises in various areas of
numerical analysis. For example, it is discussed for matrix powers in the context of
stiff differential equations by D. J. Higham and Trefethen [8], and by Moler and Van
Loan [17] for the matrix exponential eAt with t c.

In the rest of this section we briefly survey bounds for IIAkll. First, however, we
comment on the condition number a(X) IIXIIIIX-II that appears in various bounds
in this paper. The matrix X in the Jordan form (2.1a) is by no means unique [3,
pp. 220-221], [6]: if A has distinct eigenvalues (hence J is diagonal) then. X can be
replaced by XD, for any nonsingular diagonal D, while if A has repeated eigenvalues
then X can be replaced by XT, where T is a block matrix with block structure
conformal with that of J and which contains some arbitrary upper trapezoidal Toeplitz
blocks. We adopt the convention that a(X) denotes the minimum possible value of
a(X) over all possible choices of X. In general it is difficult to determine this optimal
value. However, for any nonsingular X we have the bound

 F(X) IIx ll lly ll .,

where X Ix1, Xn] and Z-1 [Yl, yn]H, with equality if there is a nonzero a
such that Ilxill2 allyill2 for all [21, Whm. 4.3.5]. If A has distinct eigenvalues then
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FIG. 2.1. A typical hump for a convergent, nonnormal matrix.

this lower bound is the same for all X in the Jordan form and is the minimum value
of mR(X). An alternative approach for matrices with distinct eigenvalues is to insist
that the columns of X have unit 2-norm, for this gives a 2-norm condition number
within a factor n1/2 of the minimum, in view of a result by van der Sluis on diagonal
scalings [24, Thm. 3.5]. However, we will see in 3 that to appreciate fully the various
instability phenomena, we must consider defective problems.

If A is diagonalizable then, from (2.1a), we have the bound

(2.3) [[Ak[[p
_
tp(Z)p(A)k,

for any p-norm. (Since p(A) <_ IIAII for any norm, we also have the lower bound
p(A)k <_ IIAkllp.) This bound is unsatisfactory for two reasons. First, by choosing
A to have well-conditioned large eigenvalues and ill-conditioned small eigenvalues
we can make the bound arbitrarily pessimistic. Second, it models norms of powers
of convergent matrices as monotonically decreasing sequences, which is qualitatively
incorrect if there is a large hump.

The Jordan canonical form can also be used to bound the norms of the powers of
a defective matrix. If XJX-1 is the Jordan canonical form of ti-1A then

(2.4)

for all 5 > 0. This is a special case of a result of Ostrowski [18, Thm. 20.1], and a proof
is straightforward: We can write 5-A X(5-D + M)X-1, where D diag(Ai)
and M is the off-diagonal part of the Jordan form. Then A X(D / 5M)X-, and
(2.4) follows by taking norms. An alternative way of writing this bound is

where A XJX-1 and D diag(5n-, 5n-2,..., 1). Note that this is not the same
X as in (2.4): multiplying A by a scalar changes a(X) when A is not diagonalizable.
Both bounds suffer from the same problems as the bound (2.3) for diagonalizable
matrices.
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Another bound in terms of the Jordan canonical form (2.1) of A is given by
Gautschi [4]. For convergent matrices, it can be written in the form

(2.5) JJAJlF <_ ckP-lp(A)k,

where p max{ni Ai ?t 0} and c is a constant depending only on A (c is not
defined explicitly in [4]). The factor kp-1 makes this bound somewhat more effective
at predicting the shapes of the actual curve than (2.4), but again c can be unsuitably
large.

Another way to estimate IIAkll is to introduce a measure of nonnormality. Con-
sider the Schur decomposition QHAQ D+ N, where N is strictly upper triangular,
and let S represent the set of all such N. The nonnormality of A can be measured by
Henrici’s departure from normality [7]

A(A, ]1" ]]) A(A) min JlNJJ.NS

For the Frobenius norm, Henrici shows that IINIIF is independent of the particular
Schur form and that

Lszl5 [15] has recently shown that AF(A is within a constant factor of the distance
from A to the nearest normal matrix:

AF(A)/v/- <_ v(A) <_ AF(A),

where v(A) min{l[EllF A + E is normal}. Henrici uses the departure from nor-
mality to derive the 2-norm bounds

n--1 /k \

A2(A)

p(A) > O,

p(A) 0 and k < n.

Empirical evidence suggests that the first bound in (2.6) can be very pessimistic.
However, for normal matrices both the bounds are equalities. A bound of the same
form as the first bound in (2.6), but with IIAI[2 replacing A2(A) and with an extra
factor 2(n-)/2, is obtained from a bound of Stafney in [20, Thm. 2.1] for IIp(A)ll,
where p is a polynomial.

Another bound involving nonnormality is given by Golub and Van Loan [5,
Lem. 7.3.2]. They show that, in the above notation,

JJAJJe _< (1 + )n-1 (p(A)+
for any >_ 0. This bound is an analogue of (2.4) with the Schur form replacing the
Jordan form. Again, there is equality when A is normal (if we set 0).

To compare bounds based on the Schur form with ones based on the Jordan form
we need to compare A(A) with a(X). If A is diagonalizable then [16, Thin. 4]

AF(A),)2(X)

_
1+ IIAII,

1/2



348 N.J. HIGHAM AND P. A. KNIGHT

and it can be shown by a 2 2 example that minx n2(X) can exceed AF(A)/IIAIIF
by an arbitrary factor [2, 8.1.2], [1, 4.2.7].

Another tool that can be used to bound the norms of powers is the pseudospec-
trum of a matrix [22]. The e-pseudospectrum of A E Cnn is defined for a given
to be the set

A(A) { z: z is an eigenvalue of A + E for some E with IIEII2 _< e },

and it can also be represented, in terms of the resolvent (zI- A) -1, as

A,(A) { z: ]l(zI- A)-1112 >_ e-1 }.

As Trefethen notes [22], by using the Cauchy integral representation of Ak (which
involves a contour integral of the resolven) one can show that

(2.7) IIAII <_ e-lp(A)k+,

where the e-pseudospectral radius

(2.8) pe(A) max{ Izl:z A(A) }.

This bound is very similar in flavour to (2.4). The difficulty is transferred from
estimating (X) to choosing e and estimating p(A).

Finally, we mention that the Kreiss matrix theorem provides a good estimate of
supk>0 IIAkll for a general A E Cnn, albeit in terms of an expression that involves
the resolvent and is not easy to compute:

r(A) <_ sup I[Ak 112
_
n e r(A),

k>0

where r(A) sup{ (Izl- 1)ll(zI- A)-II2 Izl > 1 } and e exp(1). Details and
references are given by Wegert and Trefethen [25].

3. Bounds for finite precision arithmetic. The formulae A. Ak or Ak. A
can be implemented in several ways, corresponding to different loop orderings in
each individual product, but as long as each product is formed using the standard
formula (AB)ij -]k aijbkj, all these variations satisfy the same rounding error
bounds. We do not analyse here the use of’ the binary powering technique, where,
for example, A9 is formed as A((A2)2)2, alternate multiplication on the left and
right: fl(Ak) fl(Afl(Ak-2)A), or the use of fast matrix multiplication techniques
such as Strassen’s method, since none of these methods is equivalent to repeated
multiplication in finite precision arithmetic.

We suppose, without loss of generality, that the columns of A" are computed one
at a time, the jth as fl(A(A(... (Aej)...))), where ej is the jth unit vector. Standard
error analysis shows that the jth computed column of A" satisfies

(3.1) fl(Amej) (A + AA1)(A + AA2)... (A + AAm)ej,

where

(3.2) IAAil <_ CnU[A I,
with Cn a constant of order n. (The inequality and absolute value are taken compo-
nentwise.) This bound holds for both real and complex matrices. It follows that

Ifl(Ay)l (1 / au)m]Aly,
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and so a sufficient condition for convergence of the computed powers is that

1
1 +CnU"

This result is useful in certain special cases: p(IAI) p(A) if A is triangular or has
a checkerboard sign pattern (since then IAI DAD-1 where D diag(+l)); if A is
normal then p(IAI) <_ v/-dp(A) (this bound being attained for a nadamard matrix);
and in Markov processes, where the aij are transition probabilities, IAI A. However,
in general p(IAI) can exceed p(A) by an arbitrary factor.

To obtain sharper and more informative results it is necessary to use more infor-
mation about the matrix. Although the Jordan form is usually avoided by numerical
analysts because of its sensitivity to perturbations, it is convenient to work with in
this application and leads to informative results.

We point out that, because the analysis below is based on (3.1), our proofs of
sufficient conditions for fl(Am) --. 0 yield, with only trivial changes, sufficient condi-
tions for fl(Amb) ---* O, for any vector b. These conditions do not, however, exploit
any special relations between A and b (such, as for example, b being an eigenvector
of A).

3.1. Nilpotent matrices. We begin by considering nilpotent matrices, that is,
those whose spectral radius is zero. The fact that nth power of an n n nilpotent
matrix is zero simplifies the analysis. The following theorem gives a bound on the
norm of a computed power, together with a condition for the limit of the powers to
be zero.

THEOREM 3.1. Let A E Cnn be a nilpotent matrix with the Jordan canonical
form (2.1). A sujficient condition for fl(Am) --. 0 as m - oo is

(3.3) dnua(X)llAII < 1

for some p-norm, where u is the unit roundoff and dn is a modest constant that
depends only on n. Furthermore, if, for some k >_ 1 and 0 > 1,

(3.4)

then, with t maxi ni,

(3.5) Ilfl(At)ll <_ n- n(X)-0-
1- O-ln(X)- O(0-r)’ r >_ k.

Proof. Taking norms in (3.1) we have

IlfZ(Amey)ll <_ II(A / AAI)(A + AA2)... (A + AA.)II.

Using the inequality

(3.6) IIAII n- max IIAeyll

from [10], we have

Ilfl(A’)ll <_ n1- II(A + AA)(A + AA2)... (A + AA,)II.
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Expanding this product and collecting together terms with the same number of AAi
factors we obtain the bound

m

m--1 m--i

i-----1 j--I

From (3.2) we find, using (3.6) and an analogous result involving duality, that
nmin(/P’-/P)Cn. Since A X-1jZX we havecu AII, where c

m

n-ll[fl(A)l <_ IIA’II / (X)c’u[[AII
i--1

/ (X)3(cullAII)2 IIJ-lllllJY-llllJm--Yll +...
i=I

(3.7) + (cullAII)m,

A jt 0, and sinceNow let m rt, where r >_ 1 Since A is nilpotent,
every term in the first r- 1 summations in (3.7) contains a factor IIJill with _> t,
all these terms disappear. Furthermore, in the remaining summations we need only
count terms in which all the exponents of J are less than t (again, the other terms
disappear). Overall, we have, using the fact that [[J[[ 1 (0 _< < t),

rt

n -111fZ(At)l <_ (X) (tc’u(X)llAII).
j=r

Now suppose that (3.4) holds with dn tc, for some > 1. Then, for r _> k,

rt

< (x) (o(x))-
j--r

rt--r

<_ .(x)-- (e.(x))-
j=0

< t(X)1- 0-r

-o-(x)-"
This gives the second part of the theorem. The first part follows immediately by
choosing 1 + e, with e an arbitrarily small positive number, and taking the limit
as k+.

In practice wmw have a computed matrix A A that is not exactly nilpotent.
As long ]A- A]] cu]A[], we can absorb the error A- A into the terms AA in
the proof, and so by applying the theorem to A we will obtain conclusions valid for
A.

To exhibit the sharpness of the bounds we give the following example, using the
Chebyshev spectral differentiation matrix Cn nxn described in [23]. The matrix



MATRIX POWERS IN FINITE PRECISION ARITHMETIC 351

10

o

10

10-2o

10

o

10

10

10

10

10
10 20 30 40 50 60 70 80

FI(. 3.1. Converging powers of the nilpotent matrix Cs.

Cn arises from degree n- 1 polynomial interpolation of n arbitrary data values at n
Chebyshev points, including a boundary condition at x0 1. It is nilpotent and is
similar to a single Jordan block of dimension n. We generate Cn in MATLAB using
the routine chebspec from the test collection of Higham [9], [11].

Figure 3.1 shows the 2-norms of the computed powers of Cs and Fig. 1.1 those of
C14. The powers of Cs converge to zero, while the powers of C14 diverge.

To check the sharpness of the bounds in Theorem 3.1 we need an estimate of the
condition number of the matrix Xn in the Jordan canonical form of Cn. We outline our
approach in Appendix A. Our estimate for 2(Xs) is 3.42 x 105, and [[C8112 28.56.
Table 3.1 gives the order of the bound (3.5) for a number of powers, with r k and
0 chosen as large as possible so that (3.4) is satisfied (we take d, n, instead of the
actual value dn n5/2 for this example, to allow for the inevitable overestimation of
errors inherent in a strict rounding error bound of this type). The actual computed
order is given for comparison and clearly there is reasonable agreement. According
to (3.3), we require dn(X)[[A[[u < 1 to guarantee that the computed powers of A
converge to zero. For C14 we have ul2(X)[[C14[[ 2 0.28 so, allowing for dn, (3.3)
correctly does not predict convergence of the computed powers.

To emphasize that the behaviour of the computed powers is scale-dependent, we

mention that the computed powers of 15Cs diverge. Again, this is in accord with
Theorem 3.1 because utc2(X)l]15C8112 2.7. Finally, we note that for C12, Theo-
rem 3.1 again correctly predicts convergence of the computed powers, but the powers
computed by alternate left and right multiplication and by binary powering diverge;
this confirms that our analysis is not applicable to these forms of multiplication.

3.2. General matrices. Now we turn to general convergent matrices. In con-
trast to the theory we have developed for nilpotent matrices, we need separate theo-
rems to describe the limiting behaviour of the matrix powers and to bound the norm
for a finite exponent. In the following theorem we give a sufficient condition, based
on the Jordan canonical form, for the computed powers of a matrix to converge to
zero.
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TABLE 3.1
Expected and actual orders of Ilfl(Cn)ll2.

Power Bound Actual

m 8 10-2 10-6

m 16 10-11 10-14

m 32 10-27 10-31

m 64 10-59 10-66

THEOREM 3.2. Let A E Cnxn with the Jordan form (2.1) have spectral radius
op(A) < 1. A sufficient condition for fl(A") 0 as m cx is

(.8) d,ua(X)llAII < (1- p(A))

for some p-norm, where t maxi ni and dn is a modest constant depending only on
n.

Proof. Since any two p-norms differ by a factor at most n, we need only show
convergence for one particular norm. We choose the cx>norm.

It is easy to see that if we can find a nonsingular matrix S such that

(3.9) IIS-ASJJ + ()JIAAJJ < 1

for all i, then the product (A+AA1)... (A+AAm) S(S-IAS+S-AAS)... (S-1AS+
S-AAmS)S- 0 as m --. . In the rest of the proof we construct such a matrix
S for the AAi in (3.1).

Let P(e) diag(P1 (e),..., Ps()) where 0 < e < 1 p(A) and

Pi(e) diag((1 -IAil- )l-ni, (1 -IAil- e)2-n’,..., 1) e ]Rnixni

Now consider the matrix P(e)-IJP(e). Its ith diagonal block is of the form/I +
(1 -I/1- e)N, where the only nonzeros in N are ls on the first superdiagonal, and
so

IIP(e)-X-1AXP(e)II -I]P(e)-JP(e)]l
_
m.x(lAl + 1 -IAI- e) 1 -e.

Defining S XP(e), we have [[S-1ASI[ <_ 1- e and

am(S) _< a(P(e))a(X)_< (1- p(A)- )l-tgcx(X).

Now we set e 0(1 p(A)) where 0 < 0 < 1 and we determine 0 so that (3.9) is
satisfied, that is, so that a(S)[IAAilI < e for all i. From (3.2) and (3.10) we have

Therefore (3.9) is satisfied if

cu(1 O)-t(1 p(A))-t(X)IIAII < 0(1 p(A)),

that is, if

cuo(x)llAllo < ( o)-o( p(A))t.
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FIG. 3.2. Diverging powers of C13 + 0.36I.

If the integer t is greater than 1 then the function f(O) (1-O)t-lO has a maximum
on [0, 1] at 0, t-1 and f(O,) (t-1)-(1-t-) satisfies (4(t-l))- _< f(O,) < e-.
We conclude that for all integers 1 <_ t _< n,

1
u(X)llAIIo < (1- p(A))

is sufficient to ensure that (3.9) holds. The theorem is proved with dn 4tcn.
If A is normal then IIAII2 p(A) < 1, t 1, and 2(X) 1, so (3.8) takes the

form

p(A) <
1 +du

This condition is also easily derived by taking 2-norms in (3.1) and (3.2).
Again, we can show the sharpness of this bound by using the Chebyshev spectral

differentiation matrix C, this time adding multiples of the identity matrix.
Figure 3.2 shows the nonconverging 2-norms of the first 200 computed powers of

A C13 + 0.36I. Since the same matrix X takes both C3 and A to Jordan form,
we can use the same routines as for our nilpotent examples to estimate (X). Our
estimate for 2(X)IIAII2u/(1 p(A)) 13 in this case is 3.05. On the other hand, the
computed powers of A C3+0.01I converge to zero, and 2(X)IIAII2u/(1-p(A)) 13

0.01. Thus our bound (3.8) is reasonably sharp.
Figure 3.2 reveals an interesting scalloping pattern in the curve of the norms.

In Figs. 1.1 and 3.1 for nilpotent matrices the norm dips whenever the power is a
multiple of the dimension of the matrix. Here the norm first dips for Ilfl(A2S)ll2 and
then regularly after every further 20 powers, but the point of first dip and the dipping
intervals can be altered by adding different multiples of the identity matrix. The
reason for this behaviour is not clear.

A difficulty we have when attempting to bound Ilfl(Am)ll for a finite m is that,
as explained in 2, we do not have a good estimate of the true value IIAmll. If we do
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have such an estimate we can prove results similar to (3.4) and (3.5), although we are
not able to determine a precise bound for Ilfl(Am)ll in simple form.

THEOREM 3.3. Let A E C"n with the Jordan form (2.1) have spectral radius
p(A) < 1. Let q be such that IIAqll cu where c O(1) and suppose that, for some
k >_ l and O > l,

where # (X)/(1 p(A))t- and t= max n. Then

Ilfl(Aq)ll 0(0-), r >_ k.

Proof. We omit the proof of the theorem, which is very similar to the proof of
Theorem 3.1.

We conclude this section by commenting that the proof of Theorem 3.2 can be
adapted to use the Schur decomposition in place of the Jordan canonical form. The
modified analysis leads to the sufficient condition

--1 (1(3.11) dnullNIIF IIAII2 < p(A)

for fl(Am) --, 0 as m cx, where N is the strictly upper triangular part of the Schur
form. This condition is weaker than (3.8) in two respects. First, it takes no account
of the defectiveness of A, because it contains a power n on the right-hand side instead
of t max n _< n. Second, under the scaling A aA the left-hand side of (3.11)
scales by lal, which tends to make the left-hand side of (3.11) much larger than
that of (3.8) when IIAIIF > 1. It is an open question how to obtain a sharp sufficient
condition for convergence in terms of the Schur decomposition.

4. A pseudospectral approach. In this section we show how the pseudospec-
trum can be used to predict the limiting behaviour of a computed sequence of powers.
Figure 4.1 shows approximations to pseudospectra for the matrices in the examples of
Figs. 1.1, 3.1, and 3.2; we have approximated A(A) with e CnllAII2u, taking Ca n
for simplicity. The inner ring is an approximation to the pseudospectrum of C8, that
of C14 is marked by + and that of C13 + 0.36I is marked by o. The solid curve is the
unit disc.

n heuristic argument based on (3.1) and (3.2) suggests that, if for randomly
chosen perturbations AAi with IIAAill <_ cnullAII, most of the eigenvalues of the
perturbed matrices lie outside the unit disc, then we can expect a high percentage of
the terms A + AA in (3.1) to have spectral radius bigger than one and hence we can
expect the product to diverge. On the other hand, if the cullAII-pseudospectrum is
wholly contained within the unit disc, each A+AA will have spectral radius less than
one and the product can be expected to converge. (Note, however, that if p(A) < 1
and p(B) < 1 it is not necessarily the case that p(AB) < 1.) To make this heuristic
precise, we need an analogue of Theorem 3.2 phrased in terms of the pseudospectrum
rather than the Jordan form.

To obtain such an analogue directly from Theorem 3.2 we need to relate (X) to
the pseudospectral radius p(A) (see (2.8)). If we can show that

(4.1) p(A) >_ p(A) + (Cnen(X))/t

for a particular e, then p(A) < 1 implies cnen(X) < (1- p(A))t, which is a condition
of the same form as (3.8). In Theorem 4.2 we show that (4.1) holds for diagonalizable
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1.5

0.5

-0.5

FIG. 4.1. Pseudospectra of the three example matrices.

matrices to first order, under a certain assumption. We need the following standard
result (see, for example, [21, pp. 183-184]).

THEOREM 4.1. Let A be a simple eigenvalue of the matrix A, with right and left
eigenvectors x and y, and let A A + E be a perturbation of A. Then there is an
eigenvalue A of A such that

yHEx e O(IIEII).A-A-[
yHx

We can now prove the following theorem.
THEOREM 4.2. Let A E C’n have the Jordan canonical form (2.1), with IA1] >

]A2I >"" > [Anl. Suppose that IIXI]I -in__ ]Zil and ]]X-]loo j__ ]ylj], where

X- (yij). Then there is a perturbation A A + E of A, with IIEII e for all
p-norms, such that

(4.2) p(A) >_ p(A)
n2 - O(e2).

Proof. By assumption,/ is a simple eigenvalue, so Xl Xel and yl (eT x-)H
are the right eigenvector and the left eigenvector corresponding to . From Theo-
rem 4.1 we know that any perturbation A will have an eigenvalue

A + yHExl + O(IIEII)
(since yHx 1). Define E by Ijl- /n and arg(ej) arg(y)-arg(x)-t-arg(A).
Then E h8 nk , IIEII- for ll p, nd

(4.3)
n

Now for an n n matrix B and any 1 _< p, q <_ c [10],

IIBIl,, < n min(p,q) max(p,q) IIBIla,
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and together with the conditions of the theorem this gives

The proof is completed by taking absolute values in (4.3).
Because of the assumptions on IIXII1 and IIX-111 we do not have the freedom to

choose X to minimize a(X) in Theorem 4.2. We note, however, that if A is diagonal-
izable and X has columns all of the same norm, then the condition in Theorem 4.2 on
the rows and columns of X and X-1 reduces to the requirement that the eigenvalue
of largest modulus be the most ill conditioned.

Theorem 4.2 enables us to obtain the following corollary of Theorem 3.2.
COROLLARY 4.3. Suppose that A E Cnn is diagonalizable and satisfies the

conditions of Theorem 4.2, and suppose that the O(e2) term in (4.2) is negligible. If
pc(A) < 1 for Cn]]A]]u, where Cn is a modest constant depending only on n, then
lim,__. fl(ATM) =0.

Proof. By Theorem 4.2, if p(A) < 1 then

p(A) + ea(X)/n2 < 1.

Rearranging gives

au(X)llAI]/n2 < 1 p(A).

Using Theorem 3.2 we have the required result for Cn n2dn, since t 1. D
Suppose we compute the eigenvalues of A by a backward stable algorithm, that

is, one that yields the exact eigenvalues of A + E, where ]]ELI2 <_ cnul]AII2, with
Cn a modest constant. (An example of such an algorithm is the QR algorithm [5,
7.5]). Then the computed spectral radius fi satisfies fi _< pcllAiiz(A). In view of
Corollary 4.3 we can formulate a rule of thumb:

The computed powers of A can be expected to converge to zero if the
spectral radius computed via a backward stable eigensolver is less than 1.

This rule of thumb has also been discussed by Trefethen and Trummer [23] and Reichel
and Trefethen [19]. In our experience the rule of thumb is fairly reliable when is not
too close to 1. For the matrices used in our examples we have

(Cs) 0.073,. (15Cs) 2.7, (C4) 1.005,

fi(C13 + 0.01I) 0.70, fi(C3 + 0.36I) 1.05,

and we observed convergence of the computed powers for C8 and C13 --0.01I and
divergence for the other matrices.

Appendix A. Approximating X in the jordan form of Cn. In 3 we needed
an estimate of a(X) for the Chebyshev differentiation matrix, C, where C XJX-is the Jordan form. In this appendix we outline our approach for computing an
estimate of a(X).

Recall that

(A.1) C XJX-,
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where J is a single Jordan block whose diagonal is zero. Suppose we decompose C
into Schur form via the orthogonal matrix Q (which is real since C’s spectrum is real),
that is,

C QTQT,

where T is upper triangular with zero diagonal. If we can find an upper triangular
matrix R such that T RJR-1 then X QR and a2(X) g2(R). We require
TR RJ, that is, Try rj_, 2 <_ j <_ n, and Trn 0, where rj is the jth column
of R.

We choose the arbitrary last column of R to be the last column of the iden-
tity matrix. The following algorithm computes R (here, we use the MATLAB colon
notation).

R(:, n)=en
for j n- 1:-1:1

R(I:j,j) T(I:j, l:j + 1)R(I:j + 1,j + 1)
end
It remains to compute the Schur form of C. We do not use the QR algorithm to

compute the Schur form, as for nilpotent matrices it can lead to triangular matrices
with elements of order 1 on the diagonal. We use the following algorithm described
by Golub and Wilkinson in [6, 10], which, although computationally expensive, has
good error properties.

Compute the SVD of C C U1E1VT.
for/= 1:n-2

C+
Compute the SVD Ci+l(1 :n- i, 1 :n- i) Ui+IEi+IWI.
V+ diag(W+1,/)

end
L V[_C-Vn-
Q VI V2 Vn-1

Upon completion of the algorithm we have C QLQT with L lower triangular,
and so we apply our first algorithm to LT to estimate 2(X) (note that the Jordan
matrix for AT is a permutation of the one for A [14, 3.2.3]).

Acknowledgments. We thank Des Higham and Nick Trefethen for their com-
ments on the manuscript.
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THE EXTENDED LINEAR COMPLEMENTARITY PROBLEM*

o. L. MANGASARIANt AND J. S. PANG*

Abstract. We consider an extension of the horizontal linear complementarity problem, which
we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear
program, we establish various properties of this extended complementarity problem; these include
the convexity of the bilinear objective function under a monotonicity assumption, the polyhedrality
of the solution set of a monotone XLCP, and an error bound result for a nondegenerate XLCP. We
also present a finite, sequential linear programming algorithm for solving the nonmonotone XLCP.

Key words, complementarity problems, monotonicity, error bound, bilinear program
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1. Introduction. In the past couple of years, the horizontal linear complemen-
tarity problem (HLCP) has received an increasing amount of attention among re-
searchers interested in the family of interior-point methods for solving linear programs
and complementarity problems. This surge of interest originates from an article by
Zhang [17] who used the HLCP as a unifying framework for the convergence analysis
of a class of so-called "infeasible-interior-point algorithms." Subsequent work in this
area includes [2], [7], [12], [14]. Independently, Sznajder and Gowda [13] have studied
some matrix-theoretic properties and their roles in the horizontal and vertical LCPs.
Inspired by this flurry of activities and other applications (like the one described in [4],
[15]), we became interested in undertaking a further study of the HLCP. In particular,
our goal in this paper is twofold: one, to derive some basic results of the HLCP along
the line of the classical LCP [3]; and, two, to present an alternative solution method
for the HLCP (particularly, for the "nonmonotone" problems).

The problem we study in this paper is defined as follows. Let M and N be two
real matrices of order m n, and let C be a polyhedral set in R". The extended
linear complementarity problem, which we denote XLCP (M, N, C), is to find a pair
of vectors (x, y) 6 R2n such that+

Mx- Ny C, x _L y,

where the notation x _L y means that x is orthogonal to y, i.e., xTy O. When m n
and C consists of the single vector p Rn, this problem reduces to the HLCP that
has motivated our work. In general, when

C {Lz + q" z Re}

for some matrix L Rm" and vector q Rm, the XLCP (M, N, C) becomes the
"general linear complementarity problem" studied by Ye [16]. However, Gowda [6]
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pointed out that the XLCP can also be obtained from Ye’s general linear comple-
mentarity problem, and hence the two are equivalent. Ye proposed an interior point
approach for this problem, whereas our approach is based on finite bilinear program-
ming.

The feasible region of XLCP (M, N, C) is denoted FEA(M, N, C); it is defined to
be the set

FEA(M, N, C) ((x, y)

which is a polyhedral subset of R2n We say that XLCP (M,N, C) is feasible+.
if FEA(M, N, C) is nonempty. The set of complementary solutions of the XLCP
(M, N, C) is given by

SOL(M, N, C) =_ ((x, y)

2. The equivalent bilinear program. Associated with the XLCP (M, N, C)
is a natural bilinear program defined on the same feasible region:

minimize xTy
subject to (x, y) e FEA(M, N, C).

We denote this problem by BLP (M, N, C). The BLP (M, N, C) should be contrasted
with the "natural" quadratic program that one associates with the standard LCP
(q, M), which corresponds to the special case of the XLCP (M, N, C) with m n,
g I, and C-= (-q}. The latter quadratic program is [3]

minimize xT(q + Mx)
(1)

subject to x_>0, q+Mx>_O.

One important distinction between the BLP (M, N, C) and the quadratic program
(1) is that the latter is defined by the variable x only, whereas the former involves the
pair (x, y). We shall see shortly that the BLP (M, N, C) plays a similar role in the
study of the XLCP (M, N, C) as (1)in the LCP (q, M).

Since the objective function of BLP (M, N, C) is nonnegative on FEA(M, N, C),
the XLCP (M,N, C) is equivalent to the BLP (M,N, C) in the sense that a pair
of vectors (x, y) solves the former problem if and only if (x, y) is a globally optimal
solution of the latter problem with a zero objective value. Moreover, by the well-known
Frank-Wolfe Theorem of quadratic programming [5], the BLP (M, N, C) always has
an optimal solution provided that it is feasible. Of course, it is generally not necessary
for an optimal solution of the BLP (M, N, C) to have zero objective value. In what
follows, we establish several results that pertain to the relationship between the XLCP
and the associated BLP.

PROPOSITION 2.1. Let M and N be m n matrices and C a polyhedral set in
Rm. The bilinear function f(x, y) =_ xTy is convex on the set FEA(/, N, C) if and
only if the following implication holds:

(2) (xi, yi) e FEA(M, N, C), 1, 2 = (x x2)T (yl y2) _> 0.

Proof. By an easy calculation, it can be verified that the following identity holds
for any two pairs of vectors (x, yi) E R2n and any scalar T,

T(xl)Ty "" (1 T)(x2)Ty2 X(T)Ty(T) T(1 T)(X x2)T(y y2),



THE XLCP 361

where

=T + (1 ’)

Thus, the claimed equivalence follows easily. [1

With the somewhat notorious reputation of the bilinear function, the above propo-
sition is a pleasant surprise in that it exhibits an important instance in which the BLP
(M, N, C) is actually a "convex program" (in the sense that it has a convex objective
function on the feasible set). Indeed, when one specializes this result to the case of the
standard LCP (q, M), one may conclude that if M is a positive semidefinite matrix,
then the bilinear form xTy is a convex function on the set { (x, y) E R2+n" Mx-y q}.
This fact, though trivial to prove, seems to have been completely overlooked in the
LCP literature.

To state the next result, which gives a sufficient condition for every Karush-
Kuhn-Tucker (KKT) vector of the (general) BLP (M, N, C) to be a solution of the
XLCP (M, N, C), we recall that a matrix L Rmm is copositive on a cone K C_ Rm
if uTLu >_ 0 for every u K. Also, we denote the recession cone of the set C by 0+C;
finally, the dual cone of a set S c_ RTM is denoted S*.

PROPOSITION 2.2. Let M and N be m x n matrices and C a polyhedral set in
Rm. If the matrix MNT Rmm is copositive on (0+C)*, then every KKT vector
of the BLP (M, N, C), if it exists, solves the XLCP (M, N, C). Thus, if in addition
FEA(M, N, C) , then SOL(M, N, C) : .

Proof. Without loss of generality, we represent the set C in the following form:

C {u R"" Au >_ b},

for some matrix A Rexm and vector b E Re. Then we have

(0+C) {v Rm’v ATA for some A e R_},

and the BLP (M, N, C) becomes

minimize

subject to

xTy
AMx- ANy >_ b,

y) > o.

Now, if (x, y) is a KKT vector of the BLP (M, N, C), then there exist nonnegative
vectors A Re, and (r, s) R2n such that

y MTAT) + r, x --NTAT) -t- s,

xTr yTs T(AMx ANy b) O.

Clearly, we have

xTy xTy xTr sTy - 8Tr 8Tr

(X- s)T(y- r)- sTr --((ITA)MNT(ATi)+ rTs) <_ 0,

where the last inequality follows from the copositivity of MNT on (0+C) *. Since xTy
is nonnegative, it follows that (x, y) E SOL(M, N, C).
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The last assertion of the proposition holds because the BLP (M, N, C) must have
an optimal solution if it is feasible, and such a minimum solution must also be a
complementary solution by what has just been proved. [:]

In order to combine the above two propositions, we establish a lemma that gives a
sufficient condition for the matrix MNT to be positive semidefinite (hence copositive
on any cone).

LEMMA 2.3. Let C be a polyhedron in Rn and let M and N be square matrices

of order n. If FEA(M, N, C) and the pair (M, N) satisfies the condition

Mx Ny e C, i 1, 2 = (x x2)T(yl y2) 0,

then MNT is positive semidefinite.
Proof. We first show that the following implication holds"

Mx- Ny E 0+C = xTy
_

O.

Indeed, let (x, y) be a pair of vectors satisfying Mx Ny O+C. For an arbitrary
pair of vectors (2,) FEA(M,N, C), we have Mx- Ny C for every scalar
T >_ 0 where (xr, y) =_ (2, ) + T(X, y). By the implication (3), it follows easily that
xTy

_
O. Since the origin is always an element in the recession cone, it follows that

Mx Ny 0 = xTy
_

O.

Hence, (M, N) is a column monotone pair in the sense defined in [13].. In particular,
by Theorem 11 in this reference, it follows that MNT is positive semidefinite.

Remark. We need to assume that M and N are square in order to apply the result
in [13] to deduce the positive semidefiniteness of MNT from the column monotonicity
of (M,N).

When rn n and C is a singleton, condition (3) is equivalent to the column
monotonieity of the pair (M, N) in the following sense. If (M, N) is column monotone,
then (3) holds for C {q} for every n-vector q; conversely, by the proof of Lemma 2.3,
if (3) holds for C {q} for some n-vector q belonging to the column space of (M, N),
then the pair (M,N) must be column monotone. According to [13, Theorem 11], the
column monotonieity of (M, N) is in turn equivalent to two conditions: (i) M + N
is nonsingular, and (ii) MNT is positive semidefinite. By this characterization, it is
easy to construct pairs of matrices (M, N) for which MNT is positive semidefinite
but (M, N) is not column monotone. If (M, N) is such a pair of matrices, then with
an appropriately defined vector q, the BLP (M, N, {q}) will have the property that
every one of its KKT points is a solution of the XLCP (M, N, {q}) but the BLP itself
is not a convex program. A pair of matrices (M,N) with the property that MNT

is positive semidefinite will be called a monotone product pair. Unlike a column
monotone pair, a monotone product pair (M, N) need not contain any nonsingular
column representative matrix (as defined in [13]). Incidentally, Ye [16] showed that
if (M, N) is a monotone product pair, then his potential reduction algorithm will
compute a solution of the XLCP (M, N, C) in polynomial time. His results also
provided a proof that in this ease, the feasibility of the XLCP implies its solvability.
This conclusion is a special case of Proposition 2.2.

3. Monotone problems. We say that a pair of n n matrices (M, N) is mono-
tone with respect to the polyhedral set C c_ Rn or, in short, (M, N, C) is a monotone
triple, if the implication (3) holds. (Note that this definition requires that M and N
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be square.) Summarizing the discussion in the last section, we may state the following
result for an XLCP with a monotone triple (M, N, C).

THEOREM 3.1. Let C be a nonempty polyhedron in R and let M and N be
square matrices of order n. Suppose that (M, N) is monotone with respect to C and
that PEA(M, N, C) . Then the following statements hold:

(a) the bilinear function xTy is convex on PEA(M, N, C);
(b) SOL(M, N, C) and SOL(M, N, C) is a polyhedron.
Proof. Only the polyhedrality of SOL(M, N, C) requires a proof. We observe that

SOL(M, N, C) is a convex set by (a). Since the BLP (M, N, C) is a quadratic program
and the set of optimal solutions of any quadratic program is equal to the union of a
finite number of convex polyhedra [10], the convexity of SOL(M, N, C) must imply
its polyhedrality.

Under the assumptions of Theorem 3.1, it is possible to give an explicit (polyhe-
dral) representation for SOL(M, N, C). Instead of presenting such an expression in
its fullest generality, we devote the remainder of this section to a discusion of HLCP
that has C {-q}. For this case, we first introduce a special set associated with a
column monotone pair. (Remark. Although the next three results can be proved by
invoking the close connection between a column monotone pair and a positive semidef-
inite matrix, our derivation is more direct and reveals some interesting features of the
HLCP.)

PROPOSITION 3.2. Let (M, N) be a column monotone pair of n n matrices. Let

K(M, N) {(u, v) e R2n" Mu- Nv 0, u _[_ v}.

Then (u, v) e K:(M,N) if and only if there exists a vector in the null space of
MNT + NMT such that

(5) u -NTA and v MT

Thus, IC(M, N) is a linear subspace of R2n.
Proof. The column monotonicity of (M, N) implies that (, ) e/C(M, N) if and

only if (fi, ) is an optimal solution of the (equality constrained) quadratic program:

minimize uTv
subject to Mu- Nv O,

and T 0. Thus, if (fi, ) E/C(M, N), then there must exist a vector A such that
f =--NT and -- MT. Moreover, we must have

TMNT) _tT) O.

Since MNT is positive semidefinite, it follows that (MNT + NMT)) O. The
converse is easily proved. From this characterization of the set K:(M, N), it follows
trivially that this set must be a linear subspace, rq

In the next result, we give two representations of the solution set of the "mono-
tone" HLCP:

Mx- Ny+ q 0,
(6)

>_ o, x

where (M, N) is a column monotone pair. One representation is valid in general and
the other is valid in the case when the problem is nondegenerate, i.e., when it has a
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solution (2, ) satisfying 2 + > 0. Throughout the remainder of the paper, we write
(M, N, q) for (M, N, {-q}).

PROPOSITION 3.3. Let (M, N) be a column monotone pair of n n matrices and
let (x, yO) E SOL(M, N, q) be arbitrary. Then

SOL(M, N, q) { (x, y) e FEA(M, N, q)"
xTy + yTxO O, (x,y) (xO, y) +/E(M, N)}.

If the HLCP (M, N, q) is nondegenerate, then

(8) SOL(M,N,q) {(x,y) e FEA(M,N,q) xTy + yTxO 0}.

Proof. Since (xO)Ty0 0, we may write

xTy xTy0 -b yTxO + (X xO)T(y yO).
By the column monotonicity of (M, N), it follows that (x, y) SOL(M, N, q) if and
only if (x,y) FEA(M,N,q), xTy0 q-yTxO 0, and (x- xO)T(y- y0) 0, or by
Proposition 3.2, if and only if (x, y) belongs to the right-hand set in (7).

Suppose that the HLCP (M, N, q) is nondegenerate. It suffices to verify that the
right-hand set in (8) is contained in SOL(M, N, q). Take any vector (x, y) belonging
to this right-hand set. Let (2, ) be a nondegenerate solution of the HLCP (M, N, q);
then (x, y0) e (2, ) +/C(M, N). Since (x, y) e FEA(M, N, q), we can verify, by the
characterization of the set/E(M, N) in Proposition 3.2, that

(9) xTy0 - yTxO xTI q- yT2.
Indeed, for some vector A, we have

x0

yO
Multiplying the first equation by (y- yO)T and the second equation by (x- x)T,
adding the resulting equations, and using the fact that (xO)Ty 2Ty --}-]TxO
0 and M(x- x) -N(y- y0) 0, we immediately deduce the desired equation
(9). Consequently, we have xTfl + yT2 0, which easily implies xTy 0 by the
nondegeneracy of the solution

The polyhedral representations (7) and (8) allow us to obtain some error bounds
for the monotone HLCP. (The polyhedrality of (7) follows from Proposition 3.2.)
Although some such bounds have been obtained in [9] for the general HLCP, they are
valid only for test vectors that lie in a compact set. In what follows, we use (8) to
obtain a sharpened error bound for the nondegenerate, monotone,. HLCP.

COROLLARY 3.4. Let (M,N) be a column monotone pair of n n matrices. If
the HLCP (M, N, q) has a nondegenerate solution, then there exists a constant a > O,
dependent on (M,N, q), such that for all (x, y) e FEA(M, N, q),

dist((x, y), SOL(M, N, q)) <_ axTy,
where dist denotes the distance (measured by any norm) from a vector to a set.

Proof. It suffices to apply the well-known error bound for polyhedra [8],[11] to
the representation (8) and to note that for any solution (x, y0) SOL(M, N, q) and
feasible vector (x, y) FEA(M, N, q), we have

xTy0 q- yTxO xTy (X xO)T(y yO) <_ xTy.
This establishes the corollary. [:]
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4. A finite SLP algorithm. We now return to the general XLCP (M, N, C).
The bilinear programming formulation of this problem allows us to compute a solu-
tion by solving a finite sequence of linear programs (SLP) when the triple (M, N, C)
satisfies the assumptions of Proposition 2.2. Since these assumptions are considerably
more general than the column monotonicity property (for one thing, M and N need
not be square matrices), the SLP procedure is applicable to a broader class of XLCPs
than the (square) monotone class.

The algorithm described below was formulated in [1] and its finite termination
was established for bilinear programs, not necessarily convex. We rephrase the algo-
rithm for the BLP (M, N, C) and use the convergence results from the reference to
establish its finite termination. In essence, this algorithm is a modified Frank-Wolfe
algorithm for solving the BLP (M, N, C) as a quadratic program, whose convergence
was originally proved for convex functions [5].

AN SLP ALGORITHM. Start with any feasible (x,y) FEA(M, N, C). In
general, determine (xi+,y+) from (xi, y) as follows:

Let (u, vi) be a vertex optimal solution of the linear program:

minimize xTy - yTxi

subject to (x, y) FEA(M, N, C).

Stop if (ui)Ty + (vi)Tx 2(xi)Ty.
Otherwise, let

yi+l
(1 Ti)

yi
+ Ti

Vi

where

Ti E argminre[O,](x + T(U Xi))T(y + T(V yi)).

THEOREM 4.1. Let M and N be m x n matrices and C a polyhedral set in Rm.
Suppose PEA(M, N, C) . If the BLP (M, N, C) has the property that every one of
its KKT points solves the XLCP (M, N, C), th&n in a finite number of iterations, the
above algorithm will produce a vertex (ui, vi) e PEA(M, N, C) satisfying (ui)Tvi O.

Proof. Note that the sequence {(xi,y)} generated by the SLP algorithm is
bounded because it lies in the convex hull of the vertices of PEA(M, N, C) and (x, y0).
Hence {(xi, yi)} has at least one accumulation point (2, 9) that must satisfy the min-
imum principle necessary optimality condition [1, Theorem A.1], and hence the KKT
conditions for the BLP (M,N, C). By assumption, it follows that (2, ) solves the
XLCP (M, N, C). Consequently, 2T7 0. By [1, Theorem A.2], a vertex (u, vi) gen-
erated by the SLP algorithm solves the BLP (M, N, C) with zero minimum. Hence
this vertex also solves the XLCP (M, N, C).

4.1. Sufficient pairs of matrices. Specializing Theorem 4.1 to the HLCP
(M, N, q), we obtain the following corollary.

COROLLARY 4.2. Let (M, N) be a monotone product pair of n n matrices. If the
HLCP (M, N, q) is feasible, then in a finite number of iterations, the SLP algorithm
will produce a vertex solution of this HLCP.

Inspired by the class of (row/column) sufficient matrices [3, 3.5], we can broaden
the class of matrix pairs (M, N) for which the above corollary is valid. Specifically, we
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say that a pair of n n matrices (M, N) is row sufficient if the following implication
holds: with A (M, N) E Rn2n,

ErangeAT, uov<_O =uov=O,
v

where range denotes the column space of a matrix and o denotes the Hadamard
product of two vectors; i.e., x o y is the vector whose components are the products
of the corresponding components of x and y. Similarly, (M, N) is said to be column
sufficient if the following implication holds" with (M,-N) Rn2n,

null, uov<_O uov=O,
v

where null denotes the null space of a matrix.-Finally, the pair (M, N) is said to be
sufficient if it is both row and column sufficient.

While a monotone product pair must be row sufficient but not necessarily column
sufficient, a column monotone pair must be (both row and column) sufficient. The
role played by the (row/column) sufficient pairs in the HLCP is similar to that by the
(row/column) sufficient matrices in the standard LCP. For the sake of completeness,
we state the following characterization result for the HLCP.

THEOREM 4.3. Let (M, N) be a pair of n n matrices.
(a) The pair (M, N) is row sufficient if and only if for every vector q Rn for

which the HLCP (M,N,q) is feasible, every KKT vector of the BLP (M,N,q) solves
the HLCP (M, N, q).

(b) The pair (i, N) is column sufficient if and only if for every vector q R,
the solution set of the HLCP (M, N, q), if nonempty, is convex.

Proof. Assume that (M, N) is a row sufficient pair. Suppose that (x, y) is a KKT
vector of the BLP (M, N, q). Then there exist vectors A E Rn and (r, s) R2n such+
that

y MT, + r, x =. --NT, -t- s,

xTr yT8 O.

By a similar derivation as in the proof of Proposition 2.2, we can show that

x o y -((MT)) o (NT)) + r o s).

Thus, (MTA)o (NTA)
_

O. The row sufficiency of (M,N) therefore implies that
(MTA) o (NT) 0 which in turn yields x o y 0.

To prove the converse in (a), suppose that the pair (M, N) is not row sufficient.
Then, for some vector A R, we have (MTA)o(NT)) <_ 0 and (MTA)i(NT))i < 0 for
at least one component i. Without loss of generality, we may assume that (MT)i " 0
and (NT,k)i < 0. Let

y =_ (MT,k)+, r
_
(MT))

s =_ (NT))+, x =-- (NT))-,
where v+ and v- denote, respectively, the nonnegative and nonpositive part of a
vector v. Also let q Ny- Mx. It is then easy to verify that (x, y) is a KKT vector
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of the BLP (M, N, q) with (r, s) as the corresponding multipliers; nevertheless, x is
not complementary to y. Thus (a) holds.

To prove (b), suppose the pair (M, N) is column sufficient. Let (xi, yi) for 1, 2
be two solutions of the HLCP (M, N, q). It is then easy to verify for all components
k 1,...,n, we have

(x_x:)(yl y) x:_1-(xy + y) <_ O.

Since we also have M(x x2) N(yl y2) 0, it follows that xlksk2 x2kykl 0 for
all k. In turn, this easily implies that

(TX + (1 T)x2)T(7"y + (1 T)y2) 0

for all T E [0, 1]. Thus, the convexity of SOL(M,N,q) follows. Conversely, sup-
pose that (M, N) is not column monotone. Then there exists a vector (x, y) R2n

satisfying Mx Ny O, x o y <_ 0, and xiyi < 0 for at least one index i. Let

-q =_ Mx+ Ny+ Mx- Ny-.

It is then easy to verify that (x+, y+) and (x-, y-) are solutions of the HLCP (M, N, q)
but that these solutions are not "cross complementary," i.e., either (x+)Ty > 0 or
(x-)Ty+ > O. The latter cross complementarity property is easily seen to be both
necessary and sufficient for the solution set of any HLCP to be convex.

It follows immediately from Corollary 4.2 and Theorem 4.3 that if (M,N) is a
row sufficient pair, then the SLP algorithm will compute a solution to the HLCP
(M, N, q) for every q for which FEA(M, N, q) = .

In [13], a pair of square matrices (M,N) was defined to be row monotone if
(MT, NT) is column monotone. We have previously mentioned that a column mono-.
tone pair must be (column and row) sufficient. Nevertheless, a row monotone pair
need not be either column or row sufficient. Indeed, borrowing from [13, Example
10], let us consider the pair

M=
-1/2 -1/2

N=
1 0

which is obtained by transposing, respectively, the matrices C and D in the cited
example. The pair (M, N) is row monotone because as shown in the reference (C, D) is
column monotone. But the pair (M, N) is neither column nor row sufficient. Column
sufficiency is violated with

u (2, 0), v (-1, 5);

whereas row sufficiency is violated with

1 1
u (-,-), v (,0).

The reason for this dichotomy is that the definition of row monotonicity in [13] was
relevant for the vertical LCP and was not shown to have any relation to the HLCP. On
the other hand, the column and row sufficiency defined herein have direct implications
for the HLCP. Thus, it is not surprising that these (column/row) sufficiency and
monotonicity concepts for matrix pairs would be quite different. The reader is referred
to [6] for more discussion on these concepts.
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Abstract. It is shown that for given positive definite A and B and a linear subspace ]/V consisting
of n n indefinite (or trivial) Hermitian matrices, there exists a unique positive definite matrix F
in A -t- ]4) such that F-1 B E YV+/-. This matrix F appears as the maximizer of a certain entropy
function. The theorem generalizes a result on Gaussian measures with prescribed margins. Several
special cases are presented, yielding new results and recovering known matrix completion results.
In case ]/V is a coordinate subspace, algorithms to find the optimal F are described and numerical
results are presented.
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1. Introduction. Let denote the real vector space of all n n selfadjoint
complex matrices endowed with the scalar product (C, D) tr (CD*), and let PSD
(A E A/[ A >_ 0} and PD {A e A > 0} denote the cone of positive semi-
definite and positive definite matrices, respectively.

We prove the following result.
THEOREM 1.1. Let Vl) C fl4 be a linear subspace such that

A E PD and B Ad. Then there is a unique F (A+)/V)CqPD such that
F-1 -B _[_ .)/V. Moreover, F is the unique maximizer of the function

(1) f(X) log det X tr (BX), X e (A/ W) NPD.

If A and B are real matrices then so is F.
This result may be viewed as a generalization of Theorem 1 in [19], which solves

the problem of finding Gaussian measures with prescribed margins. We cite this result
of [19] below in Corollary 1.2. For the particular case that B 0 and VY C_ {W e ]/V

Wii 0, 1,... ,n} the result appeared earlier in [17] (in different terminology).
The function (1) may be viewed as an entropy function. In optimization context
this function is used as a barrier function, and the above problem corresponds to the
log barrier problem with parameter equal to 1 (see, e.g., [2], [3]). When B I the
function (1) appears in [10] (see also [4]) where the author shows that the Broyden-
Fletcher, Goldfarb, Shannon (BFGS) and Davidon-Fletcher-Powell (DFP) updates
of quasi-Newton methods can be derived using this entropy function. In addition
there are connections with the sum decomposition results in [12] and [13].

Using the Hahn-Banach Separation theorem one can easily show that )/VCqPSD
{0} implies that for every B e A/[ we have that (B + VY+/-) PD 0. Indeed, if the
latter intersection is empty then the separation theorem yields the existence of a
( A4 and a real number a such that tr (P(I)) > a for all P PD and tr (XcI)) _< a
for all X B + 1/Y+/-. Since PD is a cone, it is easy to see that we must have a <_ 0,
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and since )4;+/- is a subspace it is easy to see that we must have (I) E YV. But then it
follows that 0 : (I) E )/Y g)PSD. Thus the content of the theorem is not weakened
when one restricts oneself to B PD.

COROLLARY 1.2. Given is a positive definite matrix A (Aij)ni,j--1, a Her-
mitian matrix B (Bij)i,j=l, and a set J C_ {(i,j) 1 <_ < j <_ n}.. Let

{(i, j) (i, j) e J or (j, i) J}. Then there exists a unique positive definite ma-
trix F (Fj)in,j= such that Fi Ai for (i, j) and (F-)i B for (i, j) .
Moreover, F maximizes the function f(X) log det Z tr (BX) over the set of all
positive definite matrices X whose entries (i, j)

_
coincide with those in A. In case

A and B are real, F is also real.
The first part of Corollary 1.2 appears in [19]. In [9] this result is described as

one that follows easily from an estimate derived in [7], a paper that we unfortunately
were not able to retrieve. However, the case when B 0 appears in [8] and was also
independently obtained in [5] and [11]. For a construction of the solution in the special
case of band matrices and B 0, see [6], and in the special case of a chordal pattern
and B 0, see [15] and [1]. In the latter four references the problem is formulated as
a matrix completion problem. From this viewpoint one may view Corollary 1.2 as the
solution to the completion problem in which a partial matrix is given whose entries
in positions (i, j) are prescribed and whose inverse is prescribed in positions
(i, j) E . In 3 we present two algorithms to obtain the optimal F in Corollary. 1.2,
and in 4 we present some test results.

Another corollary is the following.
COROLLARY 1.3. Let A (Aj)n,j=l be positive definite. There exists a unique

positive definite matrix F (Fij)in,j=l such that Fij Aj, j, tr F tr A and
the diagonal entries of the inverse of F are all the same. In case A is real, F is also
real.

For Toeplitz matrices we obtain the following result.
COROLLARY 1.4. Let A (Aj_i)i,y=l be a positive definite Toeplitz matrix,

0 < Pl < P2 < < Pr < n and 1,..., ar C. Then there exists a unique Toeplitz
n with Fq Aq Iql pl, .,pr, andmatrix F Fj_ i,j=

() (F-1)ij----olk, k=l,...,r.
j--i=pk

In case A and 1,..., ar are real, the matrix F is also real.
One may view Corollary 1.4 as the answer to a Toeplitz matrix completion prob-

lem. In the case when ck 0 for all k, the result appears in [17]. In Corollaries
1.3 and 1.4 the solution F appears as the unique maximizer of the function (1) with
suitable choices of l/Y, A, and B.

2. The proofs.
Proof of Theorem 1.1. Since )/Y N PSD {0}, (A / )42) V PSD is a bounded

set (we are in a finite dimensional space). The set (A + 14;) PSD is convex. It
is known that log det is strictly concave on PSD (see, e.g., Theorem 7.6.7 in [14]).
Since tr (BX) is linear in X, f(X) is strictly concave and thus has a unique maximum
on (A + 142) V PSD denoted by F. Since near the boundary f tends to -cx), F is a
point of (A / l/Y) PD.

Fix an arbitrary W e )/Y. Consider the function fF,W(X) log det (F + xW)
tr (B(F + xW)) defined in a neighborhood of 0 in C. Then f}.,w(O) 0 (since f has
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its maximum at F). It is easy to see that

(det(I + xF-1W))’
(tr (B(F + xW)))’]x=of’F’w(O) det(I + --F--I- x=0

tr (F-1W) tr (BW) tr ((F-1 B)W) O.

Since W is an arbitrary element of )/Y we have that F-1- B _l_ )zV. Assume that
GE(A+W) VPDandG-1 A_I_W. Then, fa,w(O) 0 for any W E )zV and since

f is strictly concave it follows that G F. This proves the uniqueness of F.
In case A and B are real matrices, one can restrict the attention to real matrices,

and repeat the above argument. The resulting matrix F will also be real. El

Proof of Corollary 1.2. Introduce

(3) 142 {W J/[ Wkj 0 whenever (k, j) fig }.

Then WNPSD (0}. By Theorem 1.1 there exists a unique F (A+W)NPD such
that F-1 B _k W. For any (k, j) J, consider the matrix W(RkS) W having all
its entries 0 except those on the positions (k, j) and (j, k) which equal 1, respectively,

Tz(k’J) having on the position (k, j), -i on the position (j,k) and 0the matrix x
elsewhere. The conditions tr ((F-1 B)W(k’i)) tr ((F-1 B)W(Ik’j)) 0 imply
that (F-1)k Bk for any (k,j) e . El

A subspace 142 of type (3) is called a coordinate subspace.
Proof of Corollary 1.3. Let B 0 and W {W e A/[ Wij O,i #

j and tr W 0}. Since

)/Y+/-={Wej Wii=Wji, i,j=l,...,n}

the result follows immediately from Theorem 1.1. El

Proof of Corollary 1.4. Let B (Bij) with Blpk Bpkl , k 1,..., r and
Bij 0 otherwise. Furthermore, let 142 be the span of Toeplitz matrices of the form

( 0 0 1 0
0 0 0 1 0

1 0 0 0 1
0 1 0 0 0

\ 0 0 1 0

( 0 0 i 0 0
0 0 0 0

-i 0 0 0 i
0 -i 0 0 0

0 0 -i 0 0

supported on the jth diagonal for j {Pl, Pr}. Then (M-B, )=0, k=1,2,
if and only if the sum of the elements on the jth diagonal of M- B is equal to 0.
The corollary now follows immediately by applying Theorem 1.1. El
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3. Two algorithms. There is generally no closed formula for the optimal solu-
tion F in Theorem 1.1. We next present two approximation methods in the case of
Corollary 1.2.

ALGORITHM 1. The first algorithm we present is a naive one based on the coor-
dinate descent method. We refer to [16] as a general reference on coordinate descent
methods. First we need some preliminary results.

Given a matrix M we let M(r’s) denote the matrix M with row r and column s
deleted.

LEMMA 3.1. Let A (Aij)in,j=l be a positive definite matrix and E C. Let
1 <_ r, s <_ n and let A(z) be the Hermitian matrix A with the (r, s)th entry replaced
by z and the (s, r)th entry replaced by . Let zo C be the unique complex number z
such that

(4) Izl 2 det([[A(0)](r’s)] (s’r)) + 2(-1)r+SRe (z det([A(0)] (’8)) + det A(0) > 0

and

(5) (-1)r+8 det([A(0)] (’r) z det([[A(0)](’)] (’))
a.

-Izl2 det([[A(0)](,)](8,r)) + 2(-1)r+Re (z det([A(0)](r,8)) + det A(0)

Then A(zo) is the unique positive definite matrix whose entries coincide with those
in A except for the (r, s) and the (s, r) position, and whose inverse has on the (r, s)
position the value a.

In case n 2 the determinant of the 0 0 matrix should be interpreted as being
equal to 1.

Proof. It is straightforward to check that det A(z) equals the left-hand side of (4),
and using Cramer’s rule one easily computes that (A(z)-)s is given by the left-hand
side of (5). The existence and uniqueness of a solution now follows from Corollary
1.2. D

Given the conditions of Corollary 1.2, let {(ik,jk) k O, 1,..., s- 1} be an
arbitrary ordering of the elements of J. For any M (A + 14;) PD define the
positive definite matrices X(kM) k 0, 1 s by X(oM) M and letting y(M) bek+l
obtained by modifying the (i,j) and (j, i) entries of X(M) such that

y(M)

as indicated in Lemma 3.1 (in the real case this comes down to finding the root of a
quadratic polynomial that satisfies (4)). Define then the function

g" (d + )d;) PD --. (d + l/Y) PD, g(M) ZM,

which is continuous since y(M) depends continuously on X(kM) Further note that Fk+l
in Corollary 1.2 is a fixed point for g. In fact, it is the only fixed point for g, since if
P (A / )4;) PD is such that g(P) P, we obtain from the definition of g that
(p-1)i,j Bi,j for k 0, 1,..., s 1.. Thus P F by Corollary 1.2. In addition,
it should be noted that f(g(M)) >_ f(M).

Define now the following sequence: Yo A, Ym+ g(Ym) for m >_ 0. Since the
sequence {Ym}=o lies in the compact set (A + )/V)CPDA{MIf(M >_ f(A)}, the
sequence has a limit point H e (A + I/V) PD. Consequently, since Ym+ g(Ym),
and g is continuous we get that H F, and thus Ym --* F.
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In the case that B 0 and J is ordered using a perfect elimination scheme
(which is only possible in the chordal case) then the algorithm can be adjusted so
that the iteration stops after the first step (i.e., Y1 F). The adjustment concerns
restricting the attention in Lemma 3.1 to certain submatrices that are determined by
the ordering; see [11], [19], [1], and [15] for details.

ALGORITHM 2. This algorithm is based on Newton’s algorithm and can be found
in 1.2 of [18]. The description of the method given in 3.4 of [2] was very helpful to
us.

Given is the positive definite matrix A, the matrix B, and the positions J
{(il,jl),...,(is,js)}.

Introduce

x (Ail,jl,..., Ais,js),

and error IlYlI (the maximal modulus among the coefficients of y). While error >
tol do

H (Upq)p,q=l Hpq (A-1)i,jq (A-1)iqjp + (A-)iiE (A-1)jqjp,

v H-ly, 5 X/y,

if5<

ifh>

X :’-- XnuOv Aip,jp :--" Xp p 1,... s,

y := ((A-1 B)ix,j,,..., (A-1

4. Some test results. We implemented the algorithms in the previous section
using Mathematica [20]. We now present some results.

4.1. Experiment 1. Here n 3, J {(1, 2), (2, 3)} (with this ordering), B12
1, B23 2, and

A= 14.7 17.01 12.9
10 12.9 14

ALGORITHM 1. After 33 iterations we get that A12 -13.2165, A2a -14.7713,
and the inverse of the new matrix A is

.534561 1.00001 .673279)1.00001 2.57256 2.

.673279 2. 1.7007

ALGORITHM 2. With tol 10-16 we obtain after 89 iterations that A12
-13.2165, A23 -14.7713, and the inverse of the new matrix A is

.534552 1. .673272 )1. 2.57255 2.
673272 2. 1.70071
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4.2. Experiment 2. Here n 4, J { (1, 3), (2, 4) } (with this ordering), B13
1, B24 2, and

30 14.7 16 27.9
14.7 17.01 12.9 29.13
16 12.9 16.25 23.6

27.9 29.13 23.6 52.53

ALGORITHM 1. After 129 iterations we get that A13 17.3068, A24 8.3627,
and the inverse of the new matrix A is

.260914 -.753857 1. -.467832
-.753857 3.31916 -4.73663 2.

1. -4.73663 7.00058 -2.92219
-.467832 2. -2.92219 1.26196

ALGORITHM 2. With tol 10-16 we obtain after 47 iterations that A13
17.3068, A24 8.3627, and the inverse of the new matrix A is

.260913 -.753856 1. -.467832
-.753856 3.31916 -4.73663 2.

1. -4.73663 7.00059 -2.92219
-.467832 2. -2.92219 1.26196

4.3. Experiment 3. Here n 5, J {(1, 3), (2, 4), (3, 5)} (with this ordering),
B13 1, B24 2, B35 -3, and

55 34.7 26 40.4 59.6
34.7 33.01 20.9 39.13 45.6
26 20.9 20.25 28.6 30.8
40.4 39.13 28.6 58.78 59.6
59.6 45.6 30.8 59.6 95.72

ALGORITHM 1. After 225 iterations we get that A13 13.6371, A24 42.246,
A35 15.4163, and the inverse of the new matrix A is

.22564 -.969866 .999933 -.291023 .341699
-.969866 5.74027 -6.29935 2.00113 -2.36217
.999933 -6.29935 7.88392 -3.03768 3.
-.291023 2.00113 -3.03768 1.4746 -1.20104
.341699 -2.36217 3. -1.20104 1.18766

ALGORITHM 2. With tol 10-16 we obtain a,fter 31 iterations that A13
13.6366, A24 42.2479, and A35 15.4148, and the inverse of the new matrix A is

.22572 -.970351 1. -.290738 .341707
-.970351 5.74342 -6.30058 2. -2.36257

1. -6.30058 7.88385 -3.03661 3.
-.290738 2. -3.03661 1.47429 1.2007
.341707 -2.36257 3. -1.2007 1.18768
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4.4. Experiment 4. Here n- 10, J- {(1, 8), (2, 9), (3, 10)} (with this order-
ing), Bls B29 2, Ba,lO 0, and

1 1 1 1 1 1 1 0.6530 1 1
1 2 2 2 2 2 2 2 1.933 2
1 2 3 3 3 3 3 3 3 2.679
1 2 3 4 4 4 4 4 4 4
1 2 3 4 5 5 5 5 5 5
1 2 "3 4 5 6 6 6 6 6
1 2 3 4 5 6 7 7 7 7

0.6530 2 3 4 5 6 7 8 8 8
1 1.933 3 4 5 6 7 8 9 9
1 2 2.679 4 5 6 7 8 9 10

The solution to this problem is given by A (Aij) in which Aij min(i,j}. The
inverse is given by (A-1)i 2, (A-1),i+I (A-1)i,i_ -1, and zero elsewhere.
With Algorithm 1 we obtain after only six iterations the right result with an error
smaller than 10-5. Algorithm 2 takes 21 iterations to get to this result.

Note that the pattern of specified entries in Experiments 2, 3, and 4 correspond
to nonchordal graphs (see [11]). But even in the case of a chordal graph there is not
a closed formula for the completion when the prescribed entries in the inverse are
nonzero.

In the above experiments both algorithms seem acceptable. For larger problems,
though, Algorithm 2 seems to outdo Algorithm 1 by far. For comparison purposes we
did ten experiments with 10 x 10 randomly generated matrices, in which the entries

{(1,4), (2,5),..., (7, 10)} in the inverse were prescribed. With tolerance equal to
10.5 we obtained that it took Algorithm 1 on the average 1687 iterations to stop, and
Algorithm 2 on the average 99 iterations. The fact that the convergence in Algorithm
1 can be quite slow is most likely due to the fact that the function f is very "flat" near
the optimum. An additional 100 experiments with random 10 x 10 matrices as above
with Algorithm 2 and tolerance equal to 10.7 led to an average of 144 iterations.

Acknowledgment. We wish to thank the referees for acquainting us with refer-
ences [9], [10], [12], and [13].
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A FINITE PROCEDURE FOR THE TRIDIAGONALIZATION OF A
GENERAL MATRIX*

A. GEORGEt, K. IKRAMOV$, A. N. KRIVOSHAPOVA$, AND W.-P. TANGt

Abstract. Interest in the problem of the tridiagonalization of an arbitrary square complex ma-
trix by similarity transformation has been renewed recently through work by Geist, Parlett, Tang
and others. To our knowledge, no procedure has so far been presented to compute a tridiagonal
matrix similar to a general square complex matrix that requires only a finite number of operations
and works for any matrix. In this paper, finite algorithms that are guaranteed to reduce an unre-
duced Hessenberg matrix or a general matrix to tridiagonal form via similarity transformations are
presented. The algorithms are mainly of theoretical interest; that of finding a practical, cost-effective
procedure for solving the problem remains an open problem.

Key word. tridiagonalization

AMS subject classifications. 65F10, 76S05

1. Introduction. The problem of tridiagonalization of an arbitrary square com-
plex matrix via similarity transformations is an important practical problem and has
been the subject of much study. An excellent review of the theoretical background
on this subject has been provided recently by Beresford Parlett [19]. Descriptions of
efforts and approaches for algorithms for the problem can be found in [4], [7], [14],
[16], [17], [22], [23].

It is well known that every Hermitian matrix (and every symmetric or skew-
symmetric matrix in the real case) can be reduced to tridiagonal form by a similarity
or unitary transformation. The Householder reduction [10] can be used to this purpose
and can be regarded as a constructive proof of the following theorem.

THEOREM 1.1. Every Hermitian (symmetric or skew-symmetric) matrix can be
transformed into tridiagonal form by a finite procedure using only rational operations
of the corresponding number field K (R or C) and extractions of square roots.

If the matrix A is large and sparse, the Lanczos algorithm will be more appropriate
for the tridiagonalization. The Lanczos procedure could be prematurely halted if the
dimension of the Krylov subspace is smaller than the size of A. However, it is not
difficult to show that these irregularities can still be resolved finitely [18].

When the matrix A is non-Hermitian, the Householder reduction process can only
transform A to Hessenberg form. Then, the Strachey-Francis (SF). algorithm can be
employed to further reduce the resulting Hessenberg form to tridiagonal form. The
Lanczos algorithm can also be generalized to non-Hermitian matrices. Unfortunately,
as far as is currently known, both approaches can suffer from breakdown. In particular,
if a serious breakdown occurs, we have no choice but to repeat the Lanczos algorithm
with a new set of starting vectors and with no guarantee that a new serious breakdown
will not be encountered. Such a repetition could be in principle infinite. Therefore, no
existing computational procedure for tridiagonalizing a general matrix can be regarded
as a constructive proof of the following conjecture.
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Every square matrix, complex or real, can be reduced to tridiagonal form by a

finite procedure employing only rational operations of the corresponding number field.
In a recent paper by Parlett [19], he wrote, "No one has presented a finite al-

gorithm that is guaranteed to compute a tridiagonal matrix similar to an arbitrary
given square complex matrix while avoiding huge intermediate quantities." To our
knowledge, no one has presented a finite algorithm for the goal he describes even
if huge intermediate (but finite) quantities are allowed. Moreover, as shown in [12]
where Lanczos methods are investigated in the context of solving nonsymmetric linear
equations, there are matrices for which almost any choice of a starting vector leads
to a serious breakdown.

The main result of this paper is stated in the following theorem.
THEOREM 1.2. Every matrix A 6 Rnn or Cnn may be reduced to tridiagonal

form (over R or C, respectively) by a finite procedure involving only the rational
operations of the corresponding number field.

The bulk of the proof of this theorem constitutes the examination of the case when
A is an unreduced Hessenberg matrix. We have chosen, therefore, to first investigate
this case in 2 and 3, and state the result as a separate theorem.

THEOREM 1.3. Every unreduced Hessenberg matrix H Rnn or Cnn may be
reduced to tridiagonal form (over R or C, respectively) by a finite procedure involving
only the rational operations of the corresponding number field.

For a general matrix A, we prove Theorem 1.2 when A is diagonalizable (over C)
in 4, and for the nondiagonalizable case in 5. In the Appendix, we show that the
tridiagonal form is not particularly good for normal matrices that are not Hermitian.

We would like to emphasize the following three points.
1. First, the procedure described in this paper is not a practical approach for

tridiagonalizing a given non-Hermitian matrix. Our motivation here is mainly theo-
retical. Therefore, the problem of constructing a cost-effective and stable algorithm
remains open.

2. If one is prepared to give up the strict tridiagonal form, then the interesting
work on look-ahead Lanczos reported in [5], [6], [11] can be very effective. For the
computation of the eigenvalues of a non-Hermitian matrix, that algorithm is adequate.

3. The word "finite" is the key in this paper. In fact, our reasoning here is
to some extent similar to Householder’s argument, which appears on page 18 of his
book [15]. However, the finiteness is crucial to the tridiagonalization problem. Oth-
erwise, the Jordan canonical form theorem can be considered as an answer to this
problem, at least for complex matrices.

2. Algorithm. Let H Rnn (or Cnn) be an unreduced Hessenberg matrix.
We recall that the unreducibility of H means that hi+l,i O, 1, 2,..., n- 1.
To transform H to a tridiagonal form, the SF-procedure [20] can be applied. If the
procedure succeeds, namely, the pivots on all steps are nonzero, then a tridiagonal
matrix T will be obtained. This transformation can be written as

T V-IHV,
where the matrix V is an upper-triangular matrix with unit diagonal and first row

eT (1,0,...,0). It is clear that V- has eT as its first row as well. In fact, the
nonzero elements of V- are the multipliers of different steps of the SF-procedure
with the sign reversed.

If we precede the SF-procedure by the similarity transformation

U-HU,
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where

1 -02 -3
0 1 0
0 0 1

0 0 0

then/2/also has upper Hessenberg form. Moreover, the subdiagonal elements of H
remain the same in H. Applying the SF-procedure to/2/and assuming it is successful,
we obtain

(1) (0)-1H(01))
WHV,

where is the resulting tridiagonal matrix, - I, and (f)IY) -1. Note that
the matrix W is still upper triangular and its first row is

[1 a2 3 n ].
It is well known (see, for example, [14]) that the SF-procedure is equivalent to

applying the unsymmetric Lanczos algorithm to the matrix H with the initial vectors

Vl el and Wl el.

If we wish to retain the subdiagonal elements h+,, 1, 2,..., n- 1, of the original
matrix H as the subdiagonal elements of the tridiagonal form then the same matrices
T, V, and W will be obtained, where V and W V-1 are formed by the right and
left Lanczos vectors.

In the same way, the combined procedure in (1) is equivalent to applying the
unsymmetric Lanczos method to the matrix H with initial vectors

v=e and w 1 a2 a3 a IT
where Wl is an arbitrary vector with the first component equal to 1.

The reduction of H to tridiagonal form will not be feasible if the pivot is zero at
any of the n- 2 steps of the SF-procedure. The exact analogue of this situation in
the unsymmetric Lanczos algorithm is the so-called breakdown phenomenon. Suppose
that the Lanczos vectors v,..., Vk- and w,..., wk-1 are already determined. We
will be able to obtain the next pair of vectors vk and wk only when the following
Hankel determinant is nonzero [5], [21]:

mo ml m2 mk-1
ml m2 m3 mk
m2 m3 m4 mk+l

mk-1 mk mk+l m2k-2

(i.e., no breakdown occurs at kth step of the Lanczos method). Here

mj wT1 Hjvl, j 0,1,...,



380 A. GEORGE, K. IKRAMOV, A. KRIVOSHAPOVA AND W.-P. TANG

and Vl, wl are the initial vectors of the Lanczos algorithm.
The condition

also assures that the first k- 1 steps of the equivalent SF-procedure are feasible. For
example, if

vT wl 0 and A2 morn2 m O,

then the SF-procedure can be started.

3. Proof of Theorem 1.3. To prove our first main theorem, we need the fol-
lowing three lemmas.

LEMMA 3.1. The unreduced Hessenberg matrix H can be reduced to the companion

form by a finite procedure using only the rational operations of the corresponding
number field.

This reduction can actually be done by several different finite algorithms. One
possibility is the Danilevski algorithm [4]. Based on this lemma, it is sufficient to
prove Theorem 1.3 for the companion matrix

(2) F

O000...Ofl
1000
0100
0010

0000

instead of a general Hessenberg matrix H.
LEMMA 3.2. If vl el, wT (1, a2, aa,...,an), and H is replaced by F,

then the Hankel determinants A1,A2,... ,An_I are nontrivial polynomials (i.e., not
identically zero) in the variables a2, a3,..., an.

Proof. It is easy to see that

FJel (j+l j 0, 1,...,n- 1,

where e, e2, e, are the coordinate vectors in Kn, and

Fnel f (fl, f2,..., fn)T.

Therefore,

mo 1,

mj aj+l, j 1, 2,..., n 1,

mn fl + f2a2 +"" + fnan.

The moments mj with indices greater than n are still linear functions in a2, a3,..., an,
although they depend on coefficients fl, f2,..., fn in a more complicated way. The
Hankel determinants A1,A2,... ,An_ have the following form:

A1 =mo= 1,
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1 a2

a2 a3

1 a2
02 a3
a3 a4

a3
a4
a5

1 a2 a3 an-2 an-1
a2 a3 a4 an-1 an
a3 a4 a5 an an-l-1

an-2 an-1 an m2n--5
an--1 Oln an-i m2n--5 m2n--4

It is obvious that A1 and A2 cannot be identically zero. The same is true for other
polynomials, although it is less obvious. We demonstrate the proof for An_l. The
same approach can be used for other cases.

If An_ is identically zero, then its value should be zero for whatever values we
assign to the parameters a2,..., an. However, if we let

a2 a3 on_ 0 and an 1,

then we obtain the determinant

1 0 0 0 0
0 0 0 0 1
0 0 0 1 x

0 0 1 x x
0 1 x x x

This is contradictory to the assumption and proves the lemma.
COROLLARY 3.3. If we apply the combined,procedure described above to the matrix

F, then all the pivots of the SF-procedure will be nontrivial rational functions of the
parameters a2, an. For example,

# 0

is exactly the condition for the first pivot of the SF-procedure to be nonzero.
Remark 3.4. As each entry in the determinant Ak is a linear function in variables

a2,...,an, the degree of Ak in each of a’s does not exceed k, the order of Ak.
Moreover, the total degree of Ak is no more than k.

Let E K[x,x2,...,xs], the ring of polynomials over K, where K- R or
K- C. Suppose that is nontrivial and has the degree dj in xj, j 1,...,s.
We use Gs to denote a grid in Ks with sides parallel to the coordinate axes. On the
jth axis there are dj + 1 nodes in the GS; the spacing of these nodes can be arbitrary.
The grid Gs, therefore, consists of (d + 1)(d2 + 1)... (ds + 1) nodes. Then, we have
the following lemma.

LEMMA 3.5. There exists a grid node (x,x,... ,x) in Gs such that

# 0,
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and such a node can be found by no more than N8 evaluations of at nodes of G,
where

Proof. The proof is by induction. or s 1, the assertion of the lemma is a
slightly modified version of the well-known fact: nontrivial polynomial in one
variable Xl, having the degree dl, cannot have more than dl roots. So, evaluating this
polynomial at any different dl + 1 nodes, we will certainly find amongst them one
that is not a root of

Assume the lemma is true for all s < k. We now prove it for s k. We view q) as
a polynomial in the variable Xl with coefficients in K[x2,... ,xk]. Let (x2,... ,xk)
be the leading coefficient of (I). The degree of in xj does not exceed dj, j 2,..., k,
and is nontrivial by definition.

Let Gk- be a subgrid of Gk formed by the nodes of any layer perpendicular to
the x-direction in Gk. By our assumption, there is a node (x,..., x), such that

# 0,

and this node can be found in no more than Nk-1 (-=2 dj)+ (k- 1) evaluations
of . If we let

X2 X2... Xk Xk

then (I) becomes a polynomial in the variable X with coefficients in K. Evaluating
at d + 1 different values, we will be able to find a node for which (I) # 0. The total
number of evaluations will not exceed

’With these results, we can now complete the proof of Theorem 1.a.

Proof. By Lemma a.1, we can assume that the Hessenberg matrix is, in fact, the
companion matrix F in (2). We set

wlT (1 a2... an)

and denote by ( the product of the A’s:

(I) A2A3 An-.

Obviously, (I) is a polynomial in the variables a2,..., an, and its degree dy in ay does
not exceed

n2-n-2
d=2+3+...+(n-1)= 2

j=2,...,n.

for which (I)(a a) 0.According to Lemma 3.5, we can find values a, an,
This requires a finite number of evaluations of (I) at different nodes. Every such

In fact, the closed form for the degrees of the most of c’s can be obtained, but it is not important
for this proof.
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evaluation can be considered as an application of the unsymmetric Lanczos algorithm
(or the equivalent combined SF-procedure) to the matrix F with the initial vectors
el and wl (1, a2,... ,an)T with assigned values of a2,... ,an at the given node.
If (I) 0 at the particular node, then the Lanczos process will end prematurely by
a serious breakdown. However, if ai a*i, j 2,..., n, the Lanczos procedure will
be completed successfully and a tridiagonal form of the original matrix H will be
obtained. D

4. Proof of Theorem 1.2 (diagonalizable case). We apply the Danilevski algo-
rithm to the matrix A. If the algorithm succeeds, a companion matrix of the form (2)
will be obtained. Then the assertion follows from Theorem 1.3. On the other hand,
it is possible that this algorithm prematurely halts and a matrix of the form

is obtained. Here F is a companion matrix (2) of order k (k < n).
Let us apply a similarity transformation with the matrix

X ]S
0 I_

to the matrix i.. Then,

.= S_s= [ FO -XA + FIX + B ]
AI J

The diagonalizability of the matrix A implies that the matrix equation

(3) XA1 F1X B1

has a solution. In fact, if the matrices F1 and A1 have disjoint spectra the solution
of (3) is unique. Using any one of the solutions for (3), the matrix A can be written
in the direct sum form

A=FA.

Recursively applying the same reasoning to the matrix A1, then A2, and so on, we
can obtain a direct sum decomposition of the matrix A

where matrices Fi are in companion form. Theorem 1.3 then can be applied to each
of the matrices Fi. It remains to note that a solution of the linear matrix equation (3)
of Sylvester type can be obtained by a finite procedure, using only rational operations
of the corresponding number field.

5. Proof of Theorem 1.2 (nondiagonalizable case). We can proceed as in prov-
ing for the diagonalizable case. However, in case of a general matrix A, there is no
guarantee whatsoever that matrix equation (3) has solutions. We can express this
differently and possibly more clearly in terms of Krylov subspaces. In transformation

A --, . R-1AR
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columns 1, 2,..., kl of the matrix R are

el Ael Akl- el

i.e., they constitute a basis of the Krylov subspace K:(A, el) of dimension k. But some
invariant subspaces of a general matrix A may have no A-invariant complement.

Let us precede the Danilevski procedure by the similarity transformation

(4) A A Z-AZ

with z as the first column in Z. Then for a new matrix

(5) -- -ft-- (-Z-1)A(Z) -IA
columns 1, 2, and so on, of the/ form the Krylov sequence

z, Az, A2z

i.e., a basis of the Krylov subspace K:(A, z).
Recall that the dimension of the Krylov subspace (A, z)is called the index (or

degree [12]) of z with respect to A and is denoted by indz. The maximal possible
value of indz for a given A coincides with the degree m of the minimal polynomial of
A.

Now, if indz n then in (5) is a companion matrix, and there is nothing to
prove. Therefore, assume that indz m < n. We claim that the Krylov subspace
K:(A, z) has an A-invariant complement.

Indeed, the operator induced by A on K:(A, z) is "responsible" for that part of the
Jordan structure of A which is the direct sum of the Jordan blocks of the maximal
dimensions, one block for each eigenvalue. As a consequence, there should be a
complementary A-invariant subspace that provides the remaining part of the Jordan
structure of A.

The existence of a complementary subspace amounts to the existence of a solution
X for (3), if in (4) z is a vector with index m with respect to A. To prove Theorem
1.2 it remains to show that such a vector z could be constructed finitely. We can
deduce that from the following two assertions. It is convenient to formulate them as
Lemmas 5.1 and 5.3.

LEMMA 5.1. The degree m of the minimal polynomial of A can be found by
means of a finite number of rational operations.

Proof. It is sufficient to apply the orthogonalization procedure to the sequence

(6) I, A, A2,..., An-1.

The matrices in this sequence are considered as elements of Cn2 or Rn2 with the
standard scalar product. Another possibility is to find the rank of the n2 n matrix
j( formed by matrices (6) as columns via elementary transformations.

Remark 5.2. The first way of finding the number m was proposed in [8].
LEMMA 5.3. If.m is the (known) degree of the minimal polynomial of A then a

vector z of index m with respect to A can be. found by a finite procedure involving only
rational operations of the corresponding number field.

Proof. We search for a vector z such that the vectors

z, Az, Am-lz
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are independent. In other words, letting

B- [z Az Am-lz],

we nust ensure that at least one of the m m minors of this matrix is nonzero.
Working with B in field C[zl,..., zn] of rational functions in variables zl,..., zn,

we can obtain the decomposition

PB LU,

where P is a permutation matrix, L is a lower triangular n m matrix, U is a unit
upper triangular m m matrix, the last two matrices with elements in C[z,..., Zn].
The numerator of the element lmm is a nontrivial polynomial in Zl,"., Zn. We can
therefore apply Lemma 3.5, and the assertion of this lemma follows.

Returning to Theorem 1.2, we must only add that for a real matrix A the vec-
tor z in Lemma 5.3 could be taken real. Hence we can consider ](A,z) and its
complementary subspace as subspaces in Rn, and the matrix/ is real as well.

Appendix. Would the tridiagonal form be beneficial for a general normal ma-
trix? The theorem provided below shows that any complex normal matrix which
is at the same time unreduced tridiagonal essentially is Hermitian (in the real case,
symmetric or skew-symmetric). On the other hand, most normal matrices can be
transformed into the unreduced tridiagonal form. Indeed, we can apply the standard
Householder procedure to a general normal matrix first. If an unreduced Hessenberg
matrix is obtained, the finite procedure described in this paper then can be used for
attaining the tridiagonal form. However, we have to give up the normality to acquire
the tridiagonal form, with the exception of simple Hermitian-like cases mentioned
above. This explains to some extent why a canonical form under unitary similarity
for unitary matrices invented in [2] is not tridiagonal but rather pentadiagonal with
a number of zeros inside the band.

THEOREM 5.4. If the matrix

011 1 0
/1 02 0 0

A= 0 /2 & 0

is unreduced, namely,

n- O/n

1,2,...,n- I,

and A is also normal, then
1. If A is real, the following must be true:

A AT or A aI + K,

where K -KT, o E R.
2. If A is complex, then

(7) A aI + TH,

where H H*, ITI 1, a e C.
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A sketch of the proof of Theorem 5.4 can be obtained by noting first that any
normal matrix A satisfies A* p(A) for some polynomial A, followed by an argument
showing that the minimal degree of p for unreduced tridiagonal matrices must be
one, and further followed by showing that normal matrices satisfying this relation are
exactly the matrices referred to in Theorem 5.4. A full proof of this theorem can be
found in [3, Lem. 3].
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A LOOK-AHEAD BLOCK SCHUR ALGORITHM FOR
TOEPLITZ-LIKE MATRICES*
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Abstract. We derive a look-ahead recursive algorithm for the block triangular factorization
of Toeplitz-like matrices. The derivation is based on combining the block Schur/Gauss reduction
procedure with displacement structure and leads to an efficient block-Schur complementation algo-
rithm. For an n n Toeplitz-like matrix, the overall computational complexity of the algorithm is

O(rn2 + ) operations, where r is the matrix displacement rank and is the number of diagonal
blocks. These blocks can be of any desirable size. They may, for example, correspond to the smallest
nonsingular leading submatrices or, alternatively, to numerically well-conditioned blocks.

Key words. Toeplitz-like matrices, block Schur algorithm, block triangular factorization, linear
equations, singular minors, look-ahead algorithm

AMS subject classifications. 65F05, 65F30, 15A23, 15A06

1. Introduction. The triangular factorization of a matrix is a useful tool for
many problems. Such a factorization is guaranteed to exist whenever the matrices
are strongly regular, i.e., all leading principal minors are nonzero [11]. The standard
Gaussian elimination technique (also known as Schur reduction) may then be used
to compute the triangular factors of the matrix. Also, in many applications, one is
often faced with matrices that exhibit some structure, e.g., Toeplitz, Hankel, close-to-
Toeplitz, close-to-Hankel, and related matrices. Such structure is nicely captured by
introducing the concept of displacement structure [18], [20]. In this context, an n n
structured matrix R is characterized by an n r matrix G (called a generator of R)
with r << n usually. The minimum column dimension of G is called the displacement
rank of R. The triangular factorization of such strongly regular R can be computed
efficiently and recursively in O(rn2) operations (additions and multiplications) [19],
[23], [32]. This is achieved by appropriately combining Gaussian elimination with dis-
placement structure. The resulting algorithm can then be regarded as a far-reaching
generalization of an algorithm of Schur [1], [36], which was chiefly concerned with
the apparently very different problem of checking whether a power series is analytic
and bounded in the unit disc; hence the "name generalized Schur algorithm. The
reader may consult the recent survey paper [21] for detailed discussions on the topic
of displacement structure.

Now most fast factorization algorithms that have been derived so far in the lit-
erature assume that the involved structured matrices are strongly regular. In several
instances, however, it might be more appropriate to perform block Schur complemen-
ration steps. This happens, for example, when the assumption of strong regularity is
dropped, which then requires the use of the smallest nonsingular leading minor, or
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a numerically well-conditioned leading minor of appropriate dimensions, in order to
proceed with a block Schur reduction step.

Indeed, many authors have worked on the problem of extending the fast algo-
rithms to nonstrongly regular matrices, where the sizes of the block Schur comple-
mentation steps were determined by the sizes of the smallest nonsingular leading
minors. Among these we mention the works of Heinig and Rost [15], Delsarte, Genin,
and Kamp [9], and Gover and Barnett [13] who generalized the classical Levinson
algorithm for solving Toeplitz systems of linear equations (or equivalently factoring
the inverse of the Toeplitz coefficient matrix); a so-called split-Levinson algorithm
was later considered by Ciliz and Krishna [7]. Pombra, Lev-Ari, and Kailath [28] also
derived both Levinson- and Schur-type algorithms for Toeplitz matrices by generaliz-
ing the three-term recursion for polynomials orthogonal on the unit circle. The case
of nonstrongly regular Hankel matrices arises in many applications as well, such as
the partial realization problem and decoding of BCH codes [4], [8]. Algorithms for
computing the triangular factorization and/or inversion of arbitrary Hankel matrices
have been derived by Berlekamp [3], Massey [25], gung [22], and Citron [8]. More re-
cently, Zarowski [37] used the algorithms of Heinig and aost [15] and Delsarte, Genin,
and Kamp [9] to induce Schur-type algorithms for Hermitian Toeplitz and Hankel
matrices with singular minors.

All these algorithms are applicable to Toeplitz and Hankel matrices only. Re-
cently, Pal and Kailath [26], [27] derived recursive algorithms that are applicable to a

larger class of matrices called quasi-Toeplitz and quasi-Hankel. These are congruent
to Toeplitz and Hankel matrices in a certain sense. The derivation exploits this fact
and, among other results, shows that the determination of the size of the smallest
nonsingular minor is reduced to counting the number of repeated zeros at the origin
of a certain polynomial.

But Toeplitz, Hankel, quasi-Toeplitz, and quasi-Hankel matrices are all structured
matrices with displacement rank r 2. In many applications, however, such as system
identification, image processing, and multichannel filtering, block structured matrices
arise that have displacement ranks larger than two. In these cases, the previous
algorithms are not applicable. Moreover, in the varied approaches above, the sizes of
the block Schur complements were set equal to. the sizes of the smallest nonsingular
minors, which thus requires the verification of the occurrence of exact singularities.
This may pose considerable difficulties from a numerical point of view.

Alternatively, one can determine the sizes of the block steps by looking for nu-

merically well-conditioned blocks. This has recently been studied by several authors
trying to devise effective numerical algorithms for general Toeplitz systems of equa-
tions. An early paper was the one of Chan and Hansen [6]. Among many others we
mention Gutknecht [14] and Freund [10], which give extensive references.

In this paper, we provide a new fast look-ahead (block-Schur) algorithm for ma-
trices with very general displacement structure, which includes the Toeplitz case as a
special instance. We study arbitrary Hermitian Toeplitz-like matrices and derive an

algorithm that leads to a factorization of the form R LDL*, where L is a lower
triangular matrix and D is a block diagonal matrix whose block entries are easily
invertible. The overall computational complexity of the algorithm is O(rn2 + n3/t)
elementary operations (addition and multiplication), where t is the number of diago-
nal blocks in D. In the strongly regular case we have t n and the complexity reduces
to the usual O(rn2) figure. The diagonal blocks in D can be of any desirable size.
They can be chosen, for example, as the smallest nonsingular minors or as the size
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of numerically well-conditioned blocks. For this reason, our development consists of
two independent steps. We first derive the block Schur algorithm assuming arbitrary
choices for the sizes of the blocks, thus leading to a general-purpose fast Schur com-
plementation procedure that does not depend on the specific choices for the sizes of
these blocks. We then focus in 5 on the particular choices that correspond to the
smallest (exactly) nonsingular leading blocks. This is done here because, apart from
numerical possibilities, the fast block-Schur complementation algorithm also has sev-
eral theoretically interesting features as well. For example, the explicit formulas for
the block diagonal matrix in the block triangular factorization can give simple rules
for computing the inertia of general structured matrices, with important applications
in root distribution of polynomials.

The paper is organized as follows. In 2 we review the class of structured matrices
and describe the Schur/Gauss reduction procedure for the triangular factorization of
strongly regular matrices. In 3 we combine the Schur reduction procedure with
displacement structure and derive the generalized block Schur algorithm. In 4 we
separately consider the special cases of strongly regular and block steps along with the
corresponding computational complexities. In 5 we address the issue of determining
the sizes of the smallest (exact) nonsingular minors. In 6 we show how to exploit
the matrix structures in order to efficiently compute the QR factors of the blocks of
Di. In 7 we give a system (and state-space) interpretation of the derived recursions
and we conclude with 8.

2. Structured matrices. The concept of displacement structure and structured
matrices can be briefly motivated by considering the much-studied special case of a

n--1Hermitian Toeplitz matrix, T [ci_y]i,j=o, ck c*k. Since T depends only on

n parameters rather than n2, it may not be surprising that matrix problems in-
volving T (such as triangular factorization, orthogonalization, inversion) have com-
plexity O(n2) rather than O(n3). But what about the complexity of such prob-
lems for inverses, products, and related combinations of Toeplitz matrices such as
T-1,T1T2,T1 -T2T-IT4,(TIT2)-IT3,...? Though these are not Toeplitz, they are
certainly structured and the complexity of inversion and factorization is not expected
to be much different from that for a pure Toeplitz matrix, T. It turns out that the
appropriate common property of all these matrices is not their "Toeplitzness," but
the fact that they all have. low displacement rank. The displacement of an n n
Hermitian matrix R was originally defined by Kailath, Kung, and Morf [20] as

(1) VR R- ZRZ*,

where the symbol stands for Hermitian conjugate transpose of a matrix (complex
conjugation for scalars), and Z is the n n lower shift matrix with ones on the first
subdiagonal and .zeros elsewhere; ZRZ* corresponds to shifting R downward along
the main diagonal by one position, explaining the name displacement for VR. If VR
has low rank, say r, independent of n, then R is said to be structured with respect
to the displacement defined by (1), and r is referred to as the displacement rank of
R. In this case, we can (nonuniquely) factor VR as VR GJG*, where J J* is a
signature matrix that specifies the displacement inertia of R: it has as many :t:ls on
the diagonal as VR has positive and negative eigenvalues, J (Ip -Iq), p + q r,
and G is an n r matrix. Here, Ip denotes the p p identity matrix. The pair {G, J}
is called a generator of R. For a Hermitian Toeplitz matrix T [ci_j]"-1i,j--O Ck C*__ k,
with co 1, it is straightforward to verify that (1) leads to a compact description of
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T. Indeed, if we subtract ZTZ* from T we get

(2) T- ZTZ*

1 0
C1 C1

Cn-- On--

1 0
0 -1

1 0
Cl C1

Cn-- Cn--

which shows that T- ZTZ* has rank 2, or equivalently, T has displacement rank 2,
independent of n.

To motivate more general structures, and to clarify the importance of direct fac-
torization problems as opposed to inversion problems, we consider a simple example
that shows the need for more general structures such as R- FRF*, with lower trian-
gular F.

Consider again the case of an n x n Hermitian Toeplitz matrix T for which T-
ZnTZ has rank 2 (Zn now denotes the n x n lower shift matrix), and assume we are
interested in factoring T-1. If we form the block matrix (see [19] for more examples
and discussion)

-T I ]I 0

it is then straightforward to check that the displacement rank of M with respect to
M- Z2nMZn is equal to four. However, we can get a lower displacement rank by
using a different definition, viz.,

which corresponds to choosing F Zn Z, in the definition R- FRF* (rather than
F Z2n, the 2n x 2n lower shift matrix).

The question is then how to exploit the structure of M in order to obtain fast
factorization of T-1. The answer is that the (generalized) Schur algorithm operates
as follows: it starts with a generator matrix G of a structured matrix (say the gen-
erator of M), and it recursively computes generator matrices of the successive Schur
complements of the matrix. So the first step of the algorithm gives us G, which is
a generator of the Schur complement of M with respect to its (0, 0) entry. The next
step gives us (2, which is a generator of the Schur complement of M with respect to
its 2 x 2 leading submatrix, and so on. After n such steps, we obtain a generator of
the nth Schur complement, which is T-. This procedure can be shown to provide
the triangular factorization of T- (see, e.g., [19], [21]).

Hence, by performing the direct factorization of the extended matrix M we also
obtain the factors of the inverse matrix T-l; this is an alternative to the use of the
Levinson algorithm for this problem. Applications with more general matrices F
(such as diagonal or in Jordan form) include interpolation problems [5], [33], [34], and
adaptive filtering [35].

In this paper we study n x n Hermitian matrices R with Toeplitz-like displacement
structure of the form

(3) R- FRF* GJG*,

where F is an n x n lower triangular matrix with diagonal elements.{f0, f,..., fn-1 },
G is an n x r so-called generator matrix (with r <_ n), and J is an r x r Hermitian
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signature matrix satisfying j2 I, such as J (Ip -Iq), p + q r, or some other
convenient form (as will be the case in 5.5). We further assume that R is invertible
but not necessarily strongly regular, and that 1 fif 0 for every i, j. The latter
condition guarantees the existence of a unique solution R of (3) (but it can be relaxed
as discussed in [21]). We say that R has a Toeplitz-like structure with respect to F
and {G, J} is called a generator pair of R.

2.1. The block Schur/Gauss reduction procedure. The Gaussian elimi-
nation (or Schur reduction) procedure is a recursive algorithm that computes the
triangular factors of a matrix. To clarify this, consider a Hermitian and invertible
(but not necessarily strongly regular) matrix R, and let r/0 denote the desired size of
the leading (invertible) block, Do, with respect to which a Schur complementation
step is to be performed. The /0 may stand for the size of the smallest nonsingular
minor of R or, alternatively, for the size of a numerically well-conditioned block (as in
[6], [10], for example), or for some other convenient choice. If L0 represents the first
r/0 columns of R then

R_LoDIL= [0,oo 0 ]0 R1

where R is an (n- r/0) (n- r/0) matrix that is called the Schur complement of Do in
R. Also, Lo is an n r/o matrix whose leading r/0 r/0 block is equal to Do. We shall
say that /l has one (block) zero row and one (block) zero column (the size of the
block being r/0). If we further let r/1 denote the desired size of the leading (invertible)
block of R1 (denoted by D1) and consider the corresponding first r/ columns of R1
(denoted by L1), then we also have

R1 L1DIL1 0

where R2 is now an (n- r/o- ?1 X (n- ro--J?l) matrix that is the Schur complement
of D1 in R1. Repeating this recursive procedure, viz,

(4) [0v}xvi Ri+10 ] =Ri_LiD_IL, i>0,_

we clearly get, say after t steps,

R LDiL*

LoDIL -4- 0uxm D-1 0nxm + 071 xn2 D- 0m xu2 +... -4-,L L L2 L2

where DB (Do DI Dr-l) is block diagonal, and the (nonzero parts of
the) columns of the block lower triangular matrix L are {Lo,... ,Lt-i}. Here t is

t-1the number of reduction steps, i.e., n =0 /" We also define, for later reference,
j-1a :Y’=0 r/, a0 0. The computational complexity of the above procedure is O(n3)

elementary operations and it leads to a block triangular factorization of R.
It is clear at this point that the following questions are among the major issues

that arise during the block triangular factorization procedure: (i) how to efficiently
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exploit any Toeplitz-like structure of R; (ii) how to efficiently compute the triangular
factors Li and Di; (iii) how to compute (or avoid) the inversion of the diagonal
blocks D; (iv) how to determine an alternative triangular factorization of the form
R LbI*, with lower (not block) triangular and with a block-diagonal matrix

bB whose block entries are easily invertible; (v) how to determine the sizes of the
block steps,

We address the first four questions in the next two sections and postpone the
discussion of the last question to 5, where we focus on a particular choice for the
r/{ that is determined by the sizes of the smallest nonsingular minors of R. It will
be clear from the derivation that follows that, in order to increase the computational
efficiency of the resulting algorithm, these questions should be answered by essentially
restricting ourselves to the use of the entries of the generator matrix of R, without
the need to explicitly form its successive block Schur complements, R.

3. Block Schur algorithm for Toeplitz-like matrices. We now exploit the
fact that R is a structured (Toeplitz-like) matrix. That is, we show that the successive
computation of the Schur complements of R in (4) can be carried out in a computa-
tionally efficient recursive procedure by exploiting the structure implied by (3). To
begin with, we define Fi to be the submatrix obtained by ignoring the first ci columns
and rows (or the first i block columns and rows) of F (recall that ci 0 +"" + r/i-l).
This means that Fi+l is a submatrix of Fi, viz.,

? p+ P0=F,

where ? denotes irrelevant entries and/i is the r/ x r/i leading submatrix of F. In other
words, F+I is obtained by deleting the first i rows and columns of Fi. The following
theorem, first stated in general terms, shows that the successive Schur complements
of a Toeplitz-like matrix inherit its structure and thus satisfy a displacement equation
similar to (3).

THEOREM 3.1. The ith Schur complement Ri of a Toeplitz-like matrix R, as in

(3) and (4), is also Toeplitz-like with respect to F, viz., Ri satisfies a displacement
equation of the form Ri FiRiF GiJG, where the generator matrix Gi satisfies
the following recursive construction: start with Go G, Fo F, and repeat for
0, 1,...,t- 1:

1. At step we have Fi and Gi. Let i denote the top i rows of Gi.
2. The th triangular factors Li and Di are the solutions of the equations

(5a)

3. Choose arbitrary r x i and r x r matrices [-Ii and i, respectively, so as to
satisfy the embedding relation

(5b) [/:/i Ki ] [ Di Pi Oi * 0

4. A generator for Ri+t is then given by

(5c) [ 0,, .
G+ ] FiLi[-t J + GiJ J.
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Proof. We prove the result for G1. The same argument applies to {Gi, > 1}. It
follows from (3) that the leading submatrix Do and the corresponding rio columns Lo
are solutions of the equations: Do /0D0/( + oJ and L0 FLo + GJ).
Substituting these expressions into the definition of R1 in (4) and computing the
difference [ FF* we get

(6)

We now verify that the right-hand side of the above expression can be put into the
form of a perfect square by introducing some auxiliary quantities. Consider an r rio
matrix/:/0 and an r r matrix K0 that are defined to satisfy the following relations

(in terms of the quantities that appear on the right-hand side of the above expression.
We shall see very soon that this is always possible).

/:/J/:/o D /(D-i/o, /J/o J D-lo, [(Jo GoDo^*-o.
Using (/?/0,/0) we can factor the right-hand side of (6) as ~(21J(, where ( ~=FLoHJ+GJK J. But the first block row and block column ofR are zero. Hence, G
is of the form O1 Oxno a ]T. Moreover, it follows from the above expressions

for (/-o,/22o) that/o, do, /2/o, and/22o satisfy the relation

qo o  oqo
which is equivalent to (5b) for 0. v1

We still need to show how to choose matrices (/:/i, i) so as to satisfy the embed-
ding relation (5b). Following an argument similar to that in [24] we get the following
result.

LEMMA 3.2. All choices of and [( that satisfy (5b) can be expressed in terms

of _f’i, , and Di as follows:

(7) ,=0;1{I JO:[I,,- ,-1] D;I0}
where Oi is an arbitrary J-unitary matrix (OiJO J) and Ti is an arbitrary unit-
modulus scalar (ITil- 1).

Substituting expression (7) for/?/i and/i into the generator recursion (5c) we
obtain the following algorithm, which we refer to as the generalized block Schur al-
gorithm. This algorithm allows us to compute generator matrices for the successive

(block) Schur complements of R, viz., G --, G1 -, G2 - which can then be used
to solve for the triangular factors via (5a).

ALGORITHM 3.3 (BLOCK SCHUR ALGORITHM). The generators Gi of the suc-
cessive Schur complements Ri satisfy the recursion

[ O?ir ] {Gi + (T;Fi-- In- )LiDl(I?i T;i)-li}(8) G+
where Oi is an arbitrary J-unitary matrix and ’. is an arbitrary unit-modulus scalar.
The ith triangular factors Li and Di are found by solving (5a).
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4. Computational issues and simplifications. The point to stress here is
that we have so far shown the following: the triangular factors Li and Di can be
found by solving (5a), which are completely specified in terms of F and G and
without the need to explicitly form R, since the Gs can be recursively computed via

(8). To further stress this point we now take a closer look at recursion (8) and (ha).
4.1. Strongly regular steps. We first consider the special case that corre-

sponds to 1, and which we refer to as a strongly regular step. In this case,
it is possible to further simplify the generator recursion (8). To this effect, we note
that the triangular factor Li is now a column vector, which we denote by the lower-
case letter l, the diagonal factor D{ is a scalar, denoted by d, the first { rows of
Gi collapse to a single row vector, denoted by g, and the quantity is also a scalar
equal to f (we re using lower case letters to refer to quantities in strongly regular
step). A direct consequence of these facts is that we can now explicitly solve for d
and l in (ha). More specifically, we get

j .g g
l (In- fF)-GJg.(9a) d 1 -f2’

Substituting these expressions into the generator recursion (8) we readily verify that
it simplifies to

Gi+ giJg

where is a "Blchke matrix" or "Blchke-Potapov" factor (see [29]) of the form

(9c)
1 f (F fIn-.)(I-. fF)-v f.,

The difference between (9b) and the general form (8) is that recursion (9b) is written
in terms of Fi and Gi only, while expression (8) still involves Li and D.

We now move a step further and show that (9b) can be further simplified by
conveniently choosing the free parameters Oi and i. An obvious choice is Oi Ir
and

Ti l+f,

(this choice for Ti leads to i (Fi fIn-.)(I-. fFi)-). There are other
convenient choices for Oi well, such the one we describe next: a strongly regular
step clearly implies that di 0 and consequently giJg O. That is, gi h nonzero
J-norm. Hence, we can always find a J-unitary rotation Oi that reduces gi to the
form

[0 0 0 0],
with a nonzero entry in a single (convenient) column, say the jth column. So sume
we use this choice for Oi, which can be implemented in a variety of ways: we may use
elementary rotations such Givens or hyperbolic [12] or Householder transformations
[12], [30]. Using the above choice leads to the following algorithm in the strongly
regular case.
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ALGORITHM 4.1 (Strongly regular step). The generator recursion for a strongly
regular step is given by

O
GiOi O 0 O + iGiOi O 1 0(11) Gi+l 0 0 It-j-1 0 0

where (Fi f,In-,)(In-a, fiFi) -1. That i8, i--i i8 obtained as follows:
choose a convenient J-unitary rotation that reduces the first row of Gi to the form
(10); multiply the jth column of GiOi by and keep all other columns unchanged;
these steps result in a generator Gi+l. The triangular factors are given by

di giJg/(1- If,l2) and li (In- fFi)-IGioiJ 0 x() 0

An alternative form for the generator recursion that corresponds to using Oi I,
instead of (10), is given by

01 ] Gi + ( In_a)Gi
Jggi

G+I gJg

In this case, we compute l via l (In-,- fFi)-lGJg, and d is the leading
entry of li.

We assume throughout that F is a sparse matrix in the sense that computing Fx,
for any n 1 column vector x, requires O(n) operations. It can then be checked that
each step of recursion (11) requires O(r(n- hi)) operations. Furthermore, we may not
need to explicitly compute the inverse matrix (In- -fFi)- that appears in the
expressions for (I)i and li. We can instead, in the case of li for example, solve a trian-

gularsystem oflinear equationsofthe form (In--fF)x GiOJ 0 1 0 iT.
Moreover, in many applications the matrix F has zero diagonal entries (i.e., fa 0),
in which case computing li and (I)i is trivialized since the inverse term disappears.

As remarked above, a strongly regular step corresponds to di O, or equivalently,
giJg O. There is however a trivial special case with d 0, which can still be
incorporated into a strongly regular step. This happens when gi is itself a zero row
vector. That is, Gi is of the form

This implies that the first row and column of Ri are zero. Going back to the de-
scription of the Schur reduction procedure in 2.1, we see that we can proceed in this

special case by choosing l 1 0 0 iT and by setting Gi+ ( and Fi+l
equal to the submatrix obtained by deleting the first row and column of Fi.

4.2. Block steps. We now consider the case i > 1 that we refer to as a block
step. In this case, the triangular factors Li and Di are block matrices and it is not
possible, in general, to solve for Li and Di and write down simple explicit expressions
in terms of F and G only, as in the strongly regular case (see (9a)).

We can however proceed with (8) and use the simple choices Oi I and Ti 1.
Under these conditions, we can rewrite the generator recursion (8) in the following
form.
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ALGORITHM 4.2 (Block step). The generator recursion for a block step can be
expressed as

Ovir 1Gi+ Gi + Xi,

where Xi (Fi In-ai)LiD:(l(Im [i)--lOi The triangular factor Li is obtained
by solving the equation (the leading i x i submatrix of Li provides Di)

(12b) Li FiLi-f’ + Gi

Expression (12a) shows that Gi+l is obtained by adding the last (n- ai+l) rows
of Xi and Gi, while the top rows of Xi should cancel the top rows of Gi.

4.2.1. Computing Li. Solving for Li in (12b) is not a major problem in most
applications such as linear prediction, inverse scattering, solution of (structured) linear
systems, least-squares problems, interpolation problems, etc., because the matrix F
arises in sparse forms, e.g., F Z, F Z + )I, F diagonal {fo, fl,..., f,-}, F
(Z + oI) (Z + I) ..., F Z+ diagonal {fo,..., fn-1 }. Consider, for instance,
this last bidiagonal form. Denote the i columns of Li by Li lo li li,- ],
and the r rows of ( by {g0, gi,..., g,,-} (g go). It is then straightforward
to check, using (12b), that the columns of L can be recursively computed as follows"

j,g 0.

liy (In-,i f+jFi)- [OiJgi3 + Fili,j-1] for j 1,...,i- 1.

Once again, the inversion (In--f+jFi)-1 can be avoided by solving a sparse trian-
gular system of linear equations. The computational complexity needed in computing
L is O(ri(n ai)).

4.2.2. Computing Xi. We now consider the operation count for one possibility
for computing Xi (other possibilities clearly exist). Recall that L has Di as its leading

block. To show this explicitly we partition L as follows: Li D.T, WiT ]T. Then

LD-:( I, (WiD-I)T ]T. At this stage we introduce the QR decomposition of
Di, viz., Di QiPi, where Qi is an r/i x r/i unitary matrix (QiQ Ira) and Pi is an

ri x ri nonsingular upper triangular matrix. Invoking the fact that Di is Hermitian
(i.e., QiPi PQ) we conclude that D-1 QiP-*. The point is that we show later
in 6 that Qi and Pi can be efficiently computed with O(r/) operations by using only
strongly regular steps (this is despite the fact that the leading minors of Di may be
singular). Assume, for the moment, that this is indeed the case. We can then rewrite

Xi in the form

We now evaluate the operation count needed in computing Xi. The term Y1
(Im -/i)-(i can be evaluated in O(ri) operations (by solving r lower triangular
linear systems, for instance). The product Y2 P-*Y can also be reduced to the
solution of r triangular linear systems, viz., PY2 Y1, and thus requires O(r?)
operations. The term Y3 WiQiY2 requires O((r//2 + rTi)(n- ai+l)) operations.
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Finally computing the last (n-ai+l) rows of (Fi In-as)[ Y1 requires O(i(n-ai+))
operations.

It is not necessary to perform these computations in the above specified order.
Other orders are possible and may be more suitable depending on the problem at
hand. We may even ignore the QR factorization of Di altogether and simply invert

Di. But we opted here for introducing the QR representation of Di simply because, as
we shall show in a later section, this factorization can be computed rather efficiently
due to the Toeplitz-like structure of R and, moreover, it will also lead to an alternative
convenient factorization for R itself, as shown in the next section.

But for now we note that the computational cost involved in computing Gi+ and
L in the block case is O((n a+l)(2 + i + 2r) + rr2 + rri + rr]_l) operations.
To get an idea of the overall computational complexity, i.e., for 0, 1,..., t- 1,
we assume that the rs are equal, viz., ro 71 -1 n/t. It is then

n3

straightforward to verify that the above operation count reduces to O(rn2 + -). (In
the strongly regular case we have t n and i 1, in which case the complexity
reduces to the usual O(rn2) figure.)

4.3. An alternative triangular factorization. The factors Li and Di lead to
a triangular factorization of the form R LDL*, as discussed in 2.1, where DB
is block diagonal with entries equal to Di and Li is block lower triangular. We can
instead use the QR factors of Di to write an alternative factorization for R, where L
is replaced by a lower triangular matrix ],, and DB is replaced by a block diagonal
matrix DB with unitary and triangular blocks. To clarify this, we introduce the block-
diagonal unitary matrix Q Q0 Q "" Q-I and the block diagonal matrix
P P0-* PI-*’" "@Pt-i, where the diagonal blocks P(* are lower triangular. Then

LDIL LQQ*DIQQ*L*. If we define , LQ then we obtain the alternative
factorization

R=LPQL*,

where ], is lower triangular. In fact, the (nonzero part of the) ith block column of
has the form

where P/* is lower triangular and the term WiQi has already been computed in the
generator recursion. We further remark that the inverses P-* in P may not be
needed explicitly since using the factoriation R ,/),* to solve a linear system
of equations, for example, requires knowledge of the Ps only. In summary, we get
the following algorithm.

AgGOIITN 4.a (Fast block triangular factorization). Consider Hermitian in-
vertible and Toeplitz-like matrix R, viz., R satisfies R-FRF* GJG*. A triangular

factorization for R can be recursively computed in O(rn2 + "7-) opevutions as follows:
start with Go G, Fo F, and repeat for >_ O.

1. At step i we have Fi and Gi.
2. Choose the size i of block Schur complementation step.
3. If 1 then update Gi to Gi+I using Algorithm 4.1 and compute the cor-

responding li di w iT. A QR factorization for di can be trivially chosen as

qi l and pi =d.
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4. If i > 1 then compute Li D WT IT as described in 4.2.1 and
determine the QR factors of Di, viz., Di QiPi as described in 6. Also update
to Gi+l using Algorithm 4.2.

5. Construct the (nonzero parts of the) columns of via

or

WiQi

This leads to a triangular factorization of the form R ]PQ,* where Q Qo
Q1 @"" Qt- and P P-* @ P-* P(-_*.

The standard block triangular factorization, R LDL*, can also be obtained
by simply ignoring the QR factorizations specified above and directly using the Li and
Di.

5. One possibility for choosing the block sizes h: The exact case. As
mentioned earlier, the sizes of the block steps (r/i) can be determined in different ways.
They may denote the smallest (exact) nonsingular minors, or the sizes of numerically
well-conditioned blocks, or some other convenient choices. In this section we focus,
however, on the first choice in order to highlight some theoretically interesting fea-
tures that arise in the exactly singular case. But we hasten to add that the block
factorization algorithm of the previous section is equally applicable to other choices
for the

5.1. Checking for i 1, 2, 3. We first remark that for a Toeplitz-like matrix

R as in (3), determining whether i 1, 2, or 3 in the exactly singular case is a simple
task. To clarify this, recall from Theorem 3.1 that the successive Schur complements
of R are also Toeplitz-like, viz., they satisfy displacement equations of the form

(14) Ri FiRiF GiJG,

where Fi is lower triangular with diagonal entries equal to {fa, f+,..., fn-}. It
thus follows that the top-left corner element of Ri is given by (where gio denotes the
first row of Gi) di giogg’o/(1 faf). If di 0, or equivalently, gioggi*o O, then
/i 1. If this is not the case, then we must check for the nonsingularity of the 2 x 2
leading submatrix of Ri, which must be of the form

0  0(i ]*(i) ri)r01

Using (14) it is easy to verify that r(0 gioJgi*/(1 ff+), which implies that

i 2 if, and only if, gioJgi*o 0 and gioJgi* O. If this test fails then we proceed
to check for the leading 3 3 submatrix of Ri, viz.,

(15)
0 0 r(0

_,(i) _,(i) r’/’02 "r12
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where, using (14) again, r(0 gi0 gi2/(1

r g,lgg,/(1- f,+f,+2), and r gi2gg2/(1- f,+2f,+2). Hence, for i 3
g *we need go g2 0 and gJgx 0 In summary we have the following lemma.

The following are simple tests for 1, 2, or 3 in the exactlyLEMMA 5.1.
singular case:

If gio Jgi*o 0 then i 1
else if gioJgi* 0 then i 2
else if gioJgi*2 7 0 and gil Jgi* 7 0 then rh 3
else rli >_ 4.

Observe that for ri _< 3 the leading nonsingular submatrix of Ri has a reversed
lower triangular form. The inversion or QR factorization of these submatrices can be
easily evaluated. For example, the QR decomposition of (15) is

0 0 1 r02 r12
Di= 0 1 0 0 r r

1 0 0 r()

Moreover, Gi G also has the same reversed lower triangular form for rii 1 2, 3

(i being the first vii rows of Gi). For example, the conditions for i 3 mean that

GiJG has to be of the form

0 0 x](iJ(= 0 x x
x x x

The above discussion suggests the following result.
LEMMA 5.2. For some k, the leading k k submatrix ofGiJG has a nonsingular

reversed lower triangularform with antidiagonal entries {mo,k_ 1, ml,k_2 mk_1,0 },
if and only if rli k and the leading nonsingular submatrix Di has the same reversed
lower triangular form.

Proof. The claim is certainly sufficient and necessary for k 1, 2, 3, as discussed
prior to the statement of the lemma. To verify the claim for larger values of k we
consider a general k k matrix E in reversed lower triangular form with antidiagonal
entries {eo,k-l,el,k-2,... ,ek-l,0}, and let /i denote the leading k k submatrix of
Fi. It is then easy to check that we can find a matrix E of this form that solves the
equation

mk-l,0

mO,k-1

X
In fact, we can write down explicit formulas for the desired entries of E in terms of the
known entries on the right-hand side of the above equality. For example, the diagonal
entries of E are given by

mO,k-1 ml,k-2
el,k-2eo,k-1 1- fo.f,+k-i 1 f.+lf+k-2

which shows that we can always find an invertible solution E. But the leading k k
minor of Ri satisfies the same equation as E. It follows from the uniqueness condition
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(1- fif] O, for all i,j) that we must have Di E. Conversely, assume that Di has
the suggested reversed lower triangular form, then it readily follows that Di- iDi/
is nonsingular and has the same reversed lower triangular form. [:l

We should stress that the lemma does not state that the nonsingular submatrices
Di always have a reversed lower triangular form. It only states that if Di happens
to have this form then (iJ( also has the same form (and vice versa). In fact, the
triangular structure of Di is not necessarily valid for higher sizes vii as can be easily
checked. For example, a nonsingular 4 4 leading submatrix of Ri may have one of
the following forms:

0 0 0 x 0 0 0 x 0 0 x x
0 x x x 0 0 x x 0 0 x x
0 x x x 0 x x x

or
x x x x

X X X X X X X X X X X X

We can, however, give a stronger statement in the important special case of displace-
ment rank r 2.

5.2. Displacement rank r 2. We now consider the special case of structured
matrices R as in (3) but with displacement rank r 2, i.e., G has two columns. We
further assume that J (1 -1) and that F is a stable matrix, or equivalently, that
its diagonal entries have less than unit-modulus magnitude,

0 -1 [u0

Our purpose is to show that for this class of structured matrices we can derive an
explicit test for all r]s in the exactly singular case. Special cases of (16) were studied
earlier in [16], [27]. Iohvidov [16] studied the special case of Woeplitz matrices, which
corresponds to the special choice F Z, and a special generator matrix of the form
(recall expression (2))

1 el en-G=
0 c c-I

Pal and Kailath [26], [27] considered the wider class of so-called quasi-Toeplitz ma-
trices, which still corresponds to F Z, but one where the columns u0 and v0 of G
are arbitrary and not as restricted as in the Toeplitz case above. Such matrices can
be shown to be congruent to Toeplitz matrices in a certain sense, hence the name
quasi-Toeplitz. The derivation in [26], [27] exploits this fact and, among other results,
shows that the determination of the size of the smallest nonsingular minor is reduced
to counting the number of repeated zeros at the origin of a certain polynomial.

We provide here a general statement that goes beyond the F Z case. We follow
a matrix-based argument that also reveals under what conditions on F the derived
test is not applicable. (See also [2] for generalizations of the Iohvidov laws using the
theory of reproducing kernel Hilbert spaces.)

We start again with the displacement equation of the ith Schur complement, viz.,

(17) Ri FiRiF; GiJG,
and denote the entries of the now two-column generator Gi by
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Assume we encounter a singularity di 0, or equivalently, giJg luii 2 -Iviil2 o.
Then either of the following two cases could have happened: gi is a zero row, which
corresponds to the trivial case discussed at the end of 4.1, or gi is a nonzero row,
which corresponds to a block step that we now discuss in more detail.

5.3. A preliminary result and definitions. Before proving the main theorem
we first state an easily verifiable result that follows from the following type of argu-

Jment an equality such as gi gi 0 clearly implies that vii and uii are related via

vii uiie
j for some phase angle c [0, 2r]. More generally, we have the following

lemma.
LEMMA 5.3. The entries of the first k rows of Gi satisfy

Vl+i,i ltl+i,ieJ 0, 1,...,k- 1,

for some phase angle [0, 2r] if and only if the leading
GiJG has the form

2k 2k submatrix of

(18) [ 0kXkMxk MkxkIX
where M is a rank 1 matrix and X denotes irrelevant entries. That is, GiJG has
a k x k leading zero block.

For a column vector x and a square matrix A, we let Km(A, x) denote the Krylov
matrix Km(A,x) [x Ax Am-ix ]. We further define some auxiliary
quantities that will be used in the statement and proof of the next theorem: for
a positive number k, we define the column vectors {a, b, x, y} as follows:

(19a)

a

That is, {a, b} contain the entries of the first k rows of Gi, while {x, y} contain the
entries of the next k rows of Gi. Recall that gi is a nonzero row vector with zero
J-norm. Consequently, both uii and vii must be nonzero since if one of them is zero
then the other one must be zero, due to the relation vii uiiej. We also define the
column vectors

a + e-Jb x e-iy
for a given(19b) p

v/
u

v/

and partition Fi as follows

(19c) Fi= ? i
? ?

where/i and i are k x k lower triangular matrices.
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5.4. Main result for displacement rank r 2. The next result gives an
explicit test for the determination of the sizes of the nonsingular minors for the class
of structured matrices as in (16), with extra conditions on the entries of F. This
extends earlier results in [16], [27].

THEOREM 5.4. The size of the smallest nonsingular leading submatrix of Ri is
2k and has the block form

(20a) [O
where Y is invertible if and only if the k k matrix K (, p)K*0 (t, ) is invertible
and the entries of the first k rows of Gi satisfy

(20b) v+i,i u+i,iej, O, 1,..., k 1,

for some phase angle [0, 27r].
Proof. If u+i,i and v+i,i satisfy (20b) then it is straightforward to verify that the

leading 2k 2k submatrix of Ri has a leading zero block as in (204) (similar to the
argument in Lemma 5.3). The converse is also true. If the leading 2k 2k submatrix
of R has a leading zero block as in (204) then u+, and v+,i satisfy (20b). We still
need to prove that (204) is the smallest nonsingular minor. For this purpose, it is

enough to verify that N is invertible.
It follows from (17) that N satisfies the (non-Hermitian) displacement equation

g-g;= [a b ]J[ x y ]*,
where (a,b,x,y} were defined in (194). But conditions (20b) imply that b- eJa.
Also, the eigenvalues of the lower triangular matrices/i and Ai are strictly less than
unit magnitude. Hence, we can write

g K (/i, a).K*(, x) K (i, b)K*(i, Y)
1 g(/, a + e_Jb)K.(fl, x e-Jy)
2

+ K (i, a e-JCb)K*(i, x + e-Jy)

K (, p)K*(t, ),

where p and were defined in (19b). We thus conclude that N is full rank. fi

5.4.1. Remarks. The last theorem states that, provided the following condition
is satisfied,

.(21) K (, p)K*(Ii, ) is invertible,

the determination of /i reduces to checking the proportionality condition (20b), viz.,
whether the first k elements of vi are unit-modulus multiples of the first k elements
of ui. It is clear that necessary conditions for (21) to hold are

g (/i, p) and g*(/i., ) must have full rank.

For those familiar with system theory [17], the above necessary conditions are

equivalent to saying that the pair (/i, p) must be controllable and the pair (., *)
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must be observable. For example, if/i is similar to a Jordan structure with repeated
Jordan blocks for the same eigenvalue then the pair (/i, p) will not be controllable.
A similar remark holds for i.

Furthermore, condition (21) is automatically satisfied in the special case F
Z studied in [16], [27]. Indeed, F Z implies that K(i,p) K(Z,p)
L(p) 0 and K(,v) K(Z,v) L() 0 ], where the notation L(x)

denotes a lower triangular Toeplitz matrix whose first column is x. But L(p) and
L() are full rank matrices since the top entries of p and are nonzero. Hence,
L(p)L*() is invertible and (21) is satisfied. It also follows that N is strongly regular.

Moreover, using (20a) we get

D:I [-N-*CN-1 N-* 1N-1 0

which shows that inverting Di essentially reduces to inverting a strongly regular ma-
trix N, which has a non-Hermitian Toeplitz-like structure. This can be done in
strongly regular (i.e., scalar) steps. Following this reasoning we can show that in
this case (F Z), the inversion of D (or N) and the generator recursion (12a)
reduce to the algorithm derived in [27], which involves only scalar operations. We
do not go into the details here mainly because the derivation (and simplifications
thereof) relies heavily on the special structure in question (r 2 and F Z). We
focus instead on the case of higher displacement ranks (r > 2).

5.5. A recursive test for displacement ranks r >2. A conventional rank
test for determining whether an arbitrary n x n matrix is invertible or not requires
O(n3) operations. This figure can be reduced to O(rn2) in the case of structured
matrices as discussed in 5.5.1. The following lemma states that if we are given a
structured matrix R (not necessarily strongly regular), then checking whether R is
invertible or not can be achieved by using only strongly regular Schur steps that are
applied to an appropriately defined extended generator matrix.

LElVIMA 5.5. Let T be any n n positive-definite matrix. Then an n n Hermitian
matrix R (not necessarily strongly regular) is invertible if and only if the extended
2n 2n matrix R,

is strongly regular.
Proof. The leading n n submatrix of/ is strongly regular since T is positive

definite (T > 0). The Schur complement with respect to the leading n n block is
RT-1R. The claim now follows by observing that RT-R is positive-definite if and
only if R is invertible.

In other words, if we apply the generalized Schur algorithm to a generator of
and a singularity is (not) encountered then we conclude that the original R is (not)
singular. But we first need to check whether the extended matrix/ is structured. For
this purpose, recall that R is Toeplitz-like, viz., R- FRF* GJG*. It then follows
that

0 F 0 F GJG* 0

which shows that/ has a Toeplitz-like structure if (FTF* T) has low rank, say .
So assume that this is the case. Then we can (nonuniquely) factor (FTF* T) as
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follows: FTF* -T VJzV*, where V is an n x generator matrix and Jz is a x
signature matrix with << n. This means that we need to choose a positive-definite
matrix T that has low displacement rank with respect to F. We show later in this
section how such choices (of T and, consequently, of V and Jz) can be made. Then
we can factor the right-hand side of (22) as follows:

GJG* 0 0 G 0
,7

0 G 0
0 0 J
0 J 0

where ff satisfies if2 I. We thus conclude that a possible (not necessarily minimal)
2n (2r + ) generator for/ is

0 G 0

We can now proceed by applying Algorithm 4.1 to/ with the initial conditions
Go =/?/, F0 (F @ F), and J . The first n steps of the algorithm will clearly
yield negative diagonal entries {di, 0, 1,..., n- 1, di < 0} since -T is negative
definite. The nth generator, Gn, will be a generator of the Schur complement RT-1R
of/ with respect to its leading n n submatrix (-T). If in the subsequent generator
steps (i n, n + 1,..., 2n- 1) we obtain a zero d, (i.e., a row vector g with a zero

Y-norm), then we stop and conclude that the original matrix R is singular. Other-
wise, R is nonsingular. This test requires at most O((2r +/)n2) operations (which
is the computational effort due to applying the strongly regular Schur algorithm to
/). This should be compared with a conventional O(n3) rank test applied to R. A
computational advantage results when (2r + ) << n.

5.5.1. Specializing to the r’s. We now show how to recursively use the above
procedure to compute the s. Recall that the successive Schur complements Ri of
the Toeplitz-like matrix R satisfy displacement equations of the form (14), and our
objective is to determine the size r of the smallest nonsingular submatrix of R. We
already know how to check whether r _< 3 (as discussed in 5.1). For higher values
of we can proceed as suggested by the result of Lemma 5.5.

For this purpose, assume we have already chosen a positive-definite matrix Ti that
has low displacement rank with respect to Fi (as described ahead), and introduce the
factorization

We further define Ek, Tk, k, k, and Vk to denote the leading k k, k k, k k, k r,
and k submatrices of Ri, T,F, G, and V, respectively. It follows from (14) that

Ek is also a Woeplitz-like matrix since Et tEk kJ. We can now use the
result of Lemma 5.5 to check whether Ek is nonsingular by forming the corresponding
extended matrix k,

--Tk Ek ]E 0

and checking for its strong regularity. If Ek turns out to be invertible, then we set

i k, otherwise we check for the next submatrix Ek+l, and so on. A generator for



406 ALI H. SAYED AND THOMAS KAILATH

/k is given by

(23a) /:/k Vk 0 k = 0 0 J
0 (k 0 0 J 0

and we thus apply the generator recursion of Algorithm 4.1 With the initial conditions
Go .[-Ik, Fo ("k Fk), J . More precisely, we can rewrite recursion (11) for
the present case as follows: start with [tk,o Hk and repeat for 0, 1,..., 2k 1,

(23b) .flk,iOi 0 0 0 / Pik,iOi 0 1 0
/-,+1 0 0 I 0 0 0

where (I)i is as defined in Algorithm 4.1 with F0 (k /k), and Oi is a 7-unitary
rotation that reduces the first row of/2/k,i (denoted by h,i) to the form

(i)hk,iOi 0 "k,j 0

where a(k/, is a scalar at a convenient jth column position.

The test starts by applying the above recursion to/:/k. Schematically, we form
(O0, (I)0) and apply the recursion to obtain /:/k,1. We then form (O1, (I)l) and apply
the recursion again to obtain /’/k,2, and so on. Each such step corresponds to a
transformation determined by the pair (Oi, (I)i). After the first k transformations
(i 0, 1,... ,k- 1), we obtain [-Ik,k, which is a generator for EkT[Ek. We then
proceed by applying (at most) k more steps of the recursion. Ek will then be declared
singular if, at any of the steps k,..., 2k- 1 we encounter a row hk,i with a zero

-norm, viz. hk,ih,i ].() 2’k,jl =0, frsmei->k.
If the procedure ends without encountering a singularity then ri k, otherwise

we must check for the next leading submatrix Ek+. Now, the generators of/k+ and
/k are closely related since V and (k are submatrices of Vk+ and (k+l, respectively.
That is,

Yk+l bk ak

for some row vectors a and bk. Hence,/:/k+ and/:/ differ only at rows (k + 1) and
2(k + 1), viz.,

Therefore, k and /:/k+ share the same first k Schur reduction steps. This means
that in order to obtain a generator for Ek+T.CEk+, we first apply the last (k + 2)
rows of/:/k+1, viz.,

bk 0 ak ]0 O 0
0 a: 0



BLOCK SCHUR ALGORITHM 407

through the first k transformations {(O, (I)), i= 0,... ,k- 1} .that were applied to
Hk. This leads to [Ik+l,k. We now apply one more transformation (Ok, k) to Hk+l,k
in order to get -Ikwl,k+l, which is a generator for -1Ek+lTk+lEk+l. We then proceed
by applying at most (k + 1) steps in order to check for the positive-definiteness of
Ek+IT[IEk+I and so on. The size is determined when, for some k, we are
able to complete the whole recursive procedure without encountering a singularity.
In this case, we get k r and hence Ek Ei D. The r transformations
{O,, 0,..., 1} used in this last test will be relevant in 6 while computing
the QR factors of D.

It can be verified that O(k2(r + )) operations are needed for each k. This should
be compared with the following alternative procedure: For each k, compute the leading
k k submatrix and check whether it is singular using a conventional rank test.
This requires O(k3) operations and does not exploit the underlying (displacement)
structure. A computational advantage results when (r + ) is smaller than k.

ALGORITHM 5.6. To check whether the k k leading submatrix of R is nonsin-
gular we proceed as follows.

1. Form a generator pair ([-Ik, ,7) as in (23a).
2. Apply k steps of recursion (23b) starting with k,o k, Fo (k k),

and J . This leads to [Ik,k.
3. Apply more steps of recursion (23b) to [-Ik,k. If hk,j is found to have zero

,7-norm, for some k <_ j <_ 2k 1, then Ek is declared singular ( > k). Otherwise
k.
4. To check for the higher order (k + 1) (k + 1) submatrix we essentially repeat

the same procedure, except that we exploit the fact that [-Ik and [-Ik+l differ only in
two rows as follows:

a. Apply the last (k+2) rows o^f [-Ik+l through the k transformations {(O, ),
0,..., k- 1} that were applied to Hk. This leads to Itk+l,k.

b. Apply one more step to get/:/k+l,k+l.
c. Go back to step 3 and repeat.

5.5.2. Choosing T. We now show how to choose a positive-definite matrix T
that has low displacement rank with respect to an F. This choice is rather trivial in
some special (though frequent) cases such as F Z or F Z Z @... Z. For
these cases, a simple choice is T I. For example, choosing T I in the F Z case

leads to = l, Jz=-l, andV= 1 0 0 IT viz

ZZ* I
0 0

On the other hand, for a .diagonal or bidiagonal matrix F with distinct diagonal
entries, the choice T = I would usually lead to a full displacement rank n, i.e.,
FF*-I would generally have rank n, which substantially increases the computational
cost of the recursive tests. However, for such cases, it is still possible to choose a
positive-definite matrix T that leads to a low displacement rank . For this purpose,
we exploit connections with analytic interpolation theory.

Assume, for instance, that we have an n n diagonal matrix F with distinct and
stable entries f (Ifl < 1), and choose any scalar function s(z) that is analytic and
strictly bounded by unity inside the open unit disc izl < 1, viz., suplzl<l Is(z)l < 1.
We say that s(z) is a Schur-type function [1], [36]. We further introduce the matrices
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V and Jz given by

 (fo)
1 s(fl)

1 S(fn-1)
[io]Jz= 0 -1

and define T to be the solution of the displacement equation

T- FTF* V [ 1

It is then a standard result in analytic interpolation theory (see, e.g., [1], [32], [34])
that T is a positive-definite matrix since s(z) is of Schur-type. So all we need to do is
to choose a Schur function s(z) and define V and Jz as above. We do not even need
to explicitly determine the corresponding T since the recursive algorithm described
in the previous section uses (V, J) and not T.

For a bidiagonal matrix F Z + diag.{f0,..., fn-1} with distinct stable entries

fi (Ifil < 1), we again choose a Schur function s(z) and define

1 0
0 1 [ 1 0V= J= [ 0 -1

0 Cn--I

where the s denote the first n Newton-series coefficients associated with s(z). These
coefficients can be recursively determined via the so-called divided difference recursion
as follows: start with So(Z)-- s(z) and then use

8i(Z 8i--l(Z) i--1 i 8i(fi)"
z-- fi-1

It also follows that the associated matrix T is positive-definite [31], [34]. For a more
general matrix F with r r Jordan blocks, viz., F (Z + foI) @ (Z + 11 I) ( (Z +
f2I) ..., with fi distinct and Ifil < 1, we define [31], [34]

 (fo)
o

(to--l)0 s (fo)
1 s(f)

0 (t-ll!

[1 o]J=
0 -1

where s(j) (fi) denotes the jth derivative of s(z) at fi.
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6. QR factorization of the Di’s. Once the sizes ri have been chosen, say as
described in the above sections for the exactly singular case or as numerically well-
conditioned blocks, we still need to show how to compute the QR factors of Di, viz.,
Di QiPi, where Qi is an ri ri unitary matrix and Pi is an Ui ri nonsingular
upper triangular matrix. This is useful if the alternative triangular factorization of
4.3 is desired. The discussion that follows assumes, for brevity of argument and
notation, that the i have been chosen as described in the above section. But it is
rather immediate to see that the result is equally applicable for other choices of the
Ui. The main point is simply the following: to compute the QR factors of Di we form
a 3 3i extended block matrix and apply 2 steps of the (strongly regular) Schur
algorithm to it. Once this is done, the QR factors can be read out from the resulting
triangular factors.

So we first assume that F is such that the matrix T I has low displacement
rank with respect to it. We then consider the 3r/i 3r/i extended matrix

-I Di 0 ])i Di 0 Di
0 Di 0

which also turns out to be Toeplitz-like with respect to (/i /i /i) and with a
generator matrix of the form

(24a) 0 ( 0 J= 0 0 J
0 0 O 0 J 0

where i/?/* I Vn, JtV. The first two block rows of the above generator are the

same block rows of the generator/:/, of/ (refer to (23a)), viz.,

Therefore, if we apply to the generator (24a) of /i the same U transformations
{(Oi, i), 0, 1,..., i- 1} that were applied to H, we then obtain a generator
matrix for the Schur complement of the leading block matrix in/)i, which is equal to
Di below:

[ DiDi Di ](245) D D 0

If we denote this generator of/i by then is clearly of the form

where i results from the application of the above zii transformations {Oi, Oi} to the
last block row in the generator of Di, viz.., 0 0 (i ]. In summary, we already
know how to obtain a generator for (the 2i 2i matrix )/)i in (24b): just update
the block row 0 0 i via the transformations (Oi, Oi) and construct i.

Once a generator for Di is available, we can then use it to determine the first

i triangular factors of Di. For this purpose, we need only apply Ui steps of the
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strongly regular Algorithm 4.1 starting with Go i, F0 (/i /i), and J ft.
These steps however, are completely specified in terms of the same transformations
{(Oi, (I)i), r/i,..., 2?i 1} that were applied to/2/,, while checking the positive
definiteness of EmEm. So we just need to update the last block row i via the same
transformations.

The point is that we can read out the desired QR factors Qi and Pi from these
first i triangular factors of Di. To see this, we denote the first rii triangular factors
by

Ld ldo ldl ld,w- ], Dd diagonal{dd0,..., dd,,i-1}.

Then we can write, using the Schur reduction procedure (4),

(24d) Di LdL*d + 0 --I,

where Ld LdD-/2. Comparing (24b) and (24d) we can easily conclude that Ld can
be partitioned into a top lower triangular block equal to P/* and a lower block equal
to Qi, viz.,

L Q

ALGORITHM 6.1. The QR factors Qi and P can be computed in strongly regular
steps as follows.

1. Apply the transformations {(Oi, (I)i), 0,..., vii- 1} that were applied to, to the block row 0 0 i ], and construct i as in (24c).
2. Apply the last block row Si through the next i transformations {(Oi, (I)i),

i,..., 2i- 1} that were applied to, while checking the positive definiteness of
EE. This determines the first i triangular factors of Di.

3. Partition Ld as shown above and read out Qi and P.

What about the choice Tu - I? In this case we need to consider the extended
(also Toeplitz-like) matrix

-Tv Di 0

Di Di 0 Di
0 Di 0

which still leads, after the first vii recursive steps, to a generator for the matrix

[DiTDi Di ]Di Di 0

and which is of the form

The point, however, is that the first rii triangular factors of Di now lead to a factor-
ization of the form Di QiPi, where Pi is still upper triangular but Qi now satisfies
QiQ Tv. That is, Qi is no longer a unitary matrix. But Tu is a positive-definite
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and structured matrix. Hence, its Cholesky factorization T, LTLr can be effi-
ciently evaluated in O(/r//2) operations by using the strongly regular Algorithm 4.1.
In this case, and following the argument in 4.3, we are instead led to a triangular
factorization for R of the form R LPQL*, where we now define Q Qo@’" "Qt-1,
P P-* "" P-*I, T T ... TI_,, and ], LTQ. The matrix ], is still
lower triangular with block columns of the form

The inverses T are not needed explicitly because, once we have the Cholesky factor
of Tin, the products TIQi can be computed by solving linear triangular systems.
Also, the generator recursion has the same form as before (12a), viz.,

0mxr ]Gi+ Gi +

and where X can now be rewritten as (compare with (13))

7. System interpretation. The generator recursions of Algorithms 4.1 and 4.2
have an interpretation as a cascade of linear state-space systems of orders {r/0, r/,...}.
To clarify this, observe that the expressions for Li and Gi+ in Theorem 3.1 can be
combined together as follows:

[ o <]Li Gi+l

Hence, each recursive step involves an r/i-order discrete-time system that arises in
state-space form on the right-hand side of the above expression, viz.,

[xj+l yj ]=[xj wj [ J1’’ J[(JI’J ]
where xj is a 1 x r/i state-vector and wj and yj are 1 x r (row) input and output
vectors, respectively, at time j. The above system matrix can also be regarded as a
state-space realization of the inverse system

-1

since it follows from the embedding relation (5b) that

[-ii .Ri JO’D(
The corresponding r x r transfer matrix Oi(z) is given by

]_1Oi(z) JRJ + JO’ z-Im ’



412 ALI H. SAYED AND THOMAS KAILATH

It also follows from the embedding relation (hb) that Oi(z) satisfies the normalization
condition Oi(z)JO(z) J on Izl- 1 and that, using (7), we can rewrite Oi(z) in
the form

O(z) O.

Therefore, t recursive steps lead to a cascade O(z) O0(z)Ol(z)... Ot-l(z), which
also satisfies O(z)JO*(z) J on Izl 1. In fact, we can further show that the
cascade admits a state-space realization in terms of the original matrices F and G
[.4] [1].

THEOREM 7.1. The cascade O(z) admits an n-dimensional state-space descrip-
tion of the form

[X +l

where H and K are r n and r r matrices that satisfy the embedding relation

H K 0 J H K 0 J

It also follows that the matrices H and K can be ezpressed ie terms of R, K and G
as follows:

H O-1JG [I- ,]-1 -1(I_ F),
K O- {I- Ja* [I- ,F*]-1R-la},

and that (z) {Z- (1 zr*)JG*(I- zF*)-R-(I- r*F)-G} , where r is a
unit-modls scalar aed is a J-eitar matriz.

8. Concluding remarks. We derived a block Schur algorithm for the block
triangular Nctoriation of Hermitian Toeplit-like matrices. We also provided tests
for the determination of the sies of the nonsingular minors in the exactly singular
case. We also presented a system interpretation of the algorithm in terms of a cascade
of elementary sections. We further remark that the results can be extended to non-
Hermitian Toeplitz-like matrices, as well as Hankel-like matrices, and may be discussed
elsewhere; see [all.

Some issues deserve further consideration and may simplify the development of
the algorithm. We have limited ourselves in the block case, for example, to the
obvious choice Oi I. Other choices may be considered and could lead to an array
form of the generator recursion (12a) in the same spirit as (11). Also, explicit tests for
determining the sies of the nonsingular minors in the general case of displacement
ranks larger than two, along the lines of the special cases discussed in 5.2, deserve
further investigation. These issues will be addressed elsewhere.
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Abstract. We prove that it is NP-hard to compute the exact componentwise bounds on solutions
of all the linear systems that can be obtained from a given linear system with a nonsingular matrix
by perturbing all the data independently of each other within prescribed tolerances.

Key words, linear equations, perturbation, componentwise bounds

AMS subject classifications. 15A06, 65G10, 68Q25

1. Introduction. Given a system of linear equations

(1) Ax b,

where A e R’n is nonsingular and b Rn, consider the perturbed system

(2)

with data A’, b satisfying

(3) IA’-A <_ A

and

where A R_n and 5 R_ are correspondingly the matrix and vector of perturba-
tion bounds (the absolute value of a matrix B (bij) is defined by IBI- (Ibijl), and
the inequality (3) is understood componentwise; similarly for vectors). Let X denote
the set of solutions of all the perturbed systems, i.e.,

X (x’; A’x’ b’ for some A’, b’ satisfying (3), (4)}.

Naturally, we are interested in knowing the exact range of the components of the
solution under the allowed perturbations, i.e., in computing the numbers

(5) x min xi,
x’6X

(6) xi max x
x6X

(i 1,...,n); we call them the exact componentwise bounds on solutions of the
perturbed systems.
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COMPUTING EXACT COMPONENTWISE BOUNDS ON
SOLUTIONS OF LINEAR SYSTEMS WITH INTERVAL DATA IS
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During the last 30 years, the problem of computing the exact componentwise
bounds (formulated often in the framework of systems of linear interval equations)
has received much attention. General methods (assuming only nonsingularity of each
matrix A’ satisfying (3)) were given by Oettli [7], aohn [9], and Shary [12]; however,
all of them require in the worst case an amount of operations that is exponential in
n. As a result, these methods are not applicable to problems of large dimension n.
Therefore, a number of articles deal with special cases (such as M-matrices [2], H-
matrices [6], inverse stable matrices [9], matrices satisfying a spectral condition [11],
or diagonally dominant [4]) for which there exist polynomial algorithms for computing
the exact componentwise bounds (or their enclosures). For surveys of such methods,
see the monographs by Alefeld and Herzberger [1] or Neumaier [6].

In this paper we show that computing the exact componentwise bounds is NP-
hard (see Garey and Johnson [3] for basic concepts of the complexity theory). Thus,
unless P NP (which is currently widely believed to be not true), we cannot expect
an existence of polynomial-time algorithms for solving our problem. The NP-hardness
of the computation of (5), (6) for overdetermined systems (A of size m n, m > n) was
recently established by Kreinovich, Lakeyev, and Noskov [5], but the idea of the proof,
which reduces 3-satisfiability to computation of the exact componentwise bounds for
linear systems with matrices of size about 3n n, cannot be used for the square case.

We carry out the proof of our result by studying a special instance of constant
componentwise perturbations. We show that in this case the optimal value of a
specially chosen linear function over X can be expressed in terms of the reciprocal
value of the so-called radius of nonsingularity, which has been recently shown to be
NP-hard to compute (Poljak and Rohn [8]). Then adding one more row and column
to the original system to make the linear function depend on a single variable only,
we obtain the desired result.

2. Auxiliary results. For a given nonsingular matrix A E Rn’ and the linear
system

Ax=O

(which has a unique solution x 0), consider the perturbed systems

with

(7) ]A’ AI <_ eeT

and

(8)

where e (1, 1,..., 1)T Rn and/3 is a real parameter. To underline the dependence
on the parameter, let us denote the solution set by XZ:

X {x’;A’x’= b’ for some A’,b’ satisfying (7), (8)}.

We first give a description of the set XZ; throughout the following text, we use the
norm Ilxll- Ilxll 11- E Ixl.
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PROPOSITION 2.1. Let A be nonsingular, and let ] satisfy

(9) 0 < <

Then each A satisfying (7) is nonsingular and we have

(10) Xz= {x’;x’- A-1 }1- ZlIA-Icll
c,-e <_ c <_ e

Proof. (i) Let x’ e X, i.e., A’x’- b’ for some A’, b’ satisfying (7), (8). Then we
have IAx’I I(A A’)x’ + b’ <_ eeTIx’] + e (llx’ll + 1)e; hence if we take

1
c Ax’,

,(llx’ll / 1)

then we have -e _< c _< e and Ax’- Z(llx’ll / 1)c, which implies

(11) ’-- Z(llx’ll + 1)A-lc,

hence

(12) IIx’ll- Z(llx’ll / 1)llA-lcll
Since

(13) llA-cll- eTIA-c[ <_ eTIA-1Ie < 1

due to (9), from (12) we obtain

ZlIA-cllIIx’ll- 1 ZlIA-clI"
Substituting this equality into (11) leads to

(14) x A-
hence x is of the form described in (10).

(ii) Conversely, let x’ be of the form (14) for some c satisfying -e _< c _< e. Define
> 0 and 1 otherwise (j 1 n)a vector z E Rn as follows: zj 1 if xj zy

Then zTx’= eTIx’l IIX’ll, hence

(A- czT)x’
1 llA-cll

which means that x is a solution of the system

(A- l%zT)x c,
where I(A- czT) AI- 11" IzlT <- zT and IZI -< Z. Hence, x’ e X.

(iii) From (13) and (14), we conclude that

IIx’ll < eTlA-le
1 eTIA-le
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for each x’ E X, hence X is bounded. If some A’ satisfying (7) was singular,
then we would have Ax 0 for some x 0, hence Ax E Xf for each ) R1,
which would contradict the boundedness of X. Hence, each A satisfying (7) is
nonsingular.

Before proceeding further, let us introduce, for a matrix B Rnn, the number

r(B) max{llByll; y e {-1, 1}n}.

A simple reasoning shows that it can be also written as

r(B) max{zTBy;z,y e {--1, 1}n},

which is the form in which it was originally introduced in [8]. Then, we have the
following result.

PROPOSITION 2.2. Let A be nonsingular and let satisfy (9). Then for each
i E {1,...,n} we have

max (Ax’)i(!5)
’ei, 1 er(A-)"

Proof. (i) First, we prove that

(16) [IA-cl[ <_ r(A-)

holds for each c, Icl e. For every c that satisfies this inequality Icl _< e, we define
vectors z,y {-1, 1}n as follows: zj 1 if (A-c)j >_ 0 and zj -1 otherwise
(j 1,...,u), and yj 1 if (zTA-)j >_ 0 and yy -1 otherwise (j 1,...,n).
Then, we have IIA-icll eTIA-cl zTA-c <_ zTA-ly <_ max{zTA-y;z,y
{--1, 1}n} r(A-), i.e., (16).

(ii) Let us fix an {1,..., n} and let x’ X. According to Proposition 2.1,
we have

x’ A-c

for some c such that Icl <_ e. Since the denominator is positive (due to (9) and (13)),
we have

(Ax’)i < I(Ax’)[ < <
IIA-II r(A-)

(due to (16)). Hence,

(17) max (Ax’)i <
x’ez 1 r(A-)"

(iii) Take E {-1, 1} such that

IIA-lyll- max{llA-yll;y e {-1,1}n} r(A-1).

Since IIA-(-y)ll IIA-yll, can be chosen in such a way that i 1. According
to Proposition 2.1, the vector
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belongs to X and satisfies the equality

(Ax’)i
1 r(A-1)"

Hence the upper bound in (17) is achieved, which proves (15). rl

3. NP-hardness. Now we are able to prove the main result.
THEOREM 3.1. For an instance n, A, b, A, 5, and E {1,..., n} such that each

matrix A’ satisfying (3) is nonsingular, computing both xi and given by (5) and (6)
is NP-hard.

Comment. Since checking nonsingularity of all matrices A satisfying (3) is already
NP-hard [8], we must include nonsingularity into the assumptions to separate the two
problems.

Proof. In [8, Thm. 2.6] it is proved that computing r(B) is NP-hard for B Rnn.
The result was stated there for general matrices, but it remains valid if we confine
ourselves to nonsingular matrices only (since the proof employs a diagonally dominant
matrix, which is nonsingular). We will show that computing r(B) can be polynomially
reduced to the computation of an exact componentwise bound.

For a given nonsingular B Rnn, choose a/ satisfying

1
(18) 0 < < eTlBle
and compute A B-1 (this can be done in polynomial time). Now, construct the
(n + 1) x (n + 1) matrices

where An. denotes the nth row of A, and

0)

and let

b=O

and

(e Rn). Then each A’ e R(n+l)x(n+l) with IA’-1 < A is nonsingular by (18) and
by Proposition 2.1, and for the solution set of the perturbed systems we have

X {(x, xn+)T;x e Rn,x e Xe, xn+ An.x}.

Hence, for the exact componentwise bound on xn+, we conclude from Proposition
2.2 that

max (Ax’)n fl
Xn+l x’ex 1 fir(B)"
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So, the computation of r(B) has been polynomially reduced to the computation of
5n+1. Thus, since computing r(B) is NP-hard, the sme must be true for 5n+1 as well.
In this way we have proved the NP-hardness of computing the exact upper bound on
the highest index variable; now by permutation of variables we easily extend this
result to an arbitrary variable. The statement for lower bounds follows immediately
from the result just proved if we observe that the lower bounds differ only in their
signs from the upper bounds for the system Ax -b under the same A and 5.

Final note. The result can be made more understandable if we point out that
(15) is, in general, a nonconvex optimization problem. Indeed, a lengthy argument
(which we omit here) based on Theorems 1 and 2 in [10] proves that if n >_ 3, A is
nonsingular and satisfies (9), then X is a nonconvex set whose convex hull has 2
vertices which are exactly those points x’ in (10) that correspond to parameter values
t e {-1,1}n
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HAMILTON AND JACOBI MEET AGAIN:
QUATERNIONS AND THE EIGENVALUE PROBLEM*

NILOUFER MACKEYt

Abstract. The algebra isomorphism between A44(T) and 7-/(R)T/, where T/ is the algebra of
quaternions, has unexpected computational payoff: it helps construct an orthogonal similarity that
2 2 block-diagonalizes a 4 4 symmetric matrix. Replacing plane rotations with these more powerful
4 4 rotations leads to a quaternion-Jacobi method in which the "weight" of four elements (in a
2 2 block) is transferred all at once onto the diagonal. Quadratic convergence sets in sooner, and
the new method requires at least one fewer sweep than plane-Jacobi methods. An analogue of the
sorting angle for plane rotations is developed for these 4 4 rotations.

Key words, eigenvalues, symmetric matrix, Jacobi method, quaternion, tensor product

AMS subject classifications. 65F15, 15A18, 15A21, 15A69

1. Introduction. One hundred and fifty years ago, on 16 October 1843, W. R.
Hamilton carved the equations defining the algebra of quaternions on the stones of
Brougham Bridge, Dublin [15], [9], [30]. Two years later, in an unrelated piece of
work, C. G. J. Jacobi described an iterative method for solving the eigenproblem of
an n n symmetric matrix. This method appeared the following year in Crelle’s
journal [22].

To the student of mechanics, the names Hamilton and Jacobi are already closely
linked: in 1837, Jacobi extended Hamilton’s work in dynamics, giving rise to what is
today known as the Hamilton-Jacobi theory.2 Now, a century and a half later, we
bring the work of these two men together in a new way: we show how Hamilton’s
quaternions enhance Jacobi’s algorithm for solving the symmetric eigenproblem. Ja-
cobi diagonalizes a symmetric matrix by performing a sequence of orthogonal simi-
larity transformations. Each transformation is a plane rotation, chosen so that the
induced similarity diagonalizes some 2 2 principal submatrix, moving the weight of
the annihilated elements onto the diagonal. Can one explicitly specify an orthogonal
transformation that diagonalizes a larger submatrix?

We show that the algebra isomorphism between J4(7) and 7-/(R), where 7-/is
the algebra of quaternions, has direct and unepected computational payoff: it leads
to the construction of an orthogonal similarity to (2 2)-block diagonalize a 4 4
symmetric matrix. The quaternion-Jacobi method thus obtained produces four times
as many zeros at each step, and hence converges in fewer iterations. The price we
pay for this abundance of zeros is the cost of computing one left-right singular vector
pair of a 3 3 matrix, whose entries are simple linear combinations of the entries of
the 4 4 symmetric matrix being diagonalized. The quaternion-Jacobi method is at
least quadratically convergent, and experimental evidence strongly suggests that it
requires at least one fewer sweep than the traditional Jacobi method.

Received by the editors October 8, 1993; accepted for publication (in revised form) by N. J.
Higham, January 10, 1994. An earlier version of this paper won the 1993 SIAM Student Paper
Competition.

Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, Michigan
49008 (nil .mackeywmich. edu).

The key ideas for the method were introduced by Jacobi in an earlier paper [21] Thanks to
Sven Hammarling for pointing this out.

2 The two mathematicians first met in 1842 at the meeting of the British Association for the
Advancement of Science held in Manchester, England. According to Hankins [17], Jacobi refers to
Hamilton as "the illustrious Astronomer Royal of Dublin" and later, as "the Lagrange" of Ireland.
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There is renewed interest in Jacobi-type methods today, because they are easily
parMlelizable [3], [11], [12], [28], and compute small eigenvalues with greater accuracy
than the QR method [8], [25].

2. The quaternions. Recently, Hacon [14] showed that one can use quaternions
to construct an orthogonM similarity transformation that will directly reduce any
given 4 4 skew-symmetric matrix to its real Schur (2 2 block diagonal) form,
and thereby obtain a Jacobi-type algorithm for n n skew-symmetric matrices. The
method is intriguing, and it is natural to ask whether a 4 4 symmetric matrix can
be (block) diagonalized in a similar manner. To uncover the symmetric algorithm, we
start with some algebraic preliminaries.

The quaternions, 7-/, are a four-dimensional, associative, but noncommutative, di-
vision algebra over 7, with the standard basis { 1, i, j, k}. Multiplication is determined
by the rules

2 j2 k2 ijk -1,

which imply jk -kj i, ki -ik j, ij -ji k. The typicM quaternion is

q qo + qli + q2j + q3k, qo, ql, q2, q3 .
The real part of q is qo and the pure quaternion part is qi + q2j + q3k. The conjugate
of q is given by qo qi q2j q3k and the norm ]q, is defined as

]q[2 =q+q+q+q=q=q.
Thus one can compute the multiplicative inverse of any nonzero quaternion,

-1 q
q

([q)2

As a vector space, is identified with 4 via the customary isomorphism,

qo + qi + q2j + q3k (qo, q, q2, q3)t,
which in turn induces an isomorphism between the subspace P of pure quaternions
and 3,

qii + q2j + q3k (q, q2, q3)t.

Motivated by these isomorphisms we will, when convenient, denote the elements
1, i,j,k of by co, e, e2, e3, respectively. We will also make use of the standard
decomposition,

(1) span{l} span{i, j, k} nep.

3. Tensor products. For the convenience of the reader we include a concrete
definition of tensor products of finite-dimensional algebras [1], [27].

DEFINITION 1. Let V and W be vector spaces over a field , of dimension m
and n, respectively. Let {e 1 r m} be a basis for V and {f 1 s n} be a

basis for W. Then the tensor product V W is an mn dimensional vector space over
with basis {e f, 1 r m, 1 s n}, and is equipped with a bilinear map

@" V x W V@W,

(2) v.e. w.f. v.w.(e. f.).
r=l s=l r,s
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It is customary to denote (R)(v, w) by v (R) w, where v E V, w E W.
Now let j[ and B be algebras over a field ’. The tensor product jt (R)/3 over -can be made into an algebra that is essentially the tensor product of the underlying

vector spaces, enhanced by an additional multiplicative structure:

(3) (a(R)b,at(R)bt)=aat(R)bbt, Va, a A, Vb, b B

By extending the above bilinearly to all the other elements of
into an algebra. We henceforth denote .(a (R) b, a’ (R) b’) by simply (a (R) b)(a’ (R) b’).

4. The isomorphisms.

4.1. :P(R):P and J/13(7). A useful isomorphism between the 9-dimensional vector
spaces P(R)P and t43 (T) is obtained by first defining a bilinear map f on the Cartesian
product

I’7) p-- /la(n), f(p,q) P2 ql q2 qa ) =Pqt.

We remark that f(p, q) is often called the Kronecker product of p and q [20, 4.21.
From the basic properties of tensor product Ill, f induces a unique linear map. p (R) p -- (n)
with the property that

(4) (p (R) q) pqt.

Showing that is a vector space isomorphism is now a simple exercise.

4.2. 7-/(R)7-/and A/[4 (TO). An analogous Kronecker product clearly gives a bilinear
map from 7-/(R)7-/to J44(T), which then induces a linear isomorphism between 7-/(R)7-/
and J4(7). However, this linear isomorphism does not preserve the multiplicative
structure and hence fails to be an algebra isomorphism. (Since T’(R)T’ is not an algebra,
this question does not arise in 4.1.)

Construct an algebra isomorphism between the 16-dimensional algebras
and J/Ia(T) as follows. First, to every ordered pair (p, q) in 7-/, associate the real
4 4 matrix that represents the linear transformation

v pvq

with respect to the standard basis. Denote this matrix by #(p, q). Clearly this defines
a bilinear map # 7-/ 7-/ J4(7), which, from the basic properties of tensor
product [1] induces a unique linear map. n(R)n 4(n)

with the property that (p (R) q) #(p, q). It can be shown that is a bijection that
preserves not only the vector space structure, but also the multiplicative structure.3

3 This isomorphism between T/(R)7-/and M4(7) has also been used in an entirely different context:
the characterization of linear maps which preserve the Ky Fan norms [23].
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The proof is omitted, as it is largely a straightforward exercise in formal algebra [4].
Another way to prove that these algebras are isomorphic is to use the fact that the
Brauer group of 7 is Z/2Z [27].

From (3) defining multiplication in a tensor product, we get

p (R) q (p (R) 1)(1 (R) q).

Applying gives (p (R) q) (p (R). 1)(1 (R) q), or in terms of matrices

(6)
Po -Pl -P2 -P3 qo ql q2 q3

(p (R) q) P Po -P3 P2 -ql qo -q3 q2

P2 P3 Po --P --q2 q3 q0 --q
P3 --P2 P PO --q3 --q2 ql qo

Since (p (R) 1)(1 (R) q) (1 (R) q)(p (R) 1), a nonobvious fact that now follows immediately
is that the matrices on the right-hand side of (6) commute!

Define conjugation in T/(R) by

(7) p (R) q (R)-( p, q E 7-l

and extend linearly to all of T/Q?-/. Examining the matrix (p (R) 1), displayed as the
first factor in (6), one sees that

( (R) 1)= ((p (R) 1)) t.

Similarly, (1 (R) ) ((1 (R) q))t. Thus we have
PROPOSITION 1. Conjugation in 7-l(R)7-l corresponds, via , to transpose in J44 (T).
By the usual abuse of notation, we will sometimes use p (R) q to stand for (p (R) q).

The reason for this indulgence is twofold: to simplify notation and to emphasize that
we will be freely moving between 7-/(R)?-/and J4(T), sometimes even appearing to be
in both places at once!

5. Strategy. We want to translate the problem of orthogonally diagonalizing
a 4 4 symmetric matrix into a corresponding problem in 7-/(R)7-/. To this end, we
investigate each of the questions listed below.

What does a symmetric matrix look like in 7-/(R)7-/?
What does a diagonal matrix look like in 7-/(R)7-/?
What does an orthogonal matrix correspond to in 7-/(R)7-/?
How does one represent an orthogonal similarity in 7-/(R)7-/?

6. Quaternion representations. The decomposition of 7-/as the direct sum
7) induces a decomposition of 7-/(R)7-/:

(8)

Let S (n (R) n) (:P (R) P), and (:P (R) n) (n (R) :P). Then S and K: are
eigenspaces for the conjugation map on 7-/(R)7-/corresponding to the eigenvalues 1 and
-i, respectively. Since conjugation translates to transpose in Ad4(T), every element
of S represents a 4 4 symmetric matrix, and every element of K: represents a 4 4
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skew-symmetric matrix. Observing that is a 10-dimensional subspace of 7-/(R)7-/and
/(: is a 6-dimensional subspace, it follows that

(/)(.) {S E J4(]’)" S is symmetric}
and (K:) {K e M4(7)" g is skew-symmetric}.

For notational convenience $ will be used freely to denote either $ or (8); context
will make it clear which is intended. (Similarly for lE, S, K.) (Note. See Remark at
end of 4.2.) We have thus established the following propositions.

PROPOSITION 2. The following are equivalent.
1. S is 4 x 4 symmetric.

3. There exist pure quaternions p, q, and r, and c such that
S=cl(R)l + p(R)i + q(R)j + r(R)k.

PROPOSITION 3 (HACON). The following are equivalent.
1. K is 4 x 4 skew-symmetric.
2. g e (v(R)n)(n(R)v).
3. There exist pure quaternions p, q such that K p (R) 1 + 1 (R) q.

Indeed, the standard basis (er (R) es 1 _< r,s <_ 4} for 7-/(R)7-/ gives, via , a
beautiful basis for A/14(7) comprised entirely of orthogonal matrices, ten of them
symmetric and the remaining six skew-symmetric.4 One can use this basis, which is
listed in the Appendix, to calculate the quaternion representation of any 4 4 matrix.
For a symmetric matrix S [8m] cl (R) 1 + p (R) + q (R) j + r (R) k, the pure
quaternions p, q, r, and the scalar c are given by

(9)

(10)

(11)

(12)

1
trace(S)--1 1

Pl (811 -[- 822 833 844), P2 (823 -[- 814),
1 1

ql=(s23-s14), q2=(s-s22+s33-s44),
1

+

1
p3 (824 813),

1
q3 (834 -- 812),

1 1
(8 + 844)r2 (834- 812), T3 11 822 833

The corresponding calculation for a skew-symmetric matrix K [ktm] p (R) 1 +
1 (R) q is even simpler:

1l(k24_k3), P3-- (k4--k23)l(k12_+_k34), P2--(13) p - 11
(k24 + k3), q3 (k4 k23)

Further examination of the quaternion basis reveals the following simple charac-
terizations of the canonical forms of interest to us.

PROPOSITION 4. (a) A 4 4 matrix is diagonal if and only if it can be expressed
a8

c01 (R) 1 + ci (R) + c2j (R) j + c3k (R) k, for some co, cl, c2, c3 7.

4 Any pair of elements from this basis either commute or anticommute. While this property may
at first appear striking, it is a natural consequence of the way multiplication is defined in a tensor
product, and the fact that the basis elements {1, i, j, k} of 7 either commute or anticommute.
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(b) (Hacon) A 4 4 skew-symmetric matrix is in real Schur (2 2 block diagonal)
form if and only if it can be expressed as si (R) 1 + 1 (R) ti, for some s, t E T.

7. Orthogonal similarities in

7.1. Rotations. Within a year of the discovery of the quaternions, Hamilton
and Cayley had found a connection between orthogonal maps of 73 and quaternions
[16], [5], [10]. About a decade later, in 1855, Cayley observed that every orthogonal
map of 74 can be represented by pairs of quaternions [6], [10]. We now outline these
results in modern terminology.

Let n(7) denote the group of n n nonsingular matrices. The orthogonal and
special orthogonal subgroups are, respectively,

O(n) {R e A4n(7): RtR-- RRt= In},
SO(n) {R e O(n):detR=+l}.

We refer to elements of SO(n) as n-dimensional rotations. Let L/denote the set of
unit quaternions,

hC={u : u 1},

which is a subgroup of 7-/under multiplication.
PROPOSITION 5. The map

(x, u) (x (R) u),

is a group homomorphism with image ,5’50(4) and kernel {(1, 1), (-1,-1)}.
COROLLARY 1. The map

U 4(n),
x (x(R)x)

is a group homomorphism with kernel {1,-1} and image the set of all matrices in

8(9(4) of the form

1000

0

which can be interpreted as rotations of P - T3

We resist the temptation to provide a detailed proof of these results here as they
are "well known" [7], [10]. Instead we confine ourselves to pointing out why (x (R) y)
is in 80(4). Observe that (x (R) y)(5 (R) y) (x (R) yy) 1 (R) 1. But conjugation in
7-/(R)7-/corresponds to transpose in J4(7), so (x (R) y) must be an orthogonal matrix.
The continuity of the determinant, together with the connectedness of b/ b/imply
that det((x (R) y)) is positive.

To see why (x (R) x) has the form stated in the corollary, recall that (x (R) x)
is the matrix encoding the map q xq- in the standard basis (see 4.2). The first
column of this matrix is the vector representing the quaternion x15 x 1, i.e.,
e0. Orthogonality of the matrix now forces the rest.
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7.2. Similarities. Let R E 8(.9(4). Then by Proposition 5, there exist x, y E
such that (x (R) y) R. Consider an element of 7-/(R)7-/of the form p (R) q. By Propo-
sition 1, the similarity R(p (R) q)R in J44(T) translates to

(x (R) y)(p (R) q)(- (R) )

in 7-/(R)7/. Using the definition of multiplication in a tensor product, this becomes

(xp) (R) (yq).

Now comes the crucial observation: xp- is just the image of p under the rotation

(x (R) x), while y@ is the image of q under the rotation (y (R) y). By Corollary 1,
both of these rotations act in a nontrivial way only on the pure quaternion parts of
p and q. Since a general element of 7/(R)7-/is a linear combination of elements of the
form p (R) q, we have:

The effect of a 4 4 special orthogonal similarity on a 4 4 matrix can
be reduced to the independent action of two 3-dimensional rotations.

8. The skew-symmetric algorithm. We have everything we need to outline
how Hacon’s method [14] for transforming a 4 4 skew-symmetric matrix K directly
into its real Schur form works. By Proposition 3, there exist pure quaternions p, q
such thatK=p(R)l + l(R)q. LetR=x(R)y 859(4). Then

RKR xp (R) l + l (R) y@.

By Proposition 4(b), all that remains is to find two 3-dimensional rotations: (x (R) x)
to rotate the 3-vector p into the/-direction and (y (R) y) to rotate the 3-vector q into
the/-direction. Hacon [14] shows that taking

IPl ip Iql iq
(15) x

achieves this goal. That is,

0 t-s 0 0

RKR si (R) 1 + 1 (R) ti
s t 0 0 0
0 0 0 -s-t
0 0 s+t 0

where s
The matrix R x (R) y can be computed from (15) and (6) as the product of the

matrices

(6)

and

IPl + P 0 -P3 P2
1 0 Ipl + Pl P2 P3

lpl- ipl p3 -p2 ]pl "3t- pl o
-p3 o Ipl +

Iql + ql 0 q3 -q2
1 0 Iql, + q q2 q3

[[q[- iq -q3 -q2 [qi 2t" ql 0
q2 --q3 0 Iql + ql

where the pure quaternions p and q are computed from K via (13) and (14).
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9. The symmetric algorithm. Let S E S.
p, q, r E P, and c 7 such that

By Proposition 2, there exist

S-cl (R) l S-cI p(R)i +q(R)j +r(R)k 7(R)7.
Certainly it suffices to diagonalize S-cI, since R SR is diagonal : R (S-cI)R
is diagonal. Now for R x (R) y 850(4) we have

(18) RRt xp(R)yiy + xq(R)yjy + xr(R)yky.

If R is to diagonalize S, then by Proposition 4, the three-dimensional rotation (x (R) x)
must align the triple of 3-vectors {p, q, r} along the orthogonal triple {i, j, k}. Since
{p,q,r} is in general an oblique triple, this is clearly impossible. In the skew-
symmetric case, by contrast, the problem reduces to rotating just one given 3-vector
into a specified direction (granted, this must be done twice, but the rotations are
completely independent of one another). This in a nutshell is why the symmetric case
is more complicated and requires a new idea.

What we need is adifferent tensor decomposition of S,

a (R) bl -- a2 (R) b2 + a3 (R) b3

with the property that both triples {al, a2, a3} and {bl, b2, b3} are orthogonal. Then
clearly it will be possible to idependently rotate each triple into alignment with
{i,j,+k}, thus diagonalizing S. This is where the vector space isomorphism
7)(R)/) --* J43(n), introduced in 4.1, and the singular value decomposition (SVD) [13,
pp. 70-72] work together beautifully to produce the "right" tensor decomposition of
S.

Since the canonical inclusion map embeds 7)(R)7) into T/(R)T/, every element of
P(R)P can be associated with a 3 3 matrix as well as a quite different 4 4 matrix:5

Successively exploiting the properties of , we get

(S) =(p(R)i + q (R)j + r (R) k)
+ +

P2 q2 r2
P3 q3 r3

+ +
"--)((TlUl (R) Vl -- a2U2 (R) V2 "- a3U3 (R) V3)

(linearity of p and (5))

(SVD)
(linearity of and (5))

But is bijective, so we must have

S=p(R)i + q(R)j + r(R)k alU(R)V + a2U2(R)V2 -- a3U3 (R)V3.

5 For example, (i (R) i) el e 0
0 00)0 0 but (i(R)i)-- 12

0 0
0
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Since {Ul, U2, U3} and {Vl, V2, V3} re orthonormal triples, the "right" tensor decom-
position of a 4 x 4 symmetric matrix has thus been obtained from the SVD of its
associated 3 x 3 matrix.

Although it is geometrically clear that a rotation of P that aligns a given or-
thonormal triple {Ul, u2, u3} with {i,j,+k} exists, trying to compute it all at once is
somewhat complicated. Instead we can align these triples in stages. Begin by choos-
ing R x (R) y so that (x (R) x) rotates any one of the left singular vectors into i, and
(y (R) y) rotates the corresponding right singular vector into i. Then the remaining
singular vectors will perforce be moved into the jk-plane. Does it matter which left-
right singular vector pair is rotated into i? The next section provides the surprising
answer.

For now, let a, 62, and a3 denote the singular values of (S), not necessarily in
decreasing order. And let R align u and v with i. Then

(19) RR al (R) + a2xt2 ( yv2 q- O’3XU3 yv3,

where xu22, yv2, xu3-, and yv3 are each linear combinations of j and k only. Thus
RR is a linear combination of (R) i, j (R) j, k (R) k,j k, and k (R) j. A quick look at
the quaternion basis in the appendix reveals that R SR and hence, R SR is already
2 x 2 block diagonal!

One may continue the alignment process by constructing a second orthogonal
matrix Q z(R)w, where (z(R)z) is a three-dimensional rotation with axis i that aligns
xu2-2 with j; and (w(R)w) is a three-dimensional rotation with axis that rotates yv2
into j. Then XU3- and yv3- will necessarily be aligned with +k, and thus QRRtQ
(and hence QR SRtQ) will be diagonM. (Alternatively, two ordinary Jacobi rotations
in the (1, 2) and (3, 4) planes could be used to achieve diagonalization.)

We remark that the matrix R x (R) y is given by the product of the matrices
in (16) and (17), with the left singular vector that R aligns with playing the role
of p and the corresponding right singular vector playing the role of q. By exploiting
the special structure of these matrices and noting that IPl 1 Iql in this cse, their
product cn be computed for the small price of 14 additions, 14 multiplications, and
one square root.

The major cost of computing R lies in finding a left-right singular vector pair of
a 3 3 matrix. Note that the orthogonality of R does not depend on the accuracy
of the singular vector pair used to construct itas long as the vectors are unit, R
will be orthogonal. During the early iterations of the quaternion-Jacobi method, it
may perhaps not be necessary to compute the vectors with hair-splitting accuracy,
since the annihilated elements will shortly be resurrected. Bear in mind also that the
complete SVD is not neededonly one left-right singular vector pair is called for. We
see in the next section that the pair corresponding to the largest singular value is the
one to compute. What then is the best way to carry out this task? Among the many
schemes to be evaluated are several iterative techniques and one direct method, due
to Bojanczyk and Lutoborski [2], that gives closed form formulae for the eigenvectors
of a 3 x 3 symmetric mtrix.

A matrix representation of Q can be obtained analogously. However, we see in

12 that in practice block diagonalization suffices, so Q need never be computed.

10. Eigenvalues from singular values. Assume that R, Q 8(9(4) are chosen
as described t the end of 9, that is,

(20) R rotates u, v into i,
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(21) QR rotates ul, vl into i, and u2, V2 into j.

Equation (19) suggests there is a connection between the singular values of T
(S) [p q r] and the eigenvalues of S.

PROPOSITION 6. If al >_ a2 >_ a3 are the singular values of T p q r], then the
eigenvalues of S cI p (R) + q (R) j + r (R) k are

0"1 "- 0"2 -- T0.3 0"1 0"2 T0.3 --0"1 Jr- 0"2 T0.3 --0"1 0"2 Jr- T0.3,

where 7- sign(det(T)). (If det(T) 0, set T 0).
Proof. Let auv + a2u2v + a3u3v be the SVD of T. The sign of det(T)

determines whether T is orientation preserving or reversing. Since T(v) au for
1 / 3, the triples {u, u2,u3} and {Vl, v2,v3} will have the same "handedness"
when T > 0. That is, either both can be rotated into {i, j, k} or both can be rotated
into {i,j,-k}. On the other hand, T < 0 means that {u, u2, u3} and {v, v2, v3} have
opposite handedness, i.e., one triple can be rotated into {i,j,k} and the other into

{i, j,-k}. We have seen that

S-cI=p@i +q@j +r@k
alUl Vl a2U2 V2 ff3U3 V3,

so choosing rotations R, Q E S(9(4) as described in (20)-(21) gives

QR(S cI)RtQ l ai (R) + a2j (R) j + a3k (R) k if T>0,
ai(R)i+a2j(R)j-a3k(R)k if T<0,

diag(a + a2 + T0.3, al 0"2 T0"3,--0"1 -- 0"2 7"0"3,

--0"1 --0"2 + T0"3).

The case 7- 0 is even simpler. In this situation 0"3 0, SO

QR(S cI)RtQ ai (R) + 0"2j (R) j

diag(0"1 + 0"2, 0"1 0"2,-0"1 + 0"2,-0"1 0"2),

which establishes the result.
The alert reader may notice that, in the above proof, the hypothesis a >_ 0"2 >_ (73

is used only in the case when det(T) 0, and then only to conclude that 0"3 must be
zero. When T is nonsingular, the expressions for the eigenvalues of S- cI in terms
of the singular values of T remain valid under any permutation of the 0"i’s. That is,
the ordering of the ai’s has no effect on the set of eigenvalues of S- cI (as expected),
but it does affect the order in which these eigenvalues appear on the diagonal of
QR(S- cI)RtQt. It is to this issue that we turn next.

11. Sorting similarities. For notational convenience, denote the eigenvalues of
S- cI by A, 1 <_ t _< 4, where

(22) A al + 0.2 + T0.3,

(23) A2 0.1 0.2 Ta3,

(24) z3 --0.1 -}- 0.2 7"0.3,

(25) A4 --0.1 0.2 + T0"3.

Note that in the course of proving the previous proposition, we showed that

QR(S cI)RtQ diag(A, A2, A3,
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We now ask, what conditions on R and Q will ensure that the eigenvalues of S- cI
appear in decreasing order on the diagonal? This question is particularly relevant
because Mascarenhas [24] has recently shown that choosing the sorting angle for
the plane rotations used in the Jacobi method can lead to significant improvement in
performance when orderings with higher than quadratic rates of convergence are used.
(The sorting angle eventually becomes the usual (small) angle in the plane-Jacobi
methods.) If one could construct a 4 4 analogue of the 2 2 sorting similarity,
one would expect a similar improvement in performance. Happily, the construction
is unexpectedly simple. But first, a definition.

DEFINITION 2. Let A e n(T) have real eigenvalues. Let B E J4n(T) block
diagonalize A, i.e., BAB-1 diag(A1,A2,... ,Am) where each At is some

matrix. If every eigenvalue of At is greater than or equal to every eigenvalue of
for 1 <_ <_ m- 1 <_ n- 1, then BAB- is called a sorting similarity.

PROPOSITION 7. Suppose al >_ 0.2

_
a3. If R and Q are chosen according to

(20)-(21), then QR is a sorting similarity for S.
Proof. A1 _> A2 a + a2 T T0.3

__
al 0"2 T0.3 = if2

_
--T0.3, which follows

from 0.2

_
0"3. Next, A2 >_ A3 = 0"1- 0"2- T0"3

_
--0"1 --0"2- T0"3 = 0"1

__
0"2.

Finally, A3

_
A4 : -0"1 -{-a2- T0"3

_
--0"1 --0"2 + T0"3 : 0"2 T0"3, which again

follows from a2

_
a3.

PROPOSITION 8. Suppose a >_ a2 >_ 0.3. If R is chosen according to (20), then
R is a sorting similarity for S. That is, the eigenvalues of the upper 2 2 block of
R SR are larger than those of the lower 2 2 block.

Proof. We know from 9 that

R (S cI)R ai (R) + cyyj (R) j + Ckkk (R) k + cykj (R) k + ckyk (R) j,

where the Ctm’S are real constants. Hence by the discussion following (19), R (S-cI)R
is 2 2 block diagonal. Expressing this in matrix form we have

R (S cI)R ( S 0 )0 S

where

and

\ --Cjk -" Ckj

-cjk -t- ckj
]0"1 Cjj Ckk

$2 I --0.1-- Cjj Ckk Cjk " Ckj
Vjk -" Ckj --0"1 (jj -- Ckk

The 2 2 block diagonal form implies that the eigenvalues of $1 must be two of the
eigenvalues A, A2, A3, )4 of S- cI. From Propositions 6 and 7, the sum of the two
largest eigenvalues of S- cI is ) -t- A2 20"1; of course the sum of any other pair
A+Aj can be no bigger than this. But we also have trace(S) E(eigenvalues ofS1)
2a. Therefore )1 and A2 must be eigenvalues of $1. Consequently A3, A4 must be
eigenvalues of $2, so by Proposition 7 we are done.

12. Preliminary experimental results. In practice, one can partition a 2n
2n symmetric matrix A into contiguous 2 2 blocks, denoted by Arm, with 1
n. Then annihilate each off-diagonal block Arm with l = m according to some order,
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thereby obtaining a Jacobi-type method. Complete diagonalization of the target 4 x 4
submatrix is unnecessary (hence wasteful): block diagonalization incurs no penalty
in the form of additional sweeps or additional iterations per sweep. This is because
the weight of the annihilated (pivot) block moves onto the two corresponding 2 x 2
diagonal blocks, and stays there! In other words, if we define

n

BlockOff2(A) -IIAII IIA.IIF
i--1

then just as in traditional Jacobi methods,

BlckOff2(A(+I)) BlckOff2(A(O) 211A I1 ,

Here A(t) denotes the matrix A after g block annihilations, and ij denotes the position
of the th pivot block. Thus {BlockOff2(A(t))} is a decreasing sequence.

It is observed experimentally that the sequence {A(t) } converges to a (22)- block-
diagonal matrix, which can then be diagonalized with negligible cost. We present
below the results of a MATLAB implementation of Jacobi and quaternion-Jacobi
methods on a random 64 64 symmetric matrix with entries uniformly distributed
in [-1, 1]. This behavior seems to be typical, but more experimentation is needed.

n--64

Sweep
0
1
2
3
4
5
6
7

TABLE

Odd’even ordering; sorting similarity
Jacobi quaternion-Jacobi

Number of
22

Rotations BlockOff

2016
2016
2016
2016
2016
2016
541

1.800e + 01
1.067e / 01
2.883e + 00
4.633e 01
1.840e 02
2.877e 05
8.111e 11
1.218e 13

Number of
44

Rotations BlockOff
1.800e + 01

496 1.032e + 01
496 2.609e + 00
496 3.301e 01
496 5.025e 03
496 1.261e 06
490 6.702e 14

n 64

Sweep
0
1
2
3
4
5
6
7
8

TABLE 2

Row-cyclic ordering; sorting similarity
Jacobi quaternion-Jacobi

Number of
22

Rotations BlockOff
1.800e + 01

2016 1.120e + 01
2016 3.664e + 00
2016 8.714e 01
2016 1.208e 01
2016 3.321e 03
1976 4.324e 06
1279 8.445e 12
1270 1.230e 13

Number of
4x4

Rotations BlockOff
1.800e + 01

496 1.066e + 01
496 3.171e + 00
496 6.249e 01
496 7.069e 02
496 1.332e 03
468 5.580e 07
158 1.529e 13

The same matrix is used in both tables; Table 1 compares the two methods when
the odd-even ordering is used, Table 2 when the row-cyclic order is used.
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13. Convergence. Sorting similarities lead to a quaternion-Jacobi method that
converges under rather general quasicyclic orderings. Quasicyclic orderings were de-
scribed by Henrici [18], who credits their invention to Hestenes. They can be charac-
terized as orderings that have no arbitrarily long gaps between successive annihilations
of any individual element.

THEOREM 1. Let Ao be an n n symmetric matrix and let At+l RtAtR be
the sequence of iterates of a quaternion-Jacobi method. If each Rt effects a sorting,
diagonalizing similarity on its target 4 4 submatrix, then the following are true.

1. The vector L limt__, diag(At) always exists. That is, the sequence of
diagonal vectors converges for any ordering, including those that fail to be quasicyclic.

2. If L has distinct entries, i.e., L L for all r s, 1 <_ r, s <_ n, and if
the pivot ordering is quasi-cyclic, then

lim At diag(Al, 2,..., An)

where > 2 >"" > An are the eigenvalues of A. Furthermore, the rate of conver-
gence is asymptotically quadratic.

The proof of this theorem is quite long and will be published in a later paper.
It contains results that encompass extremely general Jacobi-type methods and that
grew out of an attempt to extend the ideas found in Mascarenhas’ thesis [24]. Among
the tools used is a majorization result due to Schur [19, pp. 192-193] and an SVD
perturbation theorem due to Wedin [29], [31].

14. Extension to normal matrices. Combining the two algorithms leads to a

quaternion-Jacobi method for real normal matrices. First, write the matrix A as the
sum of a symmetric matrix S and a skew-symmetric matrix K. Since A is normal,
S and K commute. Diagonalize S using the symmetric quaternion-Jacobi algorithm
with sorting transformations at every iteration." This gives an orthogonal matrix U
such that UA U D8 + UKUt, with the entries of the diagonal matrix Ds appearing
in decreasing order. The skew-symmetric matrix Bk UKU is block-diagonal: since

Bk commutes with D, the only nonzero elements of Bk occur in diagonal blocks
corresponding to equal eigenvalues of Ds. Now each diagonal block of Bk can be
independently transformed into its real Schur form using Hacon’s skew-symmetric
algorithm, without affecting Ds.

As is well known, the plane rotations that are so effective in diagonalizing 2 2
symmetric matrices leave all 2 2 skew-symmetric matrices unscathed.6 The remark-
able correspondence between T/(R)T/and J44(T) gives us, for the first time, a Jacobi
method that works in a similar manner for both symmetric and skew-symmetric ma-

trices, exploiting and preserving their special structure while lending a unity to the
eigenproblem for these two classes that has hitherto been lacking.

6 Paardekooper [26] deserves mention for first addressing the skew-symmetric case.
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A. The quaternion basis for .A/[4(T).

1 0 0
0 1 0
0 0 1
0 0 0

1(R)1

0-1
10
00
00

O)0
0
1

00)0 0
0-1
1 0

i(R)l

00-10 /0001
1000
0-100

j(R)l

-1 0 0 0 0 0 0 1 0 0-1 0
0 0 0-1 -1 0 0 0 0 1 0 0
0 0 1 0 0-1 0 0 -1 0 0 0

l(R)i l(R)j l(R)k

0 1 0 0 0 0 1 0 0 0 0 1
00--10 0100 1000
0 0 0--1 --1 0 0 0 0 1 0 0

000-1
00-10
0100
1000

k(R)l

i(R)i i(R)j i(R)k

0 0 1 0 0-1 0 0 --1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0-1 0 0 1 0

j(R)i j(R)j j(R)k

0001 1000 0--100
--1 0 0 0 0 0 0 1 0 0--1 0
0 1 0 0 0 0 1 0 0 0 0 1

k(R)i k(R)j k(R)k
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Abstract. Let M be an upper block triangular matrix with A and B singular diagonal blocks. It
is known that.max(index(A), index(B)} _< index(M) _< index(A) -t- index(B). Recently, a necessary
and sufficient condition has been given so that index(M) index(A)+index(B). In this paper we find
various characterizations for index(M) to take any specific values between max{index(A), index(B)}
and index(A) + index(B) which generalize previous results.

Key words, index, block triangular matrix, generalized eigenspace, generalized eigenvector,
Drazin inverse, height, depth
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1. Introduction. It is well known that the index of a singular matrix P is the
size of the largest Jordan block corresponding to the eigenvalue zero. An equivalent
definition is the smallest nonnegative integer k such that Ker(Pk) Ker(Pk+l), where
Ker(.) denotes the kernel of a matrix. In this paper we are concerned with the index
of a block triangular matrix.

Let A and B be two singular matrices of dimensions m m and n n, respectively.
Given an m n matrix X, without loss of generality, we consider the upper block
triangular matrix

(1) M= O B

The determination of the index of the matrix M given in (1) in terms of the index
of A and the index of B has been studied by different authors who used different
approaches to the problem. For example, Meyer and Rose [8, Thm. 2.1] established
that

(2) max(index(A), index(B)} < index(M) <_ index(A)+ index(B).

For each nonnegative integer p, let Xp denote the matrix

AP-iXBi- if p _> 1,
(3) x,,

0 if p=O.

Meyer and Rose studied the index of M by using the Drazin inverses of A and B and
the matrix Xp defined by (3). They also obtained additional results which will permit
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us here to sharpen the upper bound in (2). Another set of authors who considered
the index of M as a function of X are Hershkowitz, Rothblum, and Schneider in
[4]. They determined a necessary and sufficient condition on X so that index(M)
index(A) + index(B). Next, Johnson, Schreiner, and Elsner [5] considered the index
of M when A and B have exactly one Jordan block for the eigenvalue zero in terms of
the eigenvectors corresponding to Jordan chains of AT and B. Finally, Johnson and
Schreiner related the index of M and the Jordan structure of M when A has various
Jordan blocks corresponding to the eigenvalue zero, but B has only one or two Jordan
blocks in [6]. They further permit the Jordan structure of B corresponding to zero to
also be arbitrary in [7].

Let k be an arbitrary but fixed integer in the permissible range of (2). In this
paper we determine necessary and sufficient conditions under which the index of M
is k. We develop our main results, viz. Theorems 2.6 and 2.7, in 2. These results
permit us to generalize the result of Hershkowitz, Rothblum, and Schneider in [4,
Thm. 6.8]. In 3 we consider the relationship between the results of 2 and the
Drazin inverses of A and B. In so doing we generalize some of the results of Meyer
and Rose [8, Whm. 2.2]. In 4 the results of Johnson, Schreiner, and Elsner [5, Whm. 8]
are generalized in terms of the height and depth of the generalized eigenvectors of AT
and B without a need to limit the number of Jordan blocks of AT and B. In 5 we
summarize all the equivalences that have been established in the paper.

To make the paper more self contained we introduce now the concepts of height
and depth. Let P be an n n singular matrix. The height of a vector x with respect
to P, htp(x), is the minimum nonnegative integer k such that Pkx O. The depth
of a vector x : 0 with respect to P, dpp(x), is the maximum nonnegative integer k
such that x pky for some vector y. Finally, we denote by E(P) the generalized
eigenspace of P associatedwith the eigenvalue zero. We comment that the height and
the depth of a vector in relation to a matrix and its properties have been studied by
Bru, Rodman, and Schneider in [2].

2. Main results. We begin by observing that for each nonegative integer p,

(4) Mp__ [ Ap Xp ]0 B P >- O,

where Xp is given in (3). We further recall the following result concerning the index
of the upper block triangular matrix M given in (1).

THEOREM 2.1 (Theorem 6.8 of [4]). Let M be given by (1). Let a index(A)
and b index(B). Then index(M) a + b if and only if

X[Im(Bb-l) A Ker(B)] Im(A) + Ker(Aa-1).
Thus Theorem 2.1 gives a necessary and sufficient condition for the index of M

to take the maximum possible value given in (2). Next we develop some results that
allow us to prove Theorems 2.6 and 2.7 that establish the necessary and sufficient
conditions so that the index of M is allowed to take any specific value between the
upper and the lower bounds of (2), in similar terms to Theorem 2.1. For this purpose
we require another result of Hershkowitz, Rothblum, and Schneider [4] which we state
here.

LEMMA 2.2 (Lemma 3.2 of [4]). Let M be given by (1) and let v E E(B). Then
there exists a vector x e E(M) such that x [] for some m-vector u.

V

The above lemma allows us to determine a certain lower bound on the index of
Mo
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THEOREM 2.3. Let M be given by (1). Let p and q be two positive integers and
suppose that 1 <_ k <_ rain{p, q}. Let Xk be given by (3). If

Xk[Im(Bq-k) Ker(B)] Im(Ak) + Ker(AP-k),
then index(M) _> p + q (k 1).

Proof. Let y E Im(Bq-k) N Ker(Bk) be a vector such that Xky im(Ak) /
Ker(AP-k). Obviously y = 0, y Bq-v for some n-vector v, and Bky O. As

Bqv Bky 0,

we have that v e E(B). Thus, by Lemma 2.2, there is a vector x [1 e E(M) for
some m-vector u. But then, from (4),

Mqx
0 Bk 0 Bq-k v

Ak(Aq-ku + Xq_kv)
BkBq_kv

Akz
0

where z Aq-u + Xq_kv. If Akz + Xky w Ker(AP-), then

Xky --Akz + w e Im(Ak) + Ker(AP-k),
which is a contradiction. Thus Akz + Xky w Ker(Ap-k). This means that

MP-Mz 0 B- 0 0

so that index(M) _> p + q
A further simple, but necessary, lemma at this point is the following.
LEMMA 2.4. Let P be a singular matrix. Let p index(P) and suppose that

1

_
k

_
p. If w e Ker(Pp-k+1) \ Ker(PP-k), then w

_
Im(Pk) + Ker(PP-).

Proof. Assume that w Im(pk)+Ker(Pp-k). Then w pku+v with pp-kv O.
In this case,

(5) pp-kw PPu.

On the other hand,

0- PP-k+lw- Pp+lu.

Thus u e Ker(Pp+I) Ker(Pp) and, by (5), w e Ker(PP-), which contradicts the
hypothesis. Consequently w Im(P) + Ker(PP-). D

When k 1, Theorem 2.3 and Lemma 2.4 become Proposition 6.2 and Lemma
6.1 of [4], respectively. In fact the ideas we use in proving Theorem 2.3 and Lemma
2.4 follow closely the ideas used in [4].

Lemma 2.4 allows us to prove a partial converse to Theorem 2.3 as follows.
THEOREM 2.5. Let M be given by (1). Let a index(A) and b index(B).

Suppose 1 <_ k <_ min{a, b} and let Xk be given by (3). If index(M) a + b (k 1),
then

X[Im(Bb-k) Ker(B)] Im(A) + Ker(Aa-k).
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(6)

Proof. Since index(M) a + b- (k 1), there is a vector x E E(M) such that

Ma+b-(k-1)X 0 and Ma+b-kx O.

Suppose that x Ivu l, where u is an m-vector and v is an n-vector. From (4) and (6)
we have that Ba+b-(k-1)V 0 and hence v E(B). Thus Bbv O. But then from
(4) we have that

Abu + Xbv ] MkMb_kx
0

0 Bk Bb-kv
Akz q- Zky 1

0

This shows that

(7) Abu + XbV Akz + Xky,

where y Bb-kv and z Ab-ku + Xb-kV. Clearly y Im(Bb-) A Ker(Bk). Now
from (6) we have that

(8) Abu.+ XbV e Ker(Aa-k+1) \ Ker(Aa-k).

But then by (8), (7), and Lemma 2.4, we have that Az+Xky qg !m(A) +Ker(Aa-),
from which it follows that Xy q Im(Ak)+Ker(A-k). This means that Xk[Im(Bb-k)c
Ker(B)] g Im(Ak) + Ker(Aa-k).

Remark 1. Observe that the case k 0 is also possible in the above theorem
since we have the trivial inclusion

Xo[Im(Bb-) 3 Ker(B)] C_ Im(A) + Ker(A-).

THEOREM 2.6. Let M be given by (1). Suppose that a index(A) and b
index(B) and assume that 1 < k < min{a, b}. Then index(M) a + b- (k 1) /f
and only if the following conditions hold:

1. X[Im(Bb-i) Ker(Bi)] C_ Im(Ai) + Ker(A-i), 0, 1, 2,..., k 1;
2. Zk[Im(Bb-k)fKer(Bk)] Im(A)+Ker(A-), where Xj, j 0, 1, 2,..., k,

is given by (3).
Proof. We prove the theorem by induction. For k 1 the equivalence holds by

Theorem 2.1 and Remark 1. Suppose then that the theorem holds for 1 < t < k- 1
and that Conditions 1 and 2 hold for such values of t. Then from Condition 1 we have
that index(M) < a + b- (k 1). But from Condition 2 and Theorem 2.3 we see that
index(M) _> a + b- (k 1). Hence index(M) a + b- (k 1).

Conversely, if index(M) a + b (k 1), then from Theorem 2.5 we obtain that

X[Im(Bb-k) f Ker(Bk)] Im(Ak) + Ker(Aa-k),

and so Condition 2 holds. Next, if some of the inclusions in Condition 1 do not hold,
then, by the induction hypothesis, we must have that index(M) a + b- (t 1) for
some t with 1 < t <_ k- 1. Hence,

index(M) a + b- (t 1) > a + b- (k 1) index(M),
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a contradiction. Whence, Condition 1 holds. 13

We observe that when k 1, the results of Theorem 2.6 yield Theorem 2.1,
whereas, if k _< min{a, b}, then Theorem 2.6 yields necessary and sufficient conditions
so that index(M) _> max{a, b} + 1. In other words, Theorem 2.6 provides necessary
and sufficient conditions for index(M) to take an arbitrary, but fixed, value between
max{a, b}+ 1 and a+b. In the next theorem we determine the necessary and sufficient
condition for index(M) to attain the lower bound in (2).

THEOREM 2.7. Let M be given by (1). Let a index(A) and b index(B).
Then index(M) max{a, b} if and only if

Xi[Im(Bb-i) V Ker(Bi)] C_ Im(A’) + Ker(A-i), 0, 1, 2,..., min{a, b},

where the Xi ’s, i= 0, 1, 2,..., min{a, b}, are given in (3).
Proof. Suppose that index(M) max{a, b}, but that at least one of the above

inclusions does not hold. Let 1 _< k _< min{a, b} be an integer such that

Xi[Im(Bb-i) Ker(Bi)] C_ Im(Ai) + Ker(Aa-i),
Xk[Im(Bb-k) g Ker(Bk)] Im(Ak) + Ker(Aa-k).

0, 1, 2,...,k- 1,

Then, by Theorem 2.6,

index(M) a + b- (k 1) _> max{a, b} + 1 > index(M),

which is a contradiction.
Conversely, if index(M) = max{a,b}, then by (2) we have that index(M)

max{a, b} and so, by Theorem 2.5,

Xk[Im(Bb-k) f3 Ker(Bk)] Im(Ak) + Ker(Aa-k),

for some k with 1 _< k _< min{a, b}. This contradicts our hypothesis. Hence index(M)
max{a, b}.

3. The index and the Drazin inverse. In this section we obtain characteriza-
tions for values of index(M), where M is given in (1), in terms of the Drazin inverses
of A and B (see [1] and [3] for properties of such inverses) and of the matrix Xp defined
by (3). These conditions then provide additional equivalences to the results already
developed in Theorems 2.6 and 2.7. For clarity we denote the identity matrices of
sizes m m and n n by Im and In, respectively. We begin by quoting the following
result of Meyer and Rose that we shall use subsequently.

THEOREM 3.1 (Theorem 2.2 of [8]). Let M be given by (1). For each positive
integer q, index(M) <_ q if and only if the following conditions hold:

1. index(A) _< q;
2. index(B) _< q;
3. (I, AAD)Xq(In BBD) O, where AD and BD are the Drazin inverses

of A and B, respectively, and Xq is given by (3).
Note that if q a + b, then by (2) and Theorem 3.1, we have that

(9) (I, AAD)Xa+b(In BBD) O.

Theorem 3.1 is a characterization for a positive integer to be an upper bound
on index(M). We now attempt to determine the exact value of index(M). For this
purpose we also require the following lemma.
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LEMMA 3.2. Let P be a singular matrix with p index(P). Suppose that 1 <_
k <_ p. Then Im([PP-k(I- ppD)]) im(pp-k)g Ker(Pk).

Proof. Let y E Im([pp-k(I-ppD)]). Then y pp-k(I-ppD)x for some vector
x. Clearly y ImPp-k. Since PP(I- ppD) O, we have that

pky PP(I- PpD)x O.

This means that y Im(Pp-k) Ker(Pk) and so

(10) Im([Pp-k (I ppD)]) C_ Im(Pp-k) N Ker(Pk).
To show the reverse containment let y Im(Pp-k) N Ker(P). Then pky 0 and
y pp-kx for some vector x which now must lie in Ker(PP). Since I- ppD is a
projection on Ker(Pp) along Im(Pp) we see that

Hence

and so

(I- PpD)x x.

PP-k(I- PpD)x PP-kx y

(11) Im(Pp-k) V Ker(Pk) C_ Im([Pp-k (I- ppD)]).
Note that the above lemma also holds for the case when k 0 because then

im([pp-O(i_ ppD)]) {0}
and

Im(Pp-) ffl Ser(P) Im(Pp) g (0} (0).
Consider again the matrix M given by (1). On comparing the top right-hand

blocks on both sides of the equality, M8+ MSM shows that

(12) X+ AX + XB.
We next prove an additional auxiliary lemma.

LEMMA 3.3. Let M be given by (1). Set a index(A) and b index(B). Suppose
further that 1 <_ k <_ rain(a, b}. Then

(13) (Ira AAn)Xa+b-k(In BBD) (Im AAD)Aa-kXkBb-k(In BBD),
where Xa+b- and Xk are given as in (3).

Proof. Applying (12) twice in succession we obtain that

BbX+-k AX-k + A-kXkB-k + X-k
Substituting this expression for Xa+b-k in the left-hand side of (13) and using the
facts that (Im- AAD)Aa O and (In- BBD)Bb O yields inmediately (13). [:]

We comment that from (9) and (3) we have that

(14) (I, AAD)X+(I, BBD) 0 (I, AAD)AXoBb(I BBD).
Thus Lemma 3.3 is also valid for the case for k 0.

We are now ready for our first main characterizations of this section.
THEOREM 3.4. Let M be given by (1). Suppose that a index(A) and that

b index(B). Assume that 1 <_ k <_ min{a, b} and that X is given by (3). Then the
following conditions are equivalent:
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1. Xk[Im(Bb-k) g)Ker(Bk)] C_ Im(Ak) + Ker(Aa-k);
2. (Ira AAD)Aa-kXkBb-k(In BBD) O.

Proof. Suppose that Condition 1 holds and let v be an n-vector. By Lemma 3.2,

Bb-k (In BBD)v E Im(Bb-k) g Ker(Bk).

Thus by Condition 1,

XkBb-k (In BBD)v Akx -t- y,

for some vectors x and y with Aa-y 0. Now (Ira AAD)A O and so we have
that

(Im AAD)Aa-kXkBb-k(In BBD)v (Ira AAD)Aa-k(Akx + y)
(Ira AAD)(Ax + Aa-ky) O.

Conversely, suppose that Condition 2 holds and let v be an n-vector. Then

(Im AAD)Aa-kxkBb-k(In BBD)v O.

Now since Im AAD is the projection on Ker(Aa) along Im(Aa), we have that

A-xkBb-k(I, BBD)v ImA.
This means that

Aa-kXBb-k(In BBD)v Aax Aa-Ax

for some m-vector x. Therefore

Aa-k(XkBb-k(In BBD)v Akx) O,

and so the vector

y := xkBb-k(In BBD)v- Akx

is in Ker(Aa-k). But then,

XkBb-k(In BBD)v Akx + Y Im(Ak) + Ker(A-k)

so that

Xk[Im(Bb-(I, BBD))] C_ Im(Ak) + Ker(A-k).

Thus Condition 1 obtains on applying Lemma 3.2 to the left-hand side in the above
inclusion.

From Remark 1 and (14), Theorem 3.4 is also applicable in the case that k 0.
Therefore, on using Theorems 2.6 and 3.4 we can establish the following result.

THEOREM 3.5. Let M be given by (1) and suppose that a index(A) and b
index(B). Assume that 1 <_ k <_ min{a, b}. Then index(M) a + b- (k 1) if and
only if the following conditions hold:

1. (Ira AAD)Aa-iXiBb-i(In BBD) O, O, 1, 2,..., k 1;
2. (Ira AAD)Aa-kXkBb-k(In BBD) O.
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Here, as before, Xj, j -0, 1, 2,..., k, is given by (3).
Theorems 2.7 and 3.4 together yield the theorem that follows.
THEOREM 3.6. Let M be given by (1) and suppose that a index(A) and b

index(B). Then index(M) max(a, b} if and only if

(Im AAD)Aa-iXiBb-i(I BBD) O, O, 1, 2,..., min(a, b},

where Xi, i 0, 1, 2,..., min(a, b}, is given by (3).
We comment that on considering the results in Lemma 3.3, we see that Theorem

3.1 is a particular case of Theorems 3.5 and 3.6.

4. The index of a matrix and the height and depth of generalized eigen-
vectors. Let M be given by (1). Let a- index(A) and b- index(B). In Johnson,
Schreiner, and Elsner [5], the index of M, where A and B have exactly one Jordan
block for the eigenvalue zero, is studied using the following notations.

Let ul, u2, Ua be a left Jordan chain ofA, that is uT uT Ai-, i 1, 2, a-
1, a, and uTA --0T. Similarly, let v, v2,..., Vb be a right Jordan chain of B, that is

vi Bb-ivb, 1, 2,..., b 1, b, and Bv O.
THEOREM 4.1 (Theorem 8 of [5]). Under the above-mentioned conditions, if

uTXv O, then index(M) a + b.
We observe that for the vectors Ua and v we have that htAr (ua) 1, dPAr (u)

a- 1, htB(vl) 1, and dPB(V b- 1.
The results that we prove below allow us to characterize the index of M in terms

of the height and depth of certain vectors in E(AT) and E(B). This, in combination
with the results of 2, yield a strengthening and an extension of the results of Johnson,
Schreiner, and Elsner [5] and Johnson and Schreiner [6], [7].

We begin by proving a sequence of lemmas.
LEMMA 4.2. Let P be a square matrix. Let r and s be two positive integers. Then

Im(P) + Ker(P) [Ker((pT)) Im((pT))] +/-.

Proof. The lemma follows from the facts that Ira(P) (KerpT) +/- and that if U
and V are two subspaces, then (U V) +/- U+/- + V+/- and (V+/-)+/- V. v1

LEMMA 4.3. Let M be given by (1). Suppose that a index(A) and b index(B)
and let 0 <_ k <_ min{a, b}. Then for Xk be given by (3), the following conditions are
equivalent.

1. Xk[Im(Bb-k) Ker(Bk)] C_ Im(Ak) + Ker(A-).
2. yTXkz 0 for all y Im((AT)-)Ker((AT)k) and for all z Im(Bb-)

Ker(B).
Proof. Suppose that Condition 1 holds and let z Im(Bb-) Ker(B) so that

Xkz Aku + v

for some vectors u and v with Aa-kv 0. Let y e Im((AT)a-k) n Ker((AT)k). Then
yT wTAa-k for some vector w and yTAk 0T. Therefore

yTXkz yT(ATu -- V) yTAku - yTv oTu -- wTAa-kv wTo 0

and so Condition 2 holds.
Conversely, if Condition 2 holds, but Condition 1 is not valid, then there exists a

vector v Im(Bb-k) Zer(Bk) such that

Xkv

_
Im(Ak) + Ker(Aa-k).
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Then, by Lemma 4.2, there exists a vector u E Im((AT)a-k) N Ker((AT)k) such that

UTXkv 0

and Condition 2 does not hold; a contradiction.
LEMMA 4.4. Let M be given by (1). Suppose that a index(A) and b index(B)

and let 1 <_ k <_ min{a,b}. Let Xk be given by (3). Assume that y e E(AT) and
z E(B). IfhtAr(y)+ hts(z) <_ k, then yTXkz O.

Proof. Suppose that htAr(y) p and hts(z) q. Then yTAr 0T for all
integers r >_ p and BSz 0 for all integers s >_ q. But then

yTXkz yT(APXk_p + XpBk-P)z 0

because q <_ k- p. [-]

LEMMA 4.5. Let M be given by (1). Assume that a index(A) and b index(B)
and suppose that 1 <_ k <_ min{a,b}. If y E(AT) and z E(B) are vectors such
that htA.(y) <_ r and htB(z) <_ s and if k < r + s <_ 2k, then

yTXkz yTAk-sx Bk
rs-k -rz

where Xk and Xr+s-k are given as in (3).
Proof. Clearly 0 < r + s- k <_ k. Then

yTXkz yTXrBk-rz yT(Ak-sXr_(k_s) -+- Xk_sB-(k-8))Bk-rz
yTAk-sXr+s_kBk-rz q- yTXk_sBSz yTAk-sXr+s_kBk-rz

because Bsz O.
In the following theorem we consider some implications of the two conditions

which appear in the equivalence of Theorem 2.6.
THEOREM 4.6. Let M be given by (1) and assume that a index(A) and b

index(B). Let 1 <_ k <_ min{a, b}. Suppose that the following conditions hold:
1. Zi[Im(Bb-i) q ger(Bi)] C_ Im(Ai) + Ker(Aa-k), 0, 1, 2,..., k 1;
2. Xk[Im(Bb-k) N Ker(Bk)] Im(Ak) + Ker(Aa-k),

where Xj, j O, 1, 2,..., k, is given by (3). Then there exist vectors u E(AT) and
v E(B) such that

(a) uXv O,
(b) k < htAr(U) + htB(v) _< 2k,
(c) htAr(U) <_ k and dPAr(U a- k,
(d) htB(v) <_ k and dPB(V b- k.
Proof. From Condition 2 and Lemma 4.2 there exist a vector u

Ker((AT)k) and a vector v Im(Bb-k) Ker(Bk) such that

uTXkv O.

Clearly u E(AT) and v E(B) and so Condition (a) holds. Moreover,

htAr (u) _< k, dPAr (u) _> a- k

and

htB(v) _< k, dPB(V >_ b- k.

Obviously htAr(U) + hts(v) _< 2k and so by Lemma 4.4, htAr(U) + htB(v) > k and
Condition (b) holds.

Next, as a index(A), we have that htAr (u)+ dPAr (u) _< a. Hence the vector u
satisfies one of the following conditions:
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. htAr (u) k, dPAr (u) a k;
htAr (u) p < k, dPAr(U a k;
htAr(U) p < k, dPAr(U a-p > a-- k;
htAr(u)=p<r<k,a-p>dPAr(u)=a-r>a-k.

Similarly, the vector v satisfies one of the following conditions:
htB(v) k, dPs(V b- k;
hts(v) q < k, dPB(V b- k;
htB(v)=q<k, dPB(V)=b-q>b-k;
htB(v)=q<s<k,b-q>dpB(v)=b-s>b-k.

To make our analysis easier to follow, we have summarized the possible cases in Table
1. To consider which possibilities in the table are feasible, we first deal with the last

TABLE

Case htAT(U dPAT(U htB (v) dPB(V Observations
1 k a-k k b-k
2 k a-k q b-k q<k
3 k a-k q b-q q<k
4 k a-k q b-s q<s<k
5 p a-k k b-k p<k
6 p a-k q b-k p<k,q<k
7 p a-k q b-q p<k,q<k
8 p a-k q b-s q<s<k
9 p a-p k b-k p<k
10 p a-p q b-k p<k,q<k
11 p a-p q b-q p < k,q < k
12 p a-p q b-s p<k,q<s<k
13 p a-r k b-k p< r < k
14 p a-r q b-k p<r<k,q<k
15 p a-r q b-q p< r < k,q < k
16 p a-r q b-s p<r<k,q<s<k

entry in the table. Suppose that entry were possible. Then by Lemma 4.5,

(15) uTXkv uTAk-sXr+s_kBk-rv.

Clearly htAr((AT)k-Su) p+ s- k and dPAr((AT)k-Su) >_ a- (r + s- k). Therefore,

(AT)k-SU e Im((AT)a-(r+s-k)) CI Ker((AT)p+s-k)
C_ Im((AT)a-(r+-k)) N Ker((AT)r+8-k)

because p + s- k < r + s- k. Similarly, it holds that

Bk-rv E ImBb-(r+s-k) CI KerBr+s-k.

Now, as r + s- k < k, by Condition 1 we have that

Xr+s_k[Im(Bb-(r+s-k)) ffl Ker(Br+S-k)] c_ Im(Ar+s-k) + Ker(Aa-(r+s-k)).

Thus, by Lemma 4.3 and (15) we conculde that

(16) uTXkv--O.

This contradicts the validity of Condition (a) above.
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Note that cases 1-15 in Table 1 can be obtained from case 16 by replacing some
of the < signs by signs in the Observations column. Then with similar reasoning,
we can obtain that the equality (16) for most of the cases holds, making these cases
incompatible with Condition (a). Because of Condition (a), we need only consider
those situations in which

uTAk-sX Bk-rv+_ # O.

These situations, in turn, can only occur when r + s- k k. Notice then that
Condition (b) is satisfied and r s k. Considering the table again, we see that
r s k in cases 1, 2, 5, and 6. These are precisely the cases in which

htdr (U) _< k, dPAr(U)=a-k, htB(v)_<k, dPB(V)=b-k,

and Conditions (c) and (d) hold.
We can strengthen Theorem 4.6 and prove the following equivalence.
THEOREM 4.7. Let M be given by (1). Let a

index(B). Suppose that 1 <_ k <_ min{a, b}. For j---0, 1, 2,..., k, let Xj be given by
(3). Consider the following statements:

1. Xi[Im(Bb-i) N Ker(Bi)] _C Im(Ai) + Ker(Aa-i), 0 _< _< k- 1;
2. Xk[Im(Bb-k) Ker(Bk)] Im(A) + Ker(Aa-k);
3. Let 0 <_ i <_ k 1. Then yTi Xizi 0 for all yi e Im((AT)a-i) Ker((AT)i)

and for all zi e Im(Bb-i) g Ker(Bi);
4. There exists a vector u E E(AT) and a vector v E(B) such that

(a) uXv O,
(b) k < htAr(U) + htB(v) <_ 2k,
(c) htAr(U) <_ k and dPAr(U a k,
(d) htB(v) <_ k and dPB(V b- k.

Then Conditions 4.7 and 4.7 are equivalent to Conditions 4.7 and 4.7.
Proof. If Conditions 4.7 and 4.7 hold, then by Theorem 4.6, Condition 4.7 holds,

while Condition 4.7 holds by Lemma 4.3.
Conversely, if Condition 4.7 holds, then by Lemma 4.3, Condition 4.7 holds.

Furthermore, if Condition 4.7 holds, then from Conditions 4.7 and 4.7 we have that

u e Im((AT)-k) Ker((AT)k) and v e Im(Bb-k) Ker(B).
Thus,. from the Condition 4.7 and Lemma 4.3 we see that Condition 4.7 holds. [:]

Taking into consideration the notation introduced at the beginning of this section,
where A and B where assumed to have exactly one Jordan block for the eigenvalue
zero, we see that Theorem 4.7 has the implication that the conditions

TXv 0,
2. Z[Im(Bb-l) N Ker(B)] Im(A) -t- Ker(A-1)

are equivalent. This together with Theorem 2.1 allows us to strengthen Theorem 4.1
as follows.

THEOREM 4.8. Under the notations and conditions of Theorem 4.1, then UTa XVl
0 if and only if index(M) a + b.

5. Conclusions. We can summarize the main results of this paper by the follow-
ing theorem, which consists of a string of equivalences that come from by Theorems
2.6, 3.5, and 4.7.

THEOREM 5.1. Let M be given by (1). Let a index(A) and b index(B).
Suppose that 1 <_ k <_ min{a, b} and that Xy, j O, 1,2,... ,k, are given as in (3).
Then the following four conditions are equivalent
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A. index(M) a + b (k 1).
B. 1. Xi[Im(Bb-i) N Ker(Bi)] C_ Im(Ai) + Ker(Aa-i), 0 _< _< k 1;

2. Xk[Im(Bb-k) N Ker(Bk)] Im(Ak) + Ker(Aa-k)
C. 1. (Im AAD)Aa-iXiBb-i(In BBD) O, 0

_ _
k- 1.;

2. (Ira AAD)Aa-kXkBb-k(In BBD) O.
D. 1. Let 0

_ _
k- 1. Then yXizi 0 for all yi E Im((AT)-i) N

Ker((AT)i) and for all zi e Im(Bb-i) N Ker(Bi);
2. There exists a vector u E(AT) and a vector v E(B) such that

(a) uXv O,
(b) k < htAr(U) + htB(v) <_ 2k,
(c) htAr(U)

_
k and dPAr(U =-k,

(d) htB(v) <_ k and dPB(V b- k.
We see that for k 1, the theorem gives necessary and sufficient conditions so

that index(M) a + b, whereas if k _< mAn{a, b} it stipulates necessary and sufficient
conditions so that index(M) >_ max{a, b} + 1. Finally, by Theorems 2.7 and 3.6 and
Lemma 4.3, the following four conditions are also equivalent"

E. index(M) max{a, b}.
F. X[Im(Bb-i) Ker(B)] C_ Im(Ai) + Ker(Aa-i), 0 <_ <_ mAn{a, b}.
G. (I, AAD)A-iXiBb-i(In BBD) O, 0 <_ <_ mAn{a, b}.
U. Let 0 _< _< min{a,b}. Then yTiXizi 0 for all yi Im((AT)a-i)

Ser((AT)i) and for all zi Im(Bb-i) Uer(Bi).
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SOME REMARKS CONCERNING ITERATIVE METHODS
FOR LINEAR SYSTEMS *
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Abstract. Let A be a Hermitian, positive definite matrix. It is well known that if A M- N,
where M is invertible and M* + N is also positive definite, then the iterative method for solving
Au b, based on this decomposition, is convergent. A new proof of this convergence is given,
providing an explicit estimate for the spectral radius of M-1 N. Also, a new method to estimate the
optimal relaxation parameter for certain large matrices is suggested.

Key words, spectral radius, positive definite matrix, iterative methods, successive overrelax-
ation, optimal relaxation parameter

AMS subject classification. 65F10

1. Introduction and historical remarks. In this note we consider a class
of iterative methods for a linear system Au b, where A is an invertible square
matrix, b a given vector, and u the unknown vector. If A M- N, where M is also
invertible, one can define the sequence {uk: k 0, 1, 2, 3,....} by Muk+l Nuk -}- b,
where u0 is an arbitrary initial vector. It is well known that this method converges,
i.e., the sequence uk converges to the solution u (for all possible u0), if and only if
p(M-1N) < 1, where p denotes the spectral radius. In this case, log p(M-1N) is
the asymptotic average rate of convergence of uk toward the solution (Young [21, p.
88]). The following theorem gives a classical result concerning the convergence of this
method.

THEOREM A. Let A be a Hermitian, positive definite matrix, and let A M-N,
where M is an invertible matrix. If, in addition, the (necessarily Hermitian) matrix
M* + N is positive definite, then p(M-IN) < 1.

This result is used to prove the Ostrowski-Reich Theorem, i.e., if A is a positive
definite matrix, then the successive overrelaxation method converges for all values of
the relaxation parameter in the interval (0, 2).

The purpose of this note is to present a new proof of Theorem A that provides
an explicit estimate for p(M-1N) and to examine the consequences of this estimate.
First, however, some historical remarks are in order.

Theorem A is sometimes stated and proved in the slightly stronger form as an if
and only if statement, and indeed that is done in two different ways. More precisely,
in Lascaux and Thodor [9, Thm. 22, 7.4, p. 426], Householder [4, Thm. 4.17, p.
227], and Householder [5, p. 111] one finds the following result.

THEOREM A1. Let A be an invertible Hermitian matrix, and let A M- N,
where M is an invertible matrix. Suppose in addition that the (necessarily Hermitian)
matrix M* + N is positive definite. Then p(M-1N) < 1 if and only if A is positive

definite.
Also, Theorem A1 is stated in Ortega and Plemmons [11, p. 179] and is called the

Householder-John Theorem. In the special case of the Gauss-Seidel decomposition,

* Received by the editors May 4, 1992; accepted for publication (in revised form) by M. H.
Gutknecht, January 17, 1994.

Laboratoire Analyse Gomtrie.et Applications, Institut Galile-Universit( Paris XIII, Av.
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Theorem A1 is stated and proved in Reich [13] and for the successive overrelaxation
method in Ostrowski [12]. On the other hand, in Young [21, Thm. 5.3, 3.5, p. 79]
one finds the following slightly different result.

THEOREM A2. Let A be a Hermitian positive definite matrix, and let A M-N,
where M is an invertible matrix. Then p(M-1N) < 1 if and only if the (necessarily
Hermitian) matrix M* + N is positive definite.

Theorem A alone can be found in Weissinger [20, p. 160], Householder [3, Cor.
to Thm. 18, pp. 31-32], Wachspress [19, Thm. 1-11, 1.4, p. 17], John [6, p. 21],
Ciarlet [1, Thm. 5.3-1, 5.3, p. 102], Schatzman [16, Thm. 10.9, p. 101], and in a
slightly different form (the P-regular splitting theorem) in Ortega [10, Thm. 7.1.9,
7.1, p. 123].

In examining the history of these results, one must keep in mind that they de-
veloped more or less as a generalization of the Ostrowski-Reich Theorem. One finds
today at least four identifiably different proofs of Theorem A. My approach to the
history is to give a relatively modern reference for each proof and then to describe
previous versions of that or similar arguments.

The proof of Theorem A1 in Lascaux and Thodor (1987) [9, Thm. 22, 7.4, p.
426] is based on the formula

(1.1) (u, An) (Bu, ABu) ((I B)u, (M* + N)(I- B)u),

where A is assumed to be Hermitian and B M-1N. If now u is an eigenvector of B
with eigenvalue , then (1.1) implies that

(1.2) (1 -1Al2)(u, Au} I1 12(u, (M* + N)u).

Furthermore, A 1, since if A 1 then M-1Au (I- B)u 0, and so u 0. If
both A and M* + N are positive definite, then IAI 2 < 1. The reverse implication in
Theorem A1 is proved using formula (1.1) directly. Formula (1.2) can also be found
in the proof of Theorem A by John (1967/1956) [6, pp.21-22]. Formulas (1.1) and
(1.2) (for the special case of successive overrelaxation) appear in Varga’s proof of
the Ostrowski-Reich Theorem (Varga (1962) [18, Thm. 3.6, 3.4, p. 77]), which is
based on Ostrowski’s (1954) original argument [12]. See the bibliographic remarks
in Varga [18, p. 96]. Finally, formula (1.1) (for the special case of the Gauss-Seidel
decomposition) appears in Reich’s proof of Theorem hl for Gauss-Seidel (1949) [13].
(Reich attributes Theorem A for Gauss-Seidel to Seidel (1874) [15].) Reich proves the
necessity part of Theorem A1 (for the Gauss-Seidel decomposition) using yet another
formula of which (1.2) is a special case. Also, formula (1.1) is implicit in the proof of
Theorem 2 in Stein (1952) [17].

The proof of Theorem A in Ortega (1972) [10, Thm. 7.1,9, 7.1, p. 123] is based
on the formula

(1.3) A- B*AB (I- B)*(M* + N)(I- B),

where A again is assumed to be Hermitian. (Actually, Ortega works with real symmet-
ric matrices instead of complex Hermitian matrices. To simplify the exposition, since
there is no substantial mathematical difference, I will discuss all of the results as if they
applied to complex Hermitian matrices. Also, Ortega’s P-regular splitting theorem
is not exactly the same as Theorem A in that the hypotheses concern M + N rather
than M* + N, but it is close enough to be referred to as Theorem A, retrospectively.
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See Ortega and Plemmons [11, p. 187] for a discussion of this point.) Formula (1.3)
implies formula (1.1), and therefore formula (1.2), but Ortega does not go that route.
Instead, he proves Theorem A by applying Stein’s Theorem to formula (1.3). Stein’s
Theorem, i.e., part Of Theorem 1 in Stein (1952) [17], says that if A is Hermit[an,
positive definite and if A- B*AB is also positive definite (it is clearly Hermit[an),
then p(B) < 1, and Ortega proves Stein’s Theorem by considering ((A- B*AB)u,
where u is an eigenvector of B. This argument is close to Stein’s proof, which Stein
attributes to L. J. Paige (personal communication, apparently; see Stein (1952) [17,
footnote 3, p. 82]). Formula (1.3) can also be found earlier in Householder (1958) [4,
Thm. 4.17, p. 227] and (1964) [5, p. 111], where proof of Theorem A is essentially the
same as in Ortega (1972) [10]. Both Ortega and Householder credit Weissinger (1953)
[20] for Theorem A as well as for formula (1.3). See the footnote in Ortega (1972) [10,
p. 123] and the historical comments in Householder (1964) [5, p. 115]. However, in
Ortega and Plemmons (1979) [11, p. 181] an earlier work of Householder (1955) [3],
as well as that of Weissinger, is credited with formula (1.3). Indeed, one finds formula
(1.3), generalized to the case where A is not necessarily Hermit[an, in Householder
(1955) [a, pp. 27-28], where it is called "Weissinger’s Lemma." This same formula
appears as formula (2.5) in Weissinger (1953) [20, p. 156] and Theorem A is given in
Weissinger (1953)[20, p. 160].

Concerning the proof of the necessity part of Theorem A1, Householder (1958) [4,
Thm. 4.17, p. 227] and (1964) [5, p. 111] gives an iteration argument based on formula
(1.3) and credits Reich (1949) [13] (as I have just done two paragraphs above) for the
same result in the special case of Gauss-Seidel. (Again, see the historical comments in
Householder [5, p. 115].) I have not found any author who noticed that the necessity
part of Theorem A1 follows immediately from formula (1.3) and Theorem 2 in Stein

[17].
Young’s proof (1971) [2t, Thm. 5.3, 3.5, p. 79] of Theorem A2 is based on yet

a different formula,

(1.4) (A1/2BA-1/2)(A1/2BA-1/2) I- A1/2M-I(M + N)(M-1)*A/2,

which becomes, if M* + N is positive definite,

(1.5)
(A/2BA-/2)(A/2BA-1/2) I-[A1/2M-I(M + N)/2][A/2M-I(M + N)1/2]

where All2 and (M* + N)!/2 are the Hermit[an, positive definite square root matrices
of the Hermit[an, positive definite matrices A and M* +N, respectively. Formula (1.4)
is actually not so different from formula (1.3): if formula (1.3) is multiplied on the
left and right by A/2, the result is formula (1.4), except that the Hermit[an adjoints
are on the left instead of the right. (Notice that the hypotheses of Theorem A2, as
opposed to Theorem A1, allow the use of A-I/2 in the proof.) Young [21, p. 94]
credits the calculations and a similar result to Wachspress (1966) [19], and indeed
Wachspress (1966) [19, Thm. 1-11, 1.4, p. 17] states and proves Theorem A using
formulas .(1.4) and (1.5). Wachspress in turn credits the calculation to Habetler (1959)
[2], but I have not obtained a copy of this article. Interestingly, Young states Stein’s
Theorem just after proving Theorem A2 and gives a proof analogous to Wachspress’
proof of Theorem A. However, Young does not prove Theorem A by reducing it to
Stein’s Theorem, though he does use Stein’s Theorem to establish other criteria for
convergence, thereby providing another proof of the Ostrowski-Reich Theorem (Young
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[21, p. 84]). Also, Young [21, p. 80] notes that the A1/2-operator norm (defined below)
of B M-1N is less than 1.

The fourth proof of Theorem A can be found, for example, in Ciarlet (1985) [1,
Thin. 5.3-1, 5.3, p. 102] and, more recently, in Schatzman (1991) [16, Thm. 10.9,
p. 101]. It is more functional analytic in flavor and seems to be drawn from ideas
in the Habetler-Wachspress-Young proof. Some of the technicalities are avoided by
appealing to compactness of the unit ball in a finite dimensional vector space. Since
the.proof presented here is an extension of the proof in Ciarlet [1], the details are
given below.

Finally, I would like to emphasize that this historical survey is not necessarily
complete. Theorem A, along with the Ostrowski-Reich Theorem, has an extraordi-
narily rich history, and I invite the reader to consult the bibliographies and historical
comments in the works cited in the present article. Theorem A seems to be due to a
number of different researchers independently.

The plan of this paper is as follows. In 2, the new estimate for p(M-1N) is
proved. In 3, this estimate is examined for some examples, in particular for the
method of overrelaxation applied to a certain tridiagonal matrix. In 4, the infinite
dimensional version of this matrix is studied, as well as the convergence as the di-
mension goes to infinity of results for the finite dimensional matrices. This analysis
suggests a new method for estimating the optimal relaxation parameter for certain
large matrices (5).

2. A new estimate for p(M-1N). I present here a proof of Theorem A that
provides an explicit estimate for p(M-1N) in terms of the spectral properties of the
matrices A, M, and N (in various combinations). To emphasize the fact that the
result does not rely on finite dimensionality, the theorem is formulated in the context
of selfadjoint operators on a Hilbert space 7-/. It should be noted, however, that the
proof of Theorem A given by Wachspress [19] and, later, Young [21] is essentially valid
as stated in the infinite dimensional case.

To fix the terminology, a positive selfadjoint operator is one whose spectrum is
contained in [0, c). An invertible, positive bounded selfadjoint operator is one whose
spectrum is contained in some interval [5, ], where 0 < 5 < "), < cX; this is the
appropriate infinite dimensional analogue of a Hermitian, positive definite matrix.
The spectral radius of an operator H is denoted p(H). Finally, the norm on 7/, as well
as the induced operator norm, is denoted by and the inner product by (,). Recall
that p(H) <_ IIHII for any bounded operator H, this inequality being true if is
replaced by an operator norm induced by any equivalent norm on 7-/(see, Kreyszig [8,
Whm. 7.3-4]).

THEOREM B. Let A be an invertible, positive bounded selfadjoint operator on the
Hilbert Space Tl. Suppose that A M- N, where M and N are bounded operators,
with M invertible. If, in addition, the (necessarily selfadjoint) operator M* + N is
positive and invertible, then p(M-1N) < 1. More precisely,

p(M-N)2 <_ I- inf{spectrum(M* + N)__}
p(M*A-1M)

This inequality becomes an equality when A, M, and N are all scalar multiples of the
identity operator.

Proof. The proof begins as in Ciarlet [1, Thin. 5.3-1, 5.3, p. 102], and I will
indicate at what point it departs from this proof. Consider a new norm on 7-/(referred
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to above as the A1/2-norm) defined by

I[Ivlll (Av, v -liAr/evil,
where A1/2 is the positive, selfadjoint square root of A. Since A is an invertible,
positive bounded selfadjoint operator, it follows that III [11 is a (Hilbert) norm on T/,
equivalent to the original norm. We use III III also to denote the induced operator
norm. Thus,

p(M-1N)

_
IIIM-1NIII;

and so to estimate p(M-1N), it suffices to estimate IIIM-NIII.
By definition of the induced operator norm,

IIIM-1NIII 2 --IIII- M-AIII2 -sup(lilY- M-AvlII2 IIIvlll 1]-.

For simplicity of notation, we let w- M-Av, so Av Mw. If IIIvllt- 1, we see that

lily will - (A(v w), v w)
1- (Aw, v)- (Av, w)+ (Aw, w)
1- (w, Mw)- (Mw, w)+ (Aw, w)
1- (M’w, w)- (Mw, w)+ (Aw, w)
1 -((M* + N)w, w).

(This last identity is equivalent to formula (1.1).) At this point we need to estimate
((M* -t- N)w, w) from below independently of v with IIIvlll 1, and it is here that we
no longer follow the proof in [1]. (The proof in [1] concludes--in the finite dimensional
case--by observing that the continuous function v -- IIIv- M-AvlII2 attains its
maximum on the unit sphere with respect to the norm III III, and that this maximum
is less that 1 since M* + N is positive definite.)

By hypothesis, the infimum of the spectrum of M* + N is a positive number,
which we denote by 5 > 0. It follows (see, Kreyszig [8, Thm. 9.2-1]) that

<(M* + N)w, w> >_ 611wll 2,

Furthermore

and so

We see therefore that

((M* + N)w, w) >_
IIA_/UMII

from which we conclude that

IIIM-1NIII u
_
1-
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To complete the proof, it suffices to note that

I[A-1/ MII sup sup
(M*A- Mx’x) p(M*A-1M),

the last equality being justified since M*A-1M (A-1/2M)*A-1/2M is selfadjoint
and positive (see [8, Thms. 9.2-1, 9.2-2, and 9.2-3]). (This calculation shows that
IITII 2 p(T*T) for any bounded operator T.)

Remarks. In the above proof, if we make the additional assumption that M* +
N rI for some (positive) real number r, then the chain of inequalities in the proof
almost becomes an exact equality. To see this, note first that ((M* + N)w, w}
r(w, w}. Next, for any small > 0, let v and w be such that v A-1Mw and

1 lily, Ill IIIA-1MwII[ IIA-1/MwII > (IIA-/MII- )llvll.

It follows that

this for all small > 0. One concludes easily that

r r inf{spectrum(M* + N)}IIIM-1Nlll 1-
IIA_I/eMII - p(M,A_IM

1-
p(M,A_IM

It remains then to determine how accurate an estimate IIIM-NIII is for p(M-1N)2.
This point will be discussed below for a specific example. Note that if the diagonal
elements of A are all equal, then the decomposition for successive overrelaxation gives
M* + N rI for some real r.

Finally, although a calculation similar to the above proof but based on formula
(1.5) can also be used to obtain Theorem B, it was the functional analytic formulation
in [1] that led naturally to the calculation in the proof of Theorem B.

3. Finite dimensional examples. It is, of course, interesting to see what the
estimate of Theorem B gives for specific examlJles. In this section we consider the
finite dimensional case, i.e., where A is a matrix.

The first example is the case where M /I, where - > 0. Thus, A -I- N
and M* + N -I + N 2-I A. In this case, the hypotheses of Theorem A are
simply that A is a Hermitian matrix whose eigenvalues belong to the open interval
(0, 2/). We denote by Am and AM, respectively, the smallest and largest eigenvalues
of A. Theorem B then implies that

p(M-1N)2 _< 1
inf{spectrum(2-I A) }

-2p(A-1)
1

(2/I-/M),m
1

2Am ,m/M
,),2 ,),2

On the other hand, it is easy to see that

p(M-1N)2 p(I- "y-lA)2 max { 1
2/n (,rn)2 2,M (/M)2 /

,2
,1 + ,),2 j

where the maximum is attained with ,m if /m

_
2-- ,M, and with ,M if ,m

_
2/-
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Next, we examine the consequences of Theorem B for the method of successive
overrelaxation. Thus, we write

A-D-E-F,

where D is a diagonal matrix and E and F are strictly lower and upper triangular
matrices, respectively. (For simplicity we do not treat block decompositions.) If w 0,
the matrices M M and N N are defined by

M=M= I(D wE)

N= No.,
l
(wF + (1 w)D)

It is clear that A M N, this being the decomposition for successive overrelax-
ation. (The case w 1 gives the Gauss-Seidel method.) The matrix (M)-IN is
then given by

/2v (Mw)-lNw (D wE)-l(wF + (1 w)D).

.Suppose now that A is a Hermitian, positive definite matrix. It follows that E* F
and therefore that

1 (2 -w)(Mo)* + N
I
(D wE*)+ (wF + (1 w)D) D.

Since A being positive definite implies that all its diagonal elements are positive, it
follows immediately from Theorem A that if 0 < w < 2, then the successive overrelax-
ation method converges, i.e., p(E) < 1. Theorem B gives the following estimate:

(3.1) p(E)2 _< 1- c0(2 w)inf(aii)
p((D -wF)A-I(D -wE))’

where we denote the elements of A by (aij).
In evaluating the usefulness of this estimate, one may ask two different questions.

First, how good is the estimate for a given value of w? Second, what is the predicted
optimal value of w obtained from these estimates, i.e., the value of w which minimizes
the right side of the estimate, and how close is it to the real optimal value?

As a first test case, it is natural to apply this estimate to the n n matrix
A- (aij given by

if i-j,
aij- -1 if i-jl--1,

0 otherwise.

where, for example, 7 _> 2. To apply the estimate (3.1), one needs to calculate (or
estimate) p((D- wF)A-I(D- wE)). For this particular matrix A, one can easily
verify that

A e sp((D wF)A-I(D wE))

if and only if

(D wE)(D wF) AA (w2 + 72 AT)I + (A wT)(E + F) + w2G
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is not bijective, where G (gij) is the matrix whose only nonzero entry is gll -1.
It follows that

e sp((D wF)A-I(D wE)) w -(w2 + 3’2 3’) e sp((l w3")(E + F) + w2G).

Rather than calculate sp((A- w3")(E + F) + w2G) exactly, we use an estimate that
has the advantage of being simple and also independent of the dimension n (per-
haps that is a disadvantage). Indeed, for any matrix H (hij),p(H) < IIHIIo
maxl<i<n EI<_j<n Ihijl, where IIo denotes the matrix norm induced by the
vector norm. It follows that

(3.2) p((1 w)(E + F) + weG) <_ max[2l, wTl,2 + ,rll.

Thus, we finally see that if e sp((D- wF)A-I(D- wE)), then

(3.3)

To simplify the calculations, we will assume from now on that 7 is sufficiently
large, e.g., 3’ > 8, so that special cases do not need to be considered. Also, since

(D- wF)A-I(D- wE) is a positive definite matrix, we only need to consider > 0.
A straightforward, albeit tedious, calculation shows that (3.3) implies

(3.4) ,X _< max [ (3’3’_2-03)2 2032 -3’-1037+ 3’2 2w + w3’ + 3’z (3’ +
3’+1 3’+2 J"

For simplicity of notation, let us denote by f(03) the right-hand side of (3.4), and so
p((D- 03F)A-l(D- 03E)) <_ f(03). Another straightforward, yet even more tedious,
calculation shows that

f(03)

(3’_03)2
3’--2

2032 033’ + 3’2
3’-1

2032 -4- 033’ -f- 3’2
032 < 03 < 033,

033 <03<2,

where

2 2 2
031 032 033

V/1 + "- 1+V/1 . 1+V/1- .4( 3) 8 4( + 3)1 +

Theorem B in the form of (3.1) now implies that

(3.5) p()2 < 1-
3’03(2 -03)

f(w)

It is relatively easy to see that 3"w(2-w)/f(w)is increasing on the interval [0, w2] and
decreasing on the interval [w2, 2], and so the value of 03 for which (3.5) provides the
lowest estimate of p(,) is

(3.6) w2
81 +
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This value is slightly larger than the real optimal value of co (see [18, 4.3], [21, Chap.
6], or [1, Thm. 5.3-6, 5.3])"

(3.7) coopt
2 2

/ + F)2 /i 4 cs2(r/(n + 1))1+ 1 p(E. 1 + .
Note that coe -coopt O(3‘-2) for large 3‘.

It is also interesting to compare the actual spectral radius with the upper bound
given by Theorem B. In the Gauss-Seidel case (w 1), it is known (see, for example,
[1, Thm. 5.3-4]) that

p(/21) p(3’-I(E A- F))2
4 cos2(Tr/(n + 1))

3‘2
On the other hand, Theorem B gives the estimate

3‘ 3‘(3‘- 1) 2
(3.9) p(/:l)2 _< 1

f(1)
1-

2-3‘ + 3‘2 3‘2 _3‘ + 2’

which is not a very good estimate of the true value, especially for large 3‘.
In other words, while the optimal value of the relaxation parameter predicted by

Theorem B is quite accurate, the individual estimates for p() are not good at all.
There is, however, an explanation for this discrepancy. Theorem B is valid in

Hilbert spaces and can therefore be applied to the infinite matrix having the same
form as above, considered as a bounded selfadjoint operator on 12. All the estimates
obtained above from Theorem B apply equally well for the infinite matrix. However,
as we shall presently see, while p(3‘-l(E + F)) 2/3‘ for the infinite matrix, it is no
longer true that p(/:l) p(3‘-(E + F))2.

4. An infinite dimensional example. Let A A (3‘ E R) be the linear
operator on 12 =/2({0, 1,2,3,...}) whose infinite matrix (aj)ij=o,,2,3 is given by

3‘ if i=j,
aij -1 if li- j[ 1,

0 otherwise.

If we set A D E F, where D is a diagonal operator (D 3‘I), E is strictly lower
triangular, and F strictly upper triangular, then E is the well-known shift operator

We observe immediately that A is a bounded selfadjoint operator, and that

lIE + Eli liEII + [[FII- 2,

where still denotes the operator norm, as well as the vector norm in 12. The
spectrum of E + F (which is real since E + F is selfadjoint) is thus contained in the
closed interval [-2, 2]. It follows that if 3‘ > 2, then A A is a positive selfadjoint
operator, invertible at least if 3‘ > 2. We will see shortly that A2 is, in fact, not
invertible.

As remarked above, the Theorem n estimates (3.5) and (3.9) are still valid for
this example (again with 3’ > 8), and the "predicted optimal value" of co is still given
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by (3.6). To justify this assertion, recall first that the spectrum of a bounded operator
H on a Hilbert space 7-/is given by

sp(H) {A e C" H- AI is not bijective on 7-/}.

Indeed, if H-,kI is bijective, then (H-,kI)-1 is bounded by the open mapping theorem
for bounded operators [8, Thm. 4.12-2] or [14, Thms. 5.9 and 5.10]. Next, to justify
formula (3.2), we need to verify p(U) <_ IlUll for the infinite real symmetric matrix
H ()- w’y)(E + F) + w2G. For any finite real symmetric matrix, we have IlUll
p(H) < IIHll and so, passing to the limit, we see that IlUll _< IIHII for any infinite
real symmetric matrix. This implies that p(U) <_ IIHII. We see below, however, that
the exact values of p(Z:) are not the limits as n - cx of the corresponding finite
dimensional values.

The deeper properties of the operator A are best studied under the unitary trans-
formation between 12 and the Hardy space H2 H2(U) of analytic functions on the
unit disc U {z E (:3: Iz < 1} given by

(0, 1, 2, 3, ") f(z) kzk.
k=O

In particular, H2 contains precisely those holomorphic functions -k=o kzk for which
-k__o Ikl 2 is finite. For details on the space H2, as well as this isomorphism, the
reader may consult [14, Chap. 17]. By abuse of notation, we denote by A,D,E, F,
and Z: the operators on H2 induced by the corresponding matrix operators on 12
under this Hilbert space isomorphism. It follows that for any f E H2,

(Ef)(z)-zf(z).

(Ff)(z) f(z) f(O),
Z

[(A- AI)fl(z) I-z2 + (7- A)z- 1]f(z)+ f(0),
Z

[(Z: AI)fl(z) [wAz2 + (1 -- A)Tz + co]f(z) wf(O)

It is now in principle a straightforward matter to determine the spectra of the operators
A and .

PROPOSITION 4.1. sp(A.) [’-2, 3’ + 2] for all "y R. Furthermore, A has no
eigenvalues.

Proof. It is clear that (A- I)f g if and only if for all z U,

zg(z) f(O) zg(z) f(O)f(z)
-z2 + (7 A)z 1 -(z l)(z 2)’

where 1 and 2 are the two roots of z2 (-y- A)z + 1. In particular @ 1. I claim
that A-/I is bijective on H2 if and only if one of the two roots belongs to U. Indeed,
if I1 < 1, then given g H2, there exists a unique f H2 such that (A- AI)f g,
and f is given by

ZB(Z) lg(i)
f(z) -(z l)(Z 2)"
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Since J(:2J > 1, the function f is holomorphic in U and by Theorem 17.9 in [14], it is
in H2. Also, any choice of f(0) other than 1g(1) would result in a function f having
a singularity at z 1. In this case, therefore, A- AI is bijective. On the other hand,
if I1 121 1, then A- AI is not bijective. Indeed, if g(z) 1 and (A- AI)f g,
then f(z) must have a singularity either at 1 or at 2 the choice of f(0) can only
eliminate one of them, and if t 2, then setting f(0) still cannot eliminate
the singularity. By Theorem 17.10 in [14], this singularity on the unit circle prevents
f from belonging to H2 (since f restricted to the circle is not square integrable).
Therefore, if I1= 121- 1, then A- AI is not surjective. A straightforward calcula-
tion shows that Itl [21 1 if and only if 7 A [-2, 2], proving the first statement
of the proposition. In particular, A2 is not an invertible positive operator, i.e., it is
semidefinite. Also, setting 7 0, we see that sp(E + F) [-2, 2].

Next we show that A has no eigenvalues. Indeed, /k is an eigenvaIue of A if and
only if there exists f H2, f not identically zero, such that (A- AI)f 0, which
implies that

-f(0) -f(0)f(z)
-z2 + (’)’ A)z 1 -(z )(z .)"

Such a function is in H2 only if I[ > 1 and 121 > 1, which is impossible since
1.

PROPOSITION 4.2. Let 0 < w < 2 < ". Then

p(Cw)2 1 "w(2 w)min (. 02)2 (,), -- 3)2Furthermore, the interior of sp(E) is nonempty, and every interior spectral value is
an eigenvalue.

Proof. Since 0 < w < 2 and - > 2, we know from Theorem B and the previous
proposition that p(E) < 1; and so we need only consider complex A such that IAI < 1.
Now (Z: AI)f g if and only if for all z U,

z(7 wz)g(z) + wf(O) z(’ wz)g(z) / wf(O)f(z) wAz2 + (1 w A)’z + w WA(z )(z 2)

where and 2 are the two roots of

P(z) P, (z) z2 + wA
z + -.

(We suppose that A 0.) As in the previous proof, we use Theorems 17.9 and 17.10
in [14] to determine when/2- AI is bijective on H2(U). First, if I1 > 1 and 121 > 1,
then any choice of f(0) is acceptable and/2-/kI is not injective. Next, if I1 < 1 and
121 > 1, then precisely one choice of f(0)will work, i.e., f(0)--l(/-w)g(l)/W,
and so/2 AI is bijective. Finally, if ]11 1 and 121 > 1, then for some g H2

(one which is singular at ) no appropriate f can be found, nnd so : AI is not
surjective. (Here we use the fact that "/w > 1.) Since I,kl < 1, we have 121 > 1,
and thus all cases have been considered. In particular, if A is a spectral value, it is
necessarily an eigenvMue except if one of 1 and 2 has modulus 1. (If A 0, the same
conclusions hold if the two roots are considered to be -w/I(1- w)-] and cx, which are
the limits of the two roots as/k --. 0. We keep this convention throughout the proof.)

If/k is such that both I1 > 1 nd 121 > 1, then the sme is true for nearby values
of A, which implies that A is in the interior of sp(). For example, this is the case
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if A 1 -w; and so it follows that the spectrum of always contains a nonempty
open set of complex numbers. (In contrast to the finite dimensional case, this implies
that w- 1 can never be the spectral radius of .) It also follows that the boundary
of sp() is contained in the set of such that one of the two roots 1 and @ has
modulus equal to 1. Therefore, the spectral radius p() is achieved by a spectral
value A such that one of the two roots 1 and @ has modulus equal to 1, i.e., is equal
to eie for some real 0.

From the quadratic formula, it is a straightforward calculation to see that one of
the roots of P, is equal to eie, for some real 0, if and only if

(4.1) Aeie (1 w)yei + w
/ wei

Thus,
p(z) -sup{lA]. A verifies (4.1) for some 0 E R}

I(1 +
sup

(1 w)272 + 2w(1 w)(cos 9) + W2
sup

[0,,1 e 2w(cos 0) + w

:sup ]te[-,ll 27t + 7
where we have substituted t cos 0. It is straightforward to check that the fraction in
this last expression is a monotone function of t, and so the above supremum is realized
either with t 1 or with t -1. The desired formula for p()2 follows immediately.

To complete the proof, we need to show that if A is a spectral value such that
one of the two roots of P, is of modulus 1, then is on the boundary of sp(,).
For such a , the two roots are distinct and therefore locally holomorphic and non-
constant functions of A. The open mapping theorem for analytic functions [14, Thm.
10.32] implies that for some nearby , one of the roots is inside U. Such A are not in
sp().

The particular ce w 1 in Proposition 4.2 gives

-2 1
(4.2) p(l)2 1- (_ 1)2 (_ 1)2.

One notes immediately that the value of p(1) given in (4.2) is not the limit of the finite
dimensional values given by (3.8). On the other hand, the estimate (3.9) is a much
more reonable approximation to (4.2) than it is to (3.8). In addition, the estimate
(3.5) coincides with the computed value of p()2 in Proposition 4.2 if 0 < w < w
and if w3 < w < 2. Thus, at least ’for these values of w, the estimate provided by
Theorem B in this example gives the exact value of p(). I suspect this is true for
all w (0, 2). To veri this sertion, one would have to improve the estimate (3.2),
which apparently is already sharp for the above values of w in the infinite dimensional

It is straightforward to show using Proposition 4.2 that the optimal value of w,
i.e., the value for which p() is minimized, is given by

2
(4:3) opt

1+ -
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which is the limit as n - cx of the finite dimensional optimal values given by (3.7).
So what goes wrong as n - cx? The spectral radii p() do not converge to the

corresponding values for the infinite matrix; but miraculously, the optimal relaxatio
parameter does converge to the optimal parameter for the infinite matrix. In finite
dimensions, one knows that p(1) p(7-1(E+F))2, and that the nonzero eigenvalues
of/:1 are the squares of the eigenvalues of -(E + F). (See, for example, [1, Thm.
5.3-4] and its proof.) As n - cx, the spectrum of /- (E + F), a discrete subset of
[-2/, 2//], becomes this entire interval; and the infinite matrix y-l(E + F) has no
eigenvalues. On the other hand, not only is it no longer true that p(/:l) p(/-(E +
F))2, but also the interior of the spectrum of 1 consists entirely of eigenvalues and
includes some nonreal complex eigenvalues.

The finite dimensional proof that p(1) p(-(E+F))2 is based on the formula

AQ),(E + F- ATI)Q1/, A2E + F- A27I,

where Q is the diagonal matrix whose diagonal elements are successively 1, A, ,2, ,3,
etc. While this formula is still correct in infinite dimensions, the matrix Q1/ is no

longer a bounded operator on/2, and so conclusions about the spectrum are suspect.
The matter becomes clear if we interpret the matrices Q and Q1/ as operators on

analytic functions. Indeed (Qf)(z)= f(Az) and (Q/f)(z)= f(z/A). In particular,
Q is a bijection H2(Vll) -- H2(U) and Q/ is a bijection H2(U) --. H2(UII),
where Ur is the set of complex numbers with Iz[ < r. It follows (for A 0) that
A2E + F- A27I is not a bijection on H2(U), i.e., that A2 is a spectral value of t:l, if
and only if (E+F- ATI) is not a bijection on H2(Ull). Since IA[ < 1, Ul c U (strict
inclusion), and so H2(Ull) is a larger space than H2(U): it includes, for example, all
functions analytic in U. There exist values of A for which (E + F- A,I) is a bijection
on H2(U), but not on H2(Vll). To verify this last assertion, note that (E + F-
is just -A and is a bijection on H2(Ur) if and only if exactly one of the two roots of
z2 A/z + 1 is contained in Ur. There certainly exist values of A (such as
for > 0 small) for which this is true in U U1, but not in UII. (If it is true in Ull,
it is true in U, since the product of the roots is 1.) Thus, the spectrum of : contains
squares of much more-than the spectral values of /-I(E + F): it contains all the
squares of spectral values of 7-1(E + F) acting on the larger space H2(Ull). Also,
(E + F) is not selfadjoint on this larger space, and so there is no reason to have only
real spectral values.

5. Concluding remarks. It seems that the optimal relaxation parameter is
more stable than the individual spectral radii. This suggests the following approach
to estimating the optimal parameter for certain large matrices. Suppose that A is an
infinite matrix whose optimal parameter w can be explicitly computed using tech-
niques similar to those used above. Suppose furthermore that the optimal relaxation
parameters wn for the principal n n submatrices An of A tend to w as n .
Then w would provide a good approximation to the optimal parameter of An if n
is large. The example studied above suggests that this might hold true under some
general hypotheses.
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A PRACTICAL UPPER BOUND FOR
DEPARTURE FROM NORMALITY *

STEVEN L. LEE

Abstract. The departure from normality of a matrix is a real scalar that is impractical to
compute if the matrix is large and its eigenvalues are unknown. A simple formula is presented for
computing an upper bound for departure from normality in the Frobenius norm. This new upper
bound is cheaper to compute than the one derived by Henrici [Numer. Math., 4 (1962), pp. 24 40].
Moreover, the new bound is sharp for Hermitian matrices, skew-Hermitian matrices and, in general,
any matrix with eigenvalues that are horizontally or vertically aligned in the complex plane. In terms
of applications, the new bound can be used in computing bounds for the spectral norm of matrix
functions or bounds for the sensitivity of eigenvalues to matrix perturbations.

Key words, nonnormal matrix, departure from normality, condition numbers

AMS subject classifications. 65F35, 15A60, 15A12

1. Introduction. The departure from normality of a matrix, like the condition
number of a matrix, is a real scalar that can be used to compute bounds for various
matrix computations. For example, departure from normality can be (ised to bound
the powers, inverses, spectral variation, and fields of values of nonnormal matrices [8]
or the spectral norm of matrix functions [1]. Unfortunately, the departure from nor-
mality of a matrix is impractical to compute if the matrix is large and its eigenvalues
are unknown. The main result of this paper is a simple formula for computing an
upper bound for departure from normality in the Frobenius norm. This new upper
bound is cheaper to compute than the one derived by Henrici [8], and it is sharp for
any matrix with eigenvalues that are horizontally or vertically aligned in the com-
plex plane. The practical significance is that the new upper bound can be used in
computing bounds for many of the matrix computations described in [1], [8].

The outline of this paper is as follows. In 2, we establish notation, motivate the
definition of departure from normality, and give Henrici’s upper bound [8]. In 3, we
derive a new upper bound and prove that it is sharp for certain classes of matrices.
In 4, we conclude with some numerical reselts that compare the tightness of Henrici’s
bound and the new one.

2. Preliminaries. Let A (aij) denote an n )< n complex matrix and let
AH (Sji) denote the conjugate transpose of A. (Herein, all matrices are square
matrices of order n with real or complex entries.) Several important classes of ma-
trices are defined in terms of their conjugate transpose: for example, A is Hermitian
if and only if (iff) AH A, A is skew-Hermitian iff AH -A, and A is unitary iff
AHA AAH I. Let M and N denote the Hermitian and skew-Hermitian parts
of A, respectively. Indeed, let the functions 7-/(.) and S(.) extract the Hermitian and
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skew-Hermitian part of any square matrix. Then, with

and

A has the splitting

I(A+AH)=_M7-l(A) "= -I(A-AH)--N,,S(A) "= -(3) A M + N.

Let R denote an upper triangular matrix, T a strictly upper triangular matrix, U a
unitary matrix, and A a diagonal matrix whose entries are the eigenvalues, Ai, of A.
Let Re(A) and Im(A) denote the real and imaginary parts of A so that

(4) A Re(A) + i Im(A).

Finally, recall that A is normal iff, for example, [7] the following are true.

(5a)
(5b)

A has a complete, orthogonal set of eigenvectors,

AHA AAu

The set of normal matrices includes the Hermitian, skew-Hermitian, and unitary
matrices and, in general, any matrix that is unitarily similar to a diagonal matrix.
Thus, any Schur decomposition of a normal matrix gives

(6) UHAU R A + T,

where T 0. For a matrix that is not normal, it is convenient to quantify its departure
from normality in terms of a norm of T.

DEFINITION 2.1 (Departure from Normality [8]). For any n n matrix A,

(7) depF(A) := IITIIF (IIAII F-

It is easily seen that depF(A is independent of the choice of U and invariant with
respect to complex shifts and rotations. That is,

(8) depF(A depF(e-ie(A aI))

for any complex scalar a and 0

_
0 < 2r. Later, we show the significance of this

observation.
More than a dozen measures of nonnormality have been proposed [3]. The choice

depF(A is especially useful since the most natural measure of nonnormality,

(9) ’F(A) min{llEllF" A + E is normal},

can be bounded from below [11] and above [3], [13] via

(10) depF(A)/x/ <_ ’F(A) <_ depF(A
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The difficult problem of finding the closest normal matrix to A in the Frobenius
norm has been completely solved by Gabriel [4], [5] and, independently, by Ruhe [13].
A recent treatment of this and other matrix nearness problems is given in [9].

For normal matrices, depF(A 0 via (bb). For nonnormal matrices, depF(A is
the nonzero quantity defined by (7). To be clear, a small example helps to summarize
the main ideas up to this point.

Example 1. Two different Schur decompositions of

(11)
a / - )A= v/ 2
1 V/2 0

can be written

1 1 4)(1) UIHAU =R= 0 2 2 and
0 0 3

2 -1

U2HAU2 R2 0 1
0 0

Evidently A has eigenvalues A(A)= {1, 2, 3}, and it is nonnormal since R1 and R2
are not diagonal. The strictly upper triangular parts of R1 and R2 have equal norms,
namely, depF(A :=

The value of depF(A is impractical to compute if A is large and its eigenvalues
are unknown. Lower bounds for depF(A have been derived by Eberlein [2]

(13) dePF (A) >_

and Loizou [12, Thm. 2]

(14 dePF(A) >_
/ + ( + x/ IIAHA AAHIIF)/’

where

(15)
1 itr(A)le

tr(A) is the trace of A, and A 0. The following upper bound is due to Henrici.
THEOREM 2.2. [8, Thm. 1]. For any n x n matrix A,

(16)
,3 n

dePF (A)_< (IIAA AAH IIF) 1/2

The bounds (13), (14), and (16) reduce to zero when A is normal. Unfortunately,
all of them involve the matrix-matrix computation AHA- AAH, which generally
requires O(n3) multiplications.

3. A practical upper bound. A trivial upper bound for depF(A comes from
its definition:

(17) depF(A) (IIAII, IIAII,)I/2 IIAIIF.
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We can obtain better upper bounds by manipulating expressions that arise after
splitting A into its Hermitian and skew-Hermitian parts.

LEMMA 3.1. If A M + N has the Schur decomposition UHAU R A + T,
then

(18)

(19)

1IIMII IIRe(A)I[ + IITII2
F

1IINl[ IIIm(A) II + IIT[I 2F"

Proof. We compute

1
(20) IIMll- [17-/(A)[[ II(R)ll- [17-t(h)ll+li(T)[l [[ae(A)ll+[[T[I 2

F

1
(2) IINil2F IIS(A)ll2F -118(R)II2F I[S(h)ll2F + [[S(T)[[2F IlIm(h)[l + IITI[.
These equalities can also be found in [14, p. 495]. [:]

Equations (18) and (19) show that depF(A can be defined in two different, but
equivalent, ways:

(22) depF(A v/ ([[M[[- [[Re(A)[[)1/2
or

(23) depF(A v/ (]]N[[- IlIm(h)]])1/2.
A simple upper bound for depF(A follows directly from these equalities.

LEMMA 3.2. If A M + N, where M is the Hermitian part of A and N is the
skew-Hermitian part of A, then

(24) dePF (A) _<

Proof. The upper bound is obtained from (22’) and (23) by dropping the terms [[Re(A)[[
and [[Im(A)[[, respectively.

We now consider the use of a complex shift aI for improving the bound (24).
As in Lemma 3.1, we can split A- aI into its Hermitian part M- Re(a)/ and
skew-Hermitian part N- Im(a)I and then rearrange terms to obtain

(25) depF(A depF(A hi) (l[M Re(a)II[ [IRe(A) Re(a)Ill) /e

and

(26) depF(A depF(A hi) (lg Im(a)I[[ -]Jim(A) Im(a)I[[)/2.
A tighter bound can be obtained by minimizing the terms

(27) Re(A) Re(a)Ill and Im(A) Im(a)II[

before dropping them from (25) and (26), respectively. In particular,

(28) f (Re(a)) I[Re(h) Re(a)I[[ ae(A) Re(a)[ 2



466 STEVEN L. LEE

and

(29) h(Im(a)) Itlm(A) Im(a)IIl- y IIm(A) Im(a)l:

are quadratic functions that can be minimized using standard calculus techniques.
By solving f 0 and f. 0, we find that

(30) Re(a) E Re(Ai) and Ira(a) E Im(Ai)
n n

These values minimize (28) and (29), respectively, since f’ and f’ are positive. Thus,
both terms of (27) are minimized by choosing

(31) a Re(a) + Im(a) E Re(Ai) + Y Im(Ai) y Ai tr(A)
n n n n

THEOREM 3.3. If A M + N, where M is the Hermitian part of A and N is

the skew-Hermitian part of A, then

(32) depg(A) <_ x/ min {[[M- Re(a)I]]g, [IN Im(a)IIIF}

where the upper bound is minimized for

(33) a
tr(A)

Moreover, the bound is sharp (i.e., equality holds) iff the eigenvalues of A are hori-
zontally or vertically aligned in the complex plane.

Proof. The upper bound is obtained from (25) and (26) by dropping the terms
Ilae(h) Re(a)III and IlIm(A) Im(a)III2F, respectively. The bound is sharp iff

(34) IIRe(A) Re(a)I]l 0

or

(35) IlIm(A)- Im(a)I]l 0.

The first condition (34) says that the real parts of the eigenvalues of A are constant
(i.e., the eigenvalues are vertically aligned). The second condition (35) says that
the imaginary parts of the eigenvalues of A are constant (i.e., the eigenvalues are

horizontally aligned).
Equations (25) and (26) also show that

(36) depF(A / min {IIM Re(a)IIIF, IIN lm(a)IIIF}

iff

(37) IIRe(A) Re(a)IIl << IIM Re(a)III 2
F

or

(38) IlIm(A) Im(a)IIl << IIN Im(a)Ill 2

Thus, the new bound (32) is a good approximation when the eigenvalues of A are rel-
atively close to being horizontally or vertically aligned; otherwise, the bound is weak.
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Example 2. Let us compare the Henrici bound (16) and the new bound (32) for the
matrix A in Example 1, in which depF(A) . Using the intermediate quantities

(39) IIAHA- AAHIIF 9,/---, o 2, IIM- 2IIIF V/25/2 and IINIIF V/21/2,

the Henrici bound gives

(40) depF(A) <_ (2) 1/4 9x/-9-)1/2 (v/i992)1/2 v/44.63

and the new bound gives

(41) depg(A) _< x/ min { v/25/2, 421/2}
which is sharp since the eigenvalues of A are real. For completeness, the Eberlein (13)
and Loizou (14) lower bounds are approximately and v.88, respectively.

Numerous examples can be contrived for which the new bound is tighter than
the Henrici bound or vice versa. In general, the new bound is preferable since the
Henrici bound is an O(n3) computation and the new bound is an O(n2) computation.
It is sometimes possible to further improve the new bound by rotating A- aI. For
complex matrices, the eigenvalues of A- I can be arbitrarily distributed and the
best rotation 0 cannot be determined a priori. For real matrices, the eigenvalues of
A aI occur in complex-conjugate pairs and the new bound is minimized for 0 0.
Note that the new bound reduces to zero for Hermitian and skew-Hermitian matrices.
Unfortunately, for normal matrices whose eigenvalues are not horizontally or vertically
aligned, the new bound does not reduce to zero.

TABLE 1
Departure from normality results for Trefethen [15] nonnormal test matrices.

Henrici bound New bound depF (A)
Test matrix (16) (32) (7)
Jordan block 8.594 5.568 5.568
Lima(;on 13.980 7.810 7.810
Grcar 18.398 7.681 6.007
Wilkinson 8.659 5.568 5.568
Frank 1.821e+3 2.772e+2 2.772e+2
Kahan 38.092 41982 4.982
Demmel 1.236e+9 1.438e+8 1:438e+8
Lenferink-Spijker 2.384e+2 1.067e+2 1.067e+2
Companion 5.281e+5 6.145e+4 6.145e+’4
GaUss’Seidel 4.555 2.149 2.149
Chebyshev spectral 4.392 0.572 0.570

Ratio
()/() (a2)/()

1.54 1.
1.79 1.
3.06 1.28
1.56 1.
6.57 1.
7.65 1.
’8.59 1.
2.23 1.
8.59 1.
2.12 1.
7.71 1.00

4. Numerical results. Table 1 compares the upper bounds (16) and (32) for
some of the 32 32 nonnormal test matrices studied by IYefethen [15]. In each case,
the new upper bound is tighter than the Henrici upper bound. Moreover, the new
bound is sharp for the matrices entitled: Jordan block, Limaon, Wilkinson, Frank,
Kahan, Demmel, Lenferink-Spijker, Companion, and Gauss-Seidel. Such good results
are predicted by Theorem 3.3 since the aforementioned matrices have strictly real
eigenvalues and the other matrices (Grcar, Chebyshev spectral) have eigenvalues that
are almost vertically aligned.
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Note added in proof. After this paper was accepted for publication, a referee
noticed another O(n2) upper bound for departure from normality in the Frobenius
norm [6, p. 66]

(42) depF(A _< (IIAII itr(A2)] /2.

The bound is sharp iff 0 and the eigenvalues of A are collinear in the complex plane.
The bound is a good approximation when zero and the eigenvalues of A are nearly
collinear. Unfortunately, the bound does not reduce to zero for all normal matrices.
Finally, we note that examples can be contrived for which the new bound (32) is

tighter than (42) or vice versa.
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FORWARD STABILITY AND TRANSMISSION OF SHIFTS IN THE
QR ALGORITHM*

DAVID S. WATKINS

Abstract. The QR algorithm is one of the most popular methods for calculating the eigenvalues
of a matrix. In the course of iterations of the implicitly shifted QR algorithm on an upper Hessenberg
matrix, it is crucial to check for zeros on the subdiagonal of the matrix. A zero on the subdiagonal
allows the problem to be split into two independent subproblems. Moreover, if the splitting is not
carried out, the subdiagonal zero will cause the subsequent QR iterations to break down. In practice
exact zeros are rare; instead one normally sees very tiny numbers like 10-19 It is reasonable to
set such numbers to zero and split the problem. Indeed it is widely believed that it is crucial to
carry out a splitting in such cases. Although such small entries, if left in place, will not cause the
QR iterations to break down outright, they will (or so it is thought) trigger a breakdown of forward
stability; small roundoff errors will be magnified dangerously, and the QR step will degenerate to a
random similarity transformation. The first objective of this paper is to show that this widespread
belief is mistaken; tiny subdiagonal entries do not normally cause forward instability or interfere
in any way with the convergence of the algorithm. The second objective is to show that even in
situations where forward instability does occur, the QR step is not normally rendered ineffective.
On the contrary, the shift is transmitted accurately through the region of instability in such a way
that a QR step with the chosen shift is performed on the trailing submatrix.

Key words, eigenvalues, QR algorithm, rounding, deflation, forward stability, shifts

AMS subject classifications. 65F15, 15A18

1. Introduction. The most popular algorithm for finding all eigenvalues of a
real or complex square matrix A is the QR algorithm. This is an iterative process that
produces a sequence of unitarily similar matrices (Ak) that (nearly always) converges
to quasitriangular form, thereby revealing the eigenvalues.

The QR algorithm has other applications as well, for example, solving the inverse
eigenvalue problem [3]. However, we do not discuss any of these other applications;
we study the QR algorithm strictly as a method for calculating eigenvalues.

In this paper we are concerned with what happens during a single step of the QR
algorithm, so let us drop the subscript k and consider a single QR step from A to .
The step can be described as follows. First a shift # is chosen, then the shifted matrix
A- #I is factored into a product

(1) A-#I=QR,

where Q is unitary and R is upper triangular. Then is formed by performing a
similarity transformation on A by Q:

(2) Q-1AQ.

Let us assume that A is in upper Hessenberg form, which means that aij 0 when
> j + 1. Thus A is almost upper triangular; below the main diagonal only the

subdiagonal elements ai,i_l can be nonzero. If any of these subdiagonal entries is
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zero, then A is block upper triangular:

(3) A=[ Al10 A12]A22
and the eigenvalues of All and A22 can be calculated separately. Thus there is no
loss of generality in assuming that hi,i-1 = 0 for 2,..., n. We call a matrix with
this property a proper upper Hessenberg matrix. If A is a proper upper Hessenberg
nmtrix, then .2, is also upper Hessenberg. For details see [9] or [2], for example.

There are explicit and implicit implementations of the QR algorithm. An explicit
implementation will carry out the decomposition (1) explicitly. Then ft. is formed by
the equation

(4) RQ +

which is equivalent to (2) in the absence of round-off errors. An implicit imple-
mentation manages to carry out the similarity transformation (2) without actually
performing the QR decomposition (1). A small "bulge" in the Hessenberg form is
created at the top of the matrix and "chased" to the bottom, where it falls off the end
of the matrix. The details are spelled out in 2. Usually the Implicit-Q Theorem [9],
[2] is invoked to verify that the implicit and explicit versions are, in the absence of
round-off errors, equivalent. A more general and more revealing (but also lengthier)
way to demonstrate equivalence was outlined by Miminis and Paige [4]. See also the
generalization in [11]. These developments are also implied by the earlier paper [8].

The equivalence of the implicit and explicit implementations relies on the as-
sumption that A is properly upper Hessenberg. If one of the entries hi,i-1 is zero, the
equivalence breaks down. To see what happens, think about performing a QR step on
an upper Hessenberg matrix of the form (3). One easily checks that the explicit for-
mulation performs QR steps independently on the submatrices All and A22, yielding
new submatrices fi. and .22. In contrast, (as we see latter) the implicit formulation
chases a bulge through All, thereby transforming it to AI; but the bulge disappears
when it gets to the zero on the subdiagonal, and A22 is left unchanged.

Most implementations of the QR algorithm are implicit. For such implementa-
tions it is evidently crucial to check before each step that there are no zeros on the
subdiagonal of A. If there are zeros, the problem must be broken into subproblems
that are handled independently.

In numerical practice exact zeros seldom arise. One sees instead very tiny num-
bers like 10-19. Suppose a number of this magnitude appears on the subdiagonal.
(We assume here that most of the entries of A, including the largest ones, are of order
1.) What effect will this small entry have on an implicit QR step? The conventional
wisdom is that the tiny number will act much like a zero, causing the QR step to be
"washed out." Although the bulge will not vanish when it gets to the small number,
serious rounding errors will (somehow) take place, causing all subsequent transfor-
mations to be inaccurate. Therefore the trailing submatrix A22 will be transformed
in a random way, or so it is widely believed, Consequently it is generally considered
essential to check for tiny entries on the subdiagonal, set any such entries to zero, and
split the. problem.

The conventional wisdom can be traced back at least to Wilkinson, who wrote
[12, p. 536], "The total savings resulting from taking advantage of small subdiagonal
elements in the two ways we have described is often very substantial. However, it is
worth pointing out that we should not think of these devices merely in terms of the
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saving of computation in those iterations in which they are used. The reduction to
Hessenberg form is unique only if subdiagonal elements are nonzero and therefore it is
important to use only the lower submatrix when a subdiagonal element is negligible."
This notion was subsequently amplified by Parlett [5, p. 162], and most of the experts
believe it (including, until recently, the author of this paper). Indeed, it is so obviously
right that most of us have accepted it without question.

Although we see no harm in taking advantage of opportunities to split the problem
when they arise, we would like to point out at least that the conventional wisdom is
wrong. Let us consider for example the symmetric matrix

1
2 1
1 2

where we. take e to be the ridiculously small number 10-60. Any reasonable imple-
mentation of the QR algorithm will set this number to zero and deal with the 2 x 2
and 3 x 3 submatrices separately. We attacked this matrix with an implicit QR code
that was ordinary in every way, except that it did not check for the possibility of
splitting the problem. The code uses the Wilkinson shift strategy, which is designed
to cause an eigenvalue to emerge rapidly at the lower right-hand corner of the matrix.
The Wilkinson strategy is guaranteed to converge (in the absence of round-off errors).
The entry in the (n, n- 1) position tends to zero at least quadratically and usually
cubically or better [5].

According to the conventional wisdom, the entry 10-60 should cause round-off
errors that "wash out" the step and prevent convergence. Table 1 shows what really
happens.

Iteration

TABLE 1

Subdiagonal entries of A
a2,1 a3,2 a4,3 a5,4

1.0 x 10-o 1.0 x 10-60 1.0 x 10- 1.0 x 10-6.0 x 10-1 1.1 x 10-60 7.1 10-1 7.1 x 10-1

1.6 x 10-1 3.9 x 10-6 3.8 x 10-1 3.O x 10-2

3.6 x 10-2 1.8 x 10-59 2.0 10-1 4.5 10-7

8.2 x 10-3 8.7 10-59 1.0 x 10-1 2.1 10-22

We see that the small entry a3,2 does not prevent a5,4 from converging to zero
cubically. After four iterations the entry a5,5 is an eigenvalue to full precision (almost
16 decimal places in double-precision IEEE floating-point arithmetic), and it is time to
deflate. Later on we look at other examples that show that the same thing happens in
the nonsymmetric case even if there are several consecutive tiny subdiagonal entries.

This phenomenon is related to the forward stability (or lack thereof) of the QR
algorithm. The standard implementations of the QR algorithm are (normwise) back-
ward stable but not forward stable. These are statements about the behavior of the
algorithm in the presence of the errors that are inevitably associated with floating-
point arithmetic. Let denote the matrix that is actually produced by the inexact
floating-point computation, and let A denote the theoretical result that would be ob-
tained if all of the computations were performed exactly. Backward stability means
that is exactly unitarily similar to a matrix A + E that is a small perturbation of
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A in the sense that E II/ll AII is sm&ll. This means that if we take the eigenvMues
of as approximations to the eigenvalues of A, we will in fact get the eigenvalues of
a matrix that is close to A.

Lack of forward stability means simply that , need not be anywhere near . This
is an inevitable consequence of the fact that the QR step, which is a continuous map
A --. ft,, can be extremely sensitive (ill conditioned). That is, small perturbations in
the entries of A or in the shift # can make a big change in . Whenever this happens,
we can expect the computed matrix to differ substantially from fi..

We wish to emphasize that forward instability does not happen on every QR step;
it is something that can happen but usually does not. Obviously forward instability^
is a necessary condition for a washout of the QR step, for if the computed matrix A
is very close to the theoretical A, the step must have been a success, at least from a
numerical standpoint. The conventional wisdom, stated in the language of forward
instability, would imply that small entries on the subdiagonM are reliable indicators
of the onset of forward instability. In this paper we will see that they are not.

Although forward instability is a necessary condition for a washout of a QR step,
it turns out (amazingly) not to be sufficient. We see in 7 that even when a loss of
forward stability occurs, the QR step will not normally be rendered ineffective. On
the contrary, it will transmit the shift through the region of instability in such a way
that the transformation performed on the lower submatrix is exactly a QR step with
the chosen shift.

Our approach is informal. Without making any precise claims, we try to show
how round-off errors typically affect a QR step. Our analyses address only the case
of a single step, but our numerical experience indicates that double steps behave
similarly.

The only study of forward instability of which we are aware is the work of Parlett
and Le [6], who analyze the sensitivity of a QR step for a symmetric tridiagonM matrix
as a function of the shift. They conclude that ill conditioning (forward instability) with
respect to perturbations in the shift can occur only in association with a phenomenon
they call "premature deflation," and they give a simple criterion for detecting the
onset of forward instability. Our work has some points of contact with that of Parlett
and Le, and we point them out as they arise. However, our context and approach are
different from theirs. We consider the nonsymmetric case and attempt to study the
propagation of rounding errors.

Our findings may have implications for parallel QR codes that perform many
steps at once in pipeline fashion. The need to check diligently for possible splittings
can constitute a bottleneck that seriously degrades the efficiency of such codes. This
is especially true of the Francis test for two consecutive small subdiagonM entries [1],
[12, pp. 526-528, 535-537], which is used in the standard double QR codes. Our
findings show that the need to perform splittings is not nearly so urgent as had been
believed previously. It should be possible to write successful parallel QR codes that
check for splittings relatively infrequently.

2. The explicit and implicit QR algorithms. In order to establish our nota-
tion, let us recall the details of a step of the QR algorithm. First consider an explicit
QR step. The QR decomposition (1) can be performed by reducing A- #I to upper
triangular form by a sequence of n- 1 plane rotators:

R Q_... QQ(A- #I).

The fact that all careful implementations of the QR algorithm are normwise backward stable
follows from the error analysis of unitary transformations carried out in Chapter 3 of [12].
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For each i, Q is a rotator2 operating in the (i + 1, i) plane that annihilates
The form of Q is

(5) ci -s_
8i Ci

where c 12 +ls 12 1, and Ij is the identity matrix of order j.
We have A #I QR, where Q QI"’" Qn-1. Thus (4) takes the form

RQ1Q2"" Qn-1 -b #I.

One easily checks that . is upper Hessenberg. The assumption that A is a proper
upper Hessenberg matrix implies that the QR decomposition of A and the resulting
matrix are almost uniquely determined [9]. For example, Q is determined up to
right multiplication by a unitary diagonal matrix, the class of which is quite trivial.
The rotators Q are similarly almost uniquely specified. We routinely ignore this
trivial nonuniqueness and speak as if all of these entities are uniquely determined.

Now we consider an implicit QR step. Suppose A is a proper upper Hessenberg
matrix. By (2) we can equally well calculate A from

Q_ Q*AQ .Q_

provided we have the Qi at hand. First of all, one easily checks that Q is the
rotator in the (2,1) plane such that Q transforms the vector [a-] to the form [0]"a21
This gets the transformation started. Since a2 0, Q is a nontrivial rotator. Let

and generallyA =QAQ,

Ai *Qi Ai_Q,

so that An- We will let -(i) denote the (j,k) entry of Ai. The matrix A1 is

not quite upper Hessenberg; the entry (1) is nonzero This is the bulge. We know3,1
that it is nonzero because Q2 is a nontrivial rotator and a3,2 0. Now consider
the transformation A2 QAQ2. The left multiplication by Q operates on rows
2 and 3, and the right multiplication by Q2 operates on columns 2 and 3. Following
Stewart [8], we note that the premultiplication by Q must annihilate the bulge. The
reason for this is that by the time the step is finished, we must have returned the
matrix to upper Hessenberg form. Of all the transformations that remain to be done
in the step, the only one that can transform the (3, 1) entry to zero without creating
nonzero entries further down in the first column is Q. Thus Q2 must be the rotator
that transforms

2,1
()
a,1

tO the form [;]. This determines Q (essentially) uniquely; using the notation of (),
we have

a(1) a(1)
2,1 ,1

C2 and s2 ,
m2 m2

2 We could equally well take the Qi to be reflectors. This would make no significant difference.
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2,11 + 13,11 Q2 is a nontrivial rotator because -()where 3,1 0. Oncem2
the bulge has been annihilated by Q, the right multiplication by Q2 creates a new

bulge at ,(2) This entry is certain to be nonzero because Q2 is a nontrivial rotator4,2"

and (1) ,
4,3 a4,3 0. Reasoning as before, we find that the left multiplication by Q3

must annihilate this bulge. Then the right multiplication by (3 creates a new bulge
at-(3) In general, Ai has abulgeat position (i+2 i) 1, n-2 Each of5,3.
these bulge entries is nonzero, and each rotator is nontriviM. By the time we get to

n- 1, the bulge entry has been pushed off of the end of the matrix, and the QR
step is complete. Generalizations of this process are discussed in [4] and [11].

2.1. The effect of an exact zero on the subdiagonal. So far we have been
assuming that. A is a proper upper Hessenberg matrix. Now let us see how things
change when one of the subdiagonM entries, say ai,-l, is zero. In the step Ai-2
Q,i*_2Ai_3(i_2, the right multiplication by Qi-2 is supposed to create a bulge in

_(i-3) _(i-2)position (i, i- 2). However, since ui,i_l ai,i_ 0, we get ui,i_ 2 0 instead.
At this point we can say that the step is complete, for the matrix Ai-2 is in upper
Hessenberg form. But let us see what happens if we continue the step. Since the

_(-2)bulge ui,i-2 is zero, Qi-1 is a trivial (zero degree) rotation, so Ai_ Ai-2. This
_(i-)transformation would normally create a new bulge at ui+l,i_l, but in this case the

new bulge is also zero. The next rotator Qi is normally chosen so that it transforms

gi i-1
(i"--" 1)

ai+l,i-1

(i-1) (i-1)to the form [0]" In this case both a#_ and ai+l,i_ are zero, so Q can be chosen
arbitrarily. The simplest thing to do is take Qi to be a zero-degree rotation. This
ends the step with the lower-rght corner of the matrix (called A2 in (3)) untouched.
If, on the other hand, Q is taken to be some nontrivial rotator, the rest of the QR
step effects a somewhat arbitrary similarity transformation on A22. The arbitrariness
of Qi is worrisome. If this is what happens when a,_ is zero, might not something
similar happen if a,_l is close to zero?

3. Passing through a tiny subdiagonal entry. Let us suppose that A that
has a tiny subdiagonal entry ai#-i e. We have just seen that if a,-i is exactly

_(-1) and a are exactly zero. Now we will not have exact zeros,zero, then both i,i-1
(-) (-)but we will have a,_ O(e) and ui+,_l O(e). Since these entries are small,

it is natural to expect that they be poorly determined and that Qi will be poorly
determined as a consequence. We wish to demonstrate that this is not the case.

We do not propose to prove a theorem here; we just want to show what typically
happens. Thus we do not hesitate to make simplifying assumptions along the way.
The transformations Aj_ Aj for j 1,..., i- 2 are independent of the value of

ai,i-, so let us assume that all of these transformations have been accurate. Thus
the computed Ai-2 has a tiny (normwise) error. By this we mean that the errors
in the elements of A-2 are of the order ull A II, where u is the unit round-off of the
computer.

We assume that our computer satisfies the following simple model: Each floating-
point operation is performed with a tiny relative error. That is, if we compute x. y
on the computer,, where is any one of the four binary arithmetic operations, the
computed result will be x. y(1 / 5) for some 5 satisfying 151 _< u. Computers with
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IEEE floating-point arithmetic satisfy this model. We also assume that the computed
square root of x satisfies vf(1 + 5), where 151= O(u).

The transformations A-2 --* Ai-1 and A_I --, Ai carry the bulge through the
region of the tiny entry. We wish to show that the rotators Q_ and Q are normally
accurate, for this will imply that the transformations A-2 -- A_ and A_ --. A are
accurate. The bulge in A-2 is located at position (i, i- 2), so Q_ is determined by
the values of _(i-2) (-2)

Ui-l,-2 and ai,_2 By assumption these both have tiny errors relative
.(i-2)to IIA II. Let us take a closer look at m#-2, which was formed by the operation

(-) -(-) O().a,_2 si-2ai,- s-2e. (The notation s-2 is from (5).) Thus

Since s-2 has a tiny absolute error, the error in u,-2 must be tiny relative to e. The
(-2) (i-2) Indeed werotator Q_ is determined by the proportions s_ ai_,-2 ci- ai,i_2

can take

a(i-2) ..(i-2)
i- l,i-2 tei,i-2(6) c_1= and s_=
mi-1 mi-1

where

(i-2) O(IIAII) we conclude that s_Making the simplifying assumption that ai_,i_2
O(e), and its relative error must be tiny. Furthermore, the absolute error in ci- is
small. Since c_11 1, the absolute error is the same as the relative error. Thus
Qi-1 is determined accurately.

(i-1) (i-1)Now let us consider Qi, which is determined by the entries a,_ and a+,_.
(-) O(e) andFirst of all, a+l,_l 8i-lai+l,i. Since a+, has zero error, and s_

(i-1)has a tiny relative error, ai+l,i_ must also be O(e) and have tiny relative error.

Now consider the operations that are performed in transforming ai,i-1 to ti,i_
The first transformation to affect ai,i-1 is the multiplication on the right by Qi-.
This gives

a(i-2)
i,i-1 i-2ai,i-1.

(i-2) _(i-2)Thus ai,i_ O(e). Since i-2 has a tiny absolute error, the error in ui,i- is tiny
relative to e. The left multiplication by Q_I gives the intermediate results

at. _(-2) (i-2)
z,z-1 -Si-l tti-i,i-1 "}- Ci-l ai,i-1

(8) (i--2) _(i--2)
ai,i --Si-lai_i,i q- Ci-li,i

Finally, the right multiplication by Qi-1 gives

Each of the terms on the right-hand side of (7) has a factor of order e with tiny error
relative to e. Consequently, ai,i_ is also O(e) and has tiny error relative to e. We
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,(i-1) O(e) and has tinycan now apply the same argument to (9) to conclude that i,i-1
(-)error relative to e. The point of this is that although ui,i_ is tiny, it did not become

so through cancellation; it is tiny because both terms on the right-hand side of (9)
(i--1)are tiny to begin with. Cancellation could occur in (9), in which case a,_ would

be ultr tiny. It would then likely have a large relative error, but its error relative to
e would still be tiny. Let us make the simplifying assumption that cancellation does

(i-1)not occur in (9), so that u,-i is truly of order e (not smaller) and has tiny relative
error.

(i-) (i-)Since ai,i_ and ai+,i_ both have tiny relative errors, the rotator Qi is perfectly
well determined, and the step proceeds with no loss of accuracy. This is just what
happened in the example in the introduction. The tiny entry a3,2 caused the rotator

Q2 to have a rotation angle of order 10-6 which caused both ,(2) and ,(2) to be of4,2 3,2
order 10-60 In spite of their small size, these entries were accurate to some sixteen
decimal places. Therefore Q3 was accurate and the step continued with no ill effects.

3.1. Consecutive tiny subdiagonal entries. The presence of several consec-
utive tiny subdiagonal entries need not cause any problems. To see this, suppose

(i-1)
ai,i-1 e and ai+l,i 5. Then ai,i_ will normally be O(e) and have tiny relative

_(i-)error as well. The bulge ttiTl,i_ will have tiny relative error, as always, but now it will
be 0(5), since it is the product of the tiny numbers si- and ai+l,i. Consequently
the rotator Qi will also have a tiny rotation angle, i.e., sl 0(5). The argument we

(i-) normally has small relative error can now be applied withused to show that ai,i_
replaced by + 1 to show that -(i) normally has a tiny relative error. Thus Qi+l is’i-l,i
determined accurately. If ai+2,i+l is also tiny, the argument can be repeated, and so
on,

Consider the 6 6 symmetric tridiagonal matrix whose main diagonal entries are
all 2.0 and whose off-diagonal entries are as in the first row of Table 2.

TABLE 2

Iteration
Subdiagonal entries of A

a2,1 a3,2 a4,3 a5,4 a6,5

1.0 x I0-8 1.0 10-40 1.0 10-60 1.0 10-0 1.0 10-0

1.0 x 10-80 1.0 10-40 1.4 x 10-60 7.1 I0-1 7.1 x 10-1

1.0 10-80 1.0 x 10-40 2.6 10-60 3.8 10-1 3.0 10-2

1.0 x 10-8o 1.0 x 10-4o 5.0 10-60 2.0 10-1 4.5 10-7

1.0 x 10-8o 1.0 10-4o 9.9 x 10-6 1.0 x 10-1 5.3 x 10-22

Table 2 shows that the three consecutive tiny subdiagonal entries do not prevent
cubic convergence of a6,5 to zero.

We have noted that when there are two consecutive tiny subdiagonal entries,
the bulge has magnitude O(eS) as it passes between them. This means that in this
example the bulge got as small as 10-12. This is well above the underflow point for
IEEE double-precision arithmetic. If the offdiagonal entries are made small enough
to cause the bulge to underflow to zero, the QR step will, of course, die out.

4. More examples. One might feel that the two examples given so far are
artificial. What happens in "real" problems when some of the subdiagonal entries
become small? In an attempt to shed light on this question, we calculated the
eigenvalues of the symmetric, tridiagonal matrix of order 300 given by ai,i 2 and
ai,i_ ai-l,i 1. We used a symmetric QR code that makes no attempt to split the
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problem, except that it performs a deflation whenever the bottommost subdiagonal
entry becomes sufficiently small. After 213 iterations the matrix had been deflated to
198 198. At this point it was noted that a191,190 10-13. In the course of the next
twelve iterations, this entry shrank to approximately 10-46 During these iterations,
the six subdiagonM entries that lay below a191,190 converged swiftly to zero, one after
the other. Thus the small entry had absolutely no adverse effect on convergence. At
iteration 226, a191,190 was itself deflated from the matrix.

We now consider a few nonsymmetric examples. We modified a standard double-
shift QR code so that it does not check for possible splittings except in the two
bottommost subdiagonal entries. We tried it on the upper Hessenberg matrix

8 1 1 1 1 1 1 1
-1 7 1 1 1 1 1 1

-1 6 1 1 1 1 1
el 5 1 1 1 1

e2 4 1 1 1
-1 3 1 1

-1 2 1
-1 1

where el 10-60 and e2 10-7, with the results shown in Table 3. For clarity we
do not list the mantissas.

Iteration

TABLE 3

Subdiagonal entries of A
a2,1 a3,2 a4,3 a5,4 a6,5 a7,6 a8,7

10-0 10-0 10-60 10-70 10-0 10-0 10-0
10-1 10-1 10-61 10-71 10-1 10-1 10-0
10-1 I0-I 10-61 i0-71 10-1 10-2 I0-0
I0-I I0-I 10-61 10-72 i0-i 10-4 I0-I

10-I I0-1 10-62 10-72 10-I lO-S I0-0
10-1 10-1 10-62 10-73 10-1 10-16 10-0

We see that the (7, 6) entry converges quadratically to zero in spite of the tiny
entries in positions (4, 3) and (5, 4). This is the rate of convergence we normally
expect in the nonsymmetric case [10]. After five iterations a 2 2 block containing
a complex conjugate pair of eigenvalues can be deflated from the matrix. After four
more iterations, all eigenvalues have been found. This matrix has two real eigenvalues
and three complex conjugate pairs.

We also tried our double QR code on some random matrices. We generated full
matrices with normally distributed entries, and then reduced them to upper Hessen-
berg form using the EISPACK [7] code ELMHES. Matrices of this type have evenly
distributed eigenvalues. Consequently, as the QR iterations proceed, those subdiag-
onal entries that tend to zero do so very slowly, except for the two at the bottom.
The matrices tend not to split apart. We did, however, observe one 200 200 matrix
that developed a very small entry in the (7, 6) position. After some 323 iterations,
the matrix had been deflated to 44 44. At that point the (7, 6) entry was smaller
than 10-12. It remained small from then on and became as small as 1.5 10-15 at
one point. This is only about ten times the unit round-off error. The small entry did
not in any way interfere with the convergence of the algorithm. After 391 (double)
steps, all eigenvalues had been found.
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In order to obtain a matrix that has some subdiagonal entries (other than those
near the bottom) that become extremely small, we built a random 60 x 60 matrix as
follows: All entries were normally distributed random numbers with mean 0. How-
ever, those in the upper left-hand 30 x 30 submatrix were from a distribution with
standard deviation 1, and the rest were from a distribution with standard deviation
10-2. The resulting matrix has 30 "large" eigenvalues and 30 "small" eigenvalues.
We reduced the matrix to upper Hessenberg form by ELMHES and applied the dou-
ble QR algorithm, not testing for possible deflations except in the two bottommost
subdiagonal entries. The entry in the (31, 30) position became small rapidly. After
nine iterations it had reached 10-21 which is well below the unit round-off. After 43
iterations there were three tiny subdiagonal entries" a27,26 10-25, a30,29 10-18,
and a31,30 " 10-95. At this point the matrix had been deflated to 42 x 42. On
subsequent iterations these entries became even smaller, and more eigenvalues were
deflated from the matrix. Quadratic convergence was observed. After 62 iterations
the entry in the (31, 30) position had reached 10-14 On the next iteration it was
deflated from the matrix.

5. Breakdown of forward stability. We have seen that a tiny hi,i-1 entry will
not normally cause the rotator Qi to be inaccurate. Now let us see what conditions
can cause inaccuracy. The accuracy of Qi is entirely determined by the accuracy of

_(i--1)the entries tel,i_ and hi._l,i_ 1" We have

(i-i)

ci and si ,
mi mi

where

mi ti,i_ JF ai+l,i_ll

Let us assume that Qi,...,Qi-1 have been accurate, so that the errors in hi,i_
(i-i) _(i-l)and ai+l,i_ are tiny relative to A II. Generically both ui,i_ and ai+l,i_ will be

O(11A II); in this case they will have tiny relative errors, so Qi will be accurate. Thus
(i-i) (i-i)we need to look at the cases where one of the other of tel,i_ and ttid_i,i_i is small.

(i--I)Let us consider ui+-(i-1)l,i_ first. We have already noted that ai+l,i_ 8i_lai+l,i.

There is no error in ai+l,i, so the relative accuracy of ui+l,i-1 depends entirely on the
relative error in si-1. A reasonable simplifying assumption is that the latter relative
error is tiny, as we now justify by induction on i. First of all, it is a simple matter to
show that the relative error in s is tiny. Now assume for the induction step that the
relative error in si-2 is tiny. By (6)

8i--1
a(i-2)
i,i--2

mi-1

8i-2ai,i-1

(i-2) andThere is no error in ai,i-i. Making the simplifying assumption that "i-l,i-2

a(i-2)
i,i-2 are not both tiny, we can conclude that mi-i has a tiny relative error. Thus

(i-i) normally has a tiny relativesi-i has a tiny relative error. We conclude that ai+i,i_
error, regardless of whether it is big or small.
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Thus the only way we can expect to get an inaccurate Qi is by having an inaccu-
(i--1)rate ai,i_ It cannot be inaccurate unless it is small, so let us suppose that ui,i-1 is

tiny. We know from 3 that tininess alone does not imply inaccuracy. Whether ti,i--1
is accurate or not depends on how it became tiny. In the previous section we assumed

to be small, which implied that thethat hi,i-1 was small. This caused si-1 and hi,i_
smallness of hi,i_ was due not to cancellation but to the smallness of the two terms
on the right-hand side of (9). Now suppose ai,i- is not small. Then si- is not small,
and the terms on the right-hand side of (9) are normally both large. Thus the only

(i--1) (i-1)way hi,i_ can become tiny is through cancellation in (9). When this happens,
will normally have a large relative error.

Notice that once the transformations by Qi-i are complete, the upper left-hand
i submatrix has undergone a complete QR step with shift #, for the bulge has now

passed completely through that submatrix. In the course of this QR step, under the
assumptions of the previous paragraph, the large entry hi,i-1 has been replaced by

(i-) This sudden appearance of a near zero in the (i, i- 1) positionthe tiny entry i,i-
signals the sudden emergence (in position (i, i)) of an eigenvalue of the submatrix.
The standard convergence theory [2], [5], [9], [10] shows that such sudden convergence
can take place only if the shift # is (almost exactly) equal to the emerging eigenvalue
of the submatrix. This event is part of the syndrome that Parlett and Le [6] call
premature deflation.

It turns out, remarkably, that even events of this type will not normally wash out
a QR step, as we demonstrate in the next two sections.

6. Transmission of the shift in an implicit QR step. In an implicit QR
step the shift # is used only to generate the first rotator Q. This is done through
the vector [a11--]. Subsequent rotators are generated by using the elements of the

a21
intermediate matrices Ai, which contain the shift # only implicitly. In this section we
will see how the shift is transmitted through the matrix during a QR step and how
we can extract it from any of the intermediate matrices. We assume exact arithmetic.

The main result is the first one, which establishes a fundamental relationship
between the elements in the. shifted matrix Ai #I in the vicinity of the bulge. As
before, we denote by ,(i) the (j, k) entry of Aij,k

THEOREM 6.1. For i- 1,..., n- 2 the matrix

() (i)
i+2,i a’i+2,i+l

is singular.

Proof. The proof is by induction on i. We have A0 A. If we define ,0
()

al,-#

and 2,0() a21, the theorem holds trivially for 0. We start the induction from
that point. Now let _> 1, and we show that Si is singular if Si- is. Since the former
is a submatrix of Ai #I and the latter is a submatrix of Ai- #I, we need to look
at the transformation Ai_ #I --. Ai #I Q(Ai_i #I)Qi. All of the action
takes place in the 3 3 submatrix consisting of rows through + 2 and columns i- 1
through + 1. In Ai-1 #I this submatrix looks like

hi,i-1 tei,i
(i--1)

ai+l,i_ a
0 0
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where the asterisks denote matrix entries whose values are not of immediate interest.
The leading 2 2 submatrix is Si-1, which is singular by the induction hypothesis.
The transformation Ai_l #I Q(A_ #I) acts on rows and + 1. It is

-(-) (This is so even whendesigned to annihilate the bulge, the nonzero element u+,_
_(i-1)i- 1 0.) Since S_ is singular, this transformation must also annihilate u+,.

Thus the active 3 3 submatrix of Q(A_ #I) has the form

0 0 b
0 0 d

(i-)where d a+l,. We now complete the similarity transformation by multiplying by
Q on the right. This operation transforms columns and i + 1. The active 3 3
submatrix of A #I has the form

0 a(i)
i+,i a ,1,i+1 # 0 sib b

0 _(i) (i) 0 sidi+2,i ai+2,i+1

The trailing 2 2 submatrix is Si, and this is clearly singular.
The symmetric case of Theorem 6.1 was proved by Stewart [8], who used it to de-

velop a version of the (symmetric) implicit QR algorithm that automatically restores
the shift in cases where it has been lost through swamping by large main-diagonal
entries in the matrix. This can be useful when the matrix is graded, having large
entries at the top and much smaller entries at the bottom.

COROLLARY 6.2. For 1,..., n 2, the shift can be extracted from Ai by the
formula

()
# i+1,i+1

a(i) a(i)
i+2,i+ i+,i

a()
i+2,i

Corollary 6.2 allows us to recover the shift at any point in the QR step, at least
in principle. As we shall see, the formula generally works well in practice. The one
situation in which we can clearly expect it to fail is when the subtraction results in

severe cancellation. This happens exactly when I#1 is much smaller than -(i)
ti+l,i+l I,

that is, exactly when # is swamped by the main diagonal entry.
For our next theorem we partition Ai into blocks,

where (i) is i i, and we partition . An- the same way:11

THEOREM 6.3. The transformation A 22 is a QR step with shift #.

Proof. The submatrix (i) has only two nonzero entries, namely, a(i) and -(i)

which lie in the upper right-hand corner. These entries determine the rotator Qi+,
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which continues the QR step. Left multiplication by Qi*+l annihilates m+2,i; that is,
it transforms the vector

[,(i) ]’-*i+ l,i

’i+2,i

to the form []. Then right multiplication by Qi+l creates a bulge in the (2,2) sub-
matrix. The subsequent transformations push this bulge through the (2, 2) submatrix
until the Hessenberg matrix 222 is obtained. Each transformation is uniquely deter-
mined by the preceding one.

We wish to show that the entire transformation A(2 -22 amounts to a QR
step on ’22

A(i) with shift #. To this end, consider how such a step is begun. The first
rotator, which we briefly call i+1, is constructed so that left multiplication by
would transform

[ ]ai+2,i+l

~.to the form [0]" The similarity transformation A(2 --, Qi+.awi+l creates a bulge,
which is then chased to the bottom of the matrix. Each transformation is uniquely
determined by the preceding one.

Since Si is singular, the vectors

u,i+l,i

’i+2,i

and [" ]ai+2,i+l

are proportional. Thus Qi+ and Qi+ are identical. Since the subsequent transfor-
mations must then also be identical, we conclude that the transformation A/2
is exactly a QR step with shift #. [:]

7. The effects of round-off errors on shift transmission. The theorems of
the preceding section all assume exact arithmetic. Now let us see how well they hold
up in the presence of round-off errors. First consider Theorem 6.1. Suppose Si-1
is numerically singular, by which we mean that its smaller singular value is of order

ull A II. We would like to show, if possible, that Si must then also be numerically
singular. The transformation Ai-1 QAi-IQi Ai will introduce some rounding
errors, but these can perturb the entries of Si by at most O(ull A II). Thus the singular
values of Si will also be perturbed by at most O(ull A II). Consequently it suffices to
analyze the transformation as if it were exact. This allows us to consider the equivalent
transformation (Ai-- #I) Q(Ai-- #I)Qi Ai- #I instead. First consider
the left multiplication by Q. The Si- part of Ai_ ttI is transformed to

9i *(10) ci i Si--1
--8i Ci 0 hi

where hi would be zero if Si-1 were exactly singular. In practice hi is merely small,
or so we hope. The matrix on the right-hand side of (10) has the same singular values
as Si-1, but this does not absolutely guarantee that hi is small. All we can say in
general is that [gihil grla2, where a k a2 are the singular values of Si-. Thus if
gi is tiny, hi might not be. The active 3 x 3 submatrix of Q(Ai- -#I) has the form

0 hi b
0 0 d
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Right multiplication by Qi will transform the submatrix

(11) [hi0 db]
to Si, so Si has the same singular values as the matrix (11). Thus the smaller singular
value of Si is bounded above by hi I. We conclude that Si is numerically singular if
hi O(ul A II). As we shall shortly see, there is a wide variety of conditions under
which it can be guaranteed that hi-- O(ull A II).

7.1. Cases where gi is not small. If it happens that either ui,i-1 or tti+l,i_
is of order A II, then we have

also, which implies

_(i-1) 2 _(i-1) 2
I,1- I,,,-x / I,+x,-l O(IIAII)

O-lO-2(12) Ihl- Igl O(ullAII),

because al is bounded above by All. We have proved the following theorem, or
quasitheorem if you prefer.

THEOREM 7.1. If Si-1 is numerically singular and the norm of its first column
oy od A II, th, ao nu,ca naua.
This shows that under ordinary conditions, especially as seen in early iterations

of the QR algorithm, the shift is transmitted accurately. As an illustration, consider
the 100 100 symmetric, tridiagonal matrix given by ai,i 2 and ai+l,i 1 for all
i. In the course of a QR step on this matrix, the smaller singular value of Si never
was greater than 3.3 10-15. At no point did the estimate of the shift given by
Corollary 6.2 differ from the true shift by more than 3.6 10-15. The deviations
did not show any significant tendency to grow as the bulge moved downward through
the matrix. Subsequent QR iterations showed the same pattern. Similar results were
obtained with several random nonsymmetric examples.

Even under certain nonordinary condit.ions, the shift is transmitted accurately.
Parlett and Le [6] showed that for symmetric, tridiagonal matrices, forward stability
breaks down when and only when premature deflation occurs. Let us take a look
at this syndrome. Suppose # is almost exactly an eigenvalue of both A and one of
its leading principal submatrices, say the ith. Then, by the time we have computed
Ai-1, we have the following situation:

,,(i-1) _(i-1)
{ti__l,i_i-l,i-1

it!
.(i-1) (i-1)
ti+1,i_1 ai+l,i+

In the ith leading principal submatrix a QR step has just been completed. Since it is
almost exactly an eigenvalue of the submatrix, # is very close to it, and e is tiny. If

is also tiny, we have the situation known as premature deflation. If we were to stop
the step at this point, we could deflate the eigenvalue it from the matrix simply by
deleting the ith row and column. If we do not stop the step, the eigenvalue # tends
to be shoved down through the matrix. To see this, consider the ideal case e =/ 0.
Then, because e 0, the rotator Qi will perform a 90 rotation on rows and columns
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i and i / 1. Except for some sign changes, this rotator has the effect of just swapping
these rows and columns. Thus the entry # is just moved to the (i + 1, i / 1) entry,
and zeros appear in positions (i + 1, i) and (i + 2, i + 1). The next rotator then pushes
the eigenvalue and the zeros down one more position, and so on.

In practice premature deflation tends to set in gradually. If # is almost exactly an
eigenvalue of the ith principal submatrix, it will usually also be a good approximation
to an eigenvalue of each of the few preceding principal submatrices. Thus the prema-
ture deflation event seen in Ai-1 will have been preceded by lesser premature deflations
in Ai-2, Ai-3, and so on. For example, consider the 15 15 symmetric, tridiagonal
matrix that was featured in Example 2.4 of [6]. It is defined by a1,1 a15,15 15,
ai, 0 for 2,..., 14, and a+l, 1 for 1,..., 14. This has two very close
eigenvalues that are both 15.0666666666667 to 15 decimal places. On the first QR
step with Wilkinson shift, there is no premature deflation. The second step is more
interesting. The Wilkinson shift is # 15.0666666666666, which is nearly an eigen-
value of both A and its tenth leading principal submatrix. Thus a premature deflation
occurs in A9. However, it does not occur suddenly; it is preceded by lesser events in

A7 and As. In A7 we have

a(7) 1.97 10-5 1.007,7
1.97 10-5 15.0666666608 -2.96 10-4

1.00 -2.96 10-4 ’*9,9

in As we have

a(S) -1.31 10-6 1.008,8
-1.31 10-6 15.066666666641 1.97 10-5

1.00 1.97 10-5 a(8)
10,10

and in A9 we have

..(9) 1.01 10-8 1.009,9
1.01 10-8 15.0666666666666 -1.31 10-6

1.00 -1.31 x 10-6 a(9)
11,11

As we move downward, progressively better approximations to the shift appear on
the main diagonal, and the adjacent subdiagonals become smaller. The rotations that
perform the transformations A7 --+ A8 and As --* A9 are very nearly 90 rotations,
that is, they are nearly swapping operations; the effect is clear in the example.

Parlett and Le [6] have shown that premature deflation is accompanied by a loss
of forward stability. The point that we wish to make here is that loss of forward
stability does not imply loss of shift. In our example, the conditions of Theorem 7.1
are satisfied. We have

1.00 -2.96 10-4
-1.31 x 10-6 -2.58 10-11 ]

1.00 1.97 10-5 J
and

S [ 1.01 x 10-s
1.00 -1.31 10-6

In each case the norm of the first column is of order A [], thanks to the entry 1.00
in the bulge, so the numerical singularity is passed from one submatrix to the next.
The singular values of $7,..., $9 are as in Table 4.
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TABLE 4

$7
Ss
$9

1.0 5.9 x 10-15
1.0 1.1 X 10-14

1.0 1.3 10-14

In each case the smaller singular value is on the order of nil A II. The formula given
by Corollary 6.2 returns the correct shift to fifteen decimal places. Indeed, under the

,(i) Theconditions of premature deflation, the shift resides mainly in the term
contribution of the second term in the formula is small.

The fact that the first column of Si has norm of order nil A II in each case is a direct
(i-1)consequence of the near 90 rotations. If Q_ is near 90, then ai+,i_

so the first column of Si_l will be of order A as long as ai,i- is. That is what
happens in this example and the other examples discussed in [6]. Theorem 7.1 is
applicable in all of these cases.

Referring back to Theorem 6.3, the forward instability associated with premature
deflation implies that once a premature deflation has occurred, the computed A(2
need not be anywhere near what it would have been in the absence of round-off
errors.3 Theorem 6.3 is not exactly applicable now because Si is not exactly singular.
However, Si is nearly singular, and this implies that Theorem 6.3 is nearly true. That

is, the rest of the QR step will be almost exactly a QR step on A(2 with shift #. Now
let us suppose we are using some natural shifting strategy that chooses the shift from
the lower right-hand corner of A. Since the lower right-hand corner of A(2/2 is identical
to the lower right-hand corner of A, a shift that is good for A should normally be

good for (i) regardless of whether or not the rotators Q Qi were accurate.22

For example, the Wilkinson shift strategy applied to A gives the same shift as the
Wilkinson shift strategy applied to A. Consequently, the QR step is bound to be
successful in spite of the forward instability. This explains why forward instability is
not normally damaging to QR codes when applied to solving the eigenvalue problem.

It is worth pointing out that some of the most spectacular examples of forward
instability in [6] were provoked by making an "unnatural" choice of shift; unnatural
meaning not based on information from the lower right-hand corner. See, especially,
[6, Examples 2.2 and 2.3]. In these cases the QR step will not normally be successful,
because such a shift may well approximate an eigenvalue of A but not of A.

7.2. Cases where gi is small. Theorem 7.1 is applicable in cases where gi in

(10) is not small. However, as we have seen, there are important situations in which
gi is tiny. Indeed, in 3 our attention was focused on matrices in which tiny gi occur.
As we saw in 3, a small gi is not normally disastrous if it arose from a subdiagonal
entry that was small to begin with. If ai,i_l e, then (i-1) (i-1)

ai,i-1 and ai+l,i_l are also
of order e, but they are fully accurate nevertheless. This means that the numerical
singularity of Si-1 is not just an artifact of the smallness of the entries of its first
column. If the first column were rescaled by l/e, the resulting matrix would still be
numerically singular. Another way to put this is that the smaller singular value of
Si_l is of order e.ullAII rather than ullAII. If one does the computation (12) under
these conditions, one gets hi O(ull A II) as before, because, the e in gi is cancelled by
the e in a2. Thus we conclude that Si is numerically singular in this case as well.

3 Actually A(2 differs from A22 only in the first row and column, but an inaccurate Q.i can cause
these to be far from what they should be.
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The situation is only slightly more complicated when A has two or more consecu-
(-i) =0()tive tiny subdiagonals. Suppose hi,i-1 O(e) and ai+i,i 0(6). Then ti,i_

0(6), and _(i--1)
hi+l, Ui+l,i_ O(e6). These numbers are normally fully accurate. If we
were to rescale Si-1 by multiplying the first column by 1/e and the second row by 1/6,
the resulting matrix would be numerically singular. In other Words, the smaller sin-
gular value of Si-1 is O(6eu[[ A [[). Under these conditions (12) gives hi O(6u[[ A II),
which implies that the smaller singular value of Si is O(6u[[ A [[).

As an example consider the 8 x 8 tridiagonal matrix

tridiag 2 2 2 2 2 2 2 2
i I e 6 ’7 i I

where 10-2 6 10-i5, and "7 10-i. If we perform a QR step on this matrix
with # 3.0 (Wilkinson shift), the effect of the small numbers is not felt in $1. The
smaller singular value of Si is 6.3 x 10-16, which is of order u[[A[[. The effect of
e is first felt in $2, whose smaller singular value is 1.3 x 10-35. The matrix $3 is
approximately

[-1.414 x 10-2 -1.000 ]1.414 x 10-35 1.000 x 10-15

and its smaller singular value is 1.4 x 10-5, which is of order e6ull A II. In the next
submatrix, $4, the influence of e has disappeared, but "7 has become a factor. The
smaller singular value of $4 is 9.0 x 10-hi, which is of order 6"7ull A II. The smaller
singular value of $5 is 6.7 x 10-26, which is of order -yull A II. Finally, the smaller
singular value of $6 is 1.3 x 10-15, which is of order ull A II. Thus numerical singularity
is preserved for the entire QR step. At each stage the value of the shift given by the
formula of Corollary 6.2 deviates from the true shift by less than 2.8 x 10-15. Similar
tests on larger matrices gave similar results.

Now let us consider an example of a different kind.4 The matrix

A tridiag 2 2 2 2 2 2
1 1 e 1 1

where e 10-15, has three pairs of nearly identical eigenvalues 3.41421356237310,
2.00000000000000, and 0.58578643762690. These are essentially the eigenvalues of
the submatrix

1 2 1
1 2

repeated twice. A QR step with the shift # a.414213562a7310 results in a premature
deflation at A., since both A and its third leading principal submatrix have eigenvalues
very near this shift. The matrix S. consists entirely of tiny numbers:

3,2 t,3,3 # --9.99 X 10-16 0
S2 ,(2) ,(2) 8.66 10-16 5.00 X 10-16

4,2 4,3

a Again we look at a symmetric example. A nonsymmetric example with similar characteristics
was run with similar results.
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The number ,(2) became small through cancellation and is therefore poorly deter-‘*3,2

mined. The rotator for the next step, which is determined by .(2) and .(2) will be‘*3,2 ‘.4,2
inaccurate. Thus there is a breakdown of forward stability, which will affect all of
the subsequent computations. This instance of premature deflation differs from the
example discussed previously in that .(2) is tiny. Thus Theorem 7.1 is not directly’*4,2
applicable here. Nevertheless, the shift has not been lost. Obviously the singular
values of $2 are both tiny; in fact, al 1.4 10-15 and a2 3.7 10-16. This
forces h3 in (10) to be tiny, in spite of the fact that g3 is also tiny. Consequently
$3 must also be numerically singular; the shift is transmitted successfully. Of course,
in this case, as in the case of forward instability that we examined previously, the
shift resides mainly in the main diagonal. In $2 we have ,(2)

‘*3,3 # 0, which implies
a(2)
3,3 #" Corollary 6.2 reproduces the shift accurately; the first term in the formula

is the shift, and the second term is noise of order ull A II.
Because the shift is transmitted accurately through the region of forward insta-

bility, the QR step ends successfully with 56,5 1.4 10-15 and 56,6 #, nearly
allowing the eigenvalue # to be deflated from the problem.

Notice, however,that the breakdown of forward stability is not completely without
cost. The shifted matrix A- #I has two eigenvalues near zero, so the standard
convergence theory [9], [10] predicts that 5,4 will be (near) zero, and the bottom
2 2 submatrix will consist of two copies of the eigenvalue #. Because of the forward
instability, only one copy. of # appears in practice. The other copy will emerge on the
second QR step.

Before leaving this example, it is perhaps useful to look at it from one more
viewpoint. Part way through the QR step, the matrix has essentially the form

1
2 1
1 2

where 61, 2, 3 are only slightly larger than u. The eigenvalue # has just appeared
in the (3, 3) position through premature deflation. Let B denote the lower right-
hand 4 4 submatrix. Because 1 and 2 are tiny, B is essentially isolated from the
upper left-hand 2 2 submatrix. B has # as an eigenvalue (or very nearly so) with
multiplicity 2. The remainder of the QR step is a similarity transformation on B; it
does not mix B with the upper part of the matrix. Thus the double eigenvalue # is
preserved in the 4 4 trailing submatrix. The next rotator (Q3) transforms B to the
form

2 1
1 2

Since Q3 is the poorly determined rotator, the computed entries of B will be far
from the theoretical correct values. The subsequent rotators reduce B to upper
Hessenberg form, which we can call /. But B has the same eigenvalues as B, so

it has a double eigenvalue #. An upper Hessenberg matrix with an eigenvalue of
(geometric) multiplicity 2 must split, so the splitting we observe in this QR step is,
from this viewpoint, inevitable.
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8. Conclusions. Contrary to the conventional wisdom, tiny subdiagonal entries
do not normally trigger forward instability in the QR algorithm, nor do they interfere
with convergence in any way. Even in situations where forward instability does occur,
the severe round-off errors do not normally result in degradation of the QR step; the
shift is transmitted accurately through the region of instability.

Although our study has been neither rigorous nor exhaustive, we have looked
at a diverse variety of situations. We do not see any way the shift can fail to be
transmitted accurately during a single step of the QR algorithm on an ungraded
matrix. The error in the effective shift will always be small relative to the norm of
the matrix. In a graded matrix, a small shift can be lost through swamping by large
entries at the top of the matrix, as Stewart [8] observed.

Acknowledgment. I tested the conventional wisdom at a conference at the
Catholic University of Leuven, Belgium, in August, 1992. I would like to acknowledge
the help and cooperation of my colleagues in this matter. Of the numerous experts
whom I polled about the expected effect of an epsilon on the subdiagonal, almost all
asserted that it would wash out the QR step. Only Pete Stewart knew what would
really happen.
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Abstract. In this paper we characterize those linear operators on general matrices that preserve
singular values and displacement rank. We also characterize those linear operators on Hermitian
matrices that preserve eigenvalues and displacement inertia.
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1. Introduction. We introduce some notation to facilitate our discussion.

C"n := the set of all m n complex matrices,

Gl(m) := the set of all nonsingular m rn matrices,

Herm(m) := the set of all m m Hermitian matrices,

U(m) := the set of all m m unitary matrices.

For 1 _< _< m, 1 _< j <_ n, let Eij denote the m n matrix with zero everywhere
except one at the (i,j) position. Then (EiJ} is a basis for Cmn. We also adopt the
following notation.

sing(A) :-- the singular values of a matrix A (including multiplicity),
eigen(A) :-- the eigenvalues of a Hermitian matrix A (including multiplicity),
rank(A) :-- the rank of a matrix A,

inertia(A) :- the inertia of a Hermitian matrix A.

For A E Cmxn, rank(A) k if and only if A has exactly k nonzero singular values.
For A E Serm(m),inertia(A) (p, n, z) if and only if A has p positive, n negative,
and z zero eigenvalues, m-p + n + z.

We are interested in the spectral propert.ies of matrices that are Toeplitz or nearly
Toeplitz. As a consequence, we are interested in linear operators that preserve these
properties. We know of only one previous result in this direction. It is the following
theorem due to Chu [1]. Let Jm denote the m x m exchange matrix defined by

Jm (i, j) "= 5(i, m + 1 j),

where 5 denotes the Kronecker delta. For example, when rn 3,

001 /J3-- 010
100
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We write J in place of Jm when rn is easily determined from the context.
THEOREM 1.1. Let Q be an m x m orthogonal matrix. Then the following

conditions are equivalent.
(*) If A is an m m symmetric Toeplitz matrix then so is QAQT.
(**) The matrix Q is one of the following:

where I denotes the rn rn identity matrix and I’ :--- Diag(- 1, (- 1)2,..., (_ 1)m- 1).
Chu’s techniques can be used to characterize nonzero linear operators on Hermi-

tian matrices that preserve both eigenvalues and Toeplitz structure.
In this paper, we study the nonzero linear operators that preserve spectra and

displacement structure. We begin by recalling the relevant definitions. Let Zm denote
the rn rn (lower) shift matrix defined by

Zm(i,j) := 5(i,j + 1).

For example, when rn 3,

O 0
Z3= 100

010

We write Z in place of Zm when m is easily determined from the context. Let V be
the linear operator defined by

V := C" C" :X ---, X- ZrXZT.
For A E Cmxn, the displacement rank of A is defined as

dis-rank (A):= rank (V.A).

In the case m n, V preserves Hermitian matrices. For A E Herm(m), the displace-
ment inertia of A is defined as

dis-inertia (A):= inertia (V.A).

Kailath appears to be one of the first to emphasize the importance of the displace-
ment structure of matrices. We recall a few of the major results in this area in order
to illustrate the significance of these concepts. Note that Toeplitz matrices have dis-
placement rank at most 2. Hence matrices with low displacement rank are regarded
as being "nearly Toeplitz." The following result shows that displacement rank is pre-
served (loosely speaking) under inversion. The result is from Kailath, Kung, and Morf
[8], but a different proof is given here. Recall that two matrices A, B Cmxn are
equivalent if there exist M Gl(m), N e Gl(n) such that B MAN. Note that A
and B are equivalent if and only if rank(A) rank(B).

THEOREM 1.2. For A Gl(m), dis-rank(A-1) dis-rank(JAJ).
Proof. Note that

--ZTA- I ZT A-1 0 I 0 A-1 ZTA-Z
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and

0 I ZT A-1 -AZT

Since rank is preserved under equivalence,

0 A-1 ZrA-lz and

01I [ A-ZAZTO 0]
A- ZAZT 0 ]0 A-have the same rank. Moreover rank(A) rank(A-) implies that rank(A-ZTA-1Z) rank(A- ZAZT). Consequently,

dis-rank(A-) rank(A-1 zTA-Z)
rank(A- ZAZT)
rank(JAJ- JZAZTJ)
rank(JAJ- ZTJAJZ)
dis-rank(JAJ).

The following inequality, due to Comon [3], shows that if A has small displacement
rank then so does its pseudoinverse A+"

dis-rank(A+) _< 2 dis-rank(JAJ).

Note that Hermitian Toeplitz matrices usually have displacement inertia (1, 1, rn-
2). Hence Hermitian matrices with low displacement inertia are regarded as being
"nearly Toeplitz." Similar to displacement rank, displacement inertia is preserved
(loosely speaking) under inversion. We learned about this theorem from Tiberiu
Constantinescu (Institute of Mathematics of the Romanian Academy of Sciences).
Recall that two matrices A, B E Herm(m) are ,-congruent if there exists S Gl(m)
such that B SAS* where S* denotes the complex conjugated transpose of S. Note
that A and B are ,-congruent if and only if inertia(A) inertia(B).

THEOREM 1.3. For n Gl(m)NHerm(m), dis-inertia(n-) dis-inertia(JnJ).
Proof. If X -A-1Z then

X* I ZT A- 0 I 0 A- ZTA-ZIf Y -AZT then

0 I ZT A- Y I 0 A-Since inertia is preserved under ,-congruence,

0 A- ZTA-IZ 0 A-have the same inertia. Moreover inertia(A) inertia(A-) implies that inertia(A--ZTA-1Z) inertia(A- ZAZT). Consequently,

dis-inertia(A-) inertia(A- ZTA- Z)
inertia(A- ZAZT)
inertia(JAJ- JZAZTJ)
inertia(JAJ- ZTJAJZ)
dis-inertia(JAJ)
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Other versions of displacement structure can be defined and theorems analogous
to the last two can often be proved also. See Chun and Kailath [2] and Heinig and
Post [5].

The rest of this paper is organized as follows. In 2, we characterize those linear
operators on general matrices that preserve both rank and displacement rank (Theo-
rem 2.4). As a consequence, we obtain the characterization of those linear operators
preserving singular values and displacement rank (Theorem 2.12). The aim of 3 is
to characterize those linear operators on Hermitian matrices that preserve inertia and
displacement inertia (Theorem 3.4). We also obtain the characterization of those lin-
ear operators preserving eigenvalues and displacement inertia (Theorem 3.5). Then
we .have concluding remarks in 4.

2. Preserving rank and displacement rank. In this section, we characterize
those nonzero linear operators on Cmn that preserve both rank and displacement
rank and also those that preserve singular values and displacement rank. The following
theorem appears in Horn, Li, and Tsing [7], and characterizes the linear operators
preserving equivalence.

THEOREM 2.1. Let T" Cmn ----+ Cmn be a nonzero linear operator. Then the
following conditions are equivalent.

(*) T.A is equivalent to T.B whenever A is equivalent to B.
(.**) There exist M E Gl(m), g Gl(n) such that eitherfor all X cmn, T.X

MXN or m=n and for all X Cm, T.X MXTN.
As a consequence of this result, we obtain the characterizations of linear operators

preserving rank and those preserving singular values.
THEOREM 2.2. Let T" Cmn Cmn be a nonzero linear operator. Then the

following conditions are equivalent.
(*) For all X e cmn, rank(T.X) rank(X).
(**) There exist M e Gl(m), N Gl(n) such that eitherfor all X Cren, T.X

MXN or m n and for all X Cm T.X MXTN
Proof. (**) = (,). Direct verification. (,) = (**). If T preserves rank then it

also preserves equivalence. Hence T has the required forms by Theorem 2.1.
THEOREM 2.3. Let T" Cm ----, Cm be a nonzero linear operator. Then the

following conditions are equivalent.
(*) For all X e cmn, sing(T.X) sing(X).
(**) There exist U V(m), V V(n) such that either for all X Cren, T.X

UXV or m n and for all X Cmn, T.X uxTv.
Proof. (**) (,). Direct verification.
(,) = (**). If T preserves singular values then it also preserves rank. By The-

orem 2.2, there exist M e Gl(m),N e Gl(n) such that either T.X MXN or
m n and T.X MXTN. By the singular value decomposition, M U1E1U2
and g Yl’].2V2, where Ui e U(m),V e U(n), El Diag(a,...,am),E2
Diag(b,... ,bn). We consider the case when T.X MXN. If X UEiJV then
T.X UEEJE2V2. Since sing(X) sing(T.X), we have abj 1. Consequently,
al am a, b bn -: b and ab 1. This implies that T.X UXV
where U "- UU2 and V :-- VV2. The proof is similar for the other case.

Note that a linear operator T" Cmn ---, Cmn preserves displacement rank if
and only if V oT o V- preserves rank. Hence we can use Theorem 2.2 to characterize
the linear operators that preserve displacement rank. For nonzero T we obtain the
following equivalent conditions.

(*) For all X e Cmx, dis-rank(T.X)= dis-rank(X).
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(**) There exist M E al(m) and N al(n) such that either for all X
Cm T.X V-1 (M(V.X)N) or m n and, for all X C"’ T.X V (M(V-1

Now we characterize those linear operators on Cmxn preserving both rank and
displacement rank. For A C, we use Dn(A) to denote the n n diagonal matrix
with diagonal entries 1, A,..., An-; in symbols

Dn(A) "= Diag(1, ,..., An-).
THEOREM 2.4. Let T Cmn Cmn be a nonzero linear operator. Then the

following conditions are equivalent.
(*) For all Z e Cren, rank(T.Z) rank(X) and dis-rank(T.Z) dis-rank(X).
(**) There exist 0 and lower triangular Toeplitz matrices M e Gl(m), N

Gl(n) such that either for all X cmn,T.X Dm(A)MXNTD(A-) or m=n and
for all Z cmn,T.X Dm(A)MXTNTDn(A-1).

Before we prove this theorem, we need some preliminary lemmas. The first one
is a characterization of matrices that nearly commute with the shift matrix.

LEMMA 2.5. Let B Cnn and O. Then the following conditions are
equivalent.

(*) BZn-- AZnB.
(**) There exists a lower triangular Toeplitz matrix L such that B Dn(A)L.
Proof. First we observe that D(A)Zn AZnDn(). (.) =V (**). Let L :=

Dn()-)B. Then LZn ZnL. By comparing entries, one deduces that L is a lower
triangular Toeplitz matrix

(**) =v (.). Since L is a lower triangular matrix, LZn ZnL. Hence BZ,
Dn())LZn Dn())ZnL )ZnDn())L )ZnB. ]

Next we collect some basic results about the Kronecker product. For A C
and B Cmm, recall that A (R) B Cmn Cmxn is & linear operator which may
be defined by

(A (R) B).X :-- BXAT.
We prefer this "coordinate-free" definition to the usual one (compare to Horn and
Johnson [6], Graham [4], or Lancaster and Wismenetsky [10]). A fundamental property
(which is easy to verify using this definition) is that

(A (R) B)o (C (R) D) (AC (R) BD),
where o denotes the composition of two operators. Moreover, it can be proved that
eigen(A (R) B)= {ai/j" 1 _< _< n, 1

_
j _< m}, where eigen(A)= {hi" 1 _< _< n}

and eigen(B) {j" 1 _< j _< m}. Hence tr(A (R) B)- (tr A)(tr B). The next result,
which is taken from Marcus and Moyls [11], is a form of uniqueness for Kronecker
product representations.

LEMMA 2.6. Let Xi, Wi Cn and Yi, V e Cmm. If ’4=Xi (R) Y= Wi (R) Vi. and the Zi are linearly independent then each e Span{V1,..., Vs}.
Proof. Since the Xj are linearly independent, for each there exists Pi such that

tr(PiXj) 5(i, j). Let Kp be the m m matrix with all entries zero except the pth col-
umn with all entries one. Then tr[(Pi(R)Kp)(A(R)B)(In(R)KTq)] tr(PiA)tr(KpBKTq)
m tr(PiA) B(p, q), where A, B are matrices with appropiate dimensions and B(p, q)
is the (p, q) entry of B. Consequently, we have

mE tr(PiXj)Yj(p, q) m tr(PiWi) V(p, q),
j=l j=l
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and so

Yi(P, q) tr(PiWj) Vj(p, q).
j-1

COROLLARY 2.7. Let Xi e Cnxn and Yj e Cmm. If {Xi} and {Y} are linearly
independent sets of matrices then {Xi (R) Y } is a linearly independent set.

Proof. Assume i,j aijXi Yj O. We rewrite this equation as

Use Lemma 2.6 (with all Wi 0 and V 0) to conclude that for all i,

Since the Y are linearly independent, aiy 0 for all i, j.
COROLLARY 2.8. Let X E Gl(n),Y e Gl(m). Then {X (R) Y,Z,X (R) Y,X (R)

ZmY, ZnX (R) ZmY} is a linearly independent set.
Proof. Since X Gl(n), {X, ZnX} is a linearly independent set. Similarly

{Y, Z,Y} is a linearly independent set. Apply Corollary 2.7 to obtain the required
result.

The following result appears in Horn and Johnson [6] and Graham [4].
LEMMA 2.9. Let trans := Cnn Cnxn X XT denote the linear operator

of taking transpose. Then trans has the following Kronecker product representation:

n

trans E Eij(R) Ei"
i,j=l

Proof. For X (xij) Cnn, note that EJiXEji xiyEji. Now we have

trans .X XT E xiJEyi E EJiXEYi E Eij EJi’x"
,j ,j i,j

We adopt the convention that Eij 0 if i > n, j > n, < 1, or j < 1. Then it is
easy to verify that ZE E(i+l)j, and EiYZ Ei(j-). With this observation, we
are ready to prove-the next lemma.

LEMMA 2.10. If P, Q,R,S Cnn are such that

(In (R) In Zn (R) Zn) o (Q (R) P) (S (R) R) o trans O(in (R) I, Z (R) Z),

then at least one of {P, R, S} is singular.
Proof. Assume that P, R, S Gl(n). By Lemma 2.9, trans -in,j=l E (R) Eyi.

Hence

(In (R) In Z (R) Zn)(Q (R) p) (S (R) R) ( EiJ (R) Eji) (In (R) In Z (R)
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Since

we have

n

Q (R) P ZnQ (R) ZnP SE (R) R(Eji E(J+I)(i-1)).
i,j--1

Note that {SEij } is a linearly independent set since S is nonsingular. Use Lemma
2.6 to conclude that, for all i,j,R(E- E(j+i)(i-)) E Span{P, ZnP}. In particular,
RE1, RE2, R(E2 E2) E Span{P, ZnP}. Hence, using the fact that R and P are
nonsingular,

3-dim Span(RE,RE2,R(EI2-E2)} _< dim Span(P, ZnP}-- 2.

This is a contraction. 0
LEMMA 2.11. If P, R Gl(m) and Q,S Gl(n) satisfy

(In (R) Im Zn (R) Zm) o (Q (R) P) (S (R) R) o (In (R) Im Zn (R) Zm),

then there exist A 0 and lower triangular Toeplitz matrices N Gl(n), M Gl(m)
such that Q Dn(A-1)N and P Dm(A)M.

Proof. Note that we can rewrite the given equation as follows"

(1) Q(R) P- ZnQ (R) z,P S (R) R- SZn (R) RZm.

By Lemma 2.6, S, SZn Span{Q, ZnQ}, i.e., there exist a,, /, 5 C such that

S cQ +/ZnQ and SZn 7Q + 5ZnQ.

Note that S (aI+/Zn)Q has rank n; hence a 0. Also note that SZn
(/I + 5Zn)Q has rank n- 1; hence 0. Furthermore, 0 : SZn 5ZnQ and hence
5 :/: 0. In summary, we have

S cQ +ZQ and SZ 5ZQ,

where a : 0 and ti - 0. Similarly, we get

R aP + bZmP and RZm dZmP,

where a 0 and d 0. Substituting back into (1), we deduce that, by Corollary 2.8,
/3=0, b=0, andaa=Sd=l. Thus

S Q, SZ b’ZQ,
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R aP, RZm dZmP,

and hence

-lZnQ QZn and AZ,P PZ,

where A := a/5 d/a. By Lemma 2.5,

Q Dn(A-)N and P Dm(A)M,

where M,N are the lower triangular Toeplitz matrices of dimension re, n, res-
pectively.

We are now ready to prove Theorem 2.4.

Proof. (**) =v (,). It is clear that T preserves rank. It remains to show that T
preserves displacement rank.

Case 1. T.X Dm()MXNTDn(-I). By Lemma 2.5, we have

T.X- Zm(T.X)ZTn Dm(A)MXNTDn(A-1) ZmDm(A)MXNTD(A-1)zT
Dm(A)MXNTDn(A-1) A-1Dm(A)MZmXAZTnNTD(A-I
Dm(A)MXNTDn(A-) Dm()MZmXZTnNTD(-1)
Dm(A)M(X- ZmXZTn)NTD(A-1).

Hence

dis-rank(T.X) rank(T.X- Zm(T.X)ZTn)
rank(X- ZmXZT)
dis-rank(X).

Case 2. T.X Dm(A)MXTNTDn(A-). Using an argument like Case. 1, we
conclude that T preserves displacement rank.

(,) =v (**). We assume that T is a nonzero linear operator that preserves rank
and displacement rank. We define Cmn Cmn by

:= (In (R)Im-- Zn (R) Zm) oTo(In (R)Im- Zn (R) Zm)-1.

Hence

(In (R)I-Zn (R)Zm) oT= O(In (R)Im- Zn (R)Z.).

Since T preserves rank, by Theorem 2.2, there exist P e Gl(m), Q e Gl(n) such that
either T Q(R)Por m n andT (Q(R)P) otrans. On the other hand, since
T preserves displacement rank, it follows that T preserves rank. Then, by Theorem
2.2, there exist R E Gl(m), S Gl(n) such that either --S (R) R or m n and

(S (R) R) o trans. We have four cases to consider.
Case l. T Q (R) P and S (R) R. Note that (In (R) Im Zn (R) Zm) o (Q (R) P)

(S (R) R) o (In (R) Im Zn (R) Zm). Then, by Lemma 2.11, there exist 0 and lower
triangular Woeplitz matrices N GI(n),M Gl(m) such that Q Dn(A-)N and
P Dm()M. Consequently, T Du(- N (R) D,()M.

Case 2. m n, T Q (R) P and T (S (R) R) o trans. Note that (In (R) Im Zn (R)

Zm) o (Q (R) P) (S (R) R) o trans O(In (R) Im Zn (R) Zm). Then, by Lemma 2.10, one
of (P, R, S} is singular, a contradiction.
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Case 3. m n, T (Q (R) P) o trans and S (R) R. Note that (In (R) Im Zn (R)

Zm) o (Q (R) p) o trans (S (R) R) o (In (R) I, Zn (R) Zm). Using the fact that

(In (R) Im Zn (R) Zm) o trans trans o(In (R)Im Zn (R) Zm),
we deduce that

(In (R) Im Zn (R) Zm) o (Q (R) P) (S (R) R) o trans O(In (R) Im Zn (R) Zm).

Then, by Lemma 2.10, one of {P, R, S} is singular, a contradiction.
Case 4. m n, T (Q (R) P) o trans and T (S(R)R) otrans. Note that

(In (R) I, Zn (R) Zm) o (Q (R) p) o trans (S (R) R) o trans o(In (R) I, Zn (R) Z,). Using
the fact that

(In (R) Im Zn (R) Zm) o trans trans O(In (R)Im Zn (R) Zm),
we deduce that

(I (R) z (R) z.) o (Q (R) P) ( (R) R) o ( (R) I. Zn (R) Z).

Then, by Lemma 2.11, there exist = 0 and lower triangular Toeplitz matrices
N e Gl(n), M e Gl(m) such that Q Dn(A-1)N and P Dm(A)M. Consequently,
T-- Dn(-l)N (R) Dm()M.

Next we give the characterization of those linear operators on Cnn preserving
both singular values and displacement rank.

THEOREM 2.12. Let T" Cmxn Cmn be a nonzero linear operator. Then
the following conditions are equivalent.

(*) For all X e Cmn, sing(T.X) sing(X) and dis-rank(T.X) dis-rank(X).
(**) There exist I)1 I#1 1 such that either for all X e cmn,T.X

#Dm())XDn(A-) or m n and for all X e cmn,T.X #Dm(A)XTDn(A-).
Proof. (**) = (,). Since IAI- I#1-- 1,#Dm(A) and Dn()-) are unitary. Hence

T preserves singular values. By Theorem 2.4, we know T also preserves displacement
rank.

(,) (**). Since T preserves singular values, by Theorem 2.3, there exist U E
U(m), V U(n) such that either T.X UXV or m n and T.X uxTv. On the
other hand, since T preserves both rank and displacement rank, by Theorem 2.4, there
exist A 0 and lower triangular Toeplitz matrices M Gl(m), N Gl(n) such that
either T.X Dm()MXNTDn(-1) or m n and T.X Dm(,)MXTNTDn(-).
We consider the following four cases.

Case 1. T.X D,()MXNTDn(-1) and T.X UXV. For all X Cmn,
Dm()MXNTDn(-) UXV. Then there exists a e C such that Dm()M U

NTDn(-Iand V. Therefore both aD,(A)M and TN Dn(A-) are diagonal
and so M uI, and N vIn for some u,v E C. Moreover IAI luvl 1.
Consequently, T.X #Dm(A)XDn()-) where # :-- uv.

Case 2. m n, T.X Dm(A)MXNTDn(A-) and T.X uxTv. For
all X Cmn, Dm(A)MXNTDn(A-1) uxTv. Evaluating at X In, we
get Dm(A)MNTDn(A-) UV. Let W := U*Dm(A)M VDn(A)N-T. Then
WX xTw for all X Cmn. In particular, W commutes with every diagonal
matix. Hence W is a diagonal matrix, and so WX (WX)T for all X Cmn.
Since W is invertible, it follows that X-XT for all X C"n, a contradiction.

Case 3. m n, T.X Dm()MXTNTDn()-) and T.X UXV. Using the
same argument as in Case 2, we conclude that Case 3 is impossible.

Case 4. m n, T.X Dm(A)MXTNTDn(A-) and T.X uxTv. Using the
same argument as in Case 1, we conclude that T.X ltDm()XTDn(-l).
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3. Preserving inertia and displacement inertia. In this section, we char-
acterize those nonzero linear operators on Harm(n) that preserve both inertia and
displacement inertia and those preserving eigenvalues and displacement inertia. The
following theorem appears in Horn, Li, and Tsing [7]. It characterizes the linear oper-
ators preserving ,-congruence. For simplicity, we write In as I, Zn as Z, and Dn())
as D(A) in the following theorem.

THEOREM 3.1. Let T" Herm(n) ---, Harm(n) be a nonzero linear operator. Then
the following conditions are equivalent.

(*) T.A is ,-congruent to T.B whenever A is ,-congruent to B.
(**) There exists S e Gl(n) such that either for all X e nerm(n), T.X =kSXS*

or .for all X E Herm(n), T.X +sxTs*.
As a consequence of this result, we obtain the characterizations of linear operators

preserving inertia and those preserving eigenvalues.
THEOREM 3.2. Let T Harm(n) ---, Harm(n) be a nonzero linear operator. Then

the following conditions are equivalent:
(*) For all X e Herm(n), inertia(T.X) inertia(X).
(**) There exists S Gl(n) such that either, for all Z e Harm(n), T.X SXS*

or, for all X Harm(n), T.X SxTs*.

Proof. (**) =v (,). Direct verification.
(,) = (**). If T preserves inertia then it also preserves ,-congruence. Hence,

by Theorem 3.1, there exists S Gl(n) such that either T.X +SXS* or T.X
-t-SXTS*. However, the cases with minus signs are ruled out because T preserves
inertia. [:]

THEOREM 3.3. Let T" Herm(n) ----, Harm(n) be a nonzero linear operator. Then
the following conditions are equivalent.

(*) For all X e Harm(n), eigen(T.X) eigen(X).
(**) There exists U e U(n) such that either for all X e Harm(n), T.X UXU*

or for all X e Herm(n), T.X uxTu*.

Proof. (**) = (,). Direct verification.
(,) =v (**). If T preserves eigenvalues then it also preserves inertia. Hence, by

Theorem 3.2, there exists S Gl(n) such that either T.X SXS* or T.X SxTs*.
Since T preserves eigenvalues, eigen(I) eigen(T.I) eigen(SS*). Therefore SS*
I and so S U(n).

Note that a linear operator T" Harm(n) ---, Herm(n) preserves displacement
inertia if and only if V o T o V-1 preserves inertia. Hence we can use Theorem 3.2
to characterize the linear operators that preserve displacement inertia. For nonzero
T we obtain the following equivalent conditions.

(*) For all X e Harm(n), dis-inertia(T.X)- dis-inertia(X).
(**) There exists S Gl(n) such that either for all X Serm(n),T.X

V-I.(S(V.X)S*) or for all Z e Harm(n), T.X V-.(S(V.xT)s*).
Now we characterize those linear operators on Harm(n) preserving both inertia

and displacement inertia.
THEOREM 3.4. Let T" Harm(n) Herm(n) be a nonzero linear operator. Then

the following conditions are equivalent.
(*) For all X e Herm(n),inertia(T.X) inertia(X) and dis-inertia(T.X)=

dis-inertia(X).
(**) There exists IA[ 1 and a lower triangular Toeplitz N e Gl(n) such that ei-

ther, for all X e Herm(n),T.X D(A)NXN*D(A)* or for all X e Herm(n),T.X
D(A)NXTN*D(A)*
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Proof. (**) =v (,). It is clear that T preserves inertia. It remains to show that T
preserves displacement inertia.

Case 1. T.X D(A)NXN*D(A)*. By Lemma 2.5, we have

T.X Z(T.X)ZT D(,k)NXN*D(;,k)* ZD(,k)NXN*D(,k)*ZT

D(,)NXN*D(A)* ,,k-ID(A)NZX(A*)-IZTN*D(,k)
D(,k)NXN*D(,)* D(,k)NZXZTN*D(,,k)
D(,)N(X- zxZT)N*D())

Hence

dis4nertia(T.X) inertia(T.X- Z(T.X)ZT)
inertia(X- ZXZT)
dis-inertia(X).

Case 2. T.X D(,k)NXTN*D(A)*. Using an argument like Case 1, we conclude
that T preserves displacement inertia.

(,) (**). We assume that T is a nonzero linear operator that preserves inertia
and displacement inertia. We define Herm(n) ---, Herm(n) by

i

Hence

(I(R)I- Z(R) Z) oT= o(I(R)I- Z(R) Z).

Since T preserves inertia, by Theorem 3.2, there exist S E Gl(n) such that either
T (R) S or T ( (R) S) o trans where denotes the complex conjugate of S. On
the other hand, since T preserves displacement inertia, it follows that T preserves
inertia. Then, by Theorem 3.2, there exist R Gl(n) such that either --/ (R) R or

(/ (R) R) o trans. We have four cases to consider.
Case 1. T (R)S and /(R)R. Note that (I(R)I-Z(R)Z) o((R)S)

(R(R) R) o (I (R) I- Z (R) Z). Then, by Lemma 2.11, there exist A 0 and lower triangular
Toeplitz matrices N,M Gl(n) such that’- D(,k-I)M and S-- D(A)N. Hence
/f/ D(lA]2)N. On the other hand, /17/ N due to hermicity, and so I1 1.
Consequently, T.X D())NX(D__(,k)N)* for all X e nerm(n).

Case 2. T S(R)S and T (R(R)R) otrans. Note that (I(R)I-Z(R)Z)o(S(R)S)
(R (R) R) o trans o(I (R) I Z (R) Z). By Lemma 2.10, we get a contradiction.

Case 3. T ( (R) S) o trans and / (R) R. Note that (I(R)I-Z(R)Z) o((R)
S) o trans (R (R) R)o (I (R) I- Z (R) Z). Using the fact that

(I (R) I Z (R) Z) o trans trans o(I (R) I- Z (R) Z),

w.e deduce that

(I (R) I Z (R) Z) o (S (R) S) (R (R) R) o trans o(I (R) I Z (R) Z),

which leads to a contradiction by Lemma 2.10.
ease 4. T ( (R) S) o trans and (/ (R) R) o trans. Note that (I (R) I Z (R)

Z) o (S (R) S) o trans (R (R) R) o trans o(I (R) I Z (R) Z). Using the fact that

(I (R) I Z (R) Z) o trans trans o(I (R) I Z (R) Z),
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we deduce that

(I(R) I- Z(R) Z)o (S (R) S) (n(R) R) o (I(R) I- Z(R) Z).

Then we obtain the required result as in Case 1.
Next we give the characterization of those linear operators on Herm(n) preserving

both eigenvalues and displacement inertia.
THEOREM 3.5. Let T Herm(n) Herm(n) be a nonzero linear operator. Then

the following conditions are equivalent.
(*) For all X e Herm(n),eigen(T.X) eigen(X) and dis-inertia(T.X)

dis-inertia(X).
(**) There exists [A 1 such that either for all Z e Herm(n), T.X D(A)XD

(A)* or for all X e Herm(n), T.X D(A)XTD(A)*.
Proof. (**) = (,). Since IA[-- 1, D(A) is unitary and hence T preserves eigenval-

ues. From Theorem 3.4, it is clear that T also preserves displacement inertia.
(,) (**). Since T preserves eigenvalues, from Theorem 3..3, there exists U

U(n) such that either T.X UXU* or T.X uxTu*. On the other hand, since T
preserves both inertia and displacement inertia, from Theorem 3.4, there exists ]A 1
and a lower triangular Toeplitz N Gl(n) such that either T.X D(A)NXN*D(A)*
or T.X D(A)NXTN*D(A)*. We consider the following four cases.

Case 1. T.X D(A)NXN*D(I)* and T.X UXU*. Evaluating at X I,
we get D(ik)NN*D(A)* UU* I, i.e., D(A)N is unitary. Since D(i)N is lower
triangular, it must be diagonal and so is N. This implies that N #I because N is
Toeplitz. Moreover I#1 1. Finally T.X- D(A)XD(i)*.

Case 2. T.X D(A)NXN*D(A)* and T.X uxTu*. For all Z e Herm(n),
D(I)NXN*D(A)* uxTu*. Evaluating at X I, we find that D(ik)N is unitary.
Let V U*D(i)N. Then VX xTv for all X Herm(n). This implies that V
must be a scalar, and so X XT for all X Herm(n) a contradiction.

Case 3. T.X D(A)NXTN*D(A) and T.X UXU*. Using the same argument
as in Case 2, we conclude that Case 3 is impossible.

Case 4. T.X D(A)NXTN*D(A)* and T.X uxTu*. Using the same argu-
ment as in Case 1, we conclude that T.X D(A)XTD(A)*.

4. Concluding remarks. There are many papers on rank preserving linear op-
erators and inertia preserving linear operators, for example see Pierce et al. [12].
Some of these papers characterize linear preservers of one particular rank class or one
particular inertia class (rather than characterizing preservers of all rank or inertia
classes as was done in Theorems 2.2 and 3.2). These results probably make it possible
to characterize linear preservers of one particular rank and displacement-rank class
and linear preservers of one particular inertia- and displacement-inertia class. Many
of the results in these references treat rank preservers or inertia preservers over the
field of real numbers (rather than the field of complex numbers that we used in this
paper). Some of the references even deal with more general fields of numbers. These
preserver results over other fields probably make it possible to extend the results of
this paper to other fields of numbers.

We mentioned earlier that there are definitions of displacement structure that are
different than the ones we use in this paper. (See Chun and Kailath [2] and Heinig
and Rost [5].) There linear preserver questions are analogous to the ones we studied
here for the other definitions. We expect that the techniques that we have used here
can be used to easily settle such analogous questions.
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In the introduction of this paper we noted that we are interested in the spectral
properties of matrices that are Toeplitz or nearly Toeplitz. In particular, we are
interested in sets having the forms

eigen-1 (A) N Toep(m)

or

eigen-1 (A) N dis-inertia-1 (p, n, z),

where

A := (A,..., A,) e R",
eigen-(A) := {A e Herm(m) eigen(A)
Toep(m) := {A e Cmm" A is Woeplitz},

dis-inertia-(p, n,z) := {A e Herm(m) dis-inertia(A) (p, n,z)}.

Now, by the spectral theorem, we have that

eigen-(A) {QDiag(A)Q*’Q e U(m)}.

From this we see that linear spectra preserving operators

Herm(m) ---+ Herm(m)" X -- QXQ*

for Q e U(m) can be used to move around this isospectral surface eigen-(A). In
more technical language, we see that eigen-l(A) is the orbit of Diag(A) under the
group action defined by

U(m) Herm(m) -- Herm(m) (Q,X) ---, QXQ*.

We originally hoped that we could move around somewhat freely on the sets of the
form eigen-1 (A) dis-inertia- (p, n, z) by means of the linear preservers of such sets.
This hope motivated our study of linear preservers. Unfortunately, our hope was too
optimistic. Our results show that there are not enough such linear preservers.
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RANK M WAVELETS WITH N VANISHING MOMENTS*
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Abstract. This work generalizes the rank 2 (scale factor of 2) orthogonal wavelet sequences

of Daubechies to the case of a rank M wavelet matrix. Several equivalent definitions of Nth order
vanishing moments for rank M wavelets are developed. These notions are used to find an explicit
formula for rank M wavelet scaling sequences with N vanishing wavelet moments (of degree N in our

terminology). A full wavelet matrix (scaling sequence and M- 1 wavelet sequences) is constructed,
with explicit examples.

Key words, wavelets, vanishing moments, multirate filter banks
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1. Introduction. In this paper we generalize Daubechies’ discrete wavelets (which
have a scale factor of 2) to the rank M case. The scale factor M is an integer greater
than or equal to 2. Daubechies’ wavelets are defined by a scaling sequence {ak}k=og-1
which satisfies - akak+21 250,/

k

k

fb K-1Then the wavelet sequence k]k=O defined by bk (--1)kag-l-k is orthogonal to the
scaling sequence under shifts by 2, and together they form a rank 2 wavelet system;
if we set ao,k ak and al,k bk then the entries of the matrix (as,k) satisfy

as,kas,,k+21 25s,s,O,l
k

and as,k 25s,0
k

and they lead to the scaling and wavelet functions, which form an orthonormal basis
of L2(R). Daubechies further defines the following notion: a rank 2 wavelet system
has N vanishing moments if the scaling sequence satisfies the sum rules

(1) (--1)kknak --0 for n- 0, 1,... ,N- 1.
k

This is simply the statement that the first N moments of the wavelet sequence vanish.
Daubechies [1] develops explicit formulae for scaling sequences such that the associ-
ated wavelets have N vanishing moments, and uses them to construct arbitrarily
differentiable wavelet functions on R.

In the sections to follow, we develop the notion of a rank M wavelet system and
define what it means to have N vanishing wavelet moments in the rank M setting. We
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then develop explicit formulas for rank M scaling sequences with N vanishing wavelet
moments, and complete the construction of a full rank M wavelet matrix (one scaling
sequence and M 1 wavelet sequences) given a scaling sequence and a Haar wavelet
matrix. We conclude by giving several examples of our construction.

1.1. Rank M wavelet matrices. The notion of a discrete wavelet system has
been generalized to the rank M case [3], [5], [15], [17], in which there is one scaling
sequence and M- 1 wavelet sequences. A real rank M wavelet system is given by
an M K wavelet matrix A whose entries as,k satisfy

(2) as,kas’,k+Ml Mbs,s’5o,l
k

(3) and as,k M58,o
k

The rows of A are orthogonal under shifts of M. In contrast to the rank 2 case,
where the single wavelet sequence is determined by the scaling sequence, the rank M
case has considerable freedom in the choice of the M- 1 wavelet sequences. In 4
we describe a method for constructing a full wavelet matrix given its first row (.the
scaling sequence) and an M M matrix that we call the characteristic Haar matrix

A Haar wavelet matrix is an orthogonal matrix (up to scalar multiplication) whose
first row is all ones; that is, its entries hs,k satisfy

hs,khs,,k Mbs,s,
k

and ho,k- 1 Vk.

Observe that every such Haar wavelet matrix is a rank M wavelet matrix (with
K M) and that every M M wavelet matrix is a Haar matrix. Useful examples of
Haar wavelet matrices include the M-point discrete Fourier transform (DFT), discrete
cosine transform (DCT), and Hadamard matrix. The collection of rank M Haar
matrices is isomorphic to the group of orthogonal matrices of rank M 1.

It will serve us to think of our wavelet matrices as being M Mg for some integer
g; we can always pad each row with zeros to bring the wavelet matrix into this form.
We call g the overlap of the wavelet matrix. If we break up the M Mg wavelet
matrix A into its constituent M M blocks

(4) A (Ao A A_),
then the characteristic Haar matrix associated with A is given by

H0 A0 + A +... + A_.
It can be checked that Ho is in fact a Haar wavelet matrix.

The second step in generalizing Daubechies discrete wavelet systems is to develop
a notion of vanishing wavelet moments in the rank M settingnow Mth roots of
unity will play role. For example, the sum rule (1) becomes

kknao,k O forn=0,1,...,N-1,
k

In this paper we consider the case of real rank M wavelets; the extension to the complex case
is straightforward.
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where e2ri/M is the primitive Mth root of unity. In 2 we develop these ideas
further, coining the name "wavelet system of degree N," and in 3 we use this set of
conditions to derive explicit formulae for rank M scaling sequences with N vanishing
wavelet moments. Using the results of 4, we are then able to construct full wavelet
matrices of arbitrary rank and number of vanishing wavelet moments.

It is natural to take these rank M discrete wavelet systems and seek to construct
compactly supported rank M wavelet orthonormal bases of L2(R); initial steps in
this direction have been taken by Gopinath and Burrus [3]. These wavelet bases are
derived from the scaling function, which is a solution to the scaling equation

(5) (x) E ao,kT(Mx k).
k

Thus there is a one-one correspondence between the scaling sequences discussed here
and scaling functions on R. The explicit formulae for scaling sequences developed
below enable one to construct rank M wavelet bases with arbitrary smoothness (as
measured by Sobolev differentiability); this is reported in [7].

1.2. The polyphase matrix representation. Matrices satisfying the orthog-
onality condition (2) have been extensively studied in the signal processing literature
[12]-[14] under the name "M-band paraunitary perfect reconstruction filter banks."
Engineers often restate (2) in the z-transform domain, as follows: form the M M
polyphase matrix H(z) with polynomial entries

hs,r(z) E as,r+lMZl

Observe that H and A are related by

H(z) Ao + zA1 +’" + zg-lAg-1

H(z) is said to be paraunitary if H(z) is unitary on the unit circle:

(6) H(z)Ht(z-1)=MI for Izl=l.

Comparison of coefficients of powers of z shows that the paraunitarity of H is equiva-
lent to the orthogonality under shifts (2) of the wavelet system. Paraunitary matrices
and polyphase factorizations have been investigated in great detail [13]. We impose
the additional linear condition (3) to form a wavelet matrix; this amounts to the
requirement that the matrix H(z)lz=l H0 be a Haar wavelet matrix. This proves
essential for the later development of orthonormal bases of L2(R) (cf. [1], [3]).

The orthogonality condition (2) can also be stated in the Fourier domain; for each
of the sequences as, consider its "symbol" or Fourier transform

K-1
1 eikwAs(e) - E as,k 0 <_ s < M

k=0

Then (2) is equivalent to

(7)
M-1

E As(ei(w+2rm/M))As’(ei(w+2m/M)) =- 5s,s,.
m--O
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The paraunitarity (6) of H(z) implies

(8) H (z-1)H(z) MI,

and from this follows

M-1

s=0

1.3. Discrete wavelet bases. As observed in [5], [10], the wavelet matrix de-
scribes a basis for the space of functions on Z. Specifically, a discrete function f(k)
may be expanded

M-1 :

(10) f(k) c,as,M+k,
8--0

where

1
(11) cs,t - f(k)as,Mt+k.

k

This discrete basis property is equivalent to (9); the wavelet matrix provides a set
of overlapping basis functions for t2(Z). The additional "low-pass" condition (3) for
wavelets confers the ability to develop orthonormal bases of L2(R).

2. Vanishing moments for rank M wavelets. In this section we generalize
to the rank M setting several equivalent definitions for a wavelet matrix A {as,k }
to have N vanishing moments.

THEOREM 2.1. A rank M scaling sequence ao is said to be of degree N if and
only if one of the following equivalent conditions holds:

(i) the first N moments of the corresponding wavelet sequences vanish;
(ii) the symbol Ao has a zero of order N at the Mth roots of unity m e2rim/M;
(iii) discrete polynomial sequences of degree n < N are perfectly represented by

shifts of the scaling sequence.
First let us describe each of these conditions in more detail.

(i) The moments of the wavelet sequences vanish to order N if

knas,k --0, 8 1, 2,..., M- 1, and n 0, 1, N- 1.
k

Equivalently,

An)(ei)[=o=O for s--1,2,...,M-1, n=0, 1,...,g-1.

(ii) A rank M scaling sequence has a zero (is flat) of order N at the roots of
unity if its symbol A0 satisfies

(12) A(on)(m) --O, m 1, 2,..., M- 1,

In other words, we can factor

(13) Ao(e) ’) (e)

n---0, 1,...,N-1.

1 eiMw )
N

-e’
Q(’)’
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where Q(e) is some trigonometric polynomial. From the sum rule (3), every scaling
sequence satisfies

Ao(1)-l, and A0(’)-0, m-l, 2,...,M-1,

i.e., every scaling sequence is of degree 1. By definition of the symbol A0, the flatness
condition (12) is equivalent to the sum rules

’ka0, 0,
k

m-- 1, 2,..., M- 1, and n-0, 1,...,N-1.

Rewriting this as

M-1

E E(r + ao,r+Mkq O,
r--O k

we see that each of the partial moments

J(ao) E(r -}- Mk)nao,r+Mk
k

must be equal to a constant independent of r, for n < N.
(iii) A scaling sequence perfectly represents discrete polynomial sequences of

degree < N if, given a polynomial sequence

N-1

n--0

the discrete wavelet expansion (10) of f(k) contains only shifts of the scaling sequence:

/(k) , ctao,Mt+k

In signal processing terminology, putting the sequence f through a rank M wavelet
filter bank with lowpass filter ao will produce zero outputs from all the wavelet or
bandpass filters (and a lowpass output that is a polynomial in the index variable of
degree N- 1).

Proof of Theorem 2.1.
(ii) => (i): Combining

0, m-1,2,...,M-1

with

M-1

E A(me’)As(mei) =- o,
m--O

shows that

Ai 0, n=0, 1,...,N-I,

which is (ii).
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(i) = (ii)" Recall that

M-1

s--0

If each of the symbol8 As, s > 1 vanish to order N at w--0, then 80 must Ao- 1.

(i) is clearly equivalent
Strang [11] give8 additional formulations of degree N, relating it to approximation

of order N for function8 on L2(R).
3. An explicit formula for scaling sequences of degree N. We now derive

an explicit general ormula for rank M scaling sequence8 of degree N. This construc-
tion combine8 the flatne88 characterization (12) of degree N and the orthogonality
condition (7) to obtain the modulus squared of the symbol (Fourier transform) of
the scaling sequence. Following Daubechie8, we then perform a Fejr factorization to
obtain the scaling sequence itself. In fact, we are able to describe all possible rank
M scaling sequence8 of degree N, not just the minimal length 801utions. Our method
generalize8 a technique reported in [2], [13] for the M- 2 case.2

3.1. Minimal length solution. Our first goal i8 to find a minimal (finite)
length rank M scaling sequence {ao,k} of degree N. In order to satisfy the flatne88 of
order N condition (12), the symbol Ao(e) - -. ao,e must be factorizable as

Ao(eiw) ( l + eiw + ei2w T + ei(M-l)w )
N

M
Q(e)’

i.e., A0 includes N powers of the rank M Haar trigonometric polynomial:3

( i + ei + ei2 + + ei(M-1) ) i eiM"

M M(1 -e)

The modulus squared of Ao is

P(e) Ao(ei)Ao(eo) Hg(ei)R(e)

with

(14) H(e) 1 + e" +... + ei(M-1)w
2

M

Both H(e) and the remainder R(e) =l Q(e)l are cosine polynomials. Hence-
forth we freely abuse notation by interchanging x cos w and ei as the independent
variable for functions such as R.

The orthogonality condition (7) can be written

(15) P(e’) + P(ei(+2r/M)) +... + P(ei(’+2rg-)) =_ 1

2 We have also developed [4] a set of purely algebraic formulae for the scaling sequences of degree
N 2, 3, 4, building upon work of Pollen [8]. These formulae yield closed form algebraic expressions
for the sequences; in the N 4 "D8" case this is a new result even for M 2.

3 Note that we have included a factor of 1/M inside the term in parentheses that was missing in

(13). This new normalization means that each of the terms inside the parentheses is itself a valid
wavelet symbol, that of the Haar scaling sequence.
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However, since P vanishes to order 2N in w at the frequencies w 2rm/M,
m--- 1,2,...,M- 1, we know

(16) P(e’w) 1 + o(l,l2N)

at w=0.
We can now find the minimal length solution P HNRN. Since RN is even, we

can write

N-1

RN(X) E Pn cosnw
n--O

Writing x cosw, we can write this as a Taylor expansion of RN about x 1"

N-1

RN(X) E rn(x- 1)n with rn N
n--O

However,

RN(X) P(x) [H(x)]
-g

so Leibniz’ rule gives

(17) R)(x)lx= E nk -xd
k

P(x)
k--0 x--1

n-k [H(x)]-N]
Here

k k!(n-k)!

is the usual binomial coefficient. Since P- 1 vanishes to order 2N at x 1 by (16),
the expression (17) simplifies to

R)(x)]x= [H(x)] -N
x--1

Thus

RN(X) E [H(x)] (x- 1)
n=0 x--1

with H given by (14). In other words, RN is the first N terms in the Taylor expansion
of H-g about x 1, and we can compute this! First rearrange the definition of H"

1
ei" ei(M-1)wH(ei) 1+ +...+

1
M2 H 1 ei(w+2rm/M) 12"

m--1
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Now, for M even, with M1 -, this becomes

MI-11 eiw2 ei(wT2m/M) i(w-2m/M) 12H(ei)--511 + H (1- )(1-
m--1

1 MI-I

(]--[ 2rm)
2

M,z22(l+cosw) 4 cosw-cos or

2M_ MI-I( 2m)2H(x)= M2 (x+l) x-cos
M

M-1while for M odd, with M 2 we obtain

1 ei(w+2rm/M (w_2m/M))12H(ei) l(1 )(1 e

4 cos cos or

2M_ M1

( 2rm)2H(x)= M = x-cos...M
Let us consider the power series expansion of each of the Nctors of H(z). The Taylor

2m -2N
expansion of (z- cos) about 1 is

(,-1)2N- 1 (--1)n M

and the Taylor expansion of (z + 1)- about z 1 is

( ,_1)_(-1 (1 o--( 1.
=0

The Taylor expansion of H- about z 1 is a product of these expansions,

(1- ( .
For M even, we find:

or

rn 2M-1 H 2N+km- 1 --COS2N- 1 M
kl+k2+’"+kM1 =n

X( N+kMI-1N-1 ) (1-cOsTr)-N-kM

(18)

rn 2N + km 1 1 COS
2N- 1 M

kl nUk2+...nUkMl =n

N (1 cos
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For M odd,

( M2 ) N l- ( 2N+km-1 ) (1 27rm) -2N-k’ )rn 2M-1 2N- COS
i

kl-bk2-b...-bkMl =n km=l

or

{ Mml- ( 2N + k, 1 )(1 2rm) -’ )(19) rn E cos2N- 1 M
klk2...kMl =n

Thus RN is the finite trigonometric polynomial

N-1

(20) RN(eiw) rn(1 COS)n
n=0

with rn given by (18) for M even and (19) for M odd. Observe that since the rn are
visibly positive, and cos w < 1 for all w 0, RN is a positive trigonometric polyno-
mial. This will be important later.

LEMMA 3.1. The solution P HNRN, with RN given by (20) and (18) or (19),
which is guaranteed to have the desired flatness properties, satisfies the orthogonality
condition (15).

Proof. Define

(ei) P(ei) + P(e(i+2/M)) +... + P(ei(+2r’)) 1

then (I) + 1 is the periodization of P to the interval [0, 2r/M]. Since (I) is real, even,
and periodic with period 2r/M, it must have the trigonometric polynomial expansion

N-1

(21) (ei) E ck(eiUkw + e-iUk)"
k--O

By construction, (I) is fiat of order N in x cosw at x 1, or

Thus

and

(I)(x) (x- 1)N for x 1.

(ei) , w2N for w 0,

d (e() )=0=’ n 0, 1,...,2N- 1.

However, from (21)

(e) Io=o c [(ikM) + (-ikM)]

M),/ N-k=o ek

0

if n is even, n <_ 2N- 2,

if n is odd.
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Thus we have an N N Vandermonde system for the ck:

1 1 1 1 1 1 Co
0 1 4 k2 (N- 1)2 Cl
0 1 16 k4 (N- 1)4 c2
0 1 --0.
0 1
0 1
0 1 22N-2 k2"-2 (N-l)2N-2 CN-1

The invertibility of this matrix, combined with the flatness of (I) (22), guarantees that
each of the ck 0, i.e.,

(e) --= 0.

Notice that if P has the trigonometric polynomial expansion

NM-1

P(ei) E pk(eik + e-ik)
k=0

then since (I)+ 1 is the periodization of P to the interval [0, 2n/M], has the trigono-
metric polynomial expansion

N-1

(eiMkw e-iMkw+ + ).
k--O

Since (I) 0,

PMk 0 for k 0,

i.e., the Fourier coefficients of P vanish at every Mth index other than zero.
With Lemma 3.1, we have completed the proof of the following theorem.
THEOREM 3.2. The minimal length solution for P, the modulus squared of the

symbol of a rank M scaling sequence of degree N, is

1 + e + + ei(M-1)
2N

P(e) M
Ry(ei)

with RN given by (20) and (18) or (19).
The symbol A0 will be a spectral factor of P, of the form

Ao(e) ( l + e + "..W ei(M-)" )
N

QN(e’),

where the trigonometric polynomial QN is a spectral factor of RN. As in Daubechies
[1], we compute this via the method of Fejr-Ries [9], finding

N-1

QN(e) cne such that
n0

N-1
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This factorization depends on the fact that RN(e) >_ 0 for w E [0,27r], which we
observed previously. When determining the spectral factor QN, one has a degree of
choice over which roots of RN to put into QN(eiw) and which to put into Qg(eiw);
this can lead to minimum phase, midphase, and maximum phase scaling sequences,
and complex sequences as well as real ones.

3.2. Arbitrary length solutions. The minimal length solution P HNRN
we have found is a particular solution to the equation

P(e) + P(e(+2/M)) +... + P(e(+2r-M-’---I )) 1.

The first N coefficients rn in the expansion of RN are determined by the degree N
constraint. We can generate arbitrary length solutions with degree N by augmenting
RN with a higher order cosine polynomial

/(x) (x 1)g En(x 1)n
n--0

that satisfies the homogeneous equation

(23) (HN[C)(e’’) + (HN)(ei(’+2E/M)) +... + (HN)(e(’+2")) =-- O
In other words, the M-fold periodization ofHN(ei)(ei) vanishes. IfHN(ei)/(ei)
has the Fourier expansion -k ct:eik then its M-fold periodization has the expansion

-k CMkeiMkw" The homogenenous equation (23) then holds if and only if cUk 0
for all k. However,

(x- I,

is 2r/M-periodic and therefore has a trigonometric polynomial expansion of pure
Mth harmonics, -k hMkeiMkw" Thus /(e) will solve (23) if and only if it has a

trigonometric expansion

cos w 1)N En COS nw, with n 0 for n Mk.

Furthermore, in order to use the Fejr-Riesz algorithm on the result, we must have

Rg(e) +/(eiw)
_

0 for w e [0, r]

Summarizing this information, we have Theorem 3.3.
THEOREM 3.3. The general solution P(e) to

P(eiw) + P(ei(w+2/M)) +...-t- P(ei(w+2"(M-1)/M)) =- 1,

subject to the degree N constraint

P(e{w) 1 + o(l l at w 0

is given by

(24)
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with H as in (14), RN given by (20) and (18) or (19), and

/(ei) (cosw- 1)g n cosnw
nMk

such that

R() +() > 0o e [0, ].

As in the minimal length case, we can spectrally factor R RN + to arrive
at the general scaling sequence of degree N. This generalizes the M 2 results of
Daubechies [1] and Wells [16].

Figure 1 compares the graph of A for an M 3, N 2 minimal length (6-
coefficient) scaling sequence obtained from Theorem 3.2 with the graph of IAI for a
sequence obtained from the more general Theorem 3.3, with M 3, N 2, and

() (cos )cos,

i.e., having one additional parameter and resulting in an 8-coefficient sequence. In
this example we have chosen the parameter rl to force a zero in the symbol at w
This is useful both for signal processing (since it reduces the filter sidelobe) and for
creating a smoother scaling function [7]. Table 1 tabulates the two sequences.

0.9 0.9

0.8 0.8

0.7 0.7

0.6 0.6

0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1

O0 1 2 3

FIG. 1. Moduli of the symbols for 6-coe.Ocient (minimal length) and 8-coe.fficient M 3 scaling
sequences of degree N 2.

3.3. Examples. We now use the methods developed above to construct exam-
ples of rank M, degree N scaling sequences. In the M 3 case, the square modulus
of the symbol of the degree N minimal length scaling sequence is

P(ei) ( l + 2csw)3
2N N-1

(1-cos )"
n--0
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TABLE
Minimal and nonminimal length scaling sequences for M 3 and N 2.

Minimal
Length

(6 coeffs)

k ao,k k
0 .58610191 8 coeffs 0
1 .91943525 1
2 1.2527686 2
3 .41389809 3
4 .080564754 4
5 -.25276858 5

6
7

aOk
.40120209
.91425445
1.1927766
.72369175

.030934374
-.19277662
-.12490085
.054811171

When M 3, N 2 (a sequence that perfectly interpolates linear polynomials,
the generalization of Daubechies 4-coefficient scaling sequence), we carry through the
spectral factorization to find

Q(e)= i++ IF--
and

(a0,k}_/3+/-V 9+v 15=t=vf 15=FV 9=V 3=vf /18 18 18 18 18 18

These numbers appear in Table 1. Table 2 below displays the M 3 minimal length
scaling sequences of degree N for N 3, 4, and 5.

TABLE 2
Scaling sequences for M 3 and N 3, 4, 5.

N=3
k aok k
0 0.35184039 N= 4 0
1 0.73291789 1
2 1.2251065 2
3 0.77288503 3
4 0.34406337 4
5 -0.30698050 5
6 -0.12472542 6
7 -0.076981260 7
8 0.081874011 8

9
10
11

ao,k k
0121374716 N= 5 0
0.55061140 1
1.0761524 2

0.97241848 3
0.63896711 4
-0.14940338 5
-0.22132111 6
-0.23167774 7
0.10177363 8

0.035155465 9
0.0420992319 10
-0.028522632 11

12
13
14

aOk
0.13078303
0.39986248
0.88862061
1.0265830

0.87196905
0.12599947
-0.20022120
-0.37766755
0.011991962
0.050460123
0.12621021

-0.036899302
-0.0076049461
-0.020374182
0.010287257

When M 4, the symbol P of the autocorrelation of the minimal length scaling
sequence of degree N is

p(ei) / COS3 d "- COS2 W)
N

2
N--1 n

’( 2NTk-1 ) ( NTn-k-1 )2k-n(1--COSO.))n2N-1 N-1
n=0 k=0
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Again, we carry through the spectral factorization in the N 2 case to find the
M 4 generalization of Daubechies 4ocoefficient scaling sequence:

(5) {ao,}
_J’l+x/f 3+ 5+/ 7+v/f 7: 5:]:.v 3:F/ l:t:.

I, 8 8 8 8 8 8 8 8 J
Finally, we compute RN for arbitrary M and the first three values of N:

/h (e) 1,
M2 + 9. (1 M2) cos

R2 (eiW)
3 + 3

Ra(ei 4M4 + 5M2 + 11 8M4 + 5M2- 13
20 30

cosw

4M4 5M2 + 1
+ cos 2w.

60

4. Construction of the full wavelet matrix. Having constructed rank M
scaling sequences of degree N and arbitrary length, we now turn to the construction
of the corresponding wavelet sequences. In the rank M case, there is considerable
freedom in this construction of a full wavelet matrix given its first row. In [5] we
solved the following problem: given a Haar wavelet matrix H0 and a scaling sequence
a0, construct a full wavelet matrix A whose first row is a0 and whose characteris-
tic Haar matrix is H0. Here we clarify and refine that explicit construction using
Vaidyanathan’s paraunitary factorization technique. In particular, this section shows
that a parametrization of the choice of the M- 1 wavelets is given by the choice of the
characteristic Haar matrix, which is equivalent to the choice of an (M- 1) x (M- 1)
orthogonal matrix (or unitary matrix in the case of complex wavelets).

Working in the z-transform domain, Vaidyanathan [13] has proven that every
paraunitary polyphe matrix H(z) of McMillan degree4 K can be factored into the
form

+ H0,
]kk=0

where each va is a unit M-vector. H(z) will be the polyphase matrix of a wavelet
matrix if and only if H0 is a Haar wavelet matrix, so (26) provides a factorization of
all wavelet matrices with polyphase matrix of McMillan degree K. We refer to the
term

I- vkv + zvv
as a prime factor of the polyphase matrix.

THEOREM 4.1. Given a scaling sequence ao of overlap g and a characteristic
Haar matrix Ho, there exists a unique wavelet matrix of McMillan degree g 1 (i.e.,

4 A polyphase matrix of McMillan degree K will correspond to a wavelet matrix of overlap K+ 1,
while a wavelet matrix of overlap K + 1 has a polyphase matrix with McMillan degree at least K.
However, there exist wavelet matrices of overlap K+ and McMillan degree strictly greater than K;
for examples see [6]. The construction presented here describes a unique wavelet matrix with first
row a0 and characteristic Haar H0 and having a polyphase matrix of McMillan degree K.
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with g- 1 prime factors) whose first row is ao and with characteristic Haar H0.
Furthermore, we can explicitly construct the prime factors I- vkvtk + zvkv (and
thus the wavelet matrix) from ao and H0.

Proof. We wish to obtain vectors vk such that the relationship (26) holds with
K g- 1. Recall the M x M submatrices Ak of A defined in (4). We know the first
row of each of these matrices to be the kth length-M subvector of the scaling sequence
co, but the remaining M 1 rows of each Ak are undetermined. Right-multiplying
by H-1, we seek

(27)
g-2

B / zB + / zg-1 0ng-1 H(I- vvk + ZVVk)
k=0

again the first row of eachB is known but the remaining M- 1 rows of each submatrix
are undetermined. We write/ for the first row of the M M matrix B. If we write

ak for the length-M subvectors of the given scaling sequence co, then the fact that
ao is a scaling sequence can be written as

g--l--I

(28) ak+Zak M6o,z
k=0

and

g-1

(29) Zk -(1, 1, 1).
k--0

Right-multiplication of the by H-1 to get the /k renormalizes (28) and simply
rotates the vector of ones in (29)"

g--l--I

(30) 0 1

k--O

and

g-1

(31) -/ (1, 0, 0, 0)
k=0

This will be useful shortly.
Now compute the product on the right-hand side of (27) to find that the coefficient

of z-1 is

V0v0vlv...vg_2

rank 1 matrix, each of whose rows is proportional to v_2. Since we have specified
the first row g0_l of Bg_, equating coefficients of z- in (27) requires that

and B must have rank 1; each of its rows must be a multiple of the first In factg-1v_2 is only determined up to a complex number of modulus 1; however, this phase
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factor does not matter because we only care about v_2 insofar as it determines the
prime factor

Right-multiply (27) by

I- Vg_2V_2 + zvg_2v_2

+
the inverse of the newly determined prime factor, to obtain

g-3

Bo + zB +... + zO-2B_2 H(I- vv + zvv).
k:0

Again, since we are given each of the first rows , we know each of the new first rows, and right-multiplication by a paraunitary prime factor preserves (30) and (31)"

g--2--1
11 lt "-’O,lE k+lk

k-’O

and

g-2

E3 (1, 0, 0, 0)
k-----0

We iterate this procedure to determine Vg_3,... Vl, arriving at the point where
we wish to establish

(32) B- + zB- I- V0Vo + zv0vo

given the knowledge of the first rows --2 and ]--2. We know that

g--2 _[_ f--2 (1, 0, 0, 0), and (-2)tf-2 0.

Set

and (32) will be satisfied; one can verify that

/3-2 v0,oVIo, where Vo (vo,o, Vo,1,...,vo,M-).

This fully determines the matrices B-2 and B-2.
We now form the product

,_2 )([I__0(I- vv+ zvv) Ho

and by construction it will produce a polyphase matrix

H(z) Ao + zA +..-+ zg-lAg_l,
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whose corresponding wavelet matrix has characteristic Haar matrix H0 and first row
ao. 13

As a closing example, we use the methods of 3 and 4 to construct a minimal
length wavelet matrix with M 4 and N 9 2. The minimal length scaling
sequence for this case was given in (26). The full wavelet matrix with this sequence
for its first row and the rank-4 DCT for its characteristic Haar matrix H0 is

0.5396 0.7896 1.0396 1.2896 0.4604 0.2104 -0.0396 -0.2896
-0.1962 -0.1456 -0.4120 -0.3614 1.5028 0.6868 -0.1292 -0.9451
1.0 -1.0 -1.0 1.0 0.0 0.0 0.0 0.0
0.4344 -1.3554 1.3157 -0.4740 0.1068 0.0488 -0.0092 -0.0672

Plots of the symbols of the scaling sequence and the three wavelet sequences (i.e., the
four rows of the matrix) appear in Fig. 2.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

o.1

o 0.5 1.5 2 2.5 3

FIG. 2. Moduli of the symbols for minimal length M 4, N 2 wavelet matrix based on a
DCT characteristic Haar matrix.

5. Conclusions. In this paper we have generalized the discrete wavelets of Daub-
echies to the rank M case. By describing the "N vanishing moments" property in
terms of maximal flatness, we have been able to obtain an explicit formula for the
square modulus of the symbol of a rank M scaling sequence with N vanishing wavelet
moments, and subsequently the scaling sequences themselves. This yields a collection
of discrete bases distinguished by their polynomial interpolation properties. We have
explicitly constructed a full wavelet matrix given a scaling sequence and the desired
characteristic Haar matrix. In a separate work [7] we explore the implications of these
discrete constructions for differentiability of the associated wavelet scaling functions,
i.e., solutions of the scaling equation (5).
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ANALYSIS OF A QR ALGORITHM FOR COMPUTING SINGULAR
VALUES*

s. CHANDRASEKARANt AND I.C.F. IPSEN$

Abstract. We extend the Golub-Kahan algorithm for computing the singular value decompo-
sition of bidiagonal matrices to triangular matrices R. Our algorithm avoids the explicit formation
of RTR or RRT.

We derive a relation between left and right singular vectors of triangular matrices and use it
to prove monotonic convergence of singular values and singular vectors. The convergence rate for
singular values equals the square of the convergence rate for singular vectors. The convergence
behaviour explains the occurrence of deflation in the interior of the matrix.

We analyse the relationship between our algorithm and rank-revealing QR and URV decomposi-
tions. As a consequence, we obtain an algorithm for computing the URV decomposition, as well as a
divide-and-conquer algorithm that computes singular values of dense matrices and may be beneficial
on a parallel architecture. Our perturbation result for the smallest singular values of a triangular
matrix is stronger than the traditional results because it guarantees high relative accuracy in the
smallest singular values after an off-diagonal block of the matrix has been set to zero.

Key words, singular value decomposition, eigenvalue decomposition, QR decomposition, rank
revealing QR decomposition, URV decomposition, deflation
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1. Introduction. We present an algorithm for computing the singular value
decomposition (SVD) of a real upper triangular matrix R that is based on the repeated
QR decomposition of R.

1.1. The algorithm. In 1965 Golub and Kahan [21] introduced an algorithm for
the computation of the singular values and vectors of a real upper bidiagonal matrix B.
The algorithm is based on the QR algorithm for computing eigenvalues but avoids
the explicit formation of the tridiagonal matrix BTB. An Algol implementation of
this algorithm was proposed by Golub and Reinsch in 1970 [22].

The following extension of the unshifted Golub-Kahan algorithm from bidiagonal
matrices to triangular matrices was proposed in [28]. It determines a new iterate from
the QR decomposition of the transpose of the old iterate,

(.) R() R, [R(i)]T Q(i+I)R(+I), >_ 0,

and so avoids the explicit formation of RTR or RRT. Since the iterates R(i) are
related to each other by orthogonal equivalence transformations, they all have the
same singular values. We show in 3 that this algorithm computes the singular values
of R.

The repeated transformation from lower to upper triangular form by means of
orthogonal transformations was motivated by an algorithm for computing partial
correlation coefficients [11], [12]. F. Chatelin and A. auhe pointed out to us that (.)
had already been proposed by Fadeev, Kublanovskaya, and Fadeeva in 1966 [17],
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where it is formulated as applying an LQ iteration to R(2i) and a QR iteration to
R(2i+l).

Fernando and Parlett [19] derive a version of Rutishauser’s differential QD M-
gorithm based on (,) that computes singular values of bidiagonal matrices to high
relative accuracy. Mathias and Stewart [31] use (,) to update rank-reveMing URV and
ULV decompositions, while Dowling, Ammann, and DeGroat [16] use it to develop a
systolic real-time algorithm for computing the SVD. Moonen, Van Dooren, and Van-
pouke [32] insert permutations to turn (,) into a Jacobi-type algorithm. In a second
paper, Fernando and Parlett [18] incorporate shifts into (,) to compute singular values
and vectors and to derive lower bounds on the smallest singular value.

This paper concentrates on the unshifted algorithm. At this point we do not
advocate (,) as a practical method for computing singular values of dense matrices.
Our motivation is to obtain insight into the behaviour of the Golub-Kahan algorithm
for bidiagonal matrices [21] and into the unshifted QR algorithm [23], [33], [38], [41]
for computing eigenvalues of symmetric matrices.

1.2. Overview. In 2 we derive a relation between left and right singular vectors
of triangular matrices. It provides the basis for a simple analysis in 3 of the monotonic
convergence of (,). In particular, we show that the tangent of the angle between
certain canonical spaces and the singular vector subspaces of the iterates R() decreases
monotonically at the usual rate; and that the convergence rate of the singular values is
equal to the square of that of the singular vectors. These results explain the occurrence
of deflation in the interior of the matrix.

Our analysis helps to understand the relation between algorithms that produce
a complete SVD and those that produce a partial SVD, such as rank-revaling QR
(RRQR) decompositions [8] and URV decompositions [24], [30], [36]. In 4 we show
that with respect to a particular block partitioning of the matrix R, (,) proceeds in
two phases: a rank-revealing phase where the large singular values are separated from
the small ones, and a monotonic phase, where the iterates converge monotonically to
block-diagonal form. Hence, preceding (,) with a rank-revealing algorithm accom-
plishes two things: it reverses the grading of inappropriately graded matrices and so
enhances subsequent convergence; and, it forces premature deflation of a particular
off-diagonl block and thus amounts to the computation of a URV decomposition.
Based on this observation, we sketch a divide-and-conquer algorithm for computing
singular values of dense matrices, which may be advantageous on a parallel architec-
ture.

Section 5 derives a simple perturbation result for the smallest singular values of
a triangular matrix. It is stronger than the traditional results because it guarantees
high relative accuracy in the smallest singular values after an off-diagonal block of the
matrix has been set to zero.

Some of the material in 2 and 5 has appeared in preliminary form in [6], [7].
1.3. Relation to other algorithms. Two successive iterations of (,) are math-

ematically equivalent to one iteration of the unshifted QR algorithm for computing
eigenvalues [23], [33], [38], [41] applied to both R({)[R()]T and [R()]TR(), as

and
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This is also observed in [31]. If R() is upper bidiagona!, so are all iterates R(i),
and two successive iterations amount to applying one iteration of the Golub-Kahan
algorithm [21].

Fadeev, Kublanoskaya, and Fadeeva [17] and Fernando and Parlett [19] observe
that one iteration of (,) is mathematically equivalent to one iteration of the Cholesky
LR algorithm [41] applied to A(i) R()[R()]T. This is because A(i) has the upper-
lower Cholesky factorisation A() [R(+I)]TR(+1). A subsequent multiplication of
the Cholesky factors inreverse order gives the next iterate A(i+1) R(+)[R(i+)]T.

From

A() R()[R()]T= [R(+I)]TR(i+1)

it follows that R() is the factor from the upper-lower Cholesky factorisation of A(),
while R(+) is the factor from its lower-upper Cholesky factorisation. Hence the two
factors are related through the orthogonal transformation Q(+I). The fact that the
two Cholesky factors of a matrix are related by an orthogonal transformation is used
in [11], [12] to compute partial correlation coefficients. It is a consequence of the more
general result that M MTM M2TM2 for a positive-definite matrix M implies
the existence of an orthogonal matrix W with M2 WM1, cf. the exercise beneath
[27, Coro. 7.2.8] and [19, 3].

Notation. The norm I1" represents the Euclidean two-norm. The identity matrix
of order k is denoted by Ik and its ith column by e.

2. SVD of triangular matrices. To understand why (,) makes progress in
every iteration we establish a relation between left and right singular vectors of tri-
angular matrices. Let R UEVT be the SVD of the upper triangular matrix

k n-k
k ( Rll RI2 )n- k R22

where

U-
U21 U22 V21 V22

are orthogonal matrices, and

2
O’k O’n

is a diagonal matrix whose diagonal contains the singular values of R in descending
order,

a >_... >_ a >_ a+ >_... >_ a.

The following theorem implies that if the singular values are well separated, then
the left singular vectors are almost always closer to canonical form than the right
singular vectors. By "canonical form" we mean a matrix (z0 with Z orthogonal. The
columns of such a canonical form span what we casually call the "canonical space
(/0 )," that is, the column space of (/0 ).
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THEOREM 2.1. If Rll is nonsingular, and ifU or V is also nonsingular, then

tan Ou,k <_ ak+l.., tan 0v,k,
rk

where O,k is the largest principal angle between u21U and Io ); and Ov,k is the largest
principal angle between (v) and (o)V2

Proof. From the SVD UTR EVT one gets UR Ev1T1 Hence the nonsin-
gularity of RI implies that U is nonsingular whenever V is nonsingular. According
to the CS decomposition [23, Thm. 2.6.1] for orthogonal matrices, V22 and U22 must
also be nonsingular. Furthermore, the (2, 1) block in R UEVT yields

+ o

and

llUlU=lll
_

cr+, IIVV211"
crk

Again, from the CS decomposition,

O’minsinO= [[ux2ll IlU211l 1 ,,...-1,,2 1 2 (uI).

Since the square root term represents the distance between the column space of (1.)
and the canonical space (Ik) [23, Coro 2.6.2] the angle Ou,k must be the largest0
principal angle [23, 12.4.3] between these two spaces. Moreover,

IIUIU1211 IIUIU2111-- tanO=,k.

Substituting this in the above inequality gives

tan O,,k <_ ak+l tan

where Ov,k is the analogous angle for V. El
COROLLARY 2.2. If R is nonsingular, and if Vii or Vll is also nonsingular, then

rk tan 0,k _< tan Ov,k <_ 61 tan Ou,k.
O’k-t- O’n

3. Monotonic convergence results. We determine some of the quantities that
undergo monotonic change during one iteration of (.). Partition the iterates as in 2

k n--k

n- k R
and denote their SVDs by R(i) U(i)EV(i)T, where

V2(Zl)V(2Z2)) Y(i)-(y2( VI(.)
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are orthogonal.
For simplicity we assume that the initial matrix R is nonsingular. If this is not the

case then the zero singular values can be extracted in two iterations. First perform
a QR decomposition with column pivoting [5], [20], [23] that moves the zeros to the
bottom of the matrix:

R Qp < :1 z12 ) pT0 0

where Qp is orthogonal, P is a permutation matrix, and /:1 is nonsingular upper
triangular. In the next iteration eliminate the off-diagonal block,

^I 0 Rll 0

R12 0
Q

0 0

Our algorithm (.) can now be applied to the nonsingular triangular matrix Rll.
The convergence properties of the unshifted QR algorithm are well known [23],

[33], [34], [38], [40], [41]. They are usually derived from the fact that one iteration
of the QR algorithm is mathematically equivalent to one nested subspace iteration,
applied to particular starting spaces, cf. in particular [34], [38], [40]. The subspace
iterates converge linearly to eigenspaces with an asymptotic convergence rate equal
to a ratio of adjacent singular values (in fact, the distance between the iterates and
the eigenspace decreases from the start [40]). In [39] these results are extended to the
computation of the SVD of R from RTR and RRT. The monotonic convergence of
the eigenvalues during nested subspace iteration is proved through the connection to
Toda flows [29].

3.1. Convergence of the singular vectors. We show that the angles between
the invariant subspaces and the canonical spaces almost always decrease monotonically
during (.). First we prove that the convergence rate for the leading k columns of the
singular vector matrices depends on the gap between the kth and (k + 1)st singular
values.

THEOREM 3.1. Let R() be nonsingular; Ul or V( be nonsingular; and
(Tk

Then Ui and VI( are nonsingular for all >_ 0; and convergence is monotonic
in the sense that

t}(i+l) o’k+l t}(i) t}(i+l) ak+ltan vv,k < tan tan < tanv,k u,k u,krk rk

where (i) is the largest principal angle between the canonical space I and the space’v,k 0

spanned by the leading k columns of V(i); and t(i) is the analogous angle for U()
t,u,k

Proof. Consider one iteration RT Q[. From the SVD uTR VT follows
URll FV. The nonsingularity of R() implies that UI is nonsingular whenever
Vll is. Applying Theorem 2.1 to R gives

tan Ou,k

_
ak+ tan Ov,k.
k

Let/- ]T be the SVD of/, where ] QTv and U. The analogous
relation for / is /11 FI. Another application of Theorem 2.1, this time
to/, yields

tan 9,k

_
ak.+: tan 9,k.
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Putting the two inequalities together via U results in

(7kq-
tan 0,k <_ tan O,k.

Now we prove that the rate of convergence for interior columns of the singular
vector matrices depends on the gaps with the adjacent distinct singular values. This
result holds if the initial singular vector matrices are strongly nonsingular. The
fact that the strong nonsingularity is preserved throughout the iteration (,) follows
already from the convergence results of the eigenvalue QR algorithms [34], [38]-[41].

THEOREM 3.2. Let R() be nonsingular, U() or V() be strongly nonsingular,
and

O"k > O’k+l O’k+m > (Tk+m+l.

Then U(i) and V() are strongly nonsingular, for all i >_ O, and columns k + 1,
k + m of U() and V() converge to a n m matrix of the form

m

where Z is orthogonal, at the rate

Pk max ( ak+ O’k+m+ I(7k (7k+l

Proof. The strong nonsingularity of U(i) and V(i) can be proved as in Theorem 3.1.
According to the convergence results for distinct singular values in Theorem 3.1, the
singular vector matrices converge at the rate ak+l/ak to the canonical form

k
k X X

X X
X X X X
X X X X
X X X X
X X X X

while they converge at the rate ak+m+l/Crk+m to the canonical form

k
/

k / m

X X X X
X X X X
X X X X
X X X X

X X
X X

square matrix is called "strongly nonsingular" if all its leading principal submatrices are
nonsingular.
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Here X represents a matrix element that may be nonzero. Thus the singular vector
matrices converge to the form

k m

k X X
X X

m X X
X X

X X
X X

at the rate max{ak+l/ak, ak+m+i/ak+m}. D
Therefore, if all singular values of the matrix R() are distinct and if the singular

vector matrices are strongly nonsingular, then the singular vector matrices converge
to the identity matrix monotonically at the rate maxk ak+l/ak. In general, the sin-
gular vector matrices converge to a block-diagonal matrix whose diagonal blocks are
orthogonal. The convergence rate is equal to the largest ratio of adjacent distinct
singular values. The size of the kth diagonal block equals the multiplicity of the kth
distinct singular value, and the columns making up the block represent an orthogonal
basis for the associated invariant subspace.

3.2. Convergence of the singular values. From the convergence rate of the
singular vector matrices we can in turn estimate the convergence rate for the singular
values. First we show that the singular values converge monotonically. The inequali-
ties in the lemma below are also derived in [31, Thm. 2.1]. They are special cases of
the monotonicity properties of eigenvalues during subspace iteration [29].

LEMMA 3.3. If R() is nonsingular then

D(i_{..l) --i IIR  + )II <

Proof. From one iteration RT Q follows that RT Qil/ll and /22
T TQ22R22 Hence

Now we derive the rate of convergence of the extreme singular values of the leading
and trailing principal submatrices.

THEOREM 3.4. Let R() be nonsingular, U or V( be nonsingular, and
(Yk (Tk+ 1.

Then convergence of the singular values is monotonic in the sense that

v,k
O’k+ O’k a-- O’n

Proof. Consider one iteration RT Q. The SVD R UEVT gives

Following the proof of Theorem 2.1,

JJR22J[ ak+ + cr tangu,k tanOv,k
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and substituting

for tan/,k gives

tan 0,k _< ak+.! tan
ffk

[[R221[ a}+l _< a___! tan2 9v,k.
k+l Tk

The second inequality is derived analogously from R-1 VE-1UT. [-]

Theorem 3.4 implies that the relative distance of ]IR-II from 1/ak is bounded
above by the condition number of E2, as well as the square of the angle between the
leading k columns of the right singular vector matrix and the corresponding canonical
space. Similarly, the relative distance of IIR2211 from ak+ is bounded above by the
condition number of E and the square of the same angle. Hence if Vii is well
conditioned and the spread of singular values in E1 is small then IIR2211 is close to

Yk+l.
Furthermore, the rate of convergence of the singular values is approximately the

square of that of the associated singular vectors. B. Parlett pointed out that this is a
result of Rayleigh’s principle.

COROLLARY 3.5. The following convergence estimates hold:

and

(tan0’k)
2

( )tan Ov,k ak

Now we estimate the convergence of an interior principal submatrix. The theorem
below implies that the iterates R(i) converge to a diagonal matrix with the singular
values in sorted order along the diagonal.

THEOREM 3.6. Let R() be nonsingular, V() or U() be strongly nonsingular,
and

O"k > O’k+ O’k+m > O’k+m+l.

Then the principal submatrix of order rn of R(i),

k+l,k+l k,k+m

()
k-}-m,kTm

to ak+Im at approximately the rate p2k, whereconverges

pk max { (rk+l

ffk (Yk+l

Proof. Partition the iterates as in the proof of Theorem 3.2,

R(i) (i) X22
()
33
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(i) is of order m.where 11
(i) is of order k and 22

Corollary 3.5 implies that the convergence of
gence of

to 1/ak and the conver-

to ak+l occur at approximately the rate ak+12/gr, while the convergence of

(i)
22

--i

to 1/rk+ and the convergence of ]](i)33 ]] to grk+m+ occurs at approximately the rate
2 2

’k+1/O’k.-bm-t- 1"

Consider the essential limit of the iterates, which we define as R() U()]V(),
and partition their singular vector matrices like R(i)"

where the diagonal blocks U/( and are orthogonal and

Then R(2)V2( Tr(o) is a multiple of an,k+lt22 ,so that R7)-- O’k_t_lV(2’:))Y2(x)T
orthogonal matrix. But R is also upper triangular. Therefore R(2 O’k+iI,
is a scalar matrix, and U2( V2( (where we have assumed that R() has pos-

itive diagonal elements). Hence a principal submatrix 22
(i) associated with a sin-

gular value ak+l of multiplicity m converges to ak+I, at approximately the rate

max(,+/, . 2O’kWmW1/O’k+l}.

3.3. Consequences. Our upper bounds on the relative distance between ]]Ri)
and .a to the respective singular values depend on the spreads al...ak and
a+.., an, and the conditioning of the leading principal submatrices of order k of
V() The number of iterations required to reduce the relative distance between
and ak+ to e can thus be estimated as

log a/a log e + log tan a()

logak/ak+

An analogous estimate can be.made for IIR-111.
According to [34, 2.2], the QR algorithm tends to converge to the small eigen-

values first. According to our analysis, though, there is no preference of (,) for small
singular values over larger ones. However, such a preference may be enforced by a
suitable choice of shifts [33], [41].
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The bounds on the relative distance also explain why (.) and the QR algorithm
have such a hard time with graded matrices whose elements increase in size towards
the bottom, cf. [14, 5] and [19, Thm. 5]. These matrices have a large spread in the
spectrum and very ill-conditioned leading principal submatrices. One of the simplest
examples of a graded matrix is

where e << 1 << a. One iteration of (,) gives

whose off-diagonal element has increased from e to about ae. But the diagonal ele-
ments have only changed marginally, and it is obvious that many iterations are needed
to arrive at a diagonal matrix with diagonal elements in descending order (a similar
example was used in [41, 8.7] to illustrate slow convergence of the LR algorithm).
Section 4.2 illustrates how to force fast convergence on such graded matrices ,ithout

the need to decide between QR- and QL-type algorithms as in [14], [19].
The leading principal submatrices of the singular vector matrices are almost al-

ways nonsingular [38, p. 430] but may be very ill conditioned, in which case the
convergence is slow.

4. RRQR and URV decompositions. We discuss the connections between (,)
on the one hand and RRQR decompositions [8] and URV decompositions [36] on the
other hand.

4.1. Two phases in the algorithm. For each partitioning index k of the non-

singular matrix R() define

K)(i) -1

When "(ki) < 1 then - II, which means that all singular values of

Ri are larger than the singular values of ,(i), and a partial ordering of the singular
values of R(i) has occurred. Lemma 3.3 implies that

(i+l) < (ki)

so the separation between singular values of (i) and (i)
11 22 never decreases throughout

the iterations (,). Furthermore, if ak+l/ak < 1 then 7(i)
provided U() and V() are strongly nonsingular. Because the convergence of 3’(ki) to

ak+/ak < 1 is monotone, there exists a number ik such that (i) < 1 for all i >_ ik.
It makes sense therefore to distinguish, for each k, two phases of (,) depending on

the value of 7k(i).
1. A rank-revealing phase, where -k

(i) > 1, during which the singular values of

Ri and R are in the process of separating.
2. A monotonic phase, where 7k

(i) _< 1, during which all quantities of interest

converge monotonically.
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4.2. The rank-revealing phase. The name for the first phase comes from its
resemblance to RRQR decompositions. Given a matrix R and a specific k (usually
determined by the number of singular values of R that are smaller than a certain
threshold), RRQR algorithms try to find a permutation matrix P so that the trian-
gular matrix R in the QR decomposition RP QR has a (1, 1) block with maximal
smallest singular value, and/or a (2, 2) block with minimal largest singular value [8].
The existence of RRQR decompositions was proved in [26], and one of the most ac-
curate RRQR algorithms is Hybrid III(k) [8], which finds a permutation matrix P so
that RP- QR with

-= I1  1 11 I1 ::11-< (k + 1)(n- k + o +1.

In practice, though, the cheaper and possibly less accurate forms of column pivoting,
such as QR with column pivoting [5], [20], [23], tend to work quite well (an attempt
at explaining the practical effectiveness of the simple column pivoting strategies, re-
gardless of their potential failures, is made in [8]).

Therefore, if the singular values ak and ak+l are well separated then one can try
to enforce the onset of the monotonic phase for a particular k by preceding (,) with
an RRQR decomposition. This also reverses the grading in a matrix all of whose
large elements are at the bottom, thus obviating the need for a decision between an
algorithm of QR or of QL type [14], [19].

The idea of permuting rows or columns of the iterates during eigenvalue compu-
tations is not new. Pivoting, in the form of row exchanges, has been suggested for the
LR algorithm, [41, 8.13] and [34, 2.7], to enhance numerical stability in those cases
where the orthodox LR algorithm fails to converge. A preliminary pivoting step has
also been suggested for Jacobi methods: Hari and Veseli5 use QR with column piv-
oting [25] and Cholesky decomposition with symmetric pivoting [37], while Demmel
and Veseli5 [15, Algorithm 4.4] propose to compute the eigendecomposition of a sym-
metric positive-definite matrix A by first determining the Cholesky factor R of A with
complete pivoting, followed by the application of a one-sided Jacobi method to R.

(i+1) k(i)4.3. The monotonic phase. Since 11.2 < IIRII, this implies for the
monotonic phase ",(i+ 1) )(i)I1t12 < 11"2 II. Hence the off-diagonal blocks R decrease
monotonically; and convergence to block-diagonal form is fast once the monotonic

phase has been reached. Since (i) --, ak+/ak, the blocks corresponding to well-
separated singular values may decrease faster and deflation2 is likely to set in earlier.

4.4. A divide and conquer algorithm. The previous sections showed that
once the rank-revealing phase has been completed for some k, the iterates converge
rapidly to block diagonal form. Hence preceding (,) with an RRQR algorithm tends to
force completion of the rank-revealing phase and the start of deflation for that k. This
observation leads to a divide and conquer algorithm for computing singular values of
dense or banded matrices A, which may be advantageous on a parallel architecture.
Below is a rough sketch.

1. Select a k and apply an RRQR algorithm to AP QR so that k < 1.
2. Set R() / and iterate (,) until II (i)2 [[ is small enough.
3. Apply Steps 1 and 2recursively to R and to 22"

2 The splitting of a matrix into two or more independent diagonal blocks due to almost zero
off-diagonal blocks is called "deflation."
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There are several ways to determine the index k in Step 1 where the matrix is to be
split. The simplest option is to set k n/2 and choose Hybrid III(n/2) as the RRQR
algorithm to break the matrix into equally sized blocks and ensure load balance with
regard to parallel execution. But the separation of the singular values O’n/2 and O’n/2+l
may not be large enough. Alternatively one can apply QR with column pivoting and
select as k that index for which Ik+l,k+ll/ltkl / is smallest. A third possibility is
to estimate the norm of by an incremental condition estimator [1]-[3]. We have
not yet gthered enough computational experience to judge whether the algorithm
presents a viable alternative to other methods that operate on dense matrices, such
as Jacobi methods [4], [9], for instance.

4.5. Computation of the URV decomposition. We show how to compute
a URV decomposition by means of (,). The URV decomposition w introduced by
Hnson nd Lwson, [24] and [30, Thm. (3.19)], to solve (rnk deficient) least squares
problems. Stewart [36] emphasizes its use for computing the null space of a matrix
that is repeatedly updated. If R has rank k < n then there exist orthogonal matrices
U and V and a nonsingular upper triangular matrix R of order k such that

0 0

In practice, R is often only of numerical rank k, where the singular values k+,...,
are small. In this case one would like to find a decomposition

where ]] 1/ak is large and where ]]22]] ak+l and 1121] a+ are smll.
Hanson and Lwson, [24] and [30, 14], as well as Stewart and Mathias [31], [35],

[36], compute a URV decomposition by determining orthogonal matrices P and Q
such that RP Q where ]] 1/ak and (2 2)]] ak+. Stewart
and Mathias [31], [35] then perform several of the following "refinemem steps" on
R() to further decrease the size of the (1, 2) block: first determine an orthogonM

matrix Q() so that R()T R(0) Q(1) i8 lower triangular and, second, determine an

orthogonal matrix Q(2) so that R(2) Q(2)TR()T is upper triangular. In [36] Stewart
proposes an incomplete version of these refinement steps: reduce only the last column
of R(0) to en, and in this resulting matrix in turn reduce only the last row to e.

Note that in the beginning these algorithms accomplish more than an RRQR
decomposition. Due to the rotations performed on both sides of the matrix the off-
diagonal block also ends up being small. Hence the following result from [35] applies.
If

--(0) R) <+
then the first part of the refinement steps in [35], [36] causes a monotonic decree

-..2 ] in the (1,2) block, and so does, of course, the second part of the
refinement step. The refinement step in [35] represents two iterations of (,)

[R()]T Q()R(), [R()]T Q()R(2),

while the refinement step in [36] amounts to one incomplete iteration of (,) where

R of order n- 1 remains lower triangular.
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Section 4.3 showed that generally no assumption on the (1,2) block is necessary
to ensure monotonic decrease provided the singular values of Ri and R(2 are well
separated’ if k

(i) < 1 then IIR/2+1)11 < "()
12 II. This is true regardless of whether ak+

is small or not. However, if lIRa/2)II is small then IIR+I)II is as small--regardless of the

relation between "() and R(2--because R+I)= Q(2+)R()T
Therefore, one can compute a URV decomposition of R by determining an RRQR

decomposition RP Q[t and then applying several iterations of (,) to/, which then
converges monotonically to the desired URV decomposition.

5. Deflation criteria. We extend some of the existing convergence and deflation
critera for computing singular values of bidiagonal matrices to triangular matrices.

Demmel and Kahan [14] and Deift et al. [10] have shown that, in floating point
arithmetic, a particular implementation of the Golub-Kahan algorithm for bidiagonal
matrices computes small singular values to high relative accuracy. This implementa-
tion is based on deflation and convergence criteria that preserve high relative accuracy
of the computed singular values.

Fernando and Parlett [19] introduce a modification of Rutishauser’s differential
QD algorithm for bidiagonal matrices that is faster than the current implementations
of the Golub-Kahan algorithm. Their deflation criterion for shifted matrices continues
to preserve high relative accuracy for the singular values. Demmel and Gragg [13]
extend the criterion from [10] to biacyclic matrices.

In [35] Stewart proves a deflation criterion that bounds the relative accuracy of
the smallest singular value and can be considered an extension of Criterion 2a in [14]
to triangular matrices: If the off-diagonM block is small enough with regard to the
singular value separation,

then

In [31] Mathias and Stewart prove a deflation criterion for the eigenvalues of RRT
that bounds the relative accuracy of the n- k smallest eigenvalues,

< IIR 2II 2
a/2(R22) gapk(rmin(Rll)+ IIR2211)’ gapk 6min(R) -IIR2211

(a similar theorem in [31] also bounds the relative accuracy of the largest k eigenvalues
of RTR). It implies a first-order bound on the relative accuracy of the n- k smallest
singular values of R,

ri(R22) ak/i < IIR12112 /11R12]]4)ffi(R22) 2gaPk(O’min(Rll) + I]R2211) + O 2
gapk

If IIR121I is small then this criterion permits earlier deflation than the one from [35].
Our deflation criterion below guarantees high relative accuracy in a(R22) and

holds without any assumptions on the size of lIRa211.
THEOREM 5.1. If R is nonsingular, V is strongly nonsingular and gapk

rmin(Rll)- [[R22[[ > 0 then

[ak+j aj(R22)[ < [[R12[[
al (R22) gapk
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Proof. From RT Q it follows that

Using laj(d 4-E)- aj(d)l <_ IIEII [23, Cor. 8.3.2] with

0 0

yields

This implies, together with

from 4.3, that
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II](iq-1) ")/k
(i)+1)) < < IIR  II <   IIR  II.

As for the difference between iteration + 2 and i, we make use of Stewart’s idea [36],

Because V is strongly nonsingular, Theorem 3.6 implies that the singular values
of () converge to the singular values erk+ 1,22 O’n aS ---* C. The assumption ")’k < 1
allows extrapolation to the limit

1. HenceE7: 
]ak+y-ay(R22)] < ]]R[]] [[R2]]

a (R22) 1 "k O-min(Rll --IIR22]]

Theorem 5.1 is most valuable for the case k n-m, where rn is the multiplicity of
the smallest singular value an, because it assures that [IR22]] approximates an to high
relative accuracy whenever the norm of the off-diagonal block is small and the singular
values of R are much larger than those of R22. Since the requirement gaPk > 0 is
equivalent to "Yk < 1, Theorem 5.1 can be applied as a deflation criterion for (.) only
once the monotonic phase for k has set in. Note that gapk > 0 is not satisfied for a
graded matrix whose elements increase in size towards the bottom, regardless of how
small R12 is.

(/+l) < ./i)(Now set R() _-- R and apply (,) to R() According to 4.1 k so the
difference between two successive iterations is
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In general, Theorem 5.1 suggests using the simple deflation criterion

gaPk

to guarantee absolute accuracy r for all singular values of R22. If IIR2211 is small and
if the singular values of Rll and R22 are well separated then this criterion permits
earlier deflation than the traditional criterion [23, Coro. 8.3.2]

Relative accuracy r] for all singular values is achieved if

gaPkIIR1211 _< ra(R22-----,
where a(R22) --IIR2211 IIR2 is the condition number of R22.
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DISPLACEMENT STRUCTURES OF COVARIANCE MATRICES,
LOSSLESS SYSTEMS AND NUMERICAL ALGORITHM DESIGN*

PHILLIP A. REGALIA AND FRAN(jOIS DESBOUVRIES

Abstract. Low displacement rank theory underlies many fast algorithms designed for structured
covariance matrices. Some of these have gained notoriety for their numerical instability problems,
particularly fast least-squares algorithms. Recent studies have shown that instability is not inherent
to fast algorithms, but rather comes from the violation of backward consistency constraints. This
paper thus details the connection between covariance matrices of a given displacement inertia and
lossless rational matrices, as well as the role of this connection in numerically consistent algorithms.
This basic connection allows displacement structures to be parametrized via a sequence of rotation
angles obtained from a lossless system. The utility of this approach is that, irrespective of errors
in the rotation parameter set, they remain consistent with a positive definite matrix of a prescribed
displacement inertia. This property in turn may be rephrased as meaningful forms of backward con-
sistency in numerical algorithms. The rotation parameters then take the form of Givens or Jacobi
angles applied to data, in contrast to classical approaches which directly manipulate dyadic decom-
positions of the displacement structure. The concepts are illustrated in popular signal processing
applications. In particular, these connections lend clear insight into the stable computation of reflec-
tion coefficients of Toeplitz systems, and also serve to resolve the numerical instability problem of
fast least-squares algorithms.

Key words, displacement ranks, covariance matrices, Schur reduction, lossless systems, fast
least-squares algorithms

AMS subject classifications. 15A21, 15A24, 93A25, 30C45

1. Introduction. Displacement rank theory plays a fundamental role in the de-
velopment of fast computational algorithms [1]-[7], and is closely connected to prob-
lems in inverse scattering and interpolation theory [8]-[10], providing a rich algebraic
link between modern results of analytic functions and concrete applications in matrix
computation. This paper focuses on the intimate connection between displacement
structures of covariance matrices and lossless transfer matrices, and the implications
of this connection in numerical algorithm design.

One of the greatest impacts of displacement rank theory has been the development
of fast recursive least-squares algorithms. The successful exploitation of a certain shift
property of the data allows an order of magnitude reduction in the computational
complexity, compared to conventional recursive least-squares algorithms. Many of
these algorithms suffer numerical instability problems in the form of unstable error
propagation: round-off errors in the computed quantities are amplified by successive
time update recursions, leading to numerical divergence. This has led some skeptics
to conjecture (incorrectly) that some form of numerical instability should be inherited
by all fast algorithms developed from low displacement rank theory.

The philosophy of this paper evolved during the numerical stability study of such
fast algorithms, and the isolation of structural features underlying instability problems.
It was first recognized in .[38], [39] that backward consistency gives a sufficient criterion
for stable error propagation in any fast least-squares algorithm. Backward consistency
means that the quantities computed in finite precision arithmetic are indistinguishable
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Cybenko, March 2, 1994.
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from those obtained by first perturbing the input data to the filtering algorithm, and
then running the same algorithm in exact arithmetic, a familiar concept in numerical
analysis [11], [12]. This idea, in the context of fast least-squares algorithms, was
considerably amplified in [36]-[40], which established that numerical divergence effects
are necessarily preceded by the violation of backward consistency constraints. A key
development in this approach was advanced by Slock [36], who deduced a manifold
characterizing the set of "reachable" variables in exact arithmetic for the so-called
fast transversal equations, which are notorious for numerical divergence problems.
Soon thereafter, this manifold was recognized [37] to be a special case of more general
results known from lossless inverse scattering [8]. This connection proved crucial
towards establishing the numerical stability of alternate fast least-squares algorithms,
such as those obtained from fast QR decomposition approaches [40].

The essential lessons from the study of fast least-squares algorithms all reduce to
backward consistency constraints. Backward consistency is a necessary first step in
any backward error analysis, and despite many papers touting fast algorithms obtained
from low displacement rank theory, questions of existence and applicability of back-
ward error analyses are by and large absent. Thus a paper devoted to displacement
structures, lossless systems, and numerical algorithm design would seem appropriate,
particularly if the features underlying backward consistency can be brought to the
forefront.

Many of the supporting results of this paper have previously appeared in very
specialized contexts, some rather advanced. Recognizing that the reader may not
have references [1]-[47] at his/her fingertips, proofs or verifications of many supporting
arguments are included to enhance the tutorial aspects of the paper.

The organization is as follows. Section 2 begins with a selected overview of known
results in displacement rank theory. This section leads into the important equivalence
between positive definite matrices of a given displacement inertia and lossless rational
matrices (Theorem 2.1). This result has very natural implications concerning back-
ward consistency in numerical algorithm design, which will be emphasized throughout
the paper. For the benefit of the nonexpert, 3 gives background information on
Schur recursions that underlie Theorem 2.1 and that lead to alternate parametriza-
tions of displacement structures. Sections 4-6 address computational aspects and
backward consistency notions in light of the previous sections. To keep the presen-
tation tractable, in 4-6 attention is restricted to the so-called displacement inertia

(1, 1) and (2, 1) cases. The former is intimately connected with the inverses of Toeplitz
matrices [29] and orthogonal polynomials [27] as widely used in linear prediction the-
ory [30]. The latter underlies fast least-squares algorithms, as well as certain forms of
digital filter synthesis [22] and model reduction strategies in linear system theory [33].
Sections 5 and 6 are partly tutorial, but provide complete proofs of key propositions
concerning fast least-squares algorithms, particularly Slock’s manifold [39] for which
the supporting arguments were previously incomplete.

Although the examples we consider are the simplest occurrences of low displace-
ment rank theory, they have had immense impact on modern signal processing, and
also serve as excellent examples illustrating the interplay between the topics of the
paper’s title.

2. Review of displacement structures. We suppose that P is an M M
covariance matrix, meaning symmetric (P pc) and positive definite (P > ()). The
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classical matrix displacement residue takes the form [1]

p q

(2.1) P- ZPZ’= Z aa Z bt b (M M),
k=l k=l

where Z is the M M "down-shift" matrix consisting of ones along the subdiagonal
and zeros elsewhere. We suppose moreover that the column vectors {ak} and {bk)
(of length M) are linearly independent; for if not, they may always be reduced to
a linearly independent set. The matrix P is then said to have displacement inertia
(p,q) with respect to the displacement residue (2.1), and its displacement rank is
then p + q.

Displacement residues are of interest when the structure of P leads to p + q < M
(particularly when p + q << M), since the displacement residue may then provide a
more compact parametric representation than that available from the elements of P
themselves. Computational algorithms using structured covariance matrices may then
often be rephrased in terms of new algorithms using the displacement generators, with
a decrease in the computational load (e.g., [1]-[4], [6], [7], [46]).

Equation (2.1)expresses the displacement generators {ak} and {bk} in terms of
P, and a direct expression for P in terms of {ak} and {bk} may be obtained from
the representation theorem [1]. Specifically, from a vector v- [vl VM] one may
define a lower triangular Toeplitz matrix L:(v) via

v 0 0

:(v)= v v ".

M 2 1

(M M).

With this, P may be recovered as [1]

p q

(2.2) P Z L:(ak)t(ak) Z L:(bk)P-.t(bk).
k=l k=l

As a consequence, one may always choose the generator vectors freely (subject to a
linear independence constraint); the symmetric matrix P determined from (2.2) then
fulfills the displacement equation (2.1). Characterizations of positivity are reviewed
below.

Many other forms of displacement residues are also used in different contexts, as
evidenced by [29] in the study of Hankel and Toeplitz forms, or [10] in the study of
classical interpolation theory. Our interest focuses on a slight variant of (2.1), taken
from definition 1.1 in [29]:

0’ 0 0 P Zaka- Zbkb [(M+I)(M+I)].
k=l k=l

The inertia of a symmetric matrix is properly the ordered triple (r, v, 5) where r is the number
of positive eigenvalues, v is the number of negative eigenvalues, and 5 is the number of zero eigenvalues.
For simplicity, we only consider the ordered couple (r, v), since the number of zero eigenvalues is then
obtained by counting those that remain. Thus in (2.1) we have (r, v)= (p,q).
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Here 0 is the zero column vector of M elements and the generator vectors now of
length M + 1. One may observe that the residue appearing in (2.1) is the M M
principal submatrix of (2.3), and similarly, the so-called "up-shifted" displacement
residue ZPZ- P corresponds to the lower right M M subblock of (2.3). This
yields an appealing balance, and if P has displacement rank r (say) in (2.3), its
displacement rank in (2.1) will be r or less.

Supposenowthat Po [PI ""] is adoublyinfinite matrix andextendthedi-

mensions of the shift matrix Z accordingly. This gives rise to.an operator displacement
residue of the form

p q

(2.4) V ZV Z ak a y bk b,
k--1 k=l

where the generator vectors are now of infinite length. If P is the M M principal
submatrix of Po, then clearly the residues (2.1) and (2.3) are both particular instances
of the infinite form (2.4). Specifically, (2.1) is obtained by displacing the operator Po
and then truncating the result, while (2.3) is obtained by first truncating the operator
and then displacing the result. Thus any result applicable to (2.4) must specialize to

(2.3) uponsettingPo= [p 0]0 0

Characterizations of positivity of P first surfaced with respect to the infinite form
(2.4) in Lev-Ari and Kailath [5]. Specifically, partition P as

po= Ip pt]p P2

where P1 is a scalar. Then a standard test attributed to Schur [14] asserts that P
is positive definite if and only if P > 0 and the Schur complement

P2 pp*/P

is positive definite. Once the Schur complement is similarly partitioned, a recursive
test for positivity is obtained. It turns out [5] that this test may be rephrased in terms
of the generator vectors appearing in (2.4), in the form of an infinite lattice synthesis
procedure. Since this test involves an infinite number of steps, convergence is not
immediately clear.

A more complete characterization of positivity was obtained by Alpay, Dewilde,
and Dym [8]. Multiply the form (2.4) from the right by the row vector [1 z z2

and from the left by the column vector [1 w w2 ...It, where z and w are two
complex variables. One obtains

P q

(2.5) (1 zw) P(z, w) A(z) A(w) B(z) B(w),
k--1 k--1

where
1

P(z,w)=[1 z z2 "’]Po w2

Ak(z)=[1 z z2 ...]ak, k=l,2,...,p;

Bk(z)=[1 z z2 ...]bk, k=l,2,...,q.
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The terms (Ak(z)} and (Bk(z)} are called the generator functions [5]. The results of
[8] show that P is positive (semi) definite if and only if there exists a q p matrix
Schur function S(z), which reconciles the generator functions as

S(z)
Bq(z) Apiz

By Schur function, we mean that S(z) is analytic in Izl _< 1, and contractive there:

S*(z) S(z) <_ Ip, and S(z)S*(z) <_ Iq for all ]zl

where the superscript asterisk denotes Hermitian transpose. Extensions to this result,
involving displacement residues in which Z is replaced by more general triangular
structures, may be found in Theorem 3.2 of Sayed [10].

With respect to the matrix displacement residue (2.3), the two-variable form (2.5)
still holds, but now simplifies to a polynomial equation, where

(2.7a)

(2.7b)
(2.7c)

1

P(z, w) [1 z zM-lIP
wM--1

Ak(z) [1 z zM] ak, k l, 2, p,

Bk(z) [1 z zM] bk, k-l,2,...,q.

The generator functions {Ak(z)} and {Bk(z)} are now polynomials of degree not
exceeding M.

A simple property may be observed at this point. Set w z-1 in (2.5) and note
that the left-hand side vanishes. Thus the polynomial generator functions must be
related as

p q

(2.8) E Ak(z) Ak(z-) E Bk(z) Bt:(z-) for all z,
k--1 k--1

if they are indeed obtained from the generator vectors in residue (2.3). This con-
dition is sufficient as well. For if (2.8) holds, then the polynomial k A(z)A(w)-
-k Bk(z)Bk(w) contains a factor (1 zw). As such,

k k

remains a polynomial of degree M- 1 in both z and w. It may thus be written in the
form (2.7a) for some M M matrix P.

This puts forth a simple lesson: If arithmetic operations are applied to the gen-
erator vectors, the locally independent errors in these vectors will lead to constraint
(2.8) being violated. In this case, the perturbed vectors cannot be associated with any
matrix P via the displacement residue (2.3), which is to say that consistency is lost.

The structural constraint (2.8) turns out to be quite exploitable: it says, in effect,
that the vectors [A1 (z),..., Ap(z)] and [B (z),..., Bp(z)] are different spectral factors
of the same function. By a standard result [13], any two spectral factors of a given
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function may always be reconciled by a matrix function that is unitary on the unit
circle. Indeed, the result of Alpay, Dewilde, and Dym [8] concerning positivity ofP
may be specialized to the matrix case as follows.

THEOREM 2.1. Let {Ak(z)}Pk=l and {Bk(Z)}qk= be polynomials obtained from
candidate generator vectors in (2.7). There exists a positive definite M M matrix
P fulfilling the displacement equation (2.3), if and only if there exists a p q lossless
function U(z) of McMillan degree M which fulfills

(2.9) U(z)

The matrix P may be recovered from U(z), to within a scale factor ambiguity.
By lossless, we mean that U(z) is analytic in Izl >_ 1, and paraunitary:

Ut(z-1) U(z) Iq if p _> q

or

U(z) Ut(z-1) I; if p <_ q.

The first (respectively, second) equality says that the column (respectively, row) vec-
tors of U(ei) are orthonormal for any -r

_
w <_ r. Lossless systems play a funda-

mental role in many signal processing applications [19]-[26], to which the interested
reader is referred for more background information. This paper is concerned princi-
pally with the case p _> q, as the case p < q may be treated in a parallel fashion. For
the case p >_ q, we have Ut(z-) U(z)= I, so that (2.9) may be rewritten as

Ut(z-1
Bl(z)

It is easy to show that Ut(z-) is analytic and contractive in ]z _< 1, thereby yielding
a Schur function, and thus a particular instance of (2.6). The modified form (2.9),
however, proves more convenient for the purposes of this paper.

The numerical consequences of this result must be emphasized. By the bounded
real lemma [26], a matrix function U(z) is lossless if and only if may be expressed as

U(z) D + C(zI- A)-B,

where [ DB[ has orthonormal columns (if p _> q)or rows (if p _< q). In network

synthesis [19]-[23] the matrix [A B] is split into elementary rotation angles {0k}C D

such that U() is lossless irrespective of the exact values of these angles. To any
perturbation of the parameters proper to U(), there thus corresponds a per-
turbed matrix P of the same displacement inertia which remains positive definite, by
Theorem 2.1. This connection gives rise to backward consistency: any error in the
rotation parameter set could have been obtained by first perturbing the initial data
that build P and then running the computations in exact arithmetic. We will return
to this interpretation in 4 and 6.

3. Schur reduction.
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3.1. Construction of Theorem 2.1. The construction underlying Theorem
2.1 is a consequence of Schur reductions [5], [10], [14]-[17], [22], [28] whose review may
be helpful to some readers. We begin by partitioning P as

pt P2

where P2 is a scalar. Then P is positive definite if and only if P2 > 0 and the Schur
complement

(3.1) P1 ppt/P2

is positive definite. Our approach follows [5] closely, to extract the Schur complement
(3.1) in terms of the generator vectors of P. The procedure then continues on this
Schur complement, yielding M successful steps if and only if P is positive definite.
This test will naturally take the form of a synthesis of the lossless function U(z)
fulfilling Theorem 2.1.

We begin by setting

A [al,...,ap], B [bl,...,bq],

so that the displacement equation (2.3) may be written

(3.2) [ P 0 0 0

Let P be any (p + q) x (p + q) J-orthogonal matrix, i.e., satisfying

tj=j.

As is well known, the row vectors of the matrix

are also generator vectors of the same matrix P, as may be verified by direct substitu-
tion. The Schur complement (3.1) may be deduced.by elementary operations involving
strategic choices of [5].

For convenience, let P be the final column of the matrix We may then

rewrite the displacement equation (:3.2) in the form

0 0 0 P x yt -Iq B Y

Inspection of the lower right entry of both sides reveals

Pe Ilyll 2 -Ilxll 2.

This observation has a simple interpretation: There exists a J-orthogonal matrix E
fulfilling

(3.3) x
Oq_

Y lyll2 -Ilxll 2
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if and only if P2 > 0. Such a E may be chosen as a hyperbolic Householder trans-
formation, for example. Note that in the limiting case Ilxll 2 Ilyll 2, the entries of E
would not necessarily be bounded.

For illustration purposes, suppose that M 4 and that (p, q) (2, 2). We would
then have

B x x x x (R)

x x x x (R)

r_l

The distinguished elements (R) of the last column are the vector ].[. Applying the

transformation E from (3.3), we find

x x x x

A =_ x x x x (R)

L x x x x (R)

x x x x (R)

(3.4)

x x x x 0 "1
x x x x 0
x x x x 0

X X X ,,’/lily112-11xll20

Note the "free" zero that is obtained in the lower left-hand entry. This is a consequence
of a well-known degree-reduction property of the Schur reduction procedure that is
explicit, for instance, in [22]-[24].

For our purposes, this free zero may be explained as follows. Let

1

B(z) B
zM

which is simply the vector built from the polynomial generator functions {Ak(z)}Pk=
and {Bk(Z)}qk= 1" Similarly, set

1

B(z) B
zM

which is the vector obtained from the transformed generator functions {A,k(z)}P=
and {Br,k(z)}q= 1" Because E is J-orthogonal, one has

p q

E A,k(z)A,k(z-1) E B,k(z)B,k(z-1)
k=l k=l

p q

EAk(z) Ak(z-1)- EBk(z) Bk(z-1) (=0)
k=l k=l

or
p q--1

B,q(z) B,q(z-1) E A,k(z) A,k(z-1) E B,k(z) B,k(z-).
k=l k--1



544 PHILLIP A. REGALIA AND FRAN(OIS DESBOUVRIES

AI(Z

a(z) --).

B (z) --).

nq(Z)

Cl(Z)

Q,(z)

J-orthogonal - n_l(Z

deg M Rotate extract Schur deg M-1
(if and only complement
ifP2>0)

FIG. 1. One step in the Schur reduction procedure.

By construction, the right-hand side is a polynomial of degree +(M- 1). Thus the
coefficients of z+M on the left-hand side must vanish. If fl0 and tiM denote the extreme
coefficients of the polynomial Br,q(z), the coefficient of z+M on the left-hand side is

fl0 tiM. But tiM V/IlYll 2 --Ilxll 2 exists, and is nonzero if and only if P2 > 0, whence
fl0 Br,,q(0) 0 must result. This accounts for the free zero in (3.4).

At this point we may set

Ck(z) Ar,,k(Z),
Dk(z) Br,,k(z),
Dq(z) z-1 Br,q(Z).

k- 1, 2,...,p,

k 1,2,...,q-1,

The polynomials {Ck(z)} and {Dk(z)} now have degrees not exceeding M- 1. It is
easy to verify that

p q

E Ck(z) Ck(z-1) E Dk(z) Dk(z-).
k=l k=l

Thus {Ck(z)} and {Dk(z)} are generator functions of some (M-l) (M-l) matrix.
More precisely, we have the following property.

PROPERTY 3.1. Let {Ck(z)}Pk= and {Dk(z)}qk= be the polynomials obtained
from the above procedure. These are generator functions of the Schur complement
P1 ppt/P2.

This result was first established in [5] (the Schur invariance theorem) with respect
to the operator residue (2.4). The result specializes to our case upon setting P
0 0]"

The operations performed thus far admit the flowgraph interpretation of Fig. 1.

The polynomials {Ck(z)} and {Dk(z)} now correspond to the Sehur complement R A
Pl ppt/P1. If we partition R as

r ]R rt R2

where R2 is a scalar, then the next Schur reduction step will succeed in forcing a
further degree reduction in the polynomial generator functions if and only if R2 > 0.
By induction, M successive Schur reduction steps will reduce the generator functions
to constants if and only if P is positive definite.
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The resulting flowgraph interpretation appears in Fig. 2. The overall transforma-
tion may be written as

(3.5) E(z) F(z)ElF(z).... F(z)

where each Ek is a constant J-orthogonal matrix and F(z) diag[Ip+q_,z-1]. It is
straightforward to verify that F(z) is J-inner [9] in the sense that

>O, Izl < ,
J *() J (z) O, I1 ,

<O, I1 > ,
where the asterisk denotes Hermitian transpose. It follows that (z) from (3.5) is
also J-inner, since the product of J-inner and J-orthogonal factors will always yield a
J-inner matrix [9].

Let c and d be the constant vectors obtained from the end result in Fig. 2:

B(z)]
Since E(z) is J-inner, it is easily verified that

licll 2 lidll 2 A*(z-X) A(z) Bt(z-) B(z) 0.

Thus, c and d have the same Euclidean norm. By elementary considerations, there
exists a constant matrix V fulfilling VtV I and c V d.

Partition now the J-inner function E(z) as

E(Z)--[ Ell(Z) E12(z) ]r(z) r. (z)

with Ell(Z) of dimensions p p. Since P(z) is J-inner, the matrix U(z) defined via

U(z) JEll(Z) V 21(Z)I-I[V 22(Z) 12(Z)], (p x q)

is now lossless of McMillan degree M [9], [19], [21]-[231, and by construction fulfills
A(z) U(z)B(z). This gives the "only if" clause of Theorem 2.1.

A flowgraph of U(z) appears in Fig. 3; it is obtained by reversing the flow di-
rections of the upper branches of Fig. 2. In doing so, each J-orthogonal matrix Ek is
converted to an orthogonal matrix Ok.

To conclude the "if" clause, suppose the generator functions are related as A(z)
U(z) B(z), with U(z) lossless of degree M. Then the relation Ut(z-) U(z) I im-
plies At(z-1) A(z) Bt(z-1) B(z). Thus the functions are indeed generators obtained
from some matrix P via the displacement residue (3.2). To show that P must be pos-
itive definite, we recall [22], [23] that every lossless rational function of degree M may,
by Schur recursions, be synthesized in the form of Fig. 3. This may be converted
into Fig. 2 by flowgraph manipulations. Figure 2 shows that such Schur recursions
will have reduced the generator functions to constant functions in precisely M steps,
which implies that P is positive definite.

3.2. Illustrative examples. For the benefit of the nonexpert, we illustrate the
above Schur reduction steps for two concrete cases: the displacement inertia (1, 1)
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a(z),.L

U(z)

F(z) F(z) F(z)
FIG. 2. The Schur test for positive definiteness in terms of the generator polynomials A(z)

and B(z).

.: f c-v.A(z),
# Og (1-I//ql > 01 1 p V

FIG. 3 Lossless system U(z) fulfilling A(z) U(z)B(z), obtained from Fig. 2 via flowgraph
manipulation.

case that is adapted from [28], and the displacement inertia (2, 1) case that is adapted
from [22]. These cases are further examined with respect to computational aspects
in 4-6. We emphasize that these procedures are intended to illustrate candidate
parametrizations of the displacement structure and are not recommended as compu-
tational algorithms.

The displacement inertia (1, 1) case is motivated by the following result
THEOREM 3.2. Let P be positive definite. Then P has displacement inertia (1, 1),

a a b b
0 0 [0 P

if and only if p-1 is Toeplitz.
This result may be found in Theorem 2.1 of [29] and may also be inferred from

[27]. Since A(z) and B(z) are both scalar, the lossless function U(z) is easily found

A(z)U(z) B(z)"
The identity U(z-1)U(z) 1 is a restatement of the constraint A(z)A(z-1)
B(z)B(z-1).

Without loss of generality, suppose M 3. We then have

A(z)]B(z)
x x x
x x x X Z2

z3

Let Ea be a hyperbolic rotation that annihilates the upper right-hand entry of the
above array. Then in array form we have

[ ]x x x x 4 x x x 0
x x x x. 0 x x x
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A(z)
OM OM-1 01

B(Z)

cos 0

sign0

cos 0

FIG. 4. Lossless system U(z) for displacement inertia (p,q) (1, 1) giving the normalized lattice.

The lower left-hand entry is, of course, also annihilated for free. Let z-1 denote the
right shift operation applied to the bottom row:

0 x x x x x x 0

Delete the final zero column, and reiterate the above procedure twice to reduce the
generator vectors to constants.

If C(z) and D(z) are the generator functions obtained after the first reduction
step, then

zD(z) cos 03 -sin03 1 B(z)

where
A(oo) V(oo).sin 03 B(oo)

This of course is a classical formula advanced by Schur [14]. The matrix form (3.6)
can be rearranged as

A(z)
D(z) 1 -sin03 cos 03 B(z)

The interconnection of this system is sketched in Fig. 4, and in prediction theory is
known as the normalized lattice filter [30]. The parameters sin Ok are known as the
reflection coefficients associated to the Toeplitz matrix P-1. As is well known, the
function U(z) realized in Fig. 4 is lossless of degree M, if and only if sin0kl < 1
for all k. Theorem 2.1 then reduces to a classical result" The reflection coefficients
obtained from a Toeplitz matrix are all upper bounded by unit magnitude if and only
if the Toeplitz matrix is positive definite. Reliable numerical methods for obtaining
the reflection coefficients are presented in 4.

For the displacement inertia (2, 1) case, we now have

0 0 0 P --ala +a2at-b b.

The structure of the associated P matrix is made explicit in 5.
The array form appears as

a x x x x
b x x x x
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Let E be a hyperbolic rotation operating in the (2, 3) plane, chosen such that

x x x x x x x 0
X X X X X X X X

Let next E be a hyperbolic rotation operating in the (1, 3) plane, chosen such that

X X X X X X X 0
x x x 0 x x x 0
x x x x 0 x x x

At this point, a free zero is obtained in the lower left entry. Finally, let E be a planar
rotation operating in the (1, 2) plane:

(3.7) x x x 0 0 x x 0
0 x x x 0 x x x

The product E EE is J-orthogonal, and hence the array form (3.7) yields generator
vectors for the same matrix P. The point is that we may always choose the generator
vectors with zeros distributed as in (3.7), if P is positive definite. Thus the array form
(3.7) is taken as our starting point, i.e., the generator vectors are redefined as

a 0 x x 0

b 0 x x x

Shift the final row to obtain

0 x x 0 0 x x 0
0 x x x x x x 0

Delete the final zero column, and choose now a hyperbolic rotation E2(M_I) E4
operating in the (1, 3) plane to yield

0 x x 0 x x
x x x 0 x x

Both the upper right and lower left entries are annihilated. Choose ]3 as a hyperbolic
rotation operating in the (2, 3) plane:

0 x x 0 x 0
0 x x 0 x x

Now reiterate the above procedure once more to reduce the generator functions to
constants. The lossless function U(z) that reconciles the generator vectors from (3.7)
appears as Fig. 5. This structure first appeared in [22] in the context of digital filter
synthesis. It may be shown that the U(z) so realized is lossless of degree M if and
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Al(Z)_< i_. II. i_. 0

B(Z)
Section 2 Section

si 0

cos 0
FIG. 5. Lossless system U(z) for displacement inertia (p, q)= (2, 1).

only if Isin0kl < ] and sinCkl < x for all k [22]. Hence, for any rotation angle
set satisfying this simple constraint, the implied generator vectors are consistent with
a positive definite P of displacement inertia (2, 1). The role of this property in the
numerical stability of fast least-squares algorithms is developed in 6.

4. Calculation of reflection coefficients. An important problem in linear
prediction is to determine the reflection coefficients sin Ok that appear in the lattice
filter of Fig. 4, given empirical estimates of an autocorrelation sequence that constructs
a Toeplitz matrix. Here we address their computation.

Specifically, let (x(k)}’= o be some data sequence, collected into the vector

X

z(0)

with M- 1 zeros appended at the bottom. Construct the M-column data matrix XM
according to

XM [X Zx ZM-Ix],

where Z is the shift matrix with ones on the subdiagonal. Then P-1 XXM
is a positive definite Toeplitz matrix. From P- (or P) one could in principle ap-
ply a Levinson or Schur algorithm to calculate the reflection coefficients, but in fi-
nite precision these algorithms sometimes return computed reflection coefficients with
magnitudes exceeding unity. We show in this section an orthogonal algorithm that
operates on the data {x(k)} themselves to extract computed reflection coefficients
whose magnitudes will always be bounded by one.

Note first that XM is itself a Toeplitz matrix (the so-called prewindowed and
postwindowed case), and admits the simultaneous partitioning

XM X

Let Q be an orthogonal matrix that rotates XM-1 into an upper triangular matrix
CM-I:

(4.1) QXM-1 -1
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We assume that the diagonal elements of CM-1 are positive. Shifting Q diagonally
one slot and applying to XM, we have

[ ]0_l ] x(0) 0_l }1

XM-1] Xq CM-1 }M-1.

Let now Q be an orthogonal matrix that eliminates z from the first column, while
leaving xq unaltered:

(4.3) Q Xq CM-1 Xq CM-1 OM-1 > 0.
z 0 o 0

(Note that only the first column is affected). We then have the algorithm that follows.
ALGORITHM. Let Xq [Xq,,...,Xq,M_] t, and choose the rotation angles {Ok}

to fulfill the annihilations

[ak ] k M-l, 2 1.
Xq,k

Then sin 0k is the kth reflection coefficient.
The verification is very similar to that presented in [47] and is omitted for brevity.

Irrespective of the numerical errors accumulated in the calculation of ]M-1] thereXq

always exists a sequence of rotation angles to fulfill the annihilation step (4.4). It is
also easy to check that they will satisfy sin 0kl < 1 for all k, if the computed aM-

V/IX(0)l2 + Ilzll 2 is positive. Thus they are the exact reflection coefficients of a
nearby Toeplitz matrix that remains positive definite. The above algorithm is thus a
reliable numerical alternative to the Schur reduction steps outlined in 3.2.

Remark. If Q is the product of successive rotations from (4.4), then one may
observe that Q completes the orthogonal triangularization of (4.3)"

The algorithm may then be compared with some previous square-root versions.
1. Delosme and Ipsen [31] first rotate XM into upper triangular form CM, and

then find an orthogonal matrix Qt, which eliminates all but the first element of the
first row:

[ OM-10V/_I ](4.6) Qt CM
Xq CM-1

This is simply the inverse of (4.5), whence Qt splits into M- 1 elementary rota-
tions furnishing the reflection coefficients. Whereas (4.6) requires M(M- 1)/2 rota-
tions/annihilations, the step (4.4) requires only M- 1 annihilations, and thus is faster.
For both methods though, the computational load is dominated by the initial orthog-
onal transformation steps, and one may show that the initial steps of both Mgorithms
yield identical computational counts.

2. One may also convert the triangularization step into a fast order-recursive
algorithm that directly extracts the reflection coefficients; see Rialan and Scharf [32].
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Their order recursions, however, use hyperbolic rotations, and hence the error growth
factors may not be as favorable as for the above two algorithms that use exclusively
orthogonal transformations.

5. Displacement inertia (2, 1) and Hankel grammians. We begin this sec-
tion with an interpolation problem. Suppose we are given data ho, hi, hM-1 and
r0, rl, rM-1. The problem is to find an 12 sequence whose first M terms begin
with h0, hM-1 and whose tail end is chosen to be compatible with the data rk
according to

(5.1) rk h hk+, k O, 1,..., M 1.
/=0

This problem was studied by Mullis and Roberts [33] in the context of linear system
approximation and model reduction; a solution was shown to exist if and only if the
M M matrix

ro rl rM-1 ho 0 0 ho hl hM-1

(5.2) r r0 "’. h h0 ". 0 h0 ".

". ". r ". ". 0 ". ". h
rM-1 rl ro hM-1 h ho 0 0 ho

is positive (semi) definite. Specifically, we have the following:
(i) If the matrix (5.2) is positive semidefinite but rank deficient, then the 12

sequence {hk} is uniquely determined, and the function H(z) k=ohk z-k has
McMillan degree equal to the rank of (5.2).

(ii) If the matrix (5.2) is positive definite, then infinitely many 12 sequences exist
that interpolate the given data. All of them yield a function H(z) of degree at least
M.

Suppose then that (5.2) is positive (semi) definite, so that a solution exists. The
constraint (5.1) may be written in matrix form as

0 0 h0
ro rl rM-1 0 0 ho h .’" ho h
rl ro "’. .’" ho h h2 0 .’" .’"

"’. "’. rl 0 .’ .’" ho h hM-1
rM-1 rl ro ho h hM-1 hM hi h2 hM

Upon noting that

ho 0 0 ho h hM-1 0 0 ho 2

h ho "’. 0 ho "’. .’" ho hl
". ". 0 ". ". h 0 ." ."

hM-1 h ho 0 0 ho ho h hM-1
a straightforward calculation shows

hl h2 h3 h h2 hM

(5.3) (5.2) h2 h3 h4 h2 h3 hM+l
h3 ha hM+2

hM hM+l hM+2
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which yields the grammian of a Hankel form. We now summarize in the property that
follows.

PROPERTY 5.1. Let the data ho,..., hM-1 and ro,...,rM-1 be given. The
matrix (5.2) is positive (semi) definite if and only if it may be written as the Grammian
of a Hankel form as in (5.a), where {hk} is any 12 sequence that satisfies the given
interpolation problem.

Remark. A particular instance is obtained when {hk} happens to be a finite
length sequence, in which case

hi hn-M+l hE-1 hn

h2 ." hn 0

hE-1 "
hM hn 0 0

h h2 hM"

hn-M+l hE-1

hE-1 hn .’"
h 0 0

By a simple permutation operation, this may be written as

hn 0 O"

h hE-1 hn-M+l h hE-1 h "’.

(5.3)= 0 h "’. h2 "’. "’. 0
"’. "’. hE-1 "’. hn-M+l hn- h

0 0 hn hM ".. "..
h h2 hM

This in turn yields the grammian formed from a prewindowed Toeplitz matrix. This
latter form underlies the development of most fast recursive least-squares filtering
algorithms. Irrespective of the number of rows of this prewindowed Toeplitz matrix,
its grammian is always of the form (5.2).

The basic result we show is Theorem 5.2.
THEOREM 5.2. Let P be symmetric and positive definite. Then P has displace-

ment inertia (2, 1), i. e.

(5.4) 04 0 OM
O,t. "]/ al ai + a2 a b b

if and only if P- is the grammian of a Hankel form.
Although the "if" clause has perhaps been known for some time, concrete state-

ments are difficult to trace prior to Slock [36]. 2 The "only if" clause was later claimed
as well [39], but the supporting arguments were overly complicated and incomplete.
We give direct proofs of both clauses.

For convenience, we recall the following Schur complement inversion formulas.
IDENTITY 5.3. Let P be partitioned as

p P2

2Actually, the "if" clause is well known with respect to the classical displacement residue P-
Z P Zt. The set of positive definite P having displacement inertia (2, 1) with respect to the residue

(5.4) is, of course, a subset of those having displacement inertia at most (2, 1) with respect to the
classical residue. Thus the "only if" clause does not apply to the classical residue.
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where Pt is scalar. Then

P P1 0M-1 P2 ppt/P1

Let S p-t be partitioned as

S s ]s S2

where $1 is scalar. Then

S P2 ppt/P1.

For the "if" clause of Theorem 5.2, suppose S P-t is the grammian of a Hankel
form, as in (5.3). Partition S as

(5.5) S= S S:

where St and S2 are, respectively, the (M-l) x (M-l) upper-left and lower-right
submatrices of S. Because S is the grammian of a Hankel form, it is easy to verify
that

St 82+
hM-t

By applying the matrix inversion lemma, it follows that Si-1 and S differ by a rank
one term:

(5.6) S-I _S-i CCt.

Here the M- 1-element vector c is given by

S-1 h
c= h=

/1 + h $-1 h [hi]
Let now [1] be proportional to the first column ofp S_ t.

a 0M-1

1] clearly positive. By Identity we mayThe scalar c [1 at] S a is 5.3, write

(5.7) S_ p 1 [1 at] +a c 0M-1 S"1

In the same way, if we let [b] be proportional to the last column of S= p-l, i.e.,



554 PHILLIP A. REGALIA AND FRAN(OIS DESBOUVRIES

then is positive and we may write

(5.8) P=
b + 04_

Upon combining (5.6), (5.7), and (5.8), we find

P 0M 0 0 a b + S S-101// 0 0M P
0 a 1 0 0

a + c [0 c 0]- b
0 a 0 1

which shows that P has displacement inertia (2, 1).
For the "only if" clause, suppose (5.4) holds. Since P is positive definite by

assumption, one may always apply a J-orthogonal transformation to the generator
vectors to distribute zeros as in the expression (5.9); cf. 3.2. The resulting [la] is

to the first column of P, while the resulting [b[1 is proportional to theproportional

last column of P. Equation (5.6) then still holds, i.e., the upper-left and lower-right
(M- 1) x (M- 1) submatrices of P- necessarily differ by a rank-one term. Considering
the partition of S p-1 as in (5.5), one obtains by the matrix inversion lemma

[hi]S2 S1 [hi hM-1], with
h ] S c

x/’l + c Sl c

Let now r0, rM-1 be the elements on the first row of S. Consideration of the
classical residue gives

0 0/_1S- Z S Z ( -" 0M-1 S2 Sl
rM-1

o o

x o
0 h hM-1

By applying finally the representation theorem (2.2), the matrix 8 P- may be
written

S=p-l=

ro rl rM-1 0 0 0 0 hi hM-1

r ro "’. h 0 "’. 0 0 "’.

"’. "’. rt ". ". 0 ’. ". ". h
rM-1 rl r0 hM-1 hl 0 0 0 0
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Since p-1 is positive definite by assumption, Property 5.1 now shows that P-1 is the
grammian of a Hankel form, which completes the proof.

The following corollary is essential to the stability study of the next section.
COROLLARY 5.4. Let P be positive definite and let 0 < < 1. Then P verifies

(5.10) 0 0 0M 0/p ] al a + a2 at b bl

if and only if P- is an exponentially weighted grammian of a Hankel form
(5.11)

h h ha 1 h hg. hM
h2 ha h4 , h2 ha hM+

P-
." ." 2 h3 h4 hM+2

hM hM+l hM+2 "" ." ."

Proof. Observe that

(5.12)

[1 (z/v/) (z/x/)M] (5.10)

1

(1 zw) P(z/v, w/x/)

A1 (z/vf-) A1 (w/V/) + A2(z/x/) A2(w/x/) B1 (z/v/) BI (w/v/).

Thus upon setting

P diag[1, 1/v,..., 1/(vf)M-] P diag[1, 1/v/-,..., 1/(V/)M-1],
Rk diag[1, 1/vf,..., 1/(x/r)M] ak,

1 diag[1, 1/V,..., 1/(v/)M] bl,

we find that P remains positive definite and verifies

[- ] [P 0M 0
0y/ 0 0M

This is equivalent to saying that p-1 is the grammian of a Hankel form, so that

p-1 diag[1, l/v,..., p-1 diag[1, live,..., 1/(x/)M-l]

1 2/,1/2 -M/(M-1)/2

2 3/)1/2 -M+I/,’(M-1)/2
3 4/1/2 -M+2/(u-1)/2
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for some 12 sequence (hk}. If we set

hk -k/A(k-1)12, k- 1,2,3,...,

the above expression for P-1 is equivalent to

p-l--__

hi h2 h3

h2 h3 h4

hM hM+l hM+2

h h2 hM
h2 h3 hM+l
ha h4 hM+2

to show the result.

6. Numerical stability of fast least-squares algorithms. We begin this
section with a standard recursive least-squares estimation problem. After a review
of some numerical considerations, we then move to fast algorithms to show how the
results of 5 serve to identify the constraints behind backward consistency and stable
error propagation.

For the standard recursive least-squares problem, one is given a sequence of col-
umn vectors {x(k)}= o and a scalar sequence {y(k)}= o. The problem is to determine
the weight vector w, which minimizes

n

n- [()_ x()w]
k--O

Of interest are solutions computed recursively in time. Thus suppose the data matrix

X(n+I) and the "reference" vector y(n+l) may be obtained as

X(n+l) [ A/2 x(n) ]xt (n+l) y(n+l) [ A/2 y(n) ]y(n+l)

Suppose we have the vector w(n), which minimizes IIA(n)[y(n) X(n) w(n)] 2, with
A(n) diag[An/2,...,A/2, 1]. Upon appending new data as in (6.1), the updated
w(n+l) is, of course, available from the recursive least-squares algorithm:

(6.2)

P(n) x(n+l)g(n+l) + xt(n+l P(n)x(n+l)’
e(n+l) y(n+l) xt(n+l)w(n),
w(n+1) w(n) + g(n+1) e(n+l),
P(n+l) =/-1 [I g(n+l)xt(n+l)] P(n)

[Xt(n-+-l)X(n+l)] -1.

The vector g(n+l) is known as the Kalman gain vector; its computation involves
matrix operations requiring order M2 operations. Fast least-squares algorithms ex-
ploit the low displacement rank of P (when applicable) to reduce the computational
complexity.

The numerical behavior of these recursions is well documented [34], [39], [42]; we
recall some basic notions that are easy to establish, to provide a smooth transition
into the study of fast algorithms.
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First note that the critical link is the matrix recursion from (6.2). Its numerical
properties were investigated by Ljung and Ljung [34] using the error propagation ap-
proach. For this approach, suppose at time n (say) a perturbation has been introduced
into P(n), giving P(n). One then examines how such a perturbation influences the
future evolution of the system. Specifically, set

P(k) x(k+l)
(6.3)

$(k+l)
) + xt(k+1) (k)x(k+l) k > n

P(k+l) -1 JIM (k + 1)xt(k+l)] P(k)

and compare P(k) with the "true" matrix P(k) that would have been obtained from
(6.2). Note that both recursions use the same driving sequence x(n+l), x(n+2),
so that the comparison has some meaning. The following result is standard [34], [42].

PROPERTY 6.1. The difference P(k) P(k) tends exponentially fast to the zero
matrix as k -- , with base give_n by A < 1, provided:

(i) The perturbed matrix P(n) remains symmetric and positive definite; and
(ii) the driving sequence x(.) is persistently exciting in the sense that there exists

some integer N and positive constants a and b such that

(6.4) aI _< x(k)xt(k) +... + x(k+N)xt(k+N) <_ bI for all k.

The verification is straightforward and instructive. First, note that P(n) is sym-
metric and positive definite if and only if we may write P-l(n) X(n)X(n), using
some "perturbed" data matrix X(n). Next, note that the two recursions (6.2) and
(6.3) may be written as

P-(k+l) )P-(k)+ x(k+l)xt(k+l)
(6.5) k > n.

P-(k+l) AP-(k)+ x(k+l)xt(k+l)

Since the perturbation is introduced at time n, it follows easily that

P-l(k)- P-l(k)= ,k-n [Xt(n)X(n)- Xt(n)X(n)] for all k >_ n,

which decays exponentially fast to zero as k --. oc, provided A < 1. This shows that
error propagation in the recursion (6.5) is exponentially stable. Under the persistence
of the excitation condition (6.4), it may then be shown [42] that P(k) P(k) also
tends to zero exponentially fast as k -, c. Thus the iteration (6.2) is exponentially
stable with respect to perturbations that preserve symmetry and positive definiteness.

Conversely, if the perturbations destroy either symmetry or positive definiteness,
or if the driving sequence {x(.)} is not persistently exciting, the recursion (6.2) can
approach exponentially unstable error propagation. See [39] or [42] for more detail on
this point.

We should remark that condition (i) of Property 6.1 is a restatement of the
principle of backward consistency: P(n) remains symmetric and positive definite if
and only if this same P(n) could have been obtained by first perturbing X(n) to X(n)
and then running the identical algorithm in exact arithmetic. We shall see that this
same characterization carries over to the family of fast least-squares algorithms.

Note finally that in practice, perturbations are introduced at each iteration. It
is a standard result that exponentially stable error propagation implies bounded er-
ror accumulation with respect to successive perturbations. Analyses showing such
bounded error accumulation can be found in [43], [44].
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Fast least-squares algorithms derive from the low displacement rank of P(.).
Specifically, suppose that at each iteration n, the vector x(n) contains delayed versions
of a scalar sequence {x(.)}

x(n)- Ix(n) x(n-1) x(n-M+l)] for all n,

and that x(n) 0 for n < 0. This implies that P-l(n) is the grammian of an
exponentially weighted prewindowed Toeplitz matrix:

(6.6) P-l(n) [.]t

x(0) 0 0

x(0) ..
x(M-1) x(1) x(0)

x(n) x(n-1) x(n-M+I)

By permutation operations, this may be rearranged as the grammian of an exponen-
tially weighted Hankel form as per (5.11). Thus by Corollary 5.4, P(n) has displace-
ment inertia (2, 1), i.e.,

al ai + a2 at b b].

Conversely, if P(.) satisfies (6.7), then P-(.) may be written in the form (6.6), allow-
ing possibly for an infinite number of rows in X(n).

It proves convenient to partition the generator vectors according to

1 [ in] v/ [ in ] x/ [ in ]a a2-- c bl= ba
V/a(n) V//(n V//3(n

which is generically possible; cf. 3.2. The formulas for the first and last generator
vectors may then be summarized as

(6.8a) [ a(ln)]--P(n)[c(0n)J, [bn)]- P(n)[/3n)]"
For the middle vector, consider the partitioning P(n)- llp P2P where P2 is scalar.
Then

(6.8b)
c(n) [P ppt/P2]

"y(n) 1 -[x(n)
x(n-M+2)

x(n-M+2)]c(n).

The scalar - is called, a conversion factor or likelihood variable. A readable account
of these formulas may be found in Haykin [35].

The trick behind fast least-squares algorithms is as follows: Upon adding the
next datum sample x(n+l), the updated data matrix X(n+l) remains in prewin-
dowed Toeplitz form, and hence the updated grammian P(n+l) continues to have
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displacement inertia (2, 1). Thus P(n/l) satisfies an equation of the form (6.7), and
the generator vectors relate to P(n-{-1) via the formulas (6.8) with the time index
incremented to n + 1. Thus, rather than directly updating P(n) P(n+l), re-
quiring order M2 operations, it is possible to directly update the generator vectors
[al(n),a2(n),bl(n)]-- [a(n-+-l),a2(n+l),b(n+l)] in order M operations. Algo-
rithms that directly update the generator vectors are called fast transversal filters [4],
[36], [45]. They are algebraically equivalent to the matrix recursion (6.2) provided
P(.) has displacement inertia (2, 1).

Many of these algorithms suffer unstable error propagation.
To understand the origins of this problem, consider again the error propagation

question. Suppose that P(n) is perturbed to P(n), which remains symmetric and
positive definite. Suppose also that the displacement inertia of P(n) remains (2, 1),
a nontrivial assumption. Then it is completely described by three generator vectors

[ (n), -2(n), ](n)] by formulas akin to (6.8) above. The property P(k)- (k) k-._

() then implies that [al (k), a2(k), bl (k)] [ (k), -2(k), ]1 (k)] k_ 0.3

The key assumption here is that P(n) retains its displacement inertia. This
is equivalent to saying that its generator vectors could have been obtained by first
perturbing the scalar sequence {x(.)} to some new scalar sequence {(.)} and then
running the computations in exact arithmetic. It follows then that backward consis-
tency plus persistent excitation is sufficient for stable error propagation, whether we
consider fast or full least-squares algorithms.

It thus suffices to examine consistency in greater detail. At any iteration n,
introduce the generator functions

For convenience, the exponential weighting is absorbed directly. The displacement
equation (6.7) is then equivalent to the generator equation

(1 zw) P(z/v/-, w/x/-) A(z) A,(w) / A2(z) A2(w) B,(z) B,(w)

(cf. (5.12)). From Theorem 2.1, P(n) is positive definite if and only if we may find a
lossless function U(z) of degree M, which fulfills

A1 (z) ] U(z) B, (z)A2(z)

3Actually, this implies only that [al (k), a2(k), bl (k)] and [1 (k), 2(k), Il (k)] converge to gen-
erator vectors of the same matrix, i.e., that they are asymptotically related by a J-orthogonal trans-
formation. If both sets of generator vectors have zeros distributed as in (6.8), then their difference
must converge to zero.
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[Al(z)] and the constraint that U(z)be lossless of degree MThis gives U(z) Bl(z) A.(z)
may be rephrased as

(6.9a) A (z) A (z-) + A(z) A(z-1) B (z) B (z-) for all z,

(6.9b) B1 (z) has no zeros in Izl >_ 1,

(6.9c) A1 (z) and A2(z) have no common zeros in [z _< 1.

The first two of these constraints were deduced by Slock [36], who dubbed them the
"FTF manifold"; the-third constraint appears to have been overlooked. This manifold
characterizes the set of "reachable" generator vectors in exact arithmetic, as the scalar
sequence (x(.)} varies over all possibilities. Thus, as long as the computed generators
obey these constraints, they are indistinguishable from the exact generators obtained
by first perturbing the sequence {x(.)}, and then running all computations in exact
arithmetic.4

It is easy to see that locally independent errors in the computed generator vectors
lead to constraint (6.9a) being violated. To any such error, backward consistency no
longer applies. As a result of (6.9a) being generically violable, all fast transversal
filter algorithms have parasitic dynamics in the time update formulas [38], [39]. These
parasitic dynamics theoretically vanish in exact arithmetic, but are generically present
once finite precision arithmetic is introduced and account for the numerical instability
of such algorithms. See [38] and [39] for more detail on this point.

To see how consistency can be enforced, recall that an equivalent parametrization
of the displacement structure is available from the rotation angles of the lossless system
U(z) of Fig. 5. We address now the computation of such rotation angles. Let R(n)
be the (M-l) x (M-l) principal submatrix of the Cholesky factor of P-I(n). Then
define two vectors as

xf (n) R(n-1) a(n)
XI,M-2(n)

and

eb(n) R(n)c(n),

where a(n) and c(n) are taken from the first two generator vectors via (6.8). It may
be shown that the vector eb(n) has norm less than one, and that the vector

]/2(n)
has unit norm.

IDENTITY 6.2. Set OM-I(n) o(n) and /2(n) //2(n). Then determine a
sequence of rotation angles (k} and (Ok } from the annihilations

k-1 (n) cos 0k-1 sin Ck-1 k (n)
0 --sinCk_l COSCk_ XI,k-(n)

(6.10) k M- 1,..., 1.
-l(n) cosOk_ sinOk_

0 -sinOk_ cosOk_l eb,k-l()

4One subtlety does arise here: the "starting" time for the perturbed sequence (5(.)} may have
to be readjusted for the perturbed generators to be reached. It may be shown [40, 5.b] that the
property of stable error propagation is insensitive to such a change in the starting time.
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These rotation angles are precisely those of the lossless system U(z) of Fig. 5 obtained
by applying the Schur reduction steps to P(n).

This identity was established in [40], based on order recursions that appeared
earlier in [4]. We recall that U(z) of Fig. 5 is lossless of degree M for all rotation
angles fulfilling [sin0k[ < 1 and[sinCk[ < 1. This in turn may be rephrased as

aM-1 > 0 and "YM-1 > 0. As such, this parametrization is inherently consistent with
a positive definite P(n) of displacement inertia (2, 1). Thus numerical errors in their
determination via (6.10) are indistinguishable from having first perturbed the scalar
sequence {x(.)}.

It turns out that the vectors xf(n) and eb(n), plus the scalar al/2(n), are all
that is needed to perform time updates.. With the arrival of x(n+l), the variables
xf(n), e.b(n), and o1/2(n) may be time-updated to x(n+l), eb(n-bl), and o/2(n+l)
using orthogonal transformations determined from the annihilation steps (6.10). Such
an algorithm was first obtained by Proudler, McWhirter, and Shepherd [41] from a
fast QR decomposition approach. That the rotation angles of this algorithm coincide
with a Schur parametrization of the displacement structure came as a surprise. The
numerical stability properties of such an algorithm are detailed in [40], based on the
above identity.

We close this section with some comments on accuracy aspects. Considerable
attention has been drawn to this question in the context of fast least-squares algo-
rithms. Most analyses derive expressions for the accumulated error variances in the
time-propagated variables. Comparisons of different algorithms are complicated when
the propagated variables are not the same, as happens when comparing stabilized
transversal filters, lattice filters, or fast QR algorithms. Among those algorithms that
are backward consistent [37]-[40], a meaningful approach is to guage accuracy in terms
of the required equivalent perturbation in the input sequence.

To this en_d, let us review how to reconstruct a perturbed input sequence from
the perturbed P (.). If P (.) remains positive definite of displacement inertia (2, 1), the
matrix

P- diag[1, x/,..., (x/)M-]- diag[1, x/,..., (x/)M-l]
may be written in the form (5.2) for some perturbed data set ,...,M_ and
0,...,M-. Append further data hM,...,hM+k and M,...,M+k until the aug-
mented matrix

(5.11)

0 1 ’M+k 0 0 0 0 1 tM+k

"’. "’. r _. ". ". 0 ". ".

M+k 1 0 hM+k 1 0 0 0 0

is positive semidefinite with precisely one zero eigenvalue. Such a "singular extension"
is generically possible [33]. Let d [1, dl,..., dM+k] lie in the nullspace of matrix

(5.11). It may be shown that the polynomial D(z) 1 + dl z- +... + dM+k z-(M+k)

has all zeros in Izl < 1 [33]. Then determine N(z) nl z-1 +... + nM+k z-(M+k)

according to

nl /tl 0 0 1
n2 2 1 "" dl

nM+k tM+k-1 h2 hl dM+k-1
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The function
N(z)H(z) D(z)

k=

yields an 12 sequence {tk } whose Hankel form gives a grammian equal to -1. It may
be shown that all such 12 sequences may be placed in one-to-one correspondence with
all singular extensions from procedure [33].

At the same time, set

hi x(n), h2 A1/2x(n-1), h3 Ax(n-2),

corresponding to the true data. Then natural distance measures may be taken as
follows:

(i) The/2-norm of the error, as given by

(ii)
matrix

The Hankel norm of the error, which is the largest singular value of the

hi h2 h3 1 2 /t3
h2 h3 h4 2 t3 t4
h3 h4 h5 t3 t4 5

In either case, bounds on the error norm in terms of the accumulated errors in the
time update formulas are difficult to establish in closed form. Such a study would be
desirable to draw more meaningful accuracy comparisons between backward consistent
fast least-squares algorithms. This is a topic for future work.

7. Concluding remarks. Our principal theme has been the interplay between
displacement structures, lossless systems, and numerical algorithm design. From these
connections, it is easily seen how consistency is destroyed in structured algorithms
deriving from low displacement rank: if the generator vectors are manipulated directly,
then numerical errors destroy the structural constraint of (2.8). The equivalence of
Theorem 2.1, which comes from lossless inverse scattering theory [8], leads to a feasible
method of imposing consistency: The lossless function U(z) can be parametrized by
a sequence of rotation angles, such that consistency holds irrespective of the exact
values of these rotation angles.

The examples of 4 and 6 illustrate how the rotation angles of U(z) can be
calculated from square-root algorithms operating directly on the data given to the
problem. The role of these relations in resolving the numerical instability problem of
fast least-squares algorithms [37]-[40] suggests that similar progress should be feasible
with respect to other numerical algorithms based on low displacement rank theory [16],
[46]. Numerical algorithm design from this perspective is rarely elementary, and our
attention has accordingly been restricted to the simplest occurrences of low displace-
ment rank. It is hoped that the concepts exposed here will encourage a revised look at
low displacement rank algorithms, their consistency constraints, and the development
of backward error analyses.

Acknowledgment. The authors are indebted to an anonymous reviewer for
many constructive criticisms on the first draft.
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Abstract. We show how to cheaply estimate the Frchet derivative and the condition number
for a general class of matrix functions (the class includes the matrix sign function and functions
that can be expressed as power series) via the Schur decomposition. In the case of the matrix sign
function we also give a method to compute the Frchet derivative exactly. We also show that often
this general method, based on the Schur decomposition, when applied the matrix sign function and
the matrix exponential, enables one to compute the function and estimate its condition number more
cheaply than the various special techniques that exploit special properties of these two functions.

Key words, matrix function, condition estimation, matrix sign function, matrix exponential,
Frchet derivative, Sylvester equation, primary matrix function
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1. Introduction. One way to compute f(A) is via the Schur decomposition of
A. We show that once one has the Schur decomposition one can cheaply obtain a
condition estimate of f(A) (roughly speaking, a bound on IIf(A + E) f(A)II/IIEII
for IIEII small). There are other ways to compute f(A) if f has special properties (for
example, f(A) exp(A),Ai/2, sgn(A)). These are sometimes computationally less
expensive. However, we show that if one also wants a condition estimate then the
Schur method is often cheaper. The direct solution of Ax b requires O(n3) flops,
while a condition estimate can be obtained in an additional O(n2) flops. However, for
the methods presented here (and indeed all known methods) the cost of computing
f(A) and the additional cost of a condition estimate are both O(n3).

In the rest of this section we discuss primary matrix functions (a general class
of matrix function that includes both the matrix sign function and matrix functions
defined by power series), mention the relationship between the Frchet derivative, the
directional derivative, and the condition number, and give a simple lemma on which
our results are based.

In 2 we give a way to compute the Frchet derivative of the matrix sign function
and show that the cost of the evaluation of sgn(A) and estimation of the condition
number is a little less by the Schur method than by the iterative methods proposed
in [7, 3]. We also give an improvement of one of the methods in [7, 3].

In 3 we consider general (primary) matrix functions and show how one can obtain
an estimate of the condition number for f(A) for a fraction of the cost of computing
f(A). We then compare the Schur method for exp(A) with the scaling and squaring
methods discussed in [7], [12]. The Schur method is cheaper if the spectral norm of
A is at least 16, and more expensive otherwise.

Let Mm,n denote the space of m n complex matrices and define Mn Mn,n.
Given D, a subset of the complex plane, let Dn C Mn denote the set of matrices with
spectrum contained in D. Let I1" denote the spectral norm (IIAII =_ y/,kmax(A*A)),
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and let I1" lie denote the Frobenius norm

Let f be analytic on a domain D c C (D need not be simply connected). We
define the primary matrix function associated with f on D as follows. If A D is
diagonalizable, A- Sdiag(A,... ,An)S-, then f(A) =- Sdiag(f(Ai),..., f(An))S-1,
and if A is not diagonalizable then define f(A) by continuity. The differentiability
condition vn f ensures that f(A) is well defined. One can see from the definition
that f(A)A Af(A). For a further discussion of primary matrix functions and an
alternate definition see [5, 6.6].

We define the (relative) condition number of f at A M by

(1.1) (A) _= (l0 max IIf(A+E)-f(A)IIF) IIAIIF
IIEIIF<, 5 IIf(A)llF"

This is equivalent to the (asymptotic) relative condition defined in [13, Definition 2].
use ll" lie in this definition (although we could use any other norm) so that later

we will be able to exploit the fact that I1" liE is derived from an inner product to
estimate al(. by a power method. If one takes f(A) A-1 and uses the spectral
norm rather than the Frobenius norm in (1.1), then one can show that the resulting
relative condition number is ai(A llAII IIA- ll, i.e., wht is usuaUy meant by the
condition number of A.

If we take n (Izl < R} and f(z) ’]i= ai zi where the series is convergent
on D then f(A) i= aiAi which is what is usually meant by a matrix function.
The matrix exponential, exp(A) i Ai/i! is one such function. However, there
are matrix functions that cannot be expressed as a power series. For example, if
we take D (z Re(z) 0} and f(z) sign(Re(z)), then f(A) sgn(A)is
the sign of the matrix A. Another way to define sgn(A) for A D is to write
A S(P N)S-1 where P and -N have spectra in the open right half-plane, and
define sgn(A) S[I (-I)]S-. The matrix sign function separates the positive and
negative invariant subspaces of a matrix and has various applications in the solution of
Lyapunov and Ricatti equations [2], and recently has been used in parallel algorithms
for the nonsymmetric eigenvalue problem; see, for example, [10].

It can be shown from [5, Thm. 6.6.14(3)], that if f is analytic then

d
d-f(A / rE) pA(A,E) for all A Dn, E Ms,

t--O

where PA is a polynomial in A and E and is linear in E. Note that the condition in
[5, Thm. 6.6.141 that D be simply connected is not necessary. Note also that the coef-
ficients of PA may depend on A, but are independent of E. From [5, Thm. 6.6.20(3)],
one can show that that

d2-f(A + rE) O(IIEII).
t--O

By combining these two facts one can show that the Frchet derivative of f at A
exists, and so is equal to the directional derivative. Let LI(A E) denote the Frchet
derivative of f at A in the matrix direction E, then by the above

(1.2) f(A + E) f(A) + LI(A, E) + O(llSll).
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Define

(1.3) max IILI(A, E)IIF.

From this definition and (1.2) one can easily show that

aI(A iif(A)ll

So to estimate, af(A) we need only estimate IIAI], IIf(A)ll and the induced norm
Lf(A, .) with respect to the Frobenius norm on Mn. Because the Frobenius norm
is derived from an inner product one can estimate hi(A) IILf(A, ")11 by a power
method ([7, (1.8-9)], or the slight improvement given in [12, (3.1)]) or a Lanczos
method [12, 4]. The key point of all these algorithms is that one can estimate

a(A) by evaluating LI(A, .) a few timeswusually twice is sufficient to get within an
order of magnitude of af(A). In this paper we do not consider the details of these
algorithms, rather we assume that two evaluations of Lf(A, .) are sufficient to estimate
hi(A). (This assumption is based on the satisfactory results obtained for the matrix
exponential and logarithm in [6].)

In general there are no convenient formulae for llL(A, ")11. Kenney and Laub
showed [6, Lem. 2.1] that if f is given by a power series and if A is normal with
eigenvalues ,i, then

f(i)- f(i)(1.4) IILI(A, ")11 max
i,j-1, n

where we take [f(/i)- f()u)]/[Ai- ] f’(,ki) if/i Aj. They showed, using a
separate argument in [7, Thm. 3.2], that (1.4) is still valid for f(z) sign(Re(z)) (on
{Re(z) : 0}) and normal A. Using [5, Thm. 6.6.14 3] one can show that (1.4) is true
for any primary function and any normal matrix A. Thus the problem of condition
estimation for primary matrix functions of normal matrices is solved. The numerical
techniques proposed in this paper are for the nonnormal case.

We define the separation between A E Mm and B Mn by

sep(A, B) min IIAX XBII.
XEM Ilxll<_l

Note that we use the spectral norm rather that the Frobenius norm. It is well known
that sep(A, B) > 0 if and only if A and B have no common eigenvalues [5, Thm. 4.4.6].
The most common way to solve a Sylvester equation is to first reduce the matrices
on the left-hand side to quasitriangular form. One can check that if A Mn and
B Mm are in quasitriangular form then, considering only the highest order terms,
one can solve AX + XB C in

{ 9 2 m2nWmn2 I(1.5) min mn2 + -m n,

flops. See [11] for the details. One can check that the quantity in (1.5) is maximized
over m, n _> 0 and m + n k at m n k/2 and that the corresponding value of

Our results in the rest of the paper are based on the following simple lemma.
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LEMMA 1.1. Let

( 110 B and E=
E21 E22

be conformally partitioned. Assume that A and B have disjoint spectra. Let P be the
unique solution to

(1.6) PA- BP E21

and set

(i(1.7) S= p

Assume that l < 1/2. Then

(1.8)

(1.9)

and

(1.10)

where

(1.11)

1 sep-I(A,B)IIEII

IIS-x(w + E)S- 11 < 2,2jJWII + 3,IIEII,

1, ( A + CP + C + P*B AP* + El2 "B PC + E22 J
Notice that if W is fixed then sep-I(A, B) is a constant, though possibly very

large, and so /= O(I[E][ ). In the next section where we derive an expression for the
Fr6chet derivative of the matrix sign function the fact that /= O(IIEII is sufficient.
However, in 4, where we use forward differences, it is necessary to remember that r/
contains a factor of sep-l(A, B). The proof of (1.10) with r/replaced by O(I[E[I is
somewhat simpler than the proof of the more precise bound.

Let W be block upper triangular and let E be small. This lemma shows how to
find S such that the 2, 1 block of S-I(w + E)S is O([[E[12). Iterating this one can
find T such that T(W + E)T-1 is block upper triangular and lIT- I[[ G 2/. This is
precisely what was done in [14, V.2.1 and Whm. V.2.1] (or see [15]).

Proof. The first inequality follows from the fact that P is linear in E"

III- Sll- IIPII sep-1(A,B)IIE1211 sep-I(A,B)IIEII-

Let/5 I- S. Then/5 _p,, and so provided that IIP[I < 1, we have

i=2
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Now let us consider (1.10).

(w + E)S-  11 < II(S S*)(w + E)Sll + IIS*WS + Z- ll + IIS*ES- Ell.
The first term is bounded by

r/2
1-n

(llWll + IIEII).

For the second term, one can check that

-P 0
W p 0 -<nllWIl"

Finally, writing S I + (I- S), one can bound the lst term by

Inequality (1.10) follows from the three bounds and the assumption that r/_< 5" l-I

Note that although the matrix S defined in (1.7) is not unitary, if we take

(, 0)(1.12) P I 0 C-
where CC1 (I + P’P) and CC2 (I + PP*), then is unitary and (1.10)^still
holds, (in fact, a slightly stronger inequality is true). The cost of computing S by
(1.12) is not much greater than by (1.7) since we can take C to be the Cholesky
factor of (I / P’P) and similarly for C2. From a numerical point of view it would be

Ibetter to compute from a QR factorization of (p). See [1] for a discussion of this
point.

2. Matrix sign function. In this section we give a method of computing the
Frchet derivative of the matrix sign function, and compare the cost of this method
with the cost of computing it by an iterative method (Newton’s method), and the
cost of estimating it by a forward difference.

THEOREM 2.1. Let

(21) W=(A C) and E=(EI E2)0 B E21 E22
Assume that A and -B have spectra in the open right half-plane. Then

(2.2) nsgn(W, E) ( -XP 2P* X )2P PX

where P, X, and 6X are the solutions to the Sylvester equations

(2.4)
(e.5)

PA- BP E21,
AX XB 2C,

ASX 5XB 25C 5AX + XSB
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and

(2.6) A Ell + CP,
(2.7) B Ee PC,
(2.8) 5C El2 AP* + P*B.

Note that if W is given by (2.1) and A and -B have spectra in the open right
half-plane then

sgn(W)= (I X)0 -I

where X is the solution of AX XB 2C.
Proof. Notice that (2.3), (2.6), and (2.7) imply that 116All and 116BII are O(IIEII).

Thus, for IIEII sufficiently small, (A + hA) and -(B + 5B) will have spectra in the
open right half-plane.

We prove the result by showing that whenever ]IEII is sufficiently small,

-XP
sgn(W + E)- sgn(W) 2P

2P* 5X )PX / O(IIEII)"

Set

0 -P*)S=I+ p 0

Then

(2.9)

(2.11)

We have used (1.9) and the fact that sgn(-) is twice differentiable at W for (2.9), the
remark preceding this proof and Lemma 1.1 for (2.10), and have multiplied out and
collected second order terms for (2.11).

This result is superficially similar to Byers’ result [3, Thm. 2] since both involve
the Schur decomposition and sep(A, B). However, Byers was interested in the back-
ward stability of Newton’s Method (which is independent of the conditioning of the
matrix sign function) for computing the positive and negative invariant subspaces of
a matrix (which is closely related to computing the matrix sign function).

We now estimate the computational cost of various methods of computing sgn(A)
and estimating its condition. These are summarized in Table 1. The point is that if
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TABLE 2.1
Estimated flop counts .for various methods of computing sgn(A) and estimating sgn(A).

sgn(A) Preprocessing Lsgn(A, E) sgn(A) and

Lsgn (A, E) twice

Schur 39n3

Newton (2.12)
and Fwd. diff. (2.13)
Newton (2.12)
and (2.14)
Newton (2.12)
and (2.14) iterated to

convergence

29n3

14-20n3

14-20n3

14-20n3

11 3n 52n3/16

14-20n3

28-40n3

14-20n3

"42_60n3

70--100n3’

42-60n3

one requires only sgn(A) then one can see, from column 1, that it would be cheaper
to use Newton’s method. On the other hand, if one also requires a condition estimate
for the sign function at A then, from column 4, it is cheaper to compute the entire
Schur decomposition (using the QR algorithm) and compute the sign function and a
condition estimate using this.

Note that all the methods under consideration are iterative and that the flop
counts depend heavily on the number of iterations required for convergence. So the
totals given in Table 1 are merely estimates. For this reason we have rounded the
final total for the Schur method. One should also note that the table merely gives flop
counts--it does not differentiate between flops associated with matrix multiplication,
matrix inversion, or applying the QR iteration. To get a true idea of the relative
efficiency of the different methods one should consider these factors and the computer
architecture.

Theorem 2.1 outlines a method to compute the Fr6chet derivative of the sign
function at a matrix W of the form given in (2.1). The following algorithm presents
this in algorithmic form.

ALGORITHM 2.2. Given W, E as in (2.1) arid X the solution to AX- XB 2C
1. solve PA- BP- E21 for P.
2. Set 5A EI + CP, 5B E22- PC,. 5C E2- AP* + P*B.
3. Solve ASX- 5XB 25C- 5AX + XSB for 5X.
4. Compute PX and XP. Lsgn is now given by (2.2).

Let us determine the computational cost, assuming that A and B are quasi-upper
triangular, as is generally be the case, and that X, the solution to (2.4) is known.
Since X is independent of E it need only be computed once and we include this cost
in the cost preprocessing to be discussed later. Assume also that A is rn m, B is

l, and that +m n.
The cost of forming the products CP, PC, AP*, P’B, 5AX, XSB, XP, and PX

is 8(/2m + m21) 81mn

_
2n3 flops (since + m n). It is also necessary to solve

a Sylvester equation of the form AY YB Z twice. The cost of this, using for
example a variant of the Bartels-Stewart algorithm [4, Algorithm 7.6.3] for quasi-
upper triangular A and B, is at most llna/16 flops per Sylvester equation frown the
discussion after (1.5). Thus the cost of each evaluation of Lsgn(W,E) is at most
52n3/16, after the necessary preprocessing. If m and are not equal, then the cost
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will be less than this.
Now we consider the cost of computing sgn(M) via the Schur decomposition and

the cost of the preprocessing for the computation of Lsgn. Computation of orthogonal
U and upper triangular T such that M UTU* requires approximately 25n3 flops
[4, Algorithm 7.5.2]. Then sgn(T) requires a further 2n3/3 flops (using a variant of
Parlett’s algorithm for computing a function of an upper triangular matrix). Finally
computing sgn(M) Usgn(T)U* uses a further 4n3 flops. To estimate the condition
number for sgn(T) (which is the same as that for sgn(M)) we must find an orthogonal
V such that W VTV* is upper triangular as well as being of the form required
by Theorem 2.1. This can be done in at most 2n3 flops. For example, by using the
algorithm for ordering the eigenvalues of a triangular matrix given in [1]. Finally,
solving AX- XB 2C takes 11n3/16 flops.

Let us compare the cost of our method with that of a method based on the scaled
Newton iteration

Sk+ [7Sk + (TkSk)-]/2, So- M.

If the k are suitably chosen then Sk converges quadratically to sgn(M). See [8] for
a discussion of several simple and effective choices of k. Each iteration of (2.12)
requires 2n3 flops for the computation of an inverse. The cost of computing k is
generally negligible.

The cost of this method and the associated condition estimation scheme is strongly
dependent on the number of iterations of (2.12) required for convergence. This number
depends on the matrix M and is least if M is normal and has clustered eigenvalues.
Based on the results in [8] and our own experiments, at least seven, and frequently
more, iterations are required if M is nonnormal and has widely scattered eigenvalues.
We use 7-10 iterations in our comparisons. Note that in [8, Example 1] there are
examples where 15 iterations are required, even with the optimal choice of the 3’k. In
these cases (2.12) will be much more expensive than the Schur approach. Another
factor that will affect the cost comparison is the number of times Lsgn needs to be
evaluated to obtain an acceptable estimate of tsgn(M). We take this number to be
2, but it may be larger, and this would greatly favor the Schur method, which can
evaluate Lsgn(M, ") cheaply after the preprocessing. It is rarely less than 2.

One can estimate Lsgn(M, E) by a forward difference

(2.13) Lsgn(M, E)
sgn(M + rE)- sgn(M)

for some suitably chosen value of t. Given sgn(M) this requires one extra evaluation of
sgn(.). Thus, under our assumptions, this method of condition estimation combined
with (2.12) requires 42- 60n3 flops to compute sgn(M) and estimate tsgn(M). The
cost of the Schur method for computing sgn(M) and estimating t%gn(M) tsgn(W)
is about 39n3 flops, which is a little less.

One can also compute Lsgn(M, E) by a Newton iteration without the use of for-
ward differences [7, Thm. 3.3]

(2.14) -15Sk+l [/k 5Sk- 9/k SIhSkS]/2, 5So E,

where S- are given by (2.12). This iteration is also quadratically convergent and
takes about as many iterations to converge as (2.12), but because two matrix multi-
plications are required at each step, it is twice as expensive as (2.13) for computing
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Lsgn. However, we can approximate the iteration (2.14) by

(2.15) 5Sk S[15SkS .. 5Sk + [(Sk + thSk)- Sl]/t.
Since S-* has already been calculated in (2.12), this iteration requires only one extra
matrix inversion per step, and so is half the cost of (2.14). Using the Neumann series,
one can check that the error in the approximation (2.15) is O(t), so if t is suitably
chosen then not too much error is incurred at each step. The discussion in [7, p. 501]
shows that an error incurred at a given step of iteration (2.14) does not grow as the
iteration proceeds. Thus if t is chosen chosen appropriately, one can obtain a good
estimate of Lsgn(M,E) by the iteration (2.15) for the same cost as (2.13). If one
only wants an order of magnitude estimate of IILsgn(M, ")11 it may not be necessary to
iterate (2.15) to convergence. This idea needs to be tested in practice, especially in
the case than ;sgn(M) is large, but it may prove to be less expensive than the Schur
method.

Note that in exact arithmetic, the method in Theorem 2.1 gives the exact value
of Lsgn(M, E), the iteration (2.14) converges to the exact value, (2.13) gives an O(t)
approximation, and (2.15) combined with a suitable stopping criterion will terminate
at an O(t) approximation.

3. Primary matrix functions. In this section we consider estimating f(T) for
a primary matrix function (defined in 1) and a block upper triangular matrix T with
well-separated main diagonal blocks. Such matrices arise when f(M) is computed via
the Schur decomposition as described in the next paragraph.

A popular way to compute f(M) is to first find an orthogonal U such that

UMU* T k

where T is block upper triangular and the main diagonal blocks ofT are well separated,
i.e.,

(3.1) 50 min sep(Tii, Tjj)

is "not too small." Then compute f(T) [Fij]k,j=l, which will again be block upper
triangular, by (block) diagonals. Start with the main diagonal, where one uses Fii
f(Tii), and compute each superdiagonal in turn using the fact that Tf(T) f(T)T.
This requires the solution of a Sylvester equation of the form

TFij FyTyj

for each block Fj with < j. This computation is well conditioned because, by
assumption, T and Tyj are well separated. See [4, 11.1.4] for further details of this
method.

If T is block upper triangular, let Ti,[ denote the block row to the right of T
and let T[,] denote the square block in the bottom right-hand corner below T. That
is

(3.2) T= 0 Ti T,[
0 0 T[,]

Define

(3.3) 6 min sep(Ti, T[i,i]).
i=1 (k-l)
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One can check that

sep(Tii, T[i,i])

_
minsep(Tii, Tjj)

and so 5 _< 50. We assume that 5 is not too small in relation to IIEII. Then by
applying Lemma 1.1 (k-1) times, we can compute a matrix U that is orthogonal
(up to O(IIEII2)) such that U*(T + E)U + O(IIEII2). Note, there is no need to
actually form U, we can keep it as a product of matrices of the form (1.7). We can
then compute f() cheaply by the method outlined in the previous paragraph. (This
computation will be stable because, by assumption, IIEII is small in comparison to
50 >_ 5.) We can then form fest(T -E) =- Uf()U*, which, by arguments similar
to those in the proof of Theorem 2.1, is an O(IIEII 2) approximation to f(T + E). So
given E, we have the forward difference estimate of Lf(T, E):

Lf(T, E) fest(T + tE) f(T) + O(t).
t

In Appendix I we give a more precise discussion of the error analysis, and, in particu-
lar, show how to choose t. In Appendix II we give a listing of a MATLAB .m file that
implements this idea to compute fest(T + rE).

The cost of transforming T / E into upper triangular form is approximately
3n3 flops, the cost of computing f() is approximately 2n3/3 flops, and the cost
of forming fest(T + E) Uf()U* is another 8n3/3 flops, if one uses the factored
form of U. The total cost of each estimate of LI(T, E) is 19n3/3 flops as compared to
approximately 29n3 flops (see the previous section for the justification for this figure)
for the computation of f(M) alone. Thus, the cost of computing f(M) and L(T, E)
twice (which should be sufficient for a reasonable estimate of hi(M) hi(T)) is
about 43n3 flops.

Let us compare this with the cost of computing exp(M) by scaling and squaring
[4, Algorithm 11.3.1] and estimating texp(M) by the trapezoidal rule [6], [12]. The
cost of scaling and squaring depends on q, the order of Pade approximation used--we
take q 8, which gives accuracy of 10-16, and use the Horner multiplication scheme
described after [4, Algorithm 11.3.1]. It also depends on j max{0, 1 + [IIMIIJ}. The
trapezoidal rule calls for computing terms of the form

d ez/2j(3.4) d-( + tW)2 exp(X/2J)W + Wexp(X/2Y),
t----0

which requires two matrix multiplications. Following [9, (100)], we estimate (3.4) by
a forward difference approximation

(3.5) [(exp(X/2j) + tW)2 exp(X/2J-1)]/t
for suitably chosen small t. This halves the cost of evaluating the trapezoidal rule
estimate of Lexp(M,E) since the matrices exp(X/2k),k 0,1,...,j have already
been computed in the scaling and squaring. The cost is now 2(j / 1)n3 flops. Using
the flop count from [4, Algorithm 11.3.1], we see that this method requires 2(6 + j +
1/3+ 2(j / 1))n3 (17 +6j)n3 flops to compute exp(M) and nexp(T,E) twice. That
is 47n3 flops if IIMII- 16 and 41n3 flops if IIM]l-- 8. So the Schur method is faster
if Mli is at least 16.

Sometimes one wishes to compute etA for several values of t. In this case the
Schur method is more efficient, both for the computation of etA and for condition
estimation.
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4. Appendix I. Now we give a more precise analysis of the errors that occur in
the forward difference approximation Lf(T, E). This enables us to choose t appropri-
ately. We use the notation of 3 and assume that IIEII- 1.

The first step in estimating f(T+tE) is to restore T+tE to block upper triangular
form one block column at a time. At the first stage we have

(4.1) T + tE ( (T + tE)II (T + tE)I,[I] )tE[ll,1 (T +
in the notation of (3.2). After applying the transformation in Lemma 1.1 to make the
2, 1 block of this O(IIEII2), the resulting 2, 2 block is

P(T + rE)lIP* P(T + tE) l, [l] -+- (T + tE)[l,l].
Let L denote the strictly (block) lower triangular part of this. Let

t
(4.2) /_

max=l k-1 IIT,[]II and

Then the spectral norm of any block column of L is bounded by

(4.3) 2(11Tlll + t)+ rl(llTl,[1] -}- t) -}- t.

Under the further assumptions that t << IITII and r << 1, (4.3) is bounded by
c(1 + /)IIEII where c >_ 1 and c 1. Thus the size of the subdiagonal has grown by
a factor of c(1 + /). We would like /to be small. This is the case if 5 is large or if
T is almost block diagonal. For simplicity we assume that [c(1 + )]k-1, the growth
factor for the whole process, is at most 2. Recall that also depends on t so /is also
increasing, but by no more than a factor of 2 in total. Let U be the product of the
matrices S defined in Lemma 1.1. Then, by Lemma 1.1,

U* (T + tE)U + ,
where is block upper triangular and, using the bound on the growth of the subdi-
agonal of L and the growth of r/, we have

We have used the fact _< 1, which is implied by [c(1+-)]-1 _< 2. We can also obtain
the bound IIU- Ill _< 20(k- 1)r. Note that U is not unitary. Let ) 20(k- 1)r/and
assume that < .

Now let us estimate the accuracy of Uf()V* as an estimate of f(T + rE).

IIf(T + E) Vf()V*ll <_ IlUf()(U* U-1)II
+ iIU [f(U-I(T + rE)U) f()]

<_

+ (1 + )2)IILf(T ")11
+ O(IIU-I(T + tE)U--

2}211f(T)ll + (1 + }2)IILf(T

2)[20(k- 1)5-llf(T)ll +
#t.
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The first of these two terms is due to the fact that U is not unitary and can be
eliminated by using unitary transformations in Lemma 1.1; that is use (1.12) rather
than (1.7). However, since when one forms the product Uf()U*, there will be an
error of norm about nllf(T)l where e is machine precision, the extra term 2)211f(T)ll
is unlikely to cause a serious problem. Using a unitary U will not reduce the second
term. The only way to reduce the second term is by pplying Lemma 1.1 to 7 + to
further reduce the (block) subdiagonal part of / E. This would potentially double
the cost of condition estimation.

One can find a constant M, based on the norm of the second derivative of f, such
that

f(T + rE) f(T)E) t
< Mt

for t sufficiently small.
Combining these bounds we have

(4.4) I]Ly(T’E)-fl(Uf()U*-f(T))t t

where fl(.) denotes the quantity actually computed.
One approach is to minimize the right-hand side of (4.4). All the quantities on

the right-hand side are known except for ]]Ly(T, .)[1, which can be estimated after one
step of the procedure, and M. One could estimate M if f(z) i aiz by considering
labs(Z) i ]a]z. This is likely to give a gross overestimate of M.

It is not necessary to estimate Ly(T,E) very accurately since we are only in-
terested in obtaining an order of magnitude estimate of ]]Lf (T, E) for condition
estimation. So another approach is to find an acceptable value of t rather than the
best. Since the last two terms of (4.4) are increasing functions of t (recall that
contains a factor of t), we choose t as smM1 as possible, without making the first term
too large. In particular, take

(4.5) t 2ne
IIL+(T, ")llest’

where liLy(T, ")llt is an estimate of liLy(T, ")llt, and may be changed at each itera-
tion. If the sum of the last two terms in (4.4) is less than .4lILy(T, ")11, then our choice
of t in (4.5) ensures that the right-hand side of (4.4) is less than .911LI(T,.)II and
hence that our forward difference estimate of liLy(T, ")11 is correct to within a factor
of 10. On the other hand, if the sum of the last two terms in (4.4) is greater than
92lILy(T, ")11, then even the optimal choice of t will not ensure that the right-hand
side of (4.4) is less than .9lILy(T, ")11. Thus it is unlikely that our choice of t in (4.5)
will give an unacceptable estimate of liLy(T, ")11 and that the optimal choice of t, had
we been able to determine it, would have given an acceptable estimate.

5. Appendix II. The following listing implements the ideas in 3 and 4. Both
when block triangularizing W + E and when applying the inverse transformation, we
ignore terms of size O(IIEII 2) to save computation.

function [wt] blocktri(w, blksz, e). function to compute func(w+e) using the ideas in Sections 3 and 4
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input

blksz
e

return
wt

calls

length(blksz)
blks cumsum(blksz)

max(size(w))
pstore zeros(n)

block upper triangular
vector of block sizes

perturbation-- small enough that one can ignore
terms of norm 0(Iie11^2)

estimate of func(w+e) that is within 0(I lel I^2) of true
value

func.m evaluates the function one wishes to estimate
(this .m file should exploit the fact that its

argument is block upper triangular)
lyap.m solves a Sylvester equation

end

Z zero sub diagonal of w+e and accumulate changes in e

for i 1:k-1,
cols blks(i)-blksz(i)+l:blks(i)
rowl l:blks(i);
rows blks(i)+l:n;
p lyap(-w(rows,rows), w(cols,cols), -e(rows,cols));
pstore(rows, cols) p;
e(rows, cols) zeros(length(rows), length(cols))
e(rows, rows) e(rows, rows) -p.w(cols, rows);
e(rowl, cols) e(rowl, cols) + w(rowl, rows).p;
e(rowl, rows) e(rowl, rows) w(rowl, cols)*p’;
e(cols, rows) e(cols, rows) + p’*w(rows, rows);

end. evaluate func at the block triangular matrix w+e
wt func(w + e);

% apply the inverse transformation
for i k-l:-l:l,

cols blks(i)-blksz(i)+l:blks(i);
rowl l:blks(i)
rows blks(i)+l:n;
p pstore(rows, cols);
wt(rows, cols) p,wt(cols,cols) wt(rows,rows)*p;
wt(rows, rows) wt(rows, rows) + pwt(cols, rows);
wt(rowl, cols) wt(rowl, cols)- wt(rowl, rows)p;
wt(rowl, rows) wt(rowl, rows) + wt(rowl, cols)p’;
wt(cols, rows) wt(cols, rows) -p’wt(rows, rows);
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THE p-PRODUCT AND ITS APPLICATIONS
IN SIGNAL PROCESSING *

HUIXIA ZHU] AND GERHARD X. RITTER]

Abstract. This paper introduces a new matrix product that proves useful in the representation
of a large class of orthogonal transforms. It is shown that transform representation in terms of this
product provides novel computational methods for computing the fast Fourier transform, the fast
Walsh transform, a fast generalized Walsh transform, as well as a fast wavelet transform. Uniqueness
and the advantages of this new formalism over traditional methods are also discussed.

Key words. Fourier transform, matrix product, p-product, signal processing, tensor product,
Walsh transform, wavelet transform
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1. Introduction. The generalized matrix or p-product was first defined in [16].
This new matrix operation includes the matrix and vector products of linear algebra,
the matrix product of minimax algebra [8], as well as generalized convolutions as
special cases [16]. It provides for a transformation that combines the same or different
types of values (or objects) into values of a possibly different type from those initially
used in the combining operation. It has been shown that the p-product can be applied
to express various image processing transforms in computing form [17]. In this paper,
after briefly defining the p-product, we discuss its applications to a large class of
transforms used in signal processing.

One of the most fundamental transforms in signal analysis and signal processing
is the Fourier transform. With the rapid advances in digital computers, the discrete
version of the Fourier transform gained in importance and various efficient algorithms
for its computation, known as fast Fourier transforms (FFTs), were developed [21],
[6], [20]. Most of these algorithms are based on, or are variations of, the Cooley-
Tukey method [7] and are required to have a reordering process. Even though this
process can be done without arithmetic operations and only by moving some elements
in storage, it is still an important part of the overall cost of an FFT computation on
most computers. As pointed out by Stone [19], Cvetanovic [9] showed that for any
typical implementation of the FFT that uses log N butterfly operations on N-vectors,
followed or preceded by one reverse-binary operation, these two kinds of operations
are incompatible on most parallel machines. If the butterfly operation is conflict
free, then the reverse-binary results in a maximum conflict in the network and vice
versa. This means that at least one of the two types of operations will cause some
problems. The operations required for the reverse-binary can be up to O(N) for any
N-vectors. However, the p-product FFT, which is presented in 3, is designed to
compute the FFT in a proper order without requiring the reordering process either
after or before computational stages. This means that only one type of operation is
used in the p-product FFT. Therefore, the conflict problem no longer exists on parallel
machines, and the extra O(N) operations required for the reverse process have been

* Received by the editors February 11, 1993; accepted for publication (in revised form) by C.
Van Loan, March 18, 1994.

Center for Computer Vision and Visualization, University of Florida, Gainesville, Florida
32611 (rittercis. ufl. edu).
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eliminated. Furthermore, all of the stages of the p-product FFT are identical and
the only computations required at each stage are the p-product and Hadamard matrix
product, which makes this algorithm very fast on either parallel or sequential machines.

The Walsh transform and the generalized Walsh transform are similar to the
Fourier transform, but simpler. The Walsh transform was first defined in 1923 by
J. L. Walsh [22]. In 1931, R. E. A. C. ealey [14] gave an entirely different definition
of the Walsh transform, which is the one we discuss here. His definition was based
on finite products of Rademacher functions and the order obtained was quite different
from that of Walsh. In 1955, Chrestenson extended Paley’s idea and formed a class of
the generalized Walsh transforms based on finite products of Rademacher functions
of order c, which takes the Walsh transform as its special case [3]. The Walsh trans-
form can be computed by a fast algorithm identical in form to the successive-doubling
method given for the FFT. Due to the requirement of the reordering process, this
fast method is restricted to the base-two format only. It is probably for this reason
that the technical literature is devoid of fast algorithms for computing the generalized
Walsh transform. The p-product provides the key mathematical language in which to
describe and analyze, in a unified format, similarities and differences between these
transformations. In 4, we derive a new algorithm in terms of the p-product lan-
guage, which offers a fast computation not only used for both transforms, but also in
proper order without requiring the reverse process. This is especially important on a
supercomputer where the data flow is usually the major time-consuming part of the
computation.

It is well known that the Fourier transform decomposes a signal into individual
frequency components but does not provide information as to when the frequencies
occurred. When the signal to be analyzed is nonstationary, a relevant analysis calls
for keeping the time information to exhibit its time-varying spectral properties. The
most straightforward solution is, therefore, to split the signal into fractions within
which the stationary assumptions apply. The Gabor transform (or the short time
Fourier transform) is commonly used to perform this decomposition. It introduces a
time-localization window function, g(t-b), where the parameter b is used to translate
the window to cover the whole time domain for extracting local information of the
Fourier transform of the signal. The principal problem here is that any one choice of
g(t) results in windows that are too wide to capture all nonstationary behavior and
too narrow to capture low-frequency information. The recently introduced wavelet
transform is an alternative tool that deals with nonstationary signals. The decompo-
sition is carried out by means of a special analysis function , called the basic wavelet,
which is translated in time (for selecting the part of the signal to be analyzed), then
dilated or contracted using a scale parameter (to focus on a given range of oscilla-
tions). It is different from the Gabor transform in that it simultaneously localizes a
signal and its Fourier transform with zoom-in and zoom-out capability. The wavelet
transform has drawn a great deal of attention from mathematicians and scientists in
various disciplines. Its numerous applications can be found in [2], [5], [11], [12].

As mentioned earlier, the p-product provides novel algorithms for computing and
expressing the Fourier transform, the Walsh transform, the generalized Walsh trans-
form, and the wavelet transform. A well-known fact of linear algebra is that linear
transforms can be represented in terms of matrix-vector products. However, since
the wavelet transform is a function of two variables (both time and frequency), it is
difficult to express it in matrix product form. Even though Heller et al. [5] have
defined wavelet matrices, they are only used to prove certain mathematical proper-
ties. In contrast, the generalized matrix product lends itself well to expressing the
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wavelet transform in matrix form. In this paper, following a definition of the wavelet
matrices given in [5], we show how to express the wavelet transform and its inverse in
terms of the p-product and, in addition, provide a simple and fast wavelet transform
algorithm using the p-product and parallelism. The principle of the new algorithm is
to decompose a long summation into several short ones and then use the p-product
to carry out the computation. When executing this algorithm on parallel machines,
the computing time is g times less than the computing time of the standard method,
where g denotes the genus of the wavelet matrix a.

2. The generalized matrix product. We reserve the symbols Z, R, and C to
denote the set of integers, real numbers, and complex numbers, respectively. The set
7Zn+ is defined by Zn+ (1, 2,..., n). This distinguishes Zn+ from the commonly used
notation Zn (0, 1,..., n- 1.

An arbitrary field is denoted by F. In our discussion of the wavelet transform, the
field IF is usually R or C. For a given set X, the set of all functions X -+ IF is denoted
by FX, while the set of all rn n matrices with entries from F is denoted by Fmn.
We follow the usual convention of setting F ]Fln and view F as the set of all
n-dimensional row vectors with entries from F. Similarly, the set of all m-dimensional
column vectors with entries from F is given by (Fm)r= [Fixm]r-- Fmxi.

In the subsequent discussion, let rn, n, and p be positive integers with p dividing
both rn and n. Define the following correspondences:

(1)

c’Z+ 7/,+ -+ Zn+nip

by cp(k,j) (k 1)n-+j,
p

n
where l<j<- and l<k<p

P

and

(2)
where

m/p X --+

by rp(i,k) (i- 1)p+ k,
m

l<_k<_p and 1_<i_<--.
P

Now let A (asj,) E Ftxm and B (bi,,t) ]nxq. Using the maps rp and cp, A and
B can be rewritten as

A (as,(i,k))/xm,
B (bk,j),t)nxq,

where l<s<l,l<rp(i,k)-j’<m, and

where l_<cp(k,j)-i’<_n and l_<t<_q.

The p-product or generalized matrix product of A and B is denoted by A ()p B, and is
the matrix

(4) C A (R)p B E ]Ft(n/p) x (m/p)q

defined by

P

c(s,j)(i,t) E(a,(i,k)b(k,j),t) (as,(i,1)b(1,j),t) +"" + (as,(i,p)b(pd),t),
k--1
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where C(s,y)(i,t) denotes the (s,j)th row and (i, t)th column entry of C. Here we use
the lexicographical order (s,j) < (s’,j’) v s < s’ or if s s’,j < j’. Thus, matrix C
has the following form.

(6)
C(1,1)(1,1 C(1,1)(1,q) C(1,1)(2,1) C(1,1)(2,q) C(1,1) (i,t) C(1,1)(m/p,q)

C(1’2)(1’1) C(1,2) (1,q) C(1,2)(2,1) C(1,2)(2,q). C(1,2) (i,t) C(1,2)(m/p,q)

la(1,n/p)(1,1) C(1,n/p)(1,q) C(1,n/p)(2,1) C(1,n/p)(2,q) C(1,n/p)(i,t) C(1,n/p)(m/p,q)

a(2,1)(1,1 C(2,1)(1,q) a(2,1)(2,1) C(2,1)(2,q) C(2,I)(i,t) C(2,1)(m/p,q)

C(2,n/p)(1,1) (2,n(p))(1,q) C(2,n/p)(2,1) C(2,n/p)(2,q) C(2,n/p)(i,t) C(2,n/p)(m/p,q)

C(s,j) (1,1) C(s,j)(I,q) C(s,j) (2,1) a(s,j)(2,q) C(s,j)(i,t) C(s,j)(m/p,q)

C(/,1)(1,1 C(/,1) (1,q) C(/,1)(2,1) C(/,1)(2,q) C(l,1)(i,t) C(l,1)(m/p,q)

- (l,n/p)(1,1) a(l,n/p)(1,q) a(l,n/p)(2,1) a(l,n/p)(2,q) a(l,n/p)(i,t) C(l,n/P)(m/p,q)

The entry c(s,j)(i,t) in the (s,j)-row and (i, t)-column is underlined for emphasis.
To provide an example, suppose that 2, m 6, n 4, and q 3. Then for

p- 2, one obtains m/p- 3, nip 2, and 1 <_ k <_ 2. Now let

(7) A= (all a12 a13 a14 a15 a16)E M2x6(])
a21 a22 a23 a24 a25 a26

and

(s)

b11 b12 b13 /b21 b22 b:3 E M4x3(N).B
b31 b32 b33
b41 b42 b43

Then the (2, 1)-row and (2, 3)-column element c(2,)(2,3) of the matrix

(9) C A (R)2 B e M(/p)(./p)q(R) M49(])

is given by

(10)

2

C(2,1)(2,3) a2,r2(2,k) bc2(k,1),3
k--1

a2,r.(2,1) bc.(1,1),3 - a2,r.(2,2) bc.(2,1),3
a23 b13 + a24 b33.

Thus, to compute C(2,1)(2,3) the two underlined elements of A are combined with the
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two underlined elements of B as illustrated.

(11)

all

a21

bll b12
a12 a13 a14 a15 a16 b21 bee

]2
a22 a23 a24 a25 a26) b3x 532

b41 b42
/ al,r.(1,1) al,r2(1,2) al,r.(2,1) al,r.(2,2)

a2,r.(1,1) a2,r2(1,2) a2,ru(2,1) a2,r. (2,2)

bc. (1,1) ,l bc.(1,1),2 bc. (1,1),3

bc(1,2),1 bc.(1,2),2 bc2(1,2),3(2
bc.(2,1),1 bc.(2,1),2 bc.(2,1),3
bc.(2,2),1 bc2(2,2),2 bc.(2,2),3

C(1,1)(1,1) C(1,1)(1,2) C(1,1)(2,3)
C(1,2)(1,1) C(1,2)(1,2) C(1,2)(2,3)
C(2,1)(1,1) C(2,1)(1,2) C(2,1)(2,3)
C(2,2)(1,1) C(2,2) (1,2) C(2,2) (2,3)

C21 C22 C26 C29

C31 C32 C36 C39

C41 C42 C46 C49

523
b33
543
al,r. (3,1)
a2,r2(3,1)

c(1,1)(3,3)
(1,2)(3,3)

c(2,2)(3,3)

In particular,

(12)

1 2 0 5 4
7 3 4 1 0

2 6

113 1 3 2
6) (2

2 2 5
3 0 4

6 10 11
7 3 10
i0 18 17
Ii 6 16

10 10 25 14 30 19\
15 0 20 13 12 20
10 26 9 12 12 30
7 12 12 18 0 24

An even more general definition of the p-product was given in [17] and [16]. As
mentioned, the p-product includes the common matrix and vector products of linear
algebra. It has been proved that those products can be obtained by substituting spe-
cific values for p [16]. The properties and some applications of the p-product in image
processing can be found in [17]. In the following sections, we discuss the applications
of the p-product in the Fourier transform, the Walsh transform, the generalized Walsh
transform, and the wavelet transform.

3. The Fourier transform. In this section, we use matrix and the generalized
matrix product identities associated with FFTs to develop a novel formulation of the
FFT in terms of the p-product. We use the tensor product expressions of the FFT
developed by Tolimieri [21] to derive the new algorithms in terms of the p-product
formulation.

We first establish notation and state identities that are required in deriving the
formulation.

DEFINITION 3.1. Suppose that N rs. The N-point strides s permutation ma-
trix P(N, s) is defined by

(13) P(N, s)(x (R) y) y (R) x,
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where x and y are arbitrary vectors of sizes r and s, respectively
That is to say that the action of P(N, s) on an arbitrary vector x of size N is

(14)
P(N, s)x P(N, s)[xo, xi,..., XN-I]

[X0, Xs,X2s,...,X(r--1)s,Xl,XTls,...,X(r--1)s+l,X2,...,Xs--i,...,Xrs--1] t.

DEFINITION 3.2. For any a E FZxm, we define col(a), the column vector of a, as

(15) col(a) [all, a12, alm, a21, a22, a2m, all, al2, alm]

and the row vector of a as row(a) (col(a))’.
We now state some basic identities concerning the p-product, tensor product,

permutation matrices, and Fourier matrices, which were developed in [17] and [21].
We use these identities as building blocks for some of our derivations.

LEMMA 3.1. Let N rs and x Frs. Then

(16) col(x’) P(N, s)col(x).

LEMMA 3.2. Let a Flxm and b ]mxq. Then

(17)
col(ab) a (R)m col(b),
row(ab) row(a)(m b,

(ab)’ row(a)(R)m col(b).

LEMMA 3.3. Let a Fsxs and x Frsxt with t Z+. Then

(18) (a (R) I,,)x a @s x,

where I denotes the r x r identity matrix.
LEMMA 3.4. Let a e ]Fsxs, with

(19)

ao al as-1

as as+l a2s-1
a

a(s-1)s a(s-1)s+l as2

and b Fx with

(20)

bo bl br-1
br br+l b2r-1

b(r-1)r b(r-1)r+l

Let N rs and x be a vector of length N.
(a) If yl P(N, s)(b (R) x) and y2 row(b) (R) x, then we have

(21) yl col(y2).

(b) If y F x r, then we have

(22) row(a) (R)s y (a @s col(y))’.
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More generally, if x is an N t matrix, then the next lemma can be proved.
LEMMA 3.5. Let N rs, b be the matrix defined in Lemma 3.4, and x be an

N t matrix. Suppose

(23) Yl-P(N,s)(brx) and y2-row(b)(R)rx.

Then col(y1) col(y2).
LEMMA 3.6. Let N rs with r and s being any integers.

Fourier transform can be factored as
Then the N-point

(24) F(N) (F(s) (R) I)T(N)P(N, s)(F(r) (R) Is),

where P(N, s) is an N-point stride s permutation matrix and T(N) is a diagonal
matrix as

(25) T(N) diag(1,..., 1; 1, w,..., wr-1;... ;1, wS--1,..., W(r--1)(s--1)),

with w- e2"i/N.
We now use the above identities to express the Fourier matrices first in terms of

the tensor product and then in terms of the p-product.
Let N plp2" "Pn, with Pi being a prime number, then the N-point Fourier

transform of any N-vector x is given by the formula

N-1

(26) Yk E wJkxj’ 0 <_ k < N, w- e2ri/N.
j=0

THEOREM 3.1. Let N pip2"" "Pn, with Pi being a prime number. Then the
tensor product formula of N-point Fourier transform is

F(N) (nII((F(pi)(R) I,)(T+I (R) I,+,)(P+ (R) (F(pn) I),
/

N
(27) with 5i N/pi, Ai

pip2 pi

where Ti+ is the pip2"" pi+ pip2"" pi+l diagonal matrix

(es)
Ti+I Tp+l (pp2""pi+l)

(diag(1, ,1; 1, w, wp+l-1; 1, wplp...p-l,..., w(p+-l)(pl...p-l))),

and Pi+l is a pp2"" pi+-point stride pi+ permutation matrix.

Proof. We prove this by induction. By Lemma 3.6, we know (21) is valid for
n 2. Assume that the equation holds for K pip2" "Pn-1, and prove this for
N PP2""Pn. Since N PP2""Pn Kpn, applying Lemma 3.6 once more, we
obtain

(29) F(N) (F(K)(R) Ipn)Tp(N)P(N, pn)(F(pn (R) I/).

By hypothesis

(Hn--2 (R) I),+I)(Pi+I I+1))(ao) F(K) (F(pi) Is)(Ti+I (R) (R) (F(pn-1) (R)
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with Ti, Pi, Ai, and 5i defined by (21) and (22), respectively. Combining the two
equations, (23) and (24), the result follows.

Now we use Theorem 3.1 to express the Fourier transform of any N-vector x in
terms of the p-product. The notation ones(n) denotes a row vector of size n all of
whose elements are equal to 1.

THEOREM 3.2. Let N PlP2 "Pn, with Pi a prime number and pi

_
Pi/l. Then

the p-product Fourier transform of any N-point vector x is given by

1 1
(31) y --=F(N)x --(wl

x/Iv x/iv

where wi row(F(pi)),

(32)
Di [d/, d,..., d-] (R) ones(Ai),
with di- ([1, w, w2,..., wf-l]’))

N/pip2... Pi, % PP2 Pi- 1,

is an

(33) PlP2 Pi- PiPi+ Pn

matrix associated with the diagonal elements of Ti with w w27ri/N and denotes
the Hadamard matrix product, defined componentwise.

Proof. We organize the computation of (21) into stages by setting

Yn (Tn (R) In)(Pn (R) In)(F(pn) (R) I.),
Yn-1 (Tn-1 (R) I._l)(Pn-1 (R) I._)(F(Pn-1) (R) I._),

(34) Yi (Ti (R) I)(Pi (R) I)(F(pi) (R) I),

Y2 (T2 (R) Ia.)(P2 (R) I.)(F(p2)(R) I.),
Y1 F(pl) (R) I61.

To prove the theorem, we first verify the formula

(35) col(TkPk(F(pk) (R) Ipp2...pk_l)x) col(Dk (Wk (R)pk x)),

where Dk is a matrix having the same size as wk (Pk X and associated with the
diagonal matrix Tk,wk row(F(pk)), and x is a PlP2"’’Pk t matrix with t being
a positive integer.

In fact, let x be a designated matrix. Then by Lemmas 3.3 and 3.5, we have

(36)
col(Pk(F(pk) (R) Ipl...p_)x col(Pk(F(pk)(R)p x))

col(row(F(pk))(R)p x) col(wk epk x).

Now to Tk, associate a pl.. "Pk-1 pkt matrix Dk such that the above formula is
true (because of the lengthy specification, the details of finding Dk have been omitted
here).
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Now we apply (29) to prove the theorem. Let x be an N-vector. Then

(37)

Ynx (Tn ( IAn)(Pn ( I)n)(F(pn Is)x
TnPn(F(pn) (R) Ipl...Pn_l)X
col(Dn * (Wn (Pn X)) col(yn),

Vn-lcol(yn) (Tn-1 (R) IA_I)(Pn-1 (R) IA_I)(F(Pn-1) (R) Is_l)col(yn)
(In-1 (R) Ip)(Pn-1 Ip)(F(pn-1) (R) Ip,p2...p,_.p,)col(yn
((Wn-lPn-l(F(pn-1) Ipl...p_2))( Ipn)COl(yn)
col(Wn-lPn-l(F(pn-1) (R) Ip,...p_,)yn)
col(Dn_1 (wn_ (R)p_l yn)) col(y,_).

Similarly, for any integer 1 _< _< n- 2, we have
(38)

Yicol(y/+l) (T/(R) I)(P/(R) I)(F(p/) (R) I)col(y/)
(Ti ( Ip+...p,)(ei Ip+i...pn)(F(pi Ipi...pi_iP+i...pn)COl(yi
((TiP/(F(p/)(R) Ipi...p_l) ( Ip+...p,)col(yi)
col(T/P/(F(p/) (R) Ipi...p_)yi
col(D/ (w/(R)p, yi)) col(y/).

Thus,

(39)

1
y F(N)x -Y1Y2"’" Ynx

1
r;-icol(Wl (p, (D2 * (w2 (p. ("" (Dn (Wn (p X)))))).

Since y is a vector, the result follows. V1

Special case. When p p2 Pn 2, i.e., N- 2, the p-product Fourier
transform of any N-point vector x is given by

(40)
1 1

y --.F(N)x --(w (R)2 D2 * (w (R)2 D3 * (... (Dn * (w (R)2 x)))))’,

where w is the row vector corresponding to F(2), i.e.,

(41) w row(F(2)) [1, 1, 1,-1],

and

(42)
Di [d, d/] (R) ones(2n-i) for 2,..., n,

where d/- ([1, w, w2,..., W(2’---1)]2’-i)

is a 2/-1 2-/+1 matrix associated with the diagonal elements of Ti.
Notice that the number of arithmetical operations required in the p-product

Fourier transform is same as that in the regular FFT, both having the order ofN log N.
However, the additional reordering process required in the regular FFT plays an im-
portant role on modern architecture machines. Stone [19] showed that up to O(N)
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TABLE
Time required to compute Fourier transform of N-vectors on the SUN 3 Workstation

using MATLAB with Cooley-Tukey FFT and the p-product Fourier transform algorithms.

N--2 N--4 N--8 N--16 N--32 N--64 N--128 N--256 N--512 N--1024

tp 0.018 0.033 0.047 0.063 0.086 0.122 0.177 0.279 0.491 0.909

tc 0.032 0.048 0.066 0.090 0.116 0.167 0.230 0.369 0.592 1.110

tc Time required for using Cooley-Tukey FFT algorithm.
tp Time required for using p-product Fourier transform algorithm.

time is required to execute the reverse operation for N being a power of two. This
means that the p-product Fourier transform algorithm can save time by more than
O(N). The larger the number N, the more time that can be saved by using the new
algorithm.

Although the p-product FFT exhibits similarities to the Stockham autosort al-
gorithm (e.g., [21]), it has the advantage of (i) concise expression, which is achieved
by replacing the permutation matrix as well as the tensor product with the single
p-product; and (ii) a standard implementation with the p-product as a basis of oper-
ation. For example, if N 8, then w e’i/4, and the p-product Fourier transform of
an 8-point vector is x is given by

(43)
1 1

y --r(8)x -- (w +2 D2 * (w +2 D3 * (w +2 x)))’,
V V

where

1 1 1 1)(44) w (1, 1, 1,-1), D2 1 1 W2 W2 and D3 /11/1 w
1 W2

1 W3

The signal flowgraph of this 8-point transform is shown in Fig. 1 and is similar
to the ordinary FFT except for the order of the input signal.

We have implemented this new algorithm on a sequential machine (SUN 3 Work-
station) using MATLAB. As shown in Table 1, the time required for the new algorithm
is less than the time required by the Cooley-Tukey method.

Since the Fourier transform is separable, it is easy to induce the two-dimensional
case using the p-product language from the theorem we proved in this section. The
only thing we need to do is to define a function )n: ]m Flxn as

(45) Cn([al,a2,. ,am])

al a2 an
an+l an+2 a2n

a(_l>+ a(-ln+ a

with m ln, then apply this function after performing row and column transforms.
THEOREM 3.3. Let N PlP2""Pn and M qlq2"’’qm. For a two-dimensional

N M array x, its Fourier transform, defined by y, is

(46) y F(N)fF(M).
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7

a b c=y
a(1,1) b(1,1) c(1,1)

a(2,1),,ffb(2,1) c(1,5)

c(1,3)

c(1,7)

a(1,2) b(1,2) c(1,2)

a(2,b(2,2)
7

c- . (1,6/

a(3,b(1,4) c(1,4)
W2a(4,2kNb(2,4), c(1,8)
w3 w2

+1 -1

FIG. 1. Signal flow graph of an 8-point discrete p-product Fourier transform. Multiplying fac-
tors h-1 and- 1 are indicated by solid and dotted branches, respectively.

Then its p-product factorization is

1
(47) Y v/NMCM(Wl (R)pl D2 (w2 (R)p2 D3 (... (Dn * (Wn @Pn ’)))))

with

(48) F(M)ff CN[Vl )ql E2 * (v2 (R)q. E3 * (... Em * (Vm (R)p.

where wi, Di, and vi, Ei are defined as in Theorem 3.2.

4. The Walsh transform. In this section, we use the similarities and differ-
ences among the Fourier transform, the Walsh transform, and the generalized Walsh
transform to induce new fast algorithms of the Walsh transform and the generalized
Walsh transform from the FFT formula in terms of the p-product presented in 5.
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To define the generalized Walsh functions, Chrestenson defined the following
Rademacher functions of order ( [3].

Let a denote a fixed integer, a _> 2, and put w e2ri/a.
DEFINITION 4.1. The Rademacher functions of order ( are defined by

(49)

and for n >_ 0

(50) Cn(X -- 1) Cn(x) o(onx).

Thus, under this definition, when a 2, the Rademacher function of index n is
a train of rectangular pulses with 2 cycles in the half open interval [0, 1), taking the
values +1 or -1. Its period is 1.

Using Rademacher functions we can define the Walsh functions of order a.

DEFINITION 4.2. The Walsh functions of order are defined by

(51) 0(x)- 1

and if n alonl -- + amn., where 0 < aj < o and nl > n2 > > nm, then

(52) (x) i(x)... (x).

For convenience we let denote the set of Walsh functions of order a. Then 2
is the set of functions defined by Walsh. Different from this, we refer to , c > 2,
as the set of generalized Walsh functions. It has been proved that is orthonormal
and complete in L(1, 0) [3].

Following the above definition, in the case of a 2, we write the one-dimensional
forward Walsh kernel as

n-1

(53) h(x, u) - H (--1)bi(x)b’-l-i(u)’
i=1

where bk(z) is the kth bit in the binary representation of z. For example, if n 3,
and z- 6, (110 is binary), we have that bo(z)- 0, bl(z)- 1, and b2(z)- 1.

By using this kernel, we have the following one-dimensional Walsh transform of
a function f

(54)
N-1 N-1 n-1

1 1
g(u)- v o= f(x)h(x, u)-- v x=0 f(x)i=OH (--1)bi(x)bn-i-i(u)

Thus g Hw(N)f.
In [18], Shanks proved that (46) can be decomposed as

()
g(u) g(jm-l jo)

1 (__l)J_lkO (--1)J-k... (--1)Joke-If ii/-
k0--0 kl--0 km_l:0 i:0
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m-with u }-]i=01 2iji and the intermediate Walsh transform arrays defined by

al(km-l-l,. ,kO;jl-l, ,jo)

kra + -’O

a_l (k,_t,..., k0; jr-2,..., j0) (- 1)J-,k--i

for 1,2,...,m, and

(57) a(km-1" k) f (12ik)=o

For N ctTM. The N-point one-dimensional forward generalized Walsh kernel is
given by the relation

n--1

i--1

where w e2"i/‘ and bc(z) is the kth bit in the c-nary representation of z, for
example, if ( 3, N 33, and z 6 (020 is trinary), we have bo(z) O, b(z) 2,
and b2(z) 0.

By using this kernel, we have the following one-dimensional generalized Walsh
transform of a function f:

(59)
N-1 N-1 n-1

1 1
g(u) f(x)h(x, u)- o f(x) H wbi(x)bn-i-l (t)"

x=0 V/ i=0

Thus g- Hw(N)f.
Similar to the factorization of the Walsh transform, the N-point generalized Walsh

transform can be factored as

g(u) g(jm-1, jo)-- (-- o--(60) 1 E wJm--1]gO E wJm-2kl’’" E/-
ko=O k=O km-=O

wJkm-l f (lik’i)i=0

with u }-m__- aiji" Its similarity to the Cooley-Tukey decompositions of the Fourier
transform is obvious. In fact, Shanks [18] and Andrews and Caspari [1] pointed out
that the Fourier transform equation differs from the Walsh transform equation and
the generalized Walsh transform equation by the introduction of a scalar (or a matrix)
multiplication at each stage. In the p-product equation of the Fourier transform, this
matrix is Di in stage i. Hence, by removing the matrices Di in (25), theorems for
the p-product Walsh. transform and the p-product generalized Walsh transform are
induced as follows.

THEOREM 4.1. Let N 2m. For a function f If(0), f(1),..., f(g- 1)]’, its
Walsh transform in terms of the p-product is given by

(61)
1

[Wl t12 (w2 (2 ("" (Wm (2 f)))]!g Hw(N)f
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where wj [1, 1, 1,-1] for j 1, 2,..., m.
We call w [1, 1, 1,-1] the core matrix of the Walsh transform for the dimensions

of powers of 2.
THEOREM 4.2. Let N am. For an N-length function f, its generalized Walsh

transform in terms of the p-product is given by

(62)
1

g Hw(N)f ----u.. [w1 (a (w2 (o ("" (win (a f)))]’,

where wi is the row vector corresponding to the Fourier matrix F(a) and is called the
core matrix of the generalized Walsh transform for dimensions of powers of .

Combining the above two theorems, we obtain a more general formula for N being
the factors of the prime numbers, i.e., N plp2""pn.

THEOREM 4.3. Let N PlP2""Pn with Pi being a prime number and pi <_ pi+l.

Then the p-product generalized Walsh transform of any N-point vector f is given by

(63)
1

g Hw(N)f --- (Wl (Pl w2 (P2 (’’" (Wn Opn f))))’,

where wi is the row vector corresponding to the Fourier matrix F(pi).
The same as the Fourier transform, both Walsh and generalized Walsh transforms

are separable. Therefore, to induce the two-dimensional Walsh transform formulation
in terms of the p-product, we apply the function Cn defined in 5 after performing
row and column transforms.

THEOREM 4.4. Let N pip2" "Pn, M qq2"’’qm, and f be an N M array.
Then its generalized Walsh transform in terms of the p-product is given by

1
(64) g-

x/’NM
/3M(W1 (Pl w2 OP2 (’’" (Wn (Pn

with

(65) CN(vl ql v2 (q2 (’’" vm (]qra f’)))),

where wi and vi are the row vectors corresponding to r(pi) and F(qi), respectively.
Notice that the p-product Walsh transform (53) deals only with values +1 and

-1. There is no multiplication involved. Meanwhile, the reordering process required
in most Walsh transform algorithms has been eliminated here. This makes the new
p-product Walsh transform faster and more efficient. Due to the reordering process,
researchers have had difficulties implementing fast versions of the generalized Walsh
transform. This roadblock has now been eliminated. The p-product generalized Walsh
transform algorithm provides an implementation on the order of N log N without the
reordering process. This is much faster than the traditional method that required N2

operations. Finally, this section also demonstrates that with similar implementation
techniques, we can use the p-product to establish simplified algorithms for efficient
matrix operations for a class of generalized tensor matrices. More precisely, any or-
thogonal or nonorthogonal transforms obtainable from a series of matrix tensor prod-
ucts can be expressed simply in terms of the p-product and efficiently implemented
on digital computers. Thus, in addition to the transforms discussed here, other im-
plementable transforms are the Hadamard transform, the generalized transform, and
a variety of other similar transforms.
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5. The wavelet transform. In 1988, Daubechies defined the notion of the
"multiplier 2" compactly supported discrete wavelet transform and obtained condi-
tions for smoothness and polynomial representation by multiplier 2 wavelet series [10].
In particular, she defined a scaling function (x) as a compactly supported solution
of

2g--1

(66) (x)
k--O

where ao, al,..., a2g-1 are the scaling coefficients. Associated with this scaling func-
tion of the wavelet system there is another set of coefficients, bk (--1)ka2g-l-k, that
defines the wavelet function as

2g--1

(x)
k=0

Using these definitions, Heller et al. [5] introduced wavelet matrices as general-
izations of the 2 2g matrix of the form

(68) (ao a2g-1)bo b2g-1

where the a’s and b’s are defined as above. It is not difficult to ascertain that this
satisfies the wavelet scaling property and that

(69) ak=2 and -bk--O.
k k

To generalize this concept one may define

(70) a: (a a2g_l)4 eL,
where aiO ai and ail bi. The general m mg matrix is then of the form

(71)

amg-
amg_

m--1 --1 m--1a0 a amg-

with the wavelet scaling conditions

(72) -a-m, and ’-’ "ak+ml, ak+ml mSr"rl’,l
k k

where m is the rank of the matrix, and g denotes the genus of the wavelet matrix, i.e.,
the number of m m blocks in the matrix. The vector a is called the scaling vector
and for 0 < s < m, as is called a wavelet vector.

Note that the wavelet matrices of rank m correspond to a wavelet system with
multiplier m, replacing the multiplier 2 used by both Daubechies [10] and Mallat [13].
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Analogous to the case m 2, for the above definition of the wavelet matrix a, a scaling
function 0 and m- 1 fundamental wavelets are defined by the system of equations

(73) Cr(x) a(mx k),
k

where 0 _< r < m. The scaling function is to be thought of as a low-pass function
while the fundamental wavelets are high-pass functions. If we define a set of auxiliary
functions by the formula

(74)

where j, k E Z, then Resnikoff [15] has shown that the set

0 _< < j, k e %}

is an orthonormal basis for L2(). The support of k(x) has length equal to the
length of the support of the scaling function (x) divided by mY, where the quantity
j is called the scale of the wavelet function. Thus, any function f in L2() can be
represented as a wavelet series with a wavelet coefficient matrix a.

A wavelet matrix for which g 1, i.e., a square wavelet matrix, is said to a Haar
matrix. A number of classical examples of specific matrices that have different origins
in mathematics and signal processing can all be seen to be Haar wavelet matrices
of specific types. These include the finite Fourier transform matrices, the discrete
cosine transform matrix, Hadamard and Walsh matrices, Rademacher matrices, and
Chebyshev matrices.

Let f(x) nfn(x), where fn is a sequence of functions x fn(x) defined
on some infinite set (e.g., Z or lf). The function f(x) will have a meaning that is
prescribed by the type of convergence that is assumed. Let us suppose that for each
x, only finitely many of the numbers fn (X) are nonzero and assume that a 0 unless
0 <_ k < mg. The following theorem proved by Heller et al. in [5] exhibits a locally
finite compact wavelet matrix series for an arbitrary discrete function f.

THEOREM 5.1. Let f: Z --, C. be an arbitrary function defined on the integers
and let a be a compact wavelet matrix of rnk m and genus g defined by (63). Then

f has a unique wavelet matrix expansion

(76)
m--1

f(n)-- Z Clan-ml-
1EZ kEZ s=l

where

1
(77) cl f(n)n--ml

m

and

1
f(n)_mk.

n

The wavelet matrix expansion is locally finite, i.e., for given n only finitely many terms
of the series are different from zero.
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Remark. Using the language of signal processing, the first term in (65) is the
"low-pass" part of the expansion and the second term is the "high-pass" part of the
expansion.

Now, if we denote c ct and-0an_mk tn-mk, then (66) and (67) can be
combined into the single formula

__1 E f(n)-S O < s < m.an-m,(79) c m

Using the above assumption on a, we have

1 E f(n)t-mk(so) E

Since theoretically k ranges from -oc to +oc, in what follows, we analyze (69) for the
two cases k > 0 and k < 0.

For k >_ 0, we have

__1 m - __1 f(n + km).(81) c m f(n)an-mk m
n--mk n=0

Decomposing the summations in (70) into g smaller ones of length m, we obtain

(82)

mg--1
1 y f(n+km)
m

n-O

1
f(p + km)t, + f(m + p + km)+p

m
kp-O p--O

+’’" +1 f(m(g 1) + p + km)tn(o_l)+)
I9--o J

Since the length of f is N and f(n) 0 for n > N, the length of the vector c_ is

N/m. That is, c_ is of the form c_ [c, c,..., CN/m_I]. For 0 <_ j < g, let

(83) hj [f(jm),. f(jm + N- 1)1 @m
ts
m(j+l)-I

By definition of the p-product, the size of hj is 1 x N/m. It is not difficult to prove
that the first summation of c in (71) corresponds to ho(k), the second one to hi (k),
and the jth one to hj-l(k).

Let

--8 --8(84) W Wj Wg_l=
(8 --8am- m(j+l)- amg-
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and let

(85) fk [f(mk),f(mk + 1),..., f(N- 1),0,...,0] be of size 1 x N.

Then

(86)

Combining (71) and (75), we have

(87)
g--1

11 Ehj_ [f@mgtr)-t- -4-fg-i@mgtr_l] O<s<m.C-I- ?Tt m
i=1

On the other hand, in the case of k < 0, (69) becomes

(88) c
1
"g --1

1
an+ink- mm

f(n) -s f(n-
n---ink n=O

Since f(n) -0 unless 0 <_ n < N, we have

lm(89) C_k f(n- mk).
n--ink

Thus the size of c [CS_g+l,... ,cS__2, CS_l] is 1 x (g- 1) and only the first m(g- 1)
terms of f are used. Therefore, we denote

(90) e- [f(0), f(1),..., f(m(g- 1)- 1)]

and

(91) e-i [0,0,...,0, f(0),...,f(m(g- i- 1) 1)]

having the same size as e for 1 _< < g- 2. Then by following the same procedure as

above, we can decompose (77) as

(92)
cS- cs-g+l,’’’,cs-2,cs-1]

__1 [e (m s

m Wg-1 + e-1 (R). Wg_2 +.. + e-g+2 m

for 0 _< s < m. Combining (76) and (81), the wavelet transform of f under the wavelet
matrix a is

(93) C cm-1]C [C0,

where

(94)
[_; c$]
1

[c q)r --1 "t’- + e-g+2 m ’f; f (R), + + fg-1 (m r_l]m
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for0sm.
Before defining the inverse wavelet transform of f, we prove the following lemma.
LEMMA 5.1 Let v be defined as (73). Then

(95) E E (@ (w;)’) { 0mira ifi-ifi?j,j’
O_s<mO_i,j<g

Proof. It holds that

(R) (wl),)
O<_s<mO<_i,j<g

O_<s<m gin(i+1)-1

amiamj

s s s s
m(i+l)-lamj m(i+l)-lamj+l

By the wavelet scaling conditions given on (64), we have

amj, amj+l am(j+l)-l]

ts aS 1amiamj+l mi m(j+l)-I

s am(i+l)-I m(j+l)--I

(97) 5(n’,n)-- 1_ E Em an-mlan’-ml
O<_s<m

and the results follow.
LEMMA 5.2. Let a E Fln, b Fln, and c Fnq. Then

(98) [alb] n C- [aclbc].

In particular, suppose al,a2,... ,ak FIxn, then

(99) [al, a2,..., ak] n C [alc, a2c,..., akc].

Now we use above lemmas to prove the following theorem.
THEOREM 5.2. Let f Z -- C be an arbitrary function defined on the integers

and let a be a compact wavelet matrix of rank m and genus g defined by (63). Let
e If(0), f(1),..., f(m(g- 1)- 1)]. Then the wavelet transform of f is given by

C cm-1](100) c [co

where

(101) 1
[e(R)m - +" + (R)mr;f@mr+ +fg-l(R)mr_l]- Wg_l e-g+2

for 0 < s < m, and its inverse transform is given by

(102)
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and wi-s, fi, and e-i are as defined by (73), (74), and (80), respectively.

Proof. In the above discussion, we have shown (90). Now, we use this equation
and Lemmas 5.1 and 5.2 to prove its inverse formulation, i.e., (91).

Write

with V[ [fi(mj),..., fi(m(j + 1)- 1)] and

(104) IV_0 V v_g-2]--i i --i’’’

Then from the notation of fi, we have

(105)
Vj [fi(mj),..., fi(m(j + 1)- 1)]

[f(m(j + i)),..., f(m(j +i + 1)- 1)]

VrTi

Also note that

(106)
c$]

1
[e (m -s -"" + e-g+2 (m v; f (m r _t_... _. fg_: (R)m _]Wg-1

Using Lemma 5.2 and substituting fi and e-i by V/j, (95) becomes
(107)

1 vg[2_s /m--8es V_i_l_i,..., Wg_l_i; V:w,..., wkm
i=o k=O k--0

1
C8

m

8By the definition of ci, we have

( o8)

I
[C,C,...,CN/m_1],

1
[cs.-’ c, N/m-2]’e= m

s CsCi [Cs--i Cs--iT N/m-iT1m
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Substituting these into ds, we obtain
(109)

ds c (R) (w)’ + c (R) (w)’ +... + C_ (R) (W_l)’

__1 Vk( (R) (w)’), V/m-1( (w)’)

1
+"" + g2i(-l- (W-l)’), g/-( (W-l)’)

k=O

__1 j( N (w)’),

9--19--1 9--19--1

j=o i=o j=o i=o

and
(110)

lds 1 1 [/,j (R)
s=0

m
s--0

(R)

Then by Lemma 5.1, we have

(111) Ed --1 [?TtV00, mg ?TtVoN/m-1] fm
8

Note that the expressions of the wavelet transform of f and its inverse are simple
and, with the exception of the p-product, the only operations required are shifts, which
can be easily accomplished on any digital computer. In (76), there are g p-products
and each p-product requires N operations, while in (81), there are g-1 p-products and
each p-product requires m(g- 1) operations. Hence, the total number of operations
required for computing c is Ng + m(g- 1)2. However, since each p-product is in-
dependent of the other, after shifting f to form fl,..., fs-1, and shifting e to form
e-l,e-2,... ,e-+2, all p-product, computations can be executed simultaneously in
parallel as shown in Fig. 2. Therefore, the computing time of the p-product wavelet
transform depends only on the length of the function f, which is g times less than the
existing methods presented in the literature [2], [4], [10]. On the other hand, notice
that the size of c is 1 (g- 1) and only affects the left boundary of the transform
c. If g and m are very small, which happens in most applications, or if the boundary
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FIG. 2. Parallel computation of c from (76).

effect is not so important, which is the case on big images, we can ignore c and set
it to zero. Then fewer processes will be needed and the formula will become simpler

6. Conclusions. We have introduced a new matrix product. Using this prod-
uct, we presented a general approach to fast transform computation. Specific examples
included a new formulation of the FFT, the fast Walsh transform, and the fast general-
ized Walsh transform. In contrast to other fast transform algorithms, these p-product
formulations do not require any reordering process, which is extremely important on
supercomputers where the data flow is usually the major time-consuming part of the
computation. A new formulation of the wavelet transform has also been presented
here. This formulation is given in terms of the matrix p-product and provides not
only a concise expression for wavelet transforms, but also a novel algorithm which is g
times faster than regular methods for a wavelet matrix a of rank m and genus g. The
applications presented here demonstrate that this new matrix product will be of great
use in traditional transform theory as well as in the development of new transforms.
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OBLIQUE PROJECTION METHODS FOR LARGE SCALE MODEL
REDUCTION*

IMAD M. JAIMOUKHA AND EBRAHIM M. KASENALLY
Abstract. The aim of this paper is to consider approximating a linear transfer function F(s) of

McMillan degree N, by one of McMillan degree m in which N >> m and where N is large. Krylov
subspace methods are employed to construct bases to parts of the controllability and observability
subspaces associated with the state space realisation of F(s). Low rank approximate grammians are
computed via the solutions to low dimensional Lyapunov equations and computable expressions for
the approximation errors incurred are derived. We show that the low rank approximate grammians
are the exact grammians to a perturbed linear system in which the perturbation is restricted to the
transition matrix, and furthermore, this perturbation has at most rank 2. This paper demonstrates
that this perturbed linear system is equivalent to a low dimensional linear system with state dimension
no greater than m. Finally, exact low dimensional expressions for the : norm of the errors are
derived. The model reduction of discrete time linear systems is considered via the use of the same
Krylov schemes. Finally, the behaviour of these algorithms is illustrated on two large scale examples.

Key words. Lanczos, Arnoldi, iterative methods, model reduction, Krylov subspace methods,
Lyapunov matrix equation, large scale systems

AMS subject classifications. 65F10, 65F15, 93A15, 93B05, 93B07, 93B20

1. Introduction. The need for model reduction arises in many areas of engineer-
ing, where high order mathematical models are used to describe complex dynamical
behaviour. These occur whenever models are described by partial differential equa-
tions that culminate in large linear finite element or finite difference models. For
practical reasons, it is desirable to replace these high order models by low order ap-
proximations. For example, in control system applications, high order models may
result in high order controllers and the subsequent implementation of these controllers
is cumbersome and expensive. Consider a. stable linear state-space model of the form

(1) it(t) Ax(t) + bu(t),
y(t) cx(t) + du(t),

in which x(t) is the state vector of dimension N, and u(t) and y(t) are scalar functions
representing the input and the output of the’ system, respectively. The matrix A and
vectors b, c, and d are real with their dimensions fixed by those of x(t), u(t), and
y(t). The associated transfer function is given by F(s) c(sI A)-lb + d. The task
of any model reduction algorithm is to find an approximate stable model

(4)
2m (t) A.xm(t) + bmu(t),
Ym (t) CmXm(t) + dmu(t),

in which xm(t) E Im with m << N and the low order transfer function is given by
Fro(s) Cm(SI Am)-lbm + din. Well-established model reduction methods such
as optimal Hankel norm [6] and balanced truncation [13] begin by solving the linear
matrix equations

AP + PA + bb O,
A’Q + QA + c’c O,

Received by the editors June 23, 1993; accepted for publication (in revised form) by P. Van
Dooren, March 25, 1994.

Interdisciplinary Research Centre for Process Systems Engineering, Imperial College, Exhibition
Road, London SWT-2BY, England (j a+/-moukaps. +/- c. ac. uk and kasenall@ps, ic. ac. uk).
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which admit unique symmetric solutions if and only if Ai(A) + Aj(A) 0 for all
i, j, and where Ai denotes the ith eigenvalue and the overbar represents the complex
conjugate. The requisite for P and Q stems from the easily computable :o error
bound [6]

N

(7) IIF(8)- Fm(8)l[ _< 2 (F(8)),
m-bl

1/2where the ai’s are the Hankel singular values of F(s) defined as ai Ai (PQ) and
arranged in decreasing order of magnitude and where the norm [[F(s)[[o is defined as
[[F(s)[Io supweit{amax{F(jcv)} } in which amax(’) denotes the largest singular value.
Furthermore, P and Q are used by both methods to form the balancing transformation
the effect of which is to yield P Q in the new coordinate system where E is
a diagonal matrix of the Hankel singular values. Safonov and Chiang [18] developed
a numerically robust variant of Moore’s balanced truncation algorithm that does not
require the formation of the balancing transformations; however, this variant does not
obviate the need to compute P and Q. The motivation for using Krylov subspace
methods in this paper is to enable low order approximate models to be computed
while effecting all the computations in the low dimension. This technique was used
successfully in [1] to perform model reduction in the light of a control system design
for a fusion reactor. One of the aims of this paper is to justify this approach and give
computable error expressions.

Related to this work are [4], [5], which use Krylov subspace methods to obtain
bases for the controllability and observability spaces. Furthermore, in [5] Boley and
Golub presented a means of computing a minimal realisation of a linear dynamical
system from the coefficients generated in the course of the Lanczos process. The
Lanczos process was also exploited by Parlett in [14] to obtain minimal realisations.
In that paper, the rank of the Hankel matrix was used to determine the order of the
minimal realisation. Furthermore, it was demonstrated that a minimal realisation
could be constructed from the data generated by the Lanczos process. A similar
approach was adopted in [7] in which the minimal realisation and its order were
found to be related to the different types of breakdowns encountered in the Lanczos
process. Here, too, the onset of breakdown was also given in terms of properties of the
Sankel matrix. Recently, the presentations in [a], [19] reviewed the use of projection
methods for large scale control problems. Both papers suggest the use of Krylov
subspace methods as an effective tool for the model reduction of large scale linear
dynamical systems; however, no algorithms were provided.

A drawback associated with the methods above is that the computed minimal
realisation may still have a high dimension. This deficiency is remedied by obtaining
approximate reduced order models with low state dimension. A key issue in the
development of our model reduction schemes is the efficient computation of low rank
approximate solutions to the controllability and observability Lyapunov equations.
This paper exploits the approach developed in our previous work [10]-[12] and that of
Saad [17], both of which employ classical Krylov subspace techniques. In [17], Saad
considers the low rank approximate solutions to (5) by imposing a Galerkin condition
on the residual error, and [11] extends his work to the general case via the use of
block schemes and gives a computable expression for the associated residual error
norm. Furthermore, we addressed the problem of computing a low rank approximate
solution to (5) which meets an optimality condition. The generalized minimal residual



604 IMAD M. JAIMOUKHA AND EBRAHIM M. KASENALLY

(GMRES) method presented in [11] minimises the Frobenius norm of the residual
error for which an exact computable expression is also derived. The focus of this
paper is to consider the solution to the coupled Lyapunov equations (5) and (6). Two
Lyapunov equation solvers are presented for which we derive computable residual
error and a priori and a posteriori backward error expressions. Two model reduction
algorithms are introduced for which computable : error expressions are provided.
For ease of presentation, the developments are carried out for single-input, single-
output systems, and the findings are then extended to multivariable problems and
discrete-time dynamical systems.

The following summarises the contributions in this paper. Section 2 describes
the type of approximations employed and justifies the use of Krylov subspace meth-
ods to solve large Lyapunov equations. Approximate solutions to (5) and (6) are
obtained together with exact expressions for the errors in(!urred. Furthermore, it is
demonstrated that the two approximate solutions are the exact solutions to a pair of
perturbed Lyapunov equations. In 3, we show that the latter are the controllability
and observability Lyapunov equations of a perturbed linear system; furthermore, this
perturbed linear system is equivalent to a linear system of state dimension no greater
than m. Computable error expressions are providedthat enable one to gauge
the progress of the iterative method for increasing m. Section 4 employs the solution
techniques of 2 and 3 to obtain model reduction schemes for discrete time systems.
Two illustrative examples in 5 show how the Lyapunov equation solvers and model
reduction algorithms behave in practice, and, finally, the conclusions are found in 6.

2. Krylov subspace techniques. In practice, solutions to large Lyapunov equa-
tions (5) and (6) frequently admit good low rank approximations. In addition, one
is generally interested in computing only the dominant eigenspace of the exact solu-
tion P*, rather than P* itself, since the dominant eigenspace of P* is known to be
associated with the dominant modes of the system described by (1) and (2) [1]. In
what follows, what can be said of (5) can also be said of (6). Thus we will limit our
discussion to (5) and invoke (6) only when necessary.

Ideally, we want to compute a rank m approximation Pm where m << N such
that liP* Pmllf is minimised. Throughout this paper we make use of the Frobenius

norm defined as IIZIIF v/trace(ZZ’) in which Z’ denotes the conjugate transpose
of Z.

Consider the Schur decomposition of P* given by P* UEU in which U E N N

is an orthogonal matrix and E diag{al,a2,...,ag} is a matrix of eigenvalues
ordered such that al >_ 0"2

_
"’’aN

_
0. Then the optimal rank m Frobenius norm

approximation of P* is given by

(8) Pm := U
0 0

where Em diag{al,a2,...,am} (i.e., the first m diagonal elements of E) and
Um e INm is a matrix of the first m columns of V. In [10], [11], [12], [17] a
low rank approximation is computed by choosing an orthogonal matrix Vm ]Nm
and calculating the exact solution Xm to the reduced order Lyapunov equation

(9) (VmdVm)Xm + Xm(Vmd’V,) + Vmbb’V, O.

The estimate of P* is then given by Pm VmXmVm Compared with the optimal
approximation given in (8), it is apparent that to compute a good estimate of P*, Vm
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must be an accurate approximation of Um or, in other words, the rn most dominant
eigenvectors of P*. Unfortunately, minimising liP* Pmllg is intractable when P* is
unknown.

We therefore turn our attention to the problem of selecting Vm and Xm. Let
]m(A, b) be the m-dimensional Krylov space defined as

(0) Em(A,b) span {[b Ab A2b Am-lb]}

then, following [17], we select Vm to be an orthogonal basis of Era(A, b). Throughout
the remainder of this paper, we exploit approximations to the solution P* which have
the form

where Xm E mxm is an arbitrary symmetric matrix. The key point here is that even
though P. Nxg, it may be efficiently stored as the product of smaller matrices

Vm INxm and Xm ]mXm. We observe that Pm is symmetric for symmetric
Xm and rank(Pm) rank(Xm) <_ m. Similarly, associated with (6), one seeks an

approximate solution of the form Qm := WmYmWm where Wm is selected to be an
orthogonal basis of rn-dimensionM Krylov space defined as

(12) m(A’,c’) span {[c’ (A’)c’ (A’)2c (A’)m-lc’]}.

The remainder of this section is devoted to the appropriate selection of symmetric
matrices Xm and Ym. We begin by defining the residual error functions associated
with a particular choice of Xm and Ym as

(13)
(14)

R.(X.) := A(VmXmV) + (VmX..V)A’ + bb’,
S.(Ym) := A’(WmYmWm) + (WmYmWm)A + c’c.

The solution techniques presented in this paper are based on seeking a symmetric Xm
and Ym so as to give Rm(Xm) and Sm(Ym) desirable properties. Sections 2.1 and
2.2 address the problem of constructing different X, and Y, such that R,(X,) and
Sm(Ym) have an orthogonality property with respect to the Krylov spaces defined in

(10) and (12). Computable expressions for IIRm(Xm)IIF and IISm(Ym)IIF are provided.
We demonstrate that the two approximate grammians are the exact solutions to a set
of perturbed Lyapunov equations, thus providing an alternative means of gauging the
progress of the iterative process for increasing rn.

2.1. The Arnoldi process and Lyapunov equations. Next we use the well-
established Arnoldi algorithm [20] to calculate the orthonormal bases Vm and Wm
for the Krylov subspaces K:. and ., respectively. The basic outline of the Arnoldi
process is given next in terms of (A, b).

ARNOLDI PROCESS

Initialise: Compute 3 Ilbl12 and set v :-- b/3.
Iterate: Do j 1,...,m

i=1 vihij is orthogonalCompute j coefficients hj so that ):--- Avj J

to all the previous vi’s.
Compute hj+,j := 11112. If hj+,j 0 stop, else vj+ := /hj+,j.
End Do.
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By construction, the Arnoldi process produces the matrix Vm Iv1, v2,..., Vm], which
forms an orthogonal basis for the Krylov subspace 1Cm(A, b). The process also yields
an m x m upper Hessenberg matrix Hm, which satisfies the relation

(5) AV.. V..Hm + Vm+lhm+,mem,

in which em denotes the last column of the m-dimensional identity matrix. We observe
that (15) is a combination of the first two steps of the iterative loop. From (15)

Ait is easy to verify that Hm V Vm since [Vm Vm+] is part of an orthogonal
matrix. Applying the Arnoldi process to (At, c) yields an orthogonal basis Wm "=

[Wl, w2,..., w.] for the Krylov space .m(A’,c’)in which w := c/5 and 5 "= Iic’112.
Furthermore, (Jm is a lower Hessenberg matrix which satisfies

(6) WA GmWm + emgm,m+lWm+1.

For convenience, we define

(17) /:/m := (WmV..)-IWmAVm Hm + (WmVm)-lWmvm+h..+l,mem,
(lS) m := WmAVm(WmVm)-I =Gm + emgm,m+lWm+Ym(WmVm)-1

for nonsingular (mVm) Observe that/?/m and (m are upper Hessenberg and lower
Hessenberg matrices, respectively. The Arnoldi process generates an upper Hessen-
berg Hm and (WmVm)- WVm+lhm+l,mem has nonzero elements only in its last
column; thus/:/m has the same structure as Hm. Similarly, m is lower Hessenberg
and emgm,m+lWm+Vm(WmVm)- has nonzero elements only in its last row. For im-
plementation details of the Arnoldi process and its breakdown-free variants, we refer
the reader to [4], [11].

Assuming that the approximate solution to (5) has the form Pm := VmXmVm for
some arbitrary symmetric Xm E mm, the residual error function associated with
any solution is given by (13). Substituting (15) and (17) into (13) and assuming that
(WmVm) is nonsingular allows the error function in (13) to be written as

(19) Rm(Xm) [Ym (I- Ym(WmYm)-lWm)Vm+

[ ImXm-Xmm"’e.lt2e Xmemhm+l,m ]X
hm+l,memXm 0

Vm+l

Similarly, associated with (6), the residual error function for any given approximate
solution of the form Qm W.YmWm is defined in (14). Substituting (16) and (18)
into (14) allows the error function to be written as

(20) S.,(r.) [w (- w.(v’w)-Xv’).+]

x [ Ym+Ymom+e2egm,m+leYm Ymemg,m+l]O
x (IWin+

for nonsingular (WVm). The orthogonlity conditions imposed in [10]-[12] sought to
determine low rank approximate solutions Pm VXmVm such that
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WmRm(Xm)Vm 0. In contrast, the Arnoldi-Lyapunov solver considered in this
section seeks symmetric matrices Xm and Ym such that the residual errors Rm(Xm)
and Sm(Ym) satisfy orthogonality properties with respect to the Krylov subspaces
m(A’, c’) and ]m(A, b), respectively. We now state the problem we wish to address.

PROBLEM 2.1. Find the approximate solutions Pm :- VmXmWm and Q, :--

WmYmWm to (5) and (6), respectively, that satisfy the Galerkin type conditions
WmRm(Xm)Wm 0 and VmSm(Ym)Vm O.

The following theorem gives the solution to Problem 2.1.
THEOREM 2.1. Suppose that m steps of the Arnoldi process have been taken, that

(WmVm) is nonsingular, and that the residual errors associated with (5) and (6) are

defined by (19) and (20). Furthermore, suppose that Ai(,) + j(-Im) 0 for all i,j
and Ai(m) + j(m) 0 for all i, j then,

(a) WmRm(Xm)Wm 0 if and only if Xm XAm, where XAm satisfies

(21) A A^HmXm + XmH. + el2e O,

where el is the first column of the rn m identity matrix. Under these conditions,

(22)

(23)

V
/ (Xm)VmXmem( W.(V.W)-V.)R2hm+l,mVm+

HmXAm 2t- XAmUm -- el2elAhm+l,memXm Xnmemhm+l’mo ]
(b) WmSm(Ym)Vm 0 if and only if Ym YmA, where YmA satisfies

(24) ^! A y.A e 52 e’ O.G.Y + G. +
Under these conditions,

(25)

(26)

Proof. Pre and postmultiplying (19) by Wm and Wm, respectively, gives

WmRm(Xm)Wm

0] 0 0

-(w’v)([x + z[’ + Z)(y;

The result follows immediately since (WVm) is assumed to be nonsingular. Substi-
tuting (21) into (19) gives, following some calculation,

(27)
(s)

F tracer m-vm J"

2hm+l,mVm+l(I’ Wm(VmWm)-1 V,)Rm(X,)Vm’ A XAme.
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which establishes (22). Substituting Xm :- XmA into (13) allows us to factorise

Rm(XAm) [Vm Vm+l] HmXAm + XmHn + el
Ahm+l,memZm 0 Vm+

from which (23) follows immediately since [Vm Vm+l] is part of an orthogonal matrix
and completes the proof of part (a).

The proof to part (b) is identical to that of part (a) except that it uses (14), (20),
and (24). El

An implication of the above result is that as m is increased, the residuals are
confined to progressively smaller and smaller subspaces of INy. This however, does
not imply that the Arnoldi process will produce a sequence of nonincreasing residual
error norms. The residual error normsin (22) and (25) provide a useful stopping crite-
rion in a practical implementation of the algorithm as they allow one to economically
evaluate the error norms and gauge the quality of the low rank approximations. The
key points here are, first, that (21) and (24) are Lyapunov equations of dimension
m that can be solved accurately using the Bartels-Stewart algorithm [2]; second, Pm
and Qm may be efficiently stored as the product of low order matrices; and, third,
the residual error norm does not require the formation of the approximate solutions
at each step. Instead (22), (23), (25), and (26) may be computed via low dimensional
matrix products.

Remark 2.1. Computing the residual error norms IIRAmlIF and IISAmllF at the end
of each Arnoldi process iteration using (22) and (25) may be limited to approximately
6Nm floating point operations if the computations are restricted to matrix vector
products. Alternatively, approximately O(m3) floating point operations are needed
to evaluate either (23) or (26). Thus as m increases, one would switch from evaluating
(23) and (26) to computing (22) and (25) as it became more economical to do so.

The following result gives one perturbation, in exact arithmetic, of the data in
(5) (and similarly for (6)) for which the low rank solutions given in Theorem 2.1 are
the exact solutions. This result is reminiscent of the backward error analysis of [9].

COROLLARY 2.2. Suppose that m steps of the Arnoldi process have been taken and
that Pm := VmXAmVm and Qm := WmYmAWm are the low rank approximate solutions
to (5) and (6), respectively, and furthermore that ZAm and YmA satisfy (21) and (24),
respectively. Then

(29) (A A1)Pm + Pm(A A1)’ + bb’ O,
(30) (A + Q. (A + o,

where

(32)

and

and

A1 (I- Vm(WmVm)-lWm)Vm+lhm+l,mVm,
(I Vm -1,A2 Wmgm,m+lWm+
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(33)

Proof. Substituting Xm :--- XmA into (19) gives

A(V. A, A,X.V.)A +ZmVm) + (Vm bb’
(I V - v

_,

+ VmXAmemhm+l,mVm+l
Equation (29) follows by rearranging (33) and noting that em mVm. The ex-
pression for IIAIlIF follows from the fact that Vm and Vm are parts of an orthogonal
matrix.

Similarly, (30) and the expression for IIA21]F follow by substituting Ym := YmA
into (20) and using the facts that Wm and Wm are parts of an orthogonal matrix.
Finally, observe that A and A2 are at most rank-1 perturbations and that IIAI]]F
and IIA211F may be evaluated without the need to form X or Y.

Remark 2.2. Observe that A3 := A + A2 is also a perturbation on the data in
A such that

(34)
(35)

(A A3)P. + P.(A Aa)’ + bb’ O,
(A A3)’Q. + Qm(A A3) + c’c O.

Furthermore, A3 is at most a rank-2 perturbation, which may be factorised as

(36)
A3 --[wm (I- gm(Wmgm)-lWm)Vm+l]

0 gm,m+ Vm
(I- Vm(WtmVm)-lWtm)hm+l,m 0 win+

Finally, a direct calculation will verify that WA1Vm WmA2Vm WA3Vm O.
From (31) and (32) one observes that A and A2 depend only on the data gener-

ated in the course of the Arnoldi process and, as such, one can envisage an iterative
scheme in which the evolutions of IIAIlIF and IIA211F were monitored for increas-
ing m. This scheme would require 4Nm operations above each Arnoldi step and
2N(m + 1) storage locations for Vm+l and Wr+l and a further 3m2 for Hm, Gm and
W,,Vm, respectively, the latter being updatable through matrix vector products. In
contrast, an implementation that monitors the evolution of the residual error requires
25m3 4- 2min{Nm, m3} floating point operations and a storage of approximately
2N(m + 1) + 7m2 locations making it computationally cheaper but with more storage
needs than a backward error checking scheme.

The following procedures summarise the Arnoldi-Lyapunov solvers proposed in
this section; the first monitors the residual error while the second checks the backward
error evolution.

ARNOLDI-LYAPUNOV SOLVER (RESIDUAL ERROR)
Start" Specify a tolerance e > 0, set an integer parameter m.
Perform m steps of the Arnoldi process to compute Hm, h,,+l,m, V,,, v,,+l,
and }.
Perform m steps of the Arnoldi process to compute C,,, gin,m+1, Win, Win+l,
and 5.
Compute the symmetric matrices XmA and YmA, which uniquely satisfy the

^’ fl2e 0 andlow dimensional Lyapunov equations HmXm nu XmHm --[-el

dlYm + Ymd/m + e 2e = 0, respectively.
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Evaluate IIRAmlIF and IlSmAIIF using (22)and (25)or (23)and (26), respec-
tively. If either IIRAm]]F > e or IIsAmlIF > e increase m and continue the

Arnoldi process, otherwise, form the approximate solutions: Pm := VmXAmWm
y.Aand Qm :-- Wm m Wn.

APNOLDI-LYAPUNOV SOLVER (BACKWARD ERROR)
Start: Specify a tolerance > 0, set an integer parameter m.
Perform m steps of the Arnoldi process to compute Hm, hm+l,m, Ym, Vm+l,
and ft.
Perform m steps of the Arnoldi process to compute Gm 9m,m+ l/Vm Wm+
and 6.
Evaluate IIAIlIF and II/k211F using Corollary 2.2, if either [[AIlIF > e or

IIA211F > e increase m and continue the Arnoldi process, otherwise, compute
the symmetric matrices XA and YmA which uniquely satisfy the low dimen-
sional Lyapunov equations HmXm + Xmm + elfl2e’1 0 and mYm +
YmOm + e52e 0, respectively.

A WmYmAWForm the approximate solutions: Pm := VmXmV and Qm m"

As pointed out earlier, IIAIIF and IIA211F depend entirely on the data generated in
the course of the Arnoldi process, thus they are a priori perturbation bounds that
may be conservative. A posteriori backward error bounds are discussed in 2.3.

2.2. The Lanczos process and Lyapunov equations. The nonsymmetric
Lanczos process is an alternative algorithm used to simultaneously construct bases
for/(;m (A, b) and/:m(At, c’). The process requires A, its transpose, and two starting
vectors b and c to construct bases for parts of the controllability and observability
subspaces that meet a biorthogonality condition (i.e., Wn m I) The aim of this
section is not to consider the different aspects of the Lanczos process, but rather to
show how this algorithm may be used to efficiently solve large Lyapunov equations.
For an analysis of the Lanczos process and some of its breakdown-free variants, we
refer the reader to [5], [14]-[16] and the references therein. A simple version of the
nonsymmetric Lanczos process is given here.

LANCZOS PROCESS

1. Start: Set fll := xand fl.sign[cb] and define v b/5 wl := c’/fl.
2. Iterate: For j 1,2,..., do:

aj := (Avj, wy),
)+ := Avy -ayvj -jvy-1 (when j = 1, take flv0 0),
Cvy+ ATwj aywy 5jwj_ (when j 1, take 51To 0),
flj+ := V/I(Oy+,j+)I, 5j+ := j+l. sign[(Oj+,j+l)],
Vj+I )j+l/Sj+l, Wj+I "j+l/flj+l.

If we denote Vm [V,V,...,Vm] and similarly Wm [Wl,W2,...,wm], we then
have WmV,n I where I Nmxm is the identity matrix. Let us denote by T, the
tridiagonal matrix Tm =- Tridiag[6i+l, ci, fli+l]. Then it is easy to verify that

(37) AVm Vmrm q- m+lVm+le.m,
A Wm W,Tm + ,+w,+lem,(a8)

and WmAVm Tm, where the vector em is the mth column of the identity matrix in
]mxm. Observe that there are infinitely different ways of selecting the scalars 5j+
and flj+ as long as they satisfy (j+l, j+) 5j+lflj+l. In our application, we

select Vl "= b/ and Wl := c’/X" sign[cb]. Then setting 1 X, we have
b Vmel5l, where el is the first column of the identity matrix in ]tmxm. Similarly,
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setting /1 " sign[cb] yields c’ Wme. Assuming that the approximate
solution to (5) has the form Pm :- VmXmV’m, substituting (37) into (13) gives

m+ e’mXm 0 V’m+l

Similarly, suppose that the approximate solution to (6) has the form Q, WYmW.
Then on substituting into (14), we get

(40) Sm(Ym) [Wm Win+l] TmYm + YmTm + el3el Ymem3m+l Wm
m+leYm 0 w+

The Lanczos-Lyapunov solver proposed here seeks symmetric Xm and Y that solve
Problem 2.1. The following theorem gives the solution to Problem 2.1 in the context
of the Lnczos process.

THEOREM 2.3. Suppose that m steps of the Lanczos process have been taken and
that the residual eors are defined by (39) and (40). Then if Ai(Tm) + A(T) 0

for all i, j
R(a) W m(Xm)Wm 0 g and only g Xm .X where X satisfies

(41) TX + XmT + elbe O.

If these conditions are met then the residual eor norm is given by

(42) ]]R]]F :: ]]Rm(X)l] F 2m+lV+lRm(X)gmXm.

(b) VSm(Ym)Vm 0 if and only if Ym Y where X satisfies

(43) L LTY + YTm +ee O.

If these conditions are met then the residual eor norm is given by

(44) ]]S]F "= Sm(Y)]F 2m+lW+Sm(L)WmYe.

Proof. The proof is essentially the same as that of Theorem 2.1 except that it
uses (39)and (40). [:]

Each low dimensional Lyapunov equation may be solved at a cost of 12.5m3

floating point operations and 2.5m2 storage locations. Observe that the fourth step of
the Lanczos process reveals that 5j+ and j+ differ at most by a sign. A consequence
of this is that Tm is almost symmetric in the sense that its superdiagonal entries are
equal to its subdiagonal elements up to an occasional sign. It is therefore natural to
ask whether this structure may be exploited in the solution to the low dimensional
Lyapunov equations (41) and (43). Thus, we seek a sign matrix J such that Tm
JT,J, pre and postmultiplying (41) by g shows that Ymi JXimJ. Hence a saving
of 12.5m3 operations may be incurred since one would only have to solve (41) and
form the matrix J. A simple way to generate the sign matrix J is to employ the
following scheme.

g(1, 1) := -1
For :- 2 to rn

J(i,i) := 1. sign[J(/- 1, i- 1)Tm(i,i- 1)]
End.
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The following corollary gives perturbations on the data in (5) and (6) such that
the low rank approximate solutions given in Theorem 2.3 are exact.

COROLLARY 2.4. Suppose that m steps of the Lanczos process have been taken and
that Pm :- VmXLmVm and Qm :--- WmYmLW’m are the low rank approximate solutions
to (5) and (6), respectively, and furthermore that XLm and YmL satisfy (41) and (43),
respectively. Then

(45)
(46)

(A A)Pm + Pm(A A)’ + bb’ O,
(A A2)’Qm + Q,(A A) + c’c 0,

Furthermore, it holds thatand t2 Vm/m+lWm+lwhere A1 Vm+lhm+lWm

Proof. The proof is essentially the same as that of Corollary 2.2. [:1

It is interesting to note that IIAIIF and IIAIIF may be evaluated directly from the
data generated in the course of the last two steps of the Lanczos process. Compared
to a residual error checking scheme, an implementation based on monitoring the
backward error evolution would require less computations and storage, i.e., IIAIlIF
requires 2N operations while evaluating IIRLmlIF consumes in excess of 3Nm flops.
Observe that A3 := AI+A2 is a perturbation on the data in A such that (A-A3)Pm+
Pm(A A3) -+- bb’ 0 and (A A3)’Qm + Qm(A -/%3) -+- c’c O. Furthermore, A3

is at most a rank-2 perturbation that may be factorised as

0 m+l Wm(47) A3 --[Vm Vm+l] m+l 0 Win+

Finally, a direct calculation will verify that WAV, WmA2Vm WmA3V, O.
In contrast to the Arnoldi method, the Lanczos process yields matrices Vm and

Wm that are no longer orthogonal. Consequently, manipulations with either Vm
or Wm may suffer from numerical difficulties because of possible poor condition-
ing. There is frequently a loss of biorthogonality that may be checked by rebi-
orthogonalising the newly computed Vj+I and Wj+l against Vm and Wm [20]. Finally,
we observe that the Lyapunov equation solvers stemming from the Lanczos process
enjoy lower complexity and storage requirements than Arnoldi solvers presented in

2.1.
2.3. A posteriori backward error. Even though one might elect to monitor

the evolutions of A1, A2 or A3 for increasing m, there is no guarantee that their norms
are nonincreasing. In fact our computational experience has revealed that II  IIF for

1, 2, 3 may behave erratically for increasing m. The conservative nature of a
priori expression for ]]Ai]]F for 1, 2, 3 leads us to seek alternatives that enable us
to assess the quality of the results obtained when exploiting the techniques proposed
in this paper. It is interesting to consider whether, for given Pm and Qm, there exist
other, possibly smaller A1 and A2 for which (29) and (30) hold. Thus the aim of
this section is to derive a posteriori expressions A4, A5 and A6 for A1, A2 and A3,
respectively.

COROLLARY 2.5. Suppose that rn steps of the Arnoldi process have been taken
and that XAm and YmA are the. solutions to the m-dimensional Lyapunov equations (21)
and (24), respectively. Suppose that
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and

s 0

are Schur decompositions in which Er E lRrxr and Es E ltsxs are nonsingular and
Ur E mxr and U8 Imx 8 Then

(48)
(49)

(A A4)Pm -{- Pm(A a4)’ + bb’ O,
(A A5)’Qm + Qm(A A5) + c’c O,

where

(50)
(5)

A4 (I- Vm(WmV.)-lWm)Vm+lhm+l,memUrUV,, , ( y(w’y)-w’).A W.GU .g. .+ .+
Furthermore, the norms are given by Ila4112 2

F hm+l, {1+ II(Wmgm)m 2
2 and Ila51l 2 2 2}11 mGII2.IIGU II2 F gm,m/  X / I<VmWm)-lv’  m/ ll 2

Proof. This proof is essentially the same as Corollary 2.2 except that it uses

Xm := X := UEU’ and Ym "= Y UsEsU’ and the facts that U and Us are

parts of orthogonal matrices. A more detailed proof may be found in [12].
Remark 2.3. It is clear from (31) and (50) that IIA411F < IIAIlIF since IlemUll2 G

1. Similarly, IIA511g < IIA211F since IlemUsll2 G 1, in the event that XA and yA have
rank equal to m IIAlllg IIA411g and IIA211g [IA511g, respectively. Finally, observe
that A4 and A5 are rank-1 perturbations and that A4 + A5 =: A6 is a perturbation
that simultaneously satisfies (34) and (35).

A posteriori perturbation bounds may be derived for the nonsymmetric Lanczos
process that we now state without proof.

COROLLARY 2.6. Suppose that m steps of the Lanczos process have been success-

fully completed and that XLm and YmL are the solutions to the m-dimensional Lyapunov
equations (41) and (43), respectively. Suppose that

and

are Schur decompositions in which Er E Irxr and Es E 118x8 are nonsingular and

Ur E Imxr and Us E Imx s Then

(52)
(53)

(A A4)Pm -- Pm(A A4)’ -- bb’ 0,

(A A)’Q. + Q.(A A) + c’c 0,

where

(54)
(5)

A4 vm+16m+ emUrU
A V.GU’e,fl,+w,+,
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and the norms are given by IIA411F l[o + ll .lIWmU U  mll2 and IIA5ll 
Observe that as with the Arnoldi process, if XmL and YmL have rank equal to

m, then A and A defined in (52) and (53) degenerate into A1
w respectively. Furthermore, A6 := Aa + A is a rank-2and A2 Vmm+l re+l,

perturbation of the matrix A such that (A- A)Pm + Pm(A- A)’ + bb’ 0 and
(A A6)’Q, + Q,(A A6) + c’c O.

3. Model reduction using Krylov subspace methods. The aim of this sec-
tion is to consider the Krylov subspace techniques described above to provide com-
putationally efficient model reduction schemes for large scale systems. Denoting a
transfer function by F(s)

(56) F(s) d + c(sI- A)-lb - [ A b I INN C IN"c d
A b, and dI.

The task is to determine a reduced order model Fm(s), where

(57) Fm(s)=dm + c.(sI-Am)_bm S_.
r Am bm

imAm E Irem, bm, cm and dm I,

that approximates the high dimensional model F(s). Associated with the linear sys-
tem in (56), we define the controllability and observability Lyapunov equations

(58) AP + PA’ + bb’ O,
A’Q +QA +c’c=O,

respectively. The low rank approximate solutions to (58) and (59) may be computed
via low dimensional calculations as demonstrated in Theorem 2.1. It is natural to
question whether the approximate grammians Pm and Qm are the exact controlla-
bility and observability grammians of a perturbed linear system. From Remark 2.2,

Lr XALr’ and Qm AWmYmWn are, respectively, theit is apparent that Pm m m" m

controllability and observability grammians of FA(s), where

(60) FA(s)=d+c(sI-A+A3)-lb [A-A31blcd
where XmA and YmA satisfy (21) and (24), respectively, and A3 is defined in (36). Al-
ternatively, one may employ the relations derived for the Lanczos process in 2.2 to
conclude that Pm VmXLmWm and Qm WmYmLWm are, respectively, the control-
lability and observability grammians of FA(S) in which XmL and YmL satisfy (41) and
(43), respectively, and A3 is defined in (47). The main results of this section show that
(60) is equivalent to a low dimensional linear system and gives computable expression
for an oo error between the high dimensional and low order approximate model.

From (56), F(s) d + cfb(s) d + fc(s)b, where fb(s) (sI A)-lb and
fc(s) c(sI- A)-; for later reference, fb(s) and f(s) may be considered as the
solutions to the coupled linear systems

(61) (sI- A)fb(s) b,
(62) f(s)(sI- A) c,
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respectively. The focus of what follows is to approximate F(s) by obtaining ap-
proximate solutions to the linear systems (61) and (62). The approximate solutions
fb,m(S) and fc,m(S) to the linear systems (61) and (62) are constructed to satisfy the
following two conditions: (i) fb,m(S) e 1Cm(A,b), i.e., fb,m(S) VmFb(s), such that
m(A’, c’) _[_ {(sI- A)fb,m(S) b}; (ii) fc,m(S) e m(A’, c’), i.e., fc,m(S) Fc(s)Wm,
such that {f,m(S)(SI- A)- c} _L 1Cm(A,b). Since fb,m(S) and f,m(S) are approx-
imate solutions to (61) and (62), and F(s) d + cfb(s) d + f(s)b, we consider
Fm,1 (s) d + cfb,,(S) and Fm,2(s) d + fc,m(s)b as low order approximations to
F(s). The problem we wish to solve may be stated as follows.

PROBLEM 3.1. Find approximate solutions fb,m(S) VmFb(s) and fc,m(S)
Fc(s)Wm to (61) and (62), respectively, which satisfy the Galerkin type conditions

(63)
(64)

Wm{(SI- A)V,Fb(s) b} 0

{F(s)Wm(SI A) c}Vm 0 Vs.

The following is referred to as a basis change in the state space realisation of F(s)

(65) F(s) [ A b I T---,F(s) s-- I TAT-I Tb
c d cT- d

where T is nonsingular. The next lemma is needed in the proof of the main result.
LEMMA 3.1. Suppose that m steps of the Arnoldi process have been completed

and that A3 is given by (36), then, -W(A A3) + WmAVm(WVm Wm O.

Proof. It holds that

WA3 WmA(I Vm(WVm)-Wm).... , ( y(w’y)-lw’)I/I/m mgm,m+ m+
(_ y(w,y)-lw,)--emgm,mTlWm+l

O

since Wmwm em [-]

The following theorem gives the solution to Problem 3.1.
THEOREM 3.2. Suppose that m steps of the Arnoldi process have been taken and

that WmVm is nonsingular, then the following are true.
(a) The Galerkin conditions in (63) and (64) are satisfied if and only if Fb(S)

(sI- [-Im)-e and Fc(s) 5e (sI- m)-. Under these conditions, the residual
error norms are

(66) lib-(sI-A)V.F(s)II= hm+l,ml[ [ (WtmVm)-lWtmvm-t-l

(67) I1- F=()W’(- A)I[ gm,m+l 1

2

IIF=()mll,
2

(b) FA(s), Fm,l(S), and F.,2(s) are different realisations of the same transfer
function, namely,

(68) FA (8) K Fro, (8),
(69) FA(S) Fm,2(s),
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where

(70) F(s) [A-Aa[b 1,,c d

(1) F,I() + cVF() = [ (W’V)-IW’AVcv (W’V)-W ]
Cm d

(72) F,(s) d + Fc(s)Wb cVm(WVm)_ d 5e d

(c) X and (VWm)Y(WVm) are the controllability and observability gram-
mians of Fm,l(S).

(d) (WVm)Xm(VWm) and Y are the controllability and observability gram-
mians of Fm,2 (s).

Proof. The residue associated with the approximate solution to (61) is (sI-
A)VmFb(S)- b, premultiplying by W and substituting (17) leads to

Wm {(sI- A)V.Fb b} W:Vm{(SI (WVm)-IWAVm)Fb(s)
-(WmYm)-lWmb)
(WmVm)-l {(sZ-.rn)Fb(8)-el,/3}.

The result follows immediately since (WmVm) is assumed to be nonsingular. Similarly,
postmultiplying the residue associated with the approximate solution to (62) and
substituting (18) leads to Fc(s) 5e(sI- (m) -1. For the/2 error bounds, we
have

II -

from which follows the relation in (66); similarly, for (67), which completes the proof
of part (a).

We establish that F(s) Fm,l(S) by taking the difference between the two
transfer function models

A-Aa 0
(73) Fzx(s) Fro,l(8) 0 (WVm)-IWmAVm (WYm)--iWb

0

Consider the following basis transformation T where

[ i 0]T= V.-(Wn m)1Win I and T-1 [ i 01(WmYm)-lwm I

which yields

(74)
F, () F., ()

A- Aa
2_ (WVm)-IW(AVm(WVm)-IW_A+A3)

0

0
(WVm)-IWmAVm

b
0
0
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since c’= Wme15. By Lemma 3.1, the (2,1) block of (74) is zero, from which we con-
clude that FA (s) Fm, (s) 0 since the realization in (74) has N unobservable and
m uncontrollable modes thus establishing the first equivalence. FA(S) =-- Fm,2(s) fol-

lows by applying the basis transformation T (WmVm) to Fm,2(s) to give Fm,2(s) T_
Fm,l(S); the second equivalence is immediate, thus completing the proof of part (b).

Using (WmVm)- Wb e, it follows that XmA is the controllability grammian
of (71). For the observability grammian, we observe that

(75)
(76)

WmAVm (WmVm)-(GmWm + gm,m+lemWmq_l)Ym,
cy. e’WY..

Substituting (75) and (76) into (71) gives the observability Lyapunov equation

(77)
Z(WtmVm)-l(GmWm -- gm,mq-1 mWmw1)Vm

G’ WV. =0,+ + +
for the realization in (71); the unknown grammian is Z. Pre and postmultiplying (77)
by (VmWm)- and (WmVm)- yields

V -1 e -1(VnWm)-lz(Wn m) (Gin -- gm,m+l mWm+i(WnVm)
(78) --1+ (eZ 2t-(UnWm Wm+l mgm,m+l)(UmWm) 1Z(WmUm

__
e1(2e --0,

from which we deduce that Z (VmWm)YmA(WmVm) is the observability grammian
of (71) and completes the proof of part (c).

The proof to part (d) is identical to part (c) except that it uses (72).
Remark 3.1. We note that the Galerkin type conditions of (63) and (64) are

analogous to parts (a) and (b) of Theorem 2.1, respectively; similarly, the residual
error norm expressions in (66) and (67) are analogous to (22) and (25), respectively. In
a practical implementation, the equalities in (66) and (67) enable us to economically
monitor the progress of the iterative process at each step. An open issue is that of
obtaining computable expressions for the error liE(s)

Remark 3.2. An implication of the orthogonality property reported in Remark
2.2 is that the perturbation is confined to a progressively smaller subspace of NNxN
for increasing m. Thus A3 may be employed as a stopping condition for an iterative
model reduction algorithm in which IIi311F reports on the size of the perturbation
that is effected on A to obtain a reduced order model of state dimension no greater
that m.

Remark 3.3. It is interesting to observe that the realisations of Fm,(s) and
Fm,2(s) given in Theorem 3.2 depend only on the data generated in the course of the
two Arnoldi processes, and that despite the relations between the low dimensional
realisations and the low order Lyapunov equations in (21) and (24), one can construct
Fm,i (8) and Fro,2(8) without having to form XmA and YmA.

It is clear from Corollary 2.2 that A3 defined in (36) is not the only perturbation
that leads to the reduced order models of Theorem 3.2. The effect of Aa is to perturb A
in such a way that the nonminimal modes in the perturbed system are simultaneously
uncontrollable and unobservable, while, to obtain a reduced order model, it is sufficient
to perturb A so as to obtain either N rn uncontrollable or unobservable modes.

COROLLARY 3.3. Suppose that m steps of the Arnoldi processes have been com-
pleted and that A and A2 are defined by (31) and (32) respectively, then,

F,,3(s) :=
c d =- cVm (WmYm)-ld wmb ]
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Proof. We establish that Fm,3(s) --- F,,I (s) by taking the difference between the
two transfer function models

(79)
A-A1

0
c

0
(WVm)-WAV.

0

Consider the following basis transformation T where

which yields

(8o)
(s)

A-A1
0

(A- /l)Vm Vm(WV.)-IWmAV.
(WVm)-IWAVm

0 ](WVm)-IWb
0

Since b V,el, a routine calculation shows that the (1,2) block of (81) is zero,
from which we conclude that Fm,3(s)- Fm,l(S) 0 since the realisation in (81) has
m unobservable and N uncontrollable modes thus establishing the first equivalence.
Fm,4(s) Fm,2(s) follows in an analogous way, but by applying the transformation

to the difference Fro,4(8) Fro,2(8), thus completing the proof.
It is apparent from Theorem 3.2 and Corollary 3.3 that

(81) [A-A31 b]’c d --- [ A-Alc db ] and [A-A31b]cd [ A-A21b]cd
which may be demonstrated by, respectively, applying the basis changes

T- Ym(WYm)_lw I and T=
0

Ym WYm ]
to the differences between each transfer function in (81). The perturbation A1 to the
transition matrix of F(s) yields N- m uncontrollable modes, while the perturbation
A2 gives rise to N-m unobservable modes. It is interesting to observe that despite
the fact that A, A2 and A3 have different Frobenius norms, each perturbed linear
system is a different realisation of the same transfer function.
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The following theorem states the findings above in the context of the Lanczos
process.

THEOREM 3.4. Suppose that m steps of the Lanczos process have been taken and
that A, A2 and A3 are defined in Corollary 2.4 and (47), then, the following are
true.

(a) The Galerkin conditions in (63) and (64) are satisfied if and only if Fb(S)
(sI-Tm)-le5 and Fc(s) #l(SI-Tm)-l; furthermore, the residual error norms
are

(82) lib- (sI- A)VmFb(s)llo II.Om+ l12" II#mFb(S)llo ,

(b) FA(s) and Fro(s) are different realisations of the same transfer function,
namely, FA s =_ Fm s where

(84)

FA(s) s_. A-A3 b I s [ WmAVm e151 ]c d
and Fm (8) 1e d 1e d

(c) xL and YmL are the controllability and observability grammians of Fm (s).

(d) [A-Allb I A-A21bc d c d c d le d

Proof. The proof is essentially the same as that of Theorem 3.2 and Corollary 3.3
except that it uses the fact that W(A-

The appeal of the Lanczos process in model reduction stems from the simplicity
of the formulas derived in Theorem 3.4. The reduced order model and the backward
error perturbations are expressed in terms of the data generated in the course of the
Lanczos process. Thus despite the relations with Lyapunov equations, the reduced
order model may be constructed without the need to form XLm and YmL. The Arnoldi-
Lanczos schemes suggested in this paper are not always guaranteed to yield stable
reduced order models. A possible remedy to this problem is to employ an implicitly
restarted Lanczos process to compute stable redhced order models. This method was
proposed in [8].

The following procedure summarises the findings of this section.

KRYLOV SUBSPACE MODEL REDUCTION ALGORITHM

Start: Specify tolerances - > 0 and e > 0, set an integer parameter m.
Arnoldi
Perform m steps of the Arnoldi process with (A, b) to produce [-Im, hm+l,m,
Vm, Vm+l, and 3.
Perform m steps of the Arnoldi process with (A, d) to produce m, gm,m+l,
Wm, Wm+, and 5.
Form the reduced order model from either (71) or (72).
Test the o errors in (66) and (67), if either (66) > e.or (67) > e increase m
and continue the Arnoldi process.
Lanczo8
Perform m steps of the Lmczos process with A, b,
Wm Win+l, 5 5m+1, and Pm.
Form the reduced order model from (84).
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Test the/2 errors in (82) and (83), if either (82) > e or (83) > e increase m
and continue the Lanczos process.

Remark 3.4. The Arnoldi- and Lanczos-based model reduction algorithms pre-
sented above are mathematically equivalent in the sense that they produce the same
low order transfer function. This equivalence can be established by using (15), (16),
(37), and (38) and the fact that Vm (similarly, Wm) computed from the Arnoldi and
the Lanczos methods are different bases for the same space.

In practice, it is desirable to perform model reduction of multivariable linear
systems in which F(s) D + C(sI A)-IB where B E INp and C E IqN. To
this end, one may employ block Krylov schemes to compute the bases Vr and Wm
of Em(A,B) and m(n’, C’), respectively. The reduced order models obtained using
such schemes are given by_

[ (W’mVm)-lWmAVm
Fm,l (S) cv.

(Win m)W: B
D

Fm,2(s) 8= WnAVm(WnVm)
-1CV.(W.V.) WBD ]

and

for the block Arnoldi process, assuming that (WVm) is nonsingular, and by

F,= CVm D

for the block Lanczos process. We refer the reader to [5], [11], [15] for the implementa-
tion details of block Krylov methods. In the absence of breakdown, one may derive a
nonsymmetric block Lanczos algorithm based on a generalisation of the vector scheme
suggested in [5]. The behaviour of such an algorithm remains an open area of research
in the presence of breakdowns.

Suppose that m steps of the Arnoldi process have been taken and that either

hm+l,m 0 or gin,m+1 0. Three possible scenarios may then arise. The first,
hm+l,m 0, implies that Vm+l may not be computed and the process yields the
exact solution; P* Pm VmXAmVm; Qm WmYmAWm is a low rank approximate
solution to (6). The matrix Vm forms an orthogonal basis for the controllable space,
which implies that the reduced order models given by Theorem 3.2 are equivalent to
the high order model F(s) in (56). The second, gm,m+l 0, implies that Wm+l may
not be computed and the process yields the exact solution; Q* (m WmYmAWm;
Pm VmXAmVm is a low rank approximate solution to (5). In this case, Wm forms an
orthogonal basis for the observability space and the reduced order models of Theorem
3.2 are equivalent to F(s). The third, hm+l,m 0 and gm,m+l 0, implies that Vm+l
and Wm+l may not be formed and the process yields exact grammians; here, Fm,i(s)
F(s) for 1, 2. A similar type of breakdown is experienced in the Lanczos process
if either )m+l 0 or bm+l 0. The key observation associated with these types
of breakdowns is. that the reduced order models are minimal realisations of the high
order F(s); this connection was first established in [14]. TheLanczos process might

"!
Wsuffer from a breakdown in which )m+l = 0 and bm+l - 0 and yet Vm+ m+l 0;

similarly, for the Arnoldi scheme, (WmV,) might be singular. The implications of
such breakdown on the model reduction algorithms is not wll mderstood and is the
focus of ongoing research.

Observe that if the solutions to the m-dmensional Lyapunov equations have rank

< m, F,,i(s) for 1, 2 are o minimal realisations. By exploiting Xm and Ym one
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readily computes the balancing transformations and the balanced Fm,i(s)’s may then
be truncated to yield minimal realisations [13]. An alternative, and numerically sound
approach, is to utilise the hybrid scheme proposed in [1]. This procedure combines the
Krylov subspace methods to the balancing procedure via orthogonal transformations
without computing the potentially ill-conditioned balancing transformation. For the
implementation details, we refer the reader to [1].

4. Model reduction of large scale discrete time systems. The focus of
this section is to extend the findings above to obtain model reduction schemes suited
to large scale discrete time systems. The extensions are fairly straightforward and are
stated without proofs.

The need for discrete time model reduction schemes arises when high order mod-
els described by difference equations are approximated by those of lower dimension.
High order models arise in such areas as the modeling of digital circuits, communica-
tion networks, and model identification. Consider the discrete time linear dynamical
system

(85) Xk+l AXk -F buk A E ][NxN, b ]N,
(86) Yk cx + duk c’ N, d .
Associated with this linear system are the controllability and observability Lyapunov
equations defined as

(87) APA’ P + bb’ O,
(88) A’QA- Q + c’c O,

respectively. Low rank solutions Pm VmXmVm and Q, WYW are sought
such that the residuals APmA-Pm +bb and AQmA-Qm+cc satisfy Galerkin-type
conditions on the Krylov spaces m(A, c) and m(A, b), respectively. Assuming that

WVm is nonsingular allows the residual error to be expressed as

(89) R(X) [V (-- V(WV)-W)v+]
HmXmHm Xm +1 1 Xmemhm+l,mX

X 2hm+l,me m hm+l,memXmem

Similarly, associated with (88), the residual error function for any given approximate
solution of the form Q WmYW may be written as

(0) S(Y) [W (- W(%W)-l%)+]

x GYO-Y+ee

x
win)Wm+l

-1

where V, Vm+, hm+,m and Win, Wm+, gm,+ are defined from the data gen-
erated in the course of the two Arnoldi processes associated with (A, b) and

respectively.   thermore, and defined and
spectively. The following theorem solves Problem 2.1 in the context of discrete time
systems.
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THEOREM 4.1. Suppose that m steps of the Arnoldi process have been taken and
that the residual errors associated with (87) and (88) are defined by (89) and (90). Fur-
thermore, suppose that IAi(m)(j(Y-Im))-ll 1 for all i, j and IAi(m)(j(m))-ll
1 for all i, j then,

(a) W’mRm(Zm)Wm 0 if and only if Xm XAm, where XAm satisfies
(91)
Under these conditions,

mXAmUm XA + el2e O.

HmXmHm xAm + elj2el
hm+ A1,memXm h2m+l,memXmem F"

(b) V’mSm(Ym)Vm 0 if and only if Ym YmA, where YmA satisfies
(.) yAm yA + e162el O.

Under these conditions,

amYmam-Ymn+el6e’l Ymnemgm,m+l
A 2

(e) There ezist rank-1 perturbations A (I- V(W’V)-W’)+h,+I,,v’
w’ (I- V,,(W’V)-Iw’) such thatand A wm 9ra,m+l m+l

(A )P(A )’ P +’ 0,

(a )’#(a ) # +’ 0,

and

t+ Iltw v )-lw 
and

111 {1+ ]](gw)-vw+ 2

Remark 4.1. Observe that a := 1 + is a perturbation on the data in A
such that

(A )P(A )’-P +’ 0,

(A )’(A ) +’ 0.

rthermore, a is at most a rank-2 perturbation which may be factorised as

[ 0 gm,m+l][ (- Y(W:Y)-lw)v+l] h+,, o

inally, a direct calculation will verify thatWV WV WaV 0.
Note that despite the form of the Lyapunov equations in (87) and (88), the results

of Theorem 4.1 are the same as those obtained in 2.1. Theorem .2 may be restated
in its exact form as presented in a. The main differences are that V and W
are derived from the two Arnoldi processes associated with (A, b) and (A’, c’),
respectively, and where A, b, and d originate from the discrete time model defined
in (8g) and (86); furthermore, X and Y are the solutions to the low dimensional
discrete time Lyapunov equations (91) and (92), respectively. One may apply the
Lancos process to the discrete time model reduction problem in a similar fashion as
presented in g to obtain a variant of Theorem g.4 the derivation of which we omit.
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5. Numerical experiments. The purpose of this section is to illustrate with
the help of two examples the behaviour of the error formulas presented in 2 and
3. The tests reported here were performed on a Sparc-10 Sun workstation using
Pro-MATLAB 4.0 which carries out operations to a unit round-off of 2.22 10-16.

Example 1. The aim of the first example is to illustrate the behaviour of the
backward error formulas associated with the Lyapunov equation solvers of 2. This
example has been derived from the discretisation of a partial differential equation of
the form

02u(x, y, t) ( Ou(x, y, t) Ou(x, y, t) )(93) -Au(x, y, t) + OxOy + 2Ze-Y Ox + coy

t) O (x, v, t)
Ot

x, y E t,
u(x,y,O)=uox, y ,

v, t) v), t >_ 0, x, v

where denotes the set of points in the unit square (0, 1) (1, 0) and 0 denotes
the boundary. Setting a := 3, := 0.5, and /:= 20, the discretisation is carried out
using 102 points in both the x and y directions leading to a linear system of the form

(94) Aw(t) + bg(t),
f(t)

where A is nonsymmetric sparse matrix of dimension N 1002 with nz 88804
nonzero elements (i.e., with a density of approximately 0.09%). The vector e is the
vector of ones and b :- e,0.1, finally, c is a random vector in lN. Tests with other
choices of b and c showed similar results.

Figures 1 and 2 report on the evolutions of llAillF, 1,2,4,5 for the Arnoldi
and Lanczos-Lyapunov equation solvers. The tests show that IIAa,DIIF (the lower
traces) are significantly smaller than IIA1,211F (the upper traces) when either scheme
is employed. Figures 1 and 2 confirm the fact that the a priori backward error bounds
are conservative and do not provide an accurate means of gauging the progress of the
iterative process. However, the a posteriori bounds indicate that accurate approximate
solutions may be obtained for small rn. The a posteriori perturbations A4 and A5
may not be the smallest perturbations for which one can compute an rnth order
approximate model; the problem of determining such perturbations remains open.

Example 2. The aim of this experiment is to test the effectiveness of the model
reduction schemes proposed in 3. The problem is set up with A ].NxN where
N 100 and the top left-hand 2 2 block of A is set to

-1 100 1-100 -1

while the remaining nonzero elements of A are uniformly distributed in [0,-1] and are
all located on the leading diagonal. Consequently, all the system poles are real except
for two that are -1 =t= 100j. The first five elements of b and c are uniformly distributed
in [0, 1] while the 95 remaining elements are uniformly distributed in [0, 1/25]. The in-
finity norm of F(s) is given by the radius of the smallest circle centered at the origin to
enclose the Nyquist plot of Fig. 3; alternatively, it may be computed from max IF(jw)l



624 IMAD M. JAIMOUKHA AND EBRAHIM M. KASENALLY

10

10

10

10

10

10I
|0

0 10 20 30 40 50 60 70 80 90 100

Iterations

FIG. 1. Evolutions of IIAx,211F (upper tracs) and IIA4,511F (Zoner tracs) using the Arnoldi-
based method in Example 1.

for all w e . In this case, IIF(Jw)ll 3.0716. Table 1 shows the evolution of the
: error expression of (66) and (67) denoted here by Errl and Err2, respectively, for
the Arnoldi model reduction algorithm. The table indicates that Errl and Err2 fall in

TABLE
Residual error norms associated with the Arnoldi model reduction scheme in Example 2.

In

1 1.2998e+1
4 8.2001e-1
7 1.2076e-1
10 4.8653e-2
13 7.2936e-2

Errl Err2 In

1.3398e+1 2 1.2912e+0
3.4535e- 5 4.5508e-
1.0679e-1 8 7.4857e-2
5.6193e-2 11 5.7017e-2
6.9952e-2 14 7.1812e-2

Err1 Err2 In

1.2052e/1 3
3.2630e- 6
6.8587e-2 9
5.9666e-2 12
7.5504e-2 15

Errl Err2
5.2256e- 1
2.0198e-1
5.6592e-2
5.9939e-2
9.5773e-2

1.7498e- 1
1.9200e-1
6.2173e-2
5.5473e-2
8.8814e-2

magnitude as rn increases. However, as is well known, Galerkin conditions of the type
in (63) and (64) do not guarantee a nonincreasing evolution of Err1 and Err2. To
maintain orthogonal and biorthogonal bases for lm(A, b) and .m(A’, c’), we resorted
to reorthogonalisation and rebiorthogonalisation for the Arnoldi and Lanczos pro-
cesses, respectively. As predicted by Proposition 3.4, the sequence of Lanczos errors,
(82) and (83), were the same as Table 1. Figure 3 compares the frequency responses of
F(s) and three low order approximate realisations obtained from the Arnoldi model
reduction scheme. The low order approximate models have four, six, and eight states,
respectively. Each frequency response is performed over [10-3rads/s, 103rads/s] with
the lowest frequency point close to the positive real axis and the highest frequency
point almost at the origin. Observe that the four frequency responses are indistin-
guishable over high frequencies with a progressively smaller error over low frequencies
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FIG. 2. Evolutions of II,x,211F (upper ras) and 11/4,511F (Zow) using the Lanczos-
based method in Example 1.

as the state dimension is increased. This behaviour is reflected in the L error being
significantly smaller than IIF(s)lloo for increasing state dimension as shown in Table
2. Table 2 also lists the L forward error associated with the balanced truncation
algorithm [13].

The tabulated results indicate that the balanced truncation algorithm enjoys a
rapid forward error decay for increasing state dimension while the convergence rate
of the Krylov based method is much slower. This superior convergence behaviour is
due in part to the large volume of computation associated with solving (5) and (6).

TABLE 2
Forward error IIF(s)- Fm(s)l[ using the Arnoldi-Lanczos and balanced truncation model

reduction schemes.

m
1 2.8417e-t-0
2 3.0724e-t-0
3 2.2053e-t-0
4 1.5677eT0

Krylov bal/trun m
7.4438e- 1 5
1.4023e-t-0 6 2.3708e--
7.4556e-1 7 1.6710e-1
1.1623e-1 8 1.4313e-1

Krylov bal/trun
6.6195e--1

m
1.4232e-2 9 1.2821e-1
1.5040e-3 10 1.1953e-1
2.1184e-4 11 1.1108e-1
2.2361e-5 12 1.0036e- 1

Krylov bal/trun
3.9387e-6
6.6290e-7
7.8445e-8
5.7788e-9

6. Conclusions. The aim of this paper has been to present and test several
model reduction algorithms suitable for computing low dimensional approximate mod-
els of large scale continuous and discrete time systems. By exploiting Krylov subspace
methods, approximate solutions to the controllability and observability Lyapunov
equations have been found for which the residual errors satisfy Galerkin type condi-
tions. Furthermore, low dimensional expressions have been derived for the residual
error norms and a priori and a posteriori backward perturbation norms.
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FIG. 3. Frequency responses for the four models of Arnoldi based approximations, Original w_;
four-state-.-.-.-; six-state and eight-state

We show that the low rank approximate grammians are the exact grammians
to a perturbed linear system in which the perturbation has at most rank 2. We
demonstrate that this perturbed linear system is equivalent to a low dimensional linear
system with state dimension no greater than m. Furthermore, exact low dimensional
expressions for an associated i: error are presented.
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FAST TRANSFORM BASED PRECONDITIONERS FOR TOEPLITZ
EQUATIONS*

E. BOMANt AND I. KOLTRACHT$

Abstract. We present a new preconditioner for n n symmetric, positive definite Toeplitz
systems. This preconditioner is an element of the n-dimensional vector space of matrices that are
diagonalized by the discrete sine transform. Conditions are given for which the preconditioner is
positive definite and for which the preconditioned system has asymptotically clustered eigenvalues.
The diagonal form of the preconditioner can be Calculated in O(n log(n)) operations if n 2k 1.
Thus only n additional parameters need be stored. Moreover, complex arithmetic is not needed.
To use the preconditioner effectively, we develop a new technique for computing a fast convolution
using the discrete sine transform (also requiring only real arithmetic). The results of numerical
experimentation with this preconditioner are presented. Our preconditioner is comparable, and in
some cases superior, to the standard circulant preconditioner of Tony Chan. Possible generalizations
for other fast transforms are also indicated.

Key words. Toeplitz matrix, conjugate gradient algorithm, preconditioner, fast sine transform
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0. Introduction. The preconditioned conjugate gradient algorithm (PCGA)
is traditionally used to solve sparse systems of linear equations; see [6] or [13], for
example. In recent years, starting with the proposal of Strang [14], this algorithm
has also been used for computations with dense structured matrices, in particular for
symmetric, positive definite systems of equations

(1) Ax b,

where the coefficient array is Toeplitz (see [2] and [3], for example.) Toeplitz matrices
are constant along the diagonals A (ai_j)n-1i,j=0. It is assumed that A is Toeplitz
throughout this paper.

The successful application of the PCGA to (1) relies on the existence of a good
preconditioner; that is, a matrix P such that the following properties are satisfied.

Property 1. The spectrum of p-1A is clustered.
Property 2. P is positive definite.
Property 3. The complexity of computing P is comparable to the complexity of

computing Ax.
Property 4. The complexity of solving Pz b, for arbitrary b, is comparable to

the complexity of computing Ax.
Since Strang’s proposal several investigators have been successful in choosing

preconditioners for Toeplitz problems from among the set of circulants. Circulant
matrices form a subspace of the vector space of Toeplitz matrices and may be char-
acterized as those matrices that are diagonal in the orthogonal basis defined by the
columns of the discrete Fourier transform (DFT); see [4]. Thus if P is circulant and
F is the DFT then there is a diagonal matrix A such that P FAF*. Since A can
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be computed in O(n log(n)) operations (see [4]), this factorization allows one to solve
Pz b for arbitrary b e Rn in O(n log(n)) operations provided n 2k for some inte-
ger k. Since the computation of a matrix-vector product where the matrix is Toeplitz
can be performed in at most O(n log(n)) flops one arrives at an O(n log(n)) algorithm
for solving Toeplitz systems, provided that the spectrum of p-1A is clustered as ex-
plained in the next section. This is faster than more traditional O(n2) algorithms like
Levinson’s algorithm ([10]), for example.

Strang built a circulant preconditioner for Toeplitz problems in [14] by copying the
n

central diagonals of A around to complete the circulant. That is, if A (ali_jl)j=
then Strang’s preconditioner is given by

nPiY an-]i-j] if ]i j] > 5"

In [3], Tony Chan built a circulant preconditioner by taking

P argmin JIM-
Mcirculant

where F denotes the Frobenius norm, and in [15] Tyrtyshnikov built a circulant
preconditioner by taking

P- argmin IlI--
Mcirculant

In [1], Raymond Chan showed that as n grows, all of the above preconditioners give
similar asymptotic clustering of the spectrum of P-A when A is a finite section of a
singly infinite Toeplitz matrix associated with a Weiner class function.

In this paper we study preconditioners based on the fast sine transform (FST),
called S-diagonal preconditioners, and compare them with Tony Chan’s circulant
preconditioner on some common Toeplitz problems. We also indicate generalizations
to other fast transforms. Sl-diagonal preconditioners can be implemented quickly
and do not require complex arithmetic (as do the circulant preconditioners listed
above). They are banded when the Toeplitz matrix is banded and, in this case,
perform better than the circulant preconditioner in our numerical experiments.

This paper is organized as follows. Section 1 is a brief outline of the PCGA.
Section 2 develops the underlying theory that supports the generation of new precon-
ditioners for Toeplitz equations, based on a given fast transform, and shows how the
circulant matrices fit into this broader scheme.

In 3 we show how to apply a symmetric Toeplitz matrix to an arbitrary vector
by embedding the matrix into an Sl-diagonal matrix.

Section 4 develops a new preconditioner for banded, symmetric Toeplitz systems.
This new preconditioner is based on the discrete sine transform in the same way that
circulants are based on the DFT. When A is banded, the spectrum of the product
P-A will not only be clustered, but all eigenvalues are equal to 1 except for a few
outliers. The number of the outlying eigenvalues depends only on the bandwidth of
A.

Under certain conditions this preconditioner also works for full Toeplitz systems.
Asymptotic clustering of the eigenvalues of P-A when A is full is shown in 4.2.

The results of numerical experimentation with the new preconditioners are pre-
sented in 5, and the Appendix indicates how preconditioners based on some other
fast transforms may be generated.
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1. The preconditioned conjugate gradient algorithm (PCGA). The PCGA
for solving (1), as given in [6], follows here.

ALGORITHM 1. Set x0 0, and r0 b. Then for k 1, to convergence repeat
the following.

(i) If rk-1 0 set x Xk- and stop.
(ii) Otherwise,
1. Solve Pzk-1 rk-1 (This is the preconditioning step.)

T T r2. Set k Zk_lrk-1/Zk_2 k-2, 1 0
3. Set Pk Zk-1 -" kPk-1, p ZO

T /pApk4. Set ak Zk_lrk-1
5. Set Xk Xk-1 + OkPk
6. Set rk rk-1 okApk

Applying the PCGA to (1) is equivalent to applying the conjugate gradient al-
gorithm to 2 , where P-/2Ap-/2, 5c P/2x, and - P-I/2b (see [6]).
The important feature of this algorithm is that if it is performed in exact arithmetic,
it will converge to the correct solution in k _< n iterations where k is the number of
distinct eigenvalues of . This is because after the jth iteration of the PCGA,

has minimal norm over all vectors spanned by the Krylov vectors"

Clearly the choice of the preconditioner is all important. A preconditioner that
reduces the number of distinct eigenvalues of P-/2Ap-1/2 also reduces the number
of iterations required for convergence. We remark that the spectra of P-1/2Ap-I/2
and p-1A are equal since the two matrices are similar. We will work with the latter
matrix hereafter.

In practice it is rarely possible to actually reduce the number of distinct eigen-
values. However, Jennings [8] shows that if the eigenvalues of P-1A are "clustered"

if the eigenvalues occur in q < n clusters the convergence characteristics of the
PCGA are almost as good as if there were only q distinct eigenvalues.

2. T-diagonal matrices.
DEFINITION 1. Let T be an arbitrary, nonsingular matrix. A matrix M is T-

diagonal if T-MT is diagonal.
DEFINITION 2. For a given T, denote by DT the n-dimensional vector space of

all T-diagonal matrices.
Much of the recent work on preconditioners for Toeplitz systens is focused on

circulant matrices that are F-diagonal, where F denotes the DFT,

F :1 (exp(jk2nTi))
n-I

j,k--O

The key to the use of circulant matrices as preconditioners for Toeplitz systems of
equations is the following well-known property (see [4]). If C is circulant and c is the
first row of C, then VcF is a row-vector whose elements are the eigenvalues of C.

This is a special case of the next proposition. It shows that if T and M
DT are given, it is not necessary to compute T-MT to produce the diagonal form
(eigenvMues) of M.
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DEFINITION 3. Let x (Xl,... ,Xn). Then A(x) =_ diag{xl,... ,Xn}.
Thus ifxi 0, 1,...,n, then [A(z)] -1 diag ,..., x-:
Some care must be taken here. We will need to refer to A-1, which is the inverse of

A as an operator not the inverse of diag {xl,..., xn}, thus A-1 (diag{xl,..., xn})

PROPOSITION 2.1. Let T be a nonsingular matrix that has at least one row Tk,
which is everywhere nonzero. Let #k be the corresponding row of M. Then

T-IMT A (#kT[A (Tk)]-l)
Proof. Since M E DT there is a diagonal matrix, A such that MT TA. Thus

#kT TkA A-1 (A)A (Tk).

Therefore A
/

.kT [A (Tk)]-l]
\

A. []

Observe that the computation of A is dominated by the product #kT that gener-
ally is O(n2). If T admits a fast calculation, for example if T is the DFT and n 2k,
then #kT can be computed in O(n log(n)) operations.

If M is circulant and T is the DFT, then take k 1 and observe that T1
(1,..., 1) to recover the previously mentioned property of circulant matrices.

2.1. The diagonal space of the discrete sine transform, (DST1). Let $1
denote the first discrete sine transform (there are at least two; see [16])

1
sin

n+ i i,j=l

In this section a basis for Dsl is explicitly displayed.
It is well known that S2 I, $1 $1T and that $1 can be applied to a vector

in O (n log(n)) flops as long as n 2k- 1 for some integer k. This will be assumed
hereafter. For a detailed exposition of the properties of the DST1, see [16].

Recall that the n-dimensional vector space of n x n circulant matrices is spanned
by the set {Cpjp=o,n-1 where C1 is defined by the following relation. If x (xl, Xn)T

then Clx =- (Xn,Xl,...,Xn--1)T and Cp C. Similarly, a basis for Ds is given by
choosing so that

1 ifli-jl=l,(i, j) 0 otherwise,

(see 1 displayed below). A basis is then given by {I, <1,..., n-1} just like the
circulant basis. Since nothing that follows depends on this basis we simply remark
that it exists.

For our purposes we have found it more convenient to use the basis {p}2 where

1 if

@(i,j)=
-1 if i+j=p,
-1 if i+j=2(n+l)-p,
0 otherwise.
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To display the structure of the Cp’S more clearly, we now display the complete
basis for the 5 5 case. Of course, 0 is the identity. The other four basis matrices
are given below.

0 1 0 0 0 -1 0 1 0 0
1 0 1 0 0 0 0 0 1 0

(= 0 1 0 1 0 (2 1 0 0 0 1
0 0 1 0 1 0 1 0 0 0
0 0 0 1 0 0 0 1 0 -1

0 -1 0 1 0 0 0 -1 0 1
-1 0 0 0 1 0 -1 0 0 0
0 0 0 0 0 4 -1 0 0 0 -1
I 0 0 0 -i 0 0 0 -I 0
0 1 0-1 0 1 0-1 0 0

That this is in fact a basis is the subject of the next lemma. That it is more
convenient is taken up in 4. The dimension of Cp will always be clear from context.

LEMMA 2.2. Let n E Z+ be given. Then (p n-1}p--0 is a basis for Dsl. Moreover if
p > 0 then the spectrum of p is

2cos
\n+ 1] k=l

Proof. Clearly -{P}p--0 is a linearly independent set and it is large enough to
span Dsl. All that remains is to show that for all p 0,..., n- 1, (p is in Ds and
that the spectrum is as given. Denote by Sk the kth column of $1. Calculating the
components of pSk (1,..., n)T directly will show that every column of $1 is an
eigenvector of Cp and, incidentally, gives the spectrum of Cp, which will complete the
proof.

There are five cases: (i) < p, (ii) p, (iii) p < < n-p + 1, (iv) n-p + 1,
and (v) i>n-p+l. Ifi<pthen

i sin
n+l n+l

which by an elementary trigonometric identity is

i 2 cos
n+ 1 n+ 1 sink.n+ 1

The other four cases are similar. [:]

Remark. Ds is clearly a subspace of the space of Toeplitz plus Hankel matrices.
It may prove useful to precondition such matrices with a preconditioner drawn from
Ds, but we have not done so here.

3. Efficient matrix-vector multiplication. Before proceeding to develop our
preconditioner, we first indicate how the diagonal space Ds may be used to apply a
symmetric Toeplitz matrix A Rnxn to a vector x R’ in O(nlog(n)) operations.
Step 4 of the PCGA requires this product, which is commonly performed by embed-
ding A into a larger circulant matrix, C, and x into a a larger vector, . Applying C
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to 2 requires only O(n log(n)) operations and the desired product Ax emerges from
the nature of the embeddings. The difficulty of this method is that the efficient ap-
plication of C to 2 requires the use of the DFT thus requiring complex arithmetic.
But if A and x are both real their product will also be real and we would like to avoid
the added computational and storage burden of using complex arithmetic to compute
real results.

Our method is similar to the method just outlined in that we embed the Toeplitz
matrix in an Sl-diagonal matrix. No complex arithmetic is required at any step.

The method is best demonstrated by example. Let

a0 al a2 a3 xo
XlA= al ao al a2 and x

a2 al ao al x2
a3 a2 al ao x3

We seek a matrix E Ds1 such that A is a submatrix of . Clearly,

(ao-a) (a-a) a a 0 0
(al a3) ao a a a3 0

a2 al ao al a2 a3
a3 a. a ao a a2
0 a3 a a ao (al a3)
0 0 a3 a2 (al--a3) (ao--a2)

is such a matrix since 3i=o ai. The embedding of A is indicated with boldface.
Similarly, embed x in

0__
1

x2
so that Ax

Since by construction is in Dsl, there is a diagonal matrix A such that
SlASh. Thus the product : can be computed in O(n log(n)) operations once A is
known. Proposition 2.1 gives an algorithm for computing A in O(n log(n)) operations.
Thus the entire computation is again O(n log(n)).

In general an n x n real Toeplitz matrix A can be embedded in the Sl-diagonal
matrix,

A H A2 H2 0

.= (A2 H2)T A J(A2 H2)TJ

0 J(A2 H2)J J(A HI)J

where
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and A1, H.1, A2, and H2 are defined as follows. Take k (n- 3)/2 if n is odd and
k (n 4)/2 if n is even. Then

A1 ".. H .."
ak ao ak+2 an-1

ak+ an-1 0 0 IA2 ".. ".. "..
al ak+l an-1 0

and

ak/3 an-1 0 0

H2--
an-1 0 ." 0
0 0 0

Finally, it is not necessary to compute all of . By Proposition 2.1 all that is
required to calculate the diagonal form (eigenvalues) of is its first row.

4. S-diagonal preconditioners.

4.1. Banded matrices. The goal of this section is to construct an Sl-diagonal
preconditioner, Pb, which approximates the banded Toeplitz matrix,

’ ao
al

gb

a ab 0
ao ab

ab

ab

ab ao
\ 0 ab al

ab

al
ao

E Tnn

with a banded matrix from Dsl and to give conditions on A for which it meets the
criteria for a good preconditioner as set forth in the first section.

Recall that p Tp + Hp, where Tp is Woeplitz and Hp is Hankel. Thus any
element of Ds1 will be Toeplitz plus Hankel. We wish to choose Pb in Dsl such that
its Toeplitz part is A. In view of Lemma 2.2 it is clear how the preconditioner is to
be constructed. Clearly,

b

_-- a,,
i--O

is the desired preconditioner. This is why the basis n-1{p)p=0 is convenient, the Toeplitz
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part of the preconditioner is exactly A. An example is instructive. Let

ao al a2 a3 0 0 0 0 0
al ao al a2 a3 0 0 0 0
a2 al ao a a2 a3 0 0 0
a3 a2 al ao a a2 a3 0 0
0 a3 a2 a ao a a2 a3 0
0 0 a3 a2 a ao al a2 a3
0 0 0 a3 a2 al ao al a2
0 0 0 0 a3 a2 al ao al

\ 0 0 0 0 0 a3 a a ao

Then b 3 and P3 is given by

P3 aoI + a + a2’2 + a33

=A-

[ a2 a3 0 0 0
a3 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

\0 0 000

o o o
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 a3
0 0 a3 a

In general, as in the above example, it is clear that A Pb + H where, in block
form, H is

(3)
G 0 O)H= 0 0 0
0 0 G

and G and ( are given by

a2 a3 ab 0 0 a

a3 .’" 0

__
." 0 ." a3

ab 0 0 ab a3 a2

Note that the blocks in (3) are not necessarily the same size. In particular, G and
are (b- 1) (b- 1) and the central block of zeros is (n- 2(b- 1)) (n- 2(b- 1)).

First observe that Pn satisfies Property 1. Since H has at most 2(b- 1) nonempty
columns rank(H) < 2(b- 1). Thus if Pb is nonsingular, which we address below, then

Pb-1A I / Pb-1H and all but 2(b- 1) of the eigenvalues are equal to 1. Thus P-1A
has at most 2b- 1 distinct eigenvalues. Therefore Pb satisfies Property 1 if b << n,
which is true for instance when n is increasing while b remains fixed. An identical
argument and conclusion are possible for Strang’s circulant preconditioner. Indeed,
our preconditioner is the Sl-diagonal analogue of Strang’s preconditioner.

Regarding Property 4, notice that the complexity of computing Ax is O(bn), while
solving Pnzk-1 rk-1 is O(n log(n)). (Recall that this is the preconditioning step of



636 E. BOMAN AND I. KOLTRACHT

the PCGA.) Although asymptotically solving PnZk-1 rk-1 is slower than comput-
ing Ax, this does not appear to be a drawback for the problems we consider in the
framework of this paper. In fact, in all of our numerical work we have bn >_ n log(n).
Note also that when A is nonbanded (see 4.2), Ax is computed in O(n log(n)) oper-
ations so that in this case Property 4 is satisfied. Moreover, as seen in 3 Ax can be
computed using only real arithmetic.

Property 3 is satisfied in the banded case by computing the diagonal form of Pb
via (2). Lemma 2.2 gives the spectrum of each of the p’8 SO that p SIApS1 for
some known Ap. Thus the diagonal form of the preconditioner is given by SPbS

bYi=0 aiAi. This formula requires O(bn) operations to compute.
The following method is O(n log(n)) regardless of the bandwidth of A. Let Z be

the shift operator, i.e., (x,... ,Xn)Z (x2,... ,Xn, 0). In view of Proposition 2.1
only the first row of Pb is required to calculate the spectrum of Pb. Denoting by p and

b
T the first rows of Pb and A, p is computed as follows. From Pb -=o aii,

/’1 T
0

T
_1 T 0

T

1 0

0
0 1 0

0 0 -1
p=ao 0 +a 0 +a 0 +... +a 0 =(I-Z).

0 0 0 1
0 0 0 0.
k0 k0 k 0 0Z

Thus p may be computed in O(n) operations via the formula, p T (I- Z2). Ap-
plying Proposition 2.1 proves the following lemma.

LEMMA 4.1. Let A SIPbS] be the diagonal form of Pb and let a denote the
first row of S, Then

(4) (i- z )Sl

Proof. From Proposition 2.1 if Pb is an element of Ds1, then

SlPbSl t (pSl [A(o’)]-l)
(Recall that S S-.) Observing that p T (I- Z2) completes the proof. [:]

It is now clear that the preconditioner Pb(n) given in (2) satisfies Properties 1, 3,
and 4 given in the Introduction.

Only Property 2 remains to be shown. The next theorem gives conditions on A
for which Pb is positive definite.

THEOREM 4.2. If A is an n x n section of an infinite, positive definite, Toeplitz
matrix, A(oc) with bandwidth 2b + 1 < n then Pb, is also positive definite.

Proof. Since A(oc) is positive definite, A(oc) V(oc)U(oc)T where U(oc) is an
upper triangular Woeplitz matrix (see e.g., [5, proof of Whm. 1.1]),

U(oo) 0 cO Cb-1 Cb 0
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and hence

A UUT,
where

co cl Cb 0 0
0 Co Cb-1 Cb 0 0

U= "’. "’. "’. "’. E Rn

0 0 CO Cl Cb

Remark. All of the zeros of the polynomial cozbd 4-Cb are in the open unit
disk (see [5]).

For our purposes it is more convenient to write U in the following block form:

(( 0)u= 0 0
0Ua

where

c-- ".. and /= "..
0 CO 52 Cb

Let A[a’b, c" d] be the submatrix of A consisting of the intersection of rows a
through b and columns c through d.

As before,

G 0 O)Pb=A-HandH= 0 0 0
0 0 G

Note that since 2b < n + 1,

A(b+ 1"2b- 1, l’b- 1)--

ab ab-1 a2

0 ". ".
G

ab-1
0 0 ab

Recall from 2.1 that J is the anti-identity. From the block representation above it is
clear that /T A(b+ 1"2b-1, l"b- 1) so that G Tj. Similarly ( Tj.

Observe next that Pb UL where

= 0 U2 0 and ],-- UT U Uf
0 U3 I 0 0 (/33T--3TJ)

aS may be seen by mulitplying and directly and comparing the result with UUT

A.
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With these definitions in place the theorem can now be proved. Since A and H
are both symmetric and Pb A- H, we need only show that all of the eigenvalues
of Pb are positive.

Suppose A is an eigenvalue of Pb with corresponding nonzero eigenvector x
(X1,... Xn)T Then at least one of y x +/- Jx is also a nonzero eigenvector of Pb
with the same eigenvalue. (This follows from the identity JPb PbJ.) Therefore, we

may asssume without loss of generality that y is an eigenvector corresponding to A
such that Jy +/-y and IlYll- 1.

Partition y as

where Yl and Y2 are of length b- 1. Thus Yl +/-Jy2. Moreover yl and 3y2 are
defined.

Next observe that

and that

(T_Tj)y )Ly= Z

(6)

Thus

Tyl )UTy z
Ty.

A yTpby

=(
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We now show that this last inequality is actually strict since z : 0. The proof is
by contradiction. Suppose z- 0.

Defining P and Q as

Cb CO CO Cb

and repartitioning y as

y= v
022

where P021 is defined and wl :)z.J022, we can write

pTpwl !Ay UUTy 0
QQT:

Observe that neither co nor Cb are equal to zero since cocb ab and by assumption
ab =/= O. Therefore both pTp and QQT are nonsingular. Moreover since JA
AJ it follows that pTpw +JQQTw2. In the case of a negative sign, we have
wTpTpw -wT2QQTw2. The left-hand side of this equality is nonnegative and the
right-hand side is nonpositive. Thus w -022 0, which implies by (7) that y 0 as
well. This contradicts the assumption that y is a nonzero eigenvector of A.

In the case of a positive sign, write

jpTpjw2 QQTw2.

Since jpTpj jpTjjpj ppT, we have

Cb CO 0 CO CO Cb 0 Cb

Since z 0 we can rewrite (6) in more detail as

co
Cl

\ 0

co
c.1

Cb

0

0

Inspecting row b + 1 counting from below, we see that

(9) (Cb,..., c0)022 0.
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In combination with (8), this implies that

Cb CO 0 CO

0 0 0
0 Cb 0

0 Cl Cb 0

W2

which in turn is equal to

Cb

0 0

0 0

Cb

Thus we have derived the identity

co 0 co

Cb Co 0

Cb

Cl

d2

0 0 0 Cb Cl

Cb ". ". ".

.. .. Cb

C Cb 0 0 0

w2=O.

It is known (see, for example, Theorem 3 in [9]) that if all zeros of the polynomial
CoZb +...-4- Cb are in the open unit disk (as they are in this case; see the remark at the
beginning of the proof), then the vector (co,..., Cb)T is the first column of the inverse
of some positive definite Toeplitz matrix, say O. Then by the Gohberg-Semencul
formula ([5, p. 86])

co 0

..
Cb CO

CO Cb

.o
0 Co

0 0 0

Cb o

51 Cb 0 0

Cb el
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Since (I) -1 is positive definite whenever (I) is we conclude that w2 0. This contradic-
tion completes the proof.

Next we show that the inverses of Pb are in fact uniformly bounded or, equiva-
lently, that the minimal eigenvalues of Pb are bounded away from zero independent
of n. Let )min(n) be the minimal eigenvalue of Pb with corresponding eigenvector

y(n) l(n) v(n)
+Jyl (n) -t-Jwl (n)

partitioned as before so that yl (n) and Pwl (n) are defined and normalized so that
Ily(n)ll- 1. The proof is similar to the last part of the proof of Theorem 4.2, and
we use the same notation except that we use n to indicate the order of the involved
matrix.

COROLLARY 4.3. For n > 2b+ 1, there is a constant > 0 such that min(n) > .
Proof. If lim inf )min(n) > 0 there is nothing to prove so without loss of generality

assume limn--. )min(n) 0 and hence limn- IIz(n)ll 0. This implies that (9)
becomes limn--.(Cb,..., Co)w2(n) O. It follows as in the proof of Theorem 4.2 that

(jppTj :k QQT)w2(n) o,

since P and Q are defined independent of n. In the case of a positive sign the matrix
is positive definite and fixed. Hence as n - oc, w2(n) -- 0.

In the case of a negative sign, as n increases without bound, it follows that

C0 0 CO Cb

Cb Co 0 Co

0 0 0 Cb Cl

t2b ". ". ".

Cl Cb 0 0 0

w2(n) ---, O,

as n -, oc so that once again w2(n) - 0.
In both cases it follows from (7) that Any(n) O. Since A is positive definite

it follows that [[A-i(n)[[ > [[A-I[[ for all n. Therefore y(n) 0 as n --, oc. This
contradiction completes the proof.

n
4.2. Nonbanded matrices. If A (ali_jl)i j=l

to use
is not banded, then it is natural

n

(10) Pn (n) Pn Z ai(i
i=0

as a preconditioner instead of (2). Note that for fixed n, the cost of computing the
spectrum of Pb(n) via (4) is fixed regardless of the value of b. In particular the spectrum
of Pn(n) may be computed at the same cost. In general, Pn(n) may not satisfy the
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first two properties. (This is also true of Strang’s circulant preconditioner [14].) If
however, the Toeplitz matrix A A(n) is a finite n n section of a singly infinite
positive definite Woeplitz matrix A(cx3)- (ali_jl)ij= such that -i=- lail < cx3 (in
other words A(cx) is generated by the Wiener class function f(O) k___ akeik),
then for n sufficiently large these two properities will be satisfied as the following
standard argument shows.

Since )-i=_ Jail < cx3, then given > 0, there is an integer b > 0 such that

lil>b lal < " If we write A(cx3) Ab(X)-4-Ae(cx3), where Ab(cX3) has bandwidth
2b / 1, then clearly

If is chosen such that

Iil>b

A inf
xTA(cx3)x > 2 > 0xTx

then clearly Ab(o) is also positive definite, and hence for n large enough Pb(n) is
positive definite too, by Theorem 4.2. By Corollary 4.3 we can further constrain
such that ,Xmin(Pb(n)) > 2 for all sufficiently large n.

Writing P(n) Pb(n)+ Pe(n) we see that for such , P(n) is positive definite
whenever Pb(n) is positive definite. Indeed, it is clear that ]]p]] 2 for any p and
hence

IIP(n)ll 2 lal la, < 2,

i>b lil>b

Since A(n) P(n) [Ab(n) Pb(n)] + [m(n) Pe(n)] we get

I- A-I(n)P(n) A-l(n)[db(n) Pb(n)] + d-(n) [de(n) Pz(n)]

Therefore ]d-(n)[de(n)- Pe(n)]] 4/A. Defining g to be 4z/A we see that the
the interval (1- g, 1 + g) contains the spectrum of A-l(n)P(n) except possibly for
2b + 1 outliers. Therefore the interval (1 g + O(g2), 1 + g + O(g2)) contains spec-
trum of P-l(n)A(n) except possibly for 2b + 1 outliers and hence is asymptotically
clustered.

We remark that if the problem is poorly conditioned in the sense that 1/A
]A-()]I2 is large, then a large b may be needed to obtain a satisfactory clustering
of the eigenvalues of P-l(n)A(n).

We also remark that if A is positive definite itself but not necessarily a section of
an infinite matrix, then a positive definite S-diagonal preconditioner can be built
as follows. Let D A(S1AS1) and let P SIDS1. Then clearly P is positive
definite. It is also the nearest element of Dz to A in Frobenius norm. This P is
the analogue of the optimal circulant preconditioner of T. Chan [3]. We remark that
the determination of P via the computation of SIAS1 is prohibitively expensive as
it requires O(n2 log(n)) flops. A fast O(n log(n)) method for computing P will be
suggested elsewhere.

5.. Numerical results. To test the S-diagonal preconditioner, we have imple-
mented the PCGA on the Connection Machine 200 at United Technologies Research
Center in East Hartford, Connecticut. This computer was configured with 16,384 bit
serial processors, 512 floating point processors, and a Vax 6320 front end.
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The PCGA was used to solve Ax b for each of the following matrices and
b= (1,...,1)T.

Matrix 1. A (ii-jl+l) 1"1 i,j--l"
Matrix 2. A Ii--jl+l i,j=l"
Matrix 3. Bandwidth 41, (see text).
Matrix 4. Bandwidth 201, (see text).
trix . -[]j-t-1 i,j=l"

Matrix 6. A Ii-jl+l) i,j=l"
Matrix 7. A n

2’l-Jl i,j=l"
Except for Matrix 3 and Matrix 4, most of these matrices have appeared in the

literature previously (see [4], [1], and [3]). These were generated in the following
manner. It is well known that for Pi E R, IPil < 1, i 1,...,k, k < n- 1 the

kcoefficients of 1-Ii=1 (1 zpi)(1 z-lpi) define for any n an n x n positive definite,
symmetric, Toeplitz matrix with bandwidth 2k + 1.

Table 1 shows the convergence results for Matrices 1-4. N is the problem size; I,
C, and S, represent, respectively, no preconditioning, Tony Chan’s circulant precondi-
tioner, and the Sl-diagonal preconditioner. The body of the table gives the iteration
count for each matrix and each preconditioner.

TABLE

II Matrix Matrix 2 II Matrix 3 II Matrix 4

255 II 19 5 5 II 21 5 5 [I 2,55 47 9 ]l 147
511 II OI 5 5 II 1 5 5 II 5t11 37 s II 691 9
103 II 11 5 5 II 2al 5 5 II s:7 9 9 II 191 9 7 II
047 II 21 5 5 II 241 6 5 II s’3 11 9 II 241 9 7 II
4095 II 1 6 5 II 51 6 5 II 8z4 x7 9 II 61 9
8191 II 1 6 5 II 51 6, 6 II s61 61 10 II 41 9 7

The cases k 20 and k 100, pi -d + iA, 1,...,k where A - and
d 0.75 were then used to generate matrices 3 and 4, respectively.

The stopping criterion IIrll < 10-7 was used in all cases, except that the al-
gorithm was terminated if the number of iterations ever exceeded the order of the
matrix.

Table 2 shows the convergence results for Matrices 5-7. The format is the same
as in Table 1.

TABLE 2

II Matrix 5 Matrix 6 I1 Matrix 7

1023 ’[I 21 7’] 7 II 4 4 16 3 3
04 II al II 1 4 4 16 3 3
4095 II al II 0 4 4 15 3 3
8191 II 24l 7 7 II a,o 4 4 15 3 3
16asa II 51 II a.o 4 4 14 3 3
a6 II 251 6 I! 4 4 14 3 3



644 E. BOMAN AND I. KOLTRACHT

Since no efficient implementation of the FST was available it was performed via
the fast Fourier transform (FFT) as in [11]. The FFT from the Connection Machine
Scientific Software Library was used. If an efficient FST were available the algorithm
could be faster overall since the FST can be faster than the FFT; see [7]. Moreover,
when the coefficient matrix of the problem is real, using the FST eliminates the need
for complex arithmetic. Thus storage can also be reduced.

Note that for the nonbanded problems the Sl-diagonal preconditioner is com-
petitive with the circulant preconditioner, while for the banded problems it is clearly
superior.

6. Appendix. Other diagonal spaces. This section displays bases for the
diagonal spaces of some common fast transforms. All proofs are very similar to the
proof of Lemma 2.2 and are therefore omitted.

Denote by $2, C1, and C2 the second discrete sine transform and the two discrete
cosine transforms defined in [16]. That is,

$2-- sin
i(2j-

2n i,j=l

((i(2jl)Tr))n-1 { ifi--1
where kiC2 cos

2n i,y=o 1 otherwise.

1 ifj -0,2

)n (--1)i if j n,C1 (ci j i,j--o where cij 2

COS( ’/(2j-t- 1))2n otherwise.

n-1LEMMA 6.1. Let n E Z+ be given. Then {p}p=0 is a basis for Ds2, where o is
the identity and

1
-1

p(i,j) 1
2
0

if li jl p and < n,
if +j =p+ l,
if 2n- (i + j) p and < n,
if n and j n-p,
otherwise.

The spectrum of?p, p 0 i8 { 2cos((2k-1)Pr)}
n

2n k--1.
nLEMMA 6.2. Let n Z+ be given. Then (p}p=l is a basis for De1 where o is

the identity and

p(i,j)

2 if i= 1 andj =p+l,
2 ifi--n and j-n-p,
1 if ]i-jl-p, i1, iCn,
1 ifi/j=p+2, jCp+l,
1 ifi+j=2n-p, jCn-p,
0 otherwise.

The spectrum of p p > 0 is 2 cOS\n_l k=O.
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nLEMMA 6.3. Let n E Z+ be given. Then {p}p=l is a basis for DcT where Xo is
the identity and

1 if li-jl =p,

Xp(i,j)
1 if + j p + l,
1 if i+j 2n-p+ 1,
0 otherwise.
n{ :cos

Of course, bases abound for each of the diagonal spaces above but for construct-
ing preconditioners for Toeplitz matrices the bases given have certain advantages.

n--1Principally, if we take Pb i=o aiZi where {Zi} is one of {i}, {i}, or {Xi} then

G 0 0 )A P 0 0 0
0 0 G

as in (3). Thus most of the eigenvalues of P-1A are equal to one and the number of
outlying eigenvalues will depend linearly on b.

Also as with the Sl-diagonal preconditioner of 4 all of these transforms are real
so complex arithmetic can be avoided by using them rather than the DFT.

Acknowledgments. We would like to thank the referees for many helpful com-
ments and suggestions.
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THE EUCLIDIAN DISTANCE MATRIX COMPLETION PROBLEM*
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Abstract. Motivated by the molecular conformation problem, completions of partial Euclidian
distance matrices are studied. It is proved that any partial distance matrix with a chordal graph
can be completed to a distance matrix. Given any nonchordal graph G, it is shown that there is a
partial distance matrix A with graph G such that A does not admit any distance matrix completions.
Finally, the connection between distance matrix completions and positive semidefinite completions
is outlined.

Key words. Euclidian distance matrix, partial matrix, completion, positive (semi)definite
matrix, circumhypersphere

AMS subject classifications. 15A47, 05C50

1. Introduction. Let I[ II denote Euclidian length on Rk. For two points
A and B, we use d(A,B) for IIA- BII. The matrix D (dij)in,j=l is a (Euclidian)
distance matrixif there exist P1,..., Pn E Rk such that dij d(Pi, p)2. A great deal
is known about distance matrices (e.g., [2], [7], [9]). For example in [9], a symmetric
matrix D (di)n with dii 0, 1 n, is a distance matrix if and only if Di,j--

is negative semidefinite on the orthogonal complement of the vector e (1, 1,..., 1)T.
This is equivalent to the statement that the bordered matrix

(1) (0e eT)D
has only one positive eigenvalue or to the fact that the Schur complement of the upper
left 2 by 2 principal submatrix

0 1

in (1) is negative semidefinite. Furthermore, the rank of this Schur complement is
the minimum dimension k in which the points P1,..., Pn may lie. In this case we say
that D is a distance matrix in Rk. In 1, we use these characterizations to recover a
result concerning circumhyperspheres [7].

nWe call an n- by- n array A (aiy)i,y= a partial distance matrix in Rk if
(i) every entry aij of A is either "specified" or "unspecified" (free to be chosen);
(ii) a is specified as 0, i 1,...,n, and ay is specified (and equal to aii) if

and only aij is specified; and
(iii) every fully specified principal submatrix of A is itself a distance matrix in

Rk

A completion of a partial distance matrix is a choice of values for each of the
unspecified entries, resulting in a conventional matrix. The distance matrix completion
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problem then asks which partial distance matrices have distance matrix completions.
It is clear that assumption (iii) above is necessary for this. This "inheritance property"
is important in other previously studied completion problems, such as those involving
positive definiteness, inertia, rank, and contractions.

Our principal result here is that if the undirected graph of the specified entries
of a partial distance matrix is chordal, then it necessarily has a distance matrix
completion. This is based upon an analysis of the case of partial distance matrices
with one pair of symmetrically placed unspecified entries, the "one variable problem,"
together with one-step-at-a-time technology for chordal graphs developed in [8]. For
any nonchordal graph there exists partial distance matrices without distance matrix
completions.

Though it should also be of interest in the classical subject of distance geometry,
we were motivated by the molecular mapping, or "conformation," problem. This is
the problem of deducing the possible shapes of a molecule from partial (or inaccurate)
information about interatomic distances. For many compounds, not all of the inter-
atomic distances may be measured accurately, but the shape (essentially determined
by the distance matrix) is crucial to understanding how the molecule functions.

For terminology and results concerning graph theory we essentially follow [6].
An undirected graph is a pair G (V, E) in which V, the vertex set, is a finite set
(usually V {1,...,n}), and the edge set E is a symmetric binary relation on V.
The adjacency set of a vertex v is denoted by Adj(v), i.e., w E Adj(v) if {v, w} E E.
Given a subset S c_ V, define the subgraph induced by S by Gs (S, Es), in which

Es {{x, y} EIx S and y S}. A complete graph is one with the property that
every pair of distinct vertices is adjacent. A subset K C_ V is a clique if the induced
graph on K is complete. The complement G (V, E) of a graph G (V, E) is defined
by E {{i,j}li = j, and {i,j} . E}.

A path Iv1,..., vk] is a sequence of vertices such that {vj, vj+l} E for j 1,...,
k 1. A cycle of length k > 2 is a path Ivy,..., vk, v] in which Vl,..., vk are distinct.
A graph G is called chordal if every cycle of length greater than three possesses a
chord, i.e., an edge joining two nonconsecutive vertices of the cycle. A subset S c V
is called a u v vertex separator for the nonadjacent vertices u and v if the removal
of S from the graph separates u and v into distinct connected components. If no

proper subset of S contains a u- v separator, then S is a minimal u-v separator.
It is known ([6, Thm. 4.1]) that an undirected graph is chordal if and only if every
minimal vertex separator is a clique.

In 4 we are concerned with the connections between positive semidefinite com-
pletions and distance matrix completions.

A partial matrix A (aij)in,j is called (combinatorially) symmetric if

(i) aii is specified, 1,..., n, and
(ii) aiy is specified if and only if aji is also specified.

All partial distance matrices are symmetric. With a symmetric partial matrix
nA (aii),j= we associate the undirected graph G (V,E) with Y {1 2 n}

and E {{i,j}]aij is specified}.
A symmetric partial matrix A is called partial positive semidefinite if all fully

specified principal submatrices of A are positive semidefinite. In [8] it has been proved
that any partial positive semidefinite matrix, the graph of whose specified entries
is chordal, can be completed to a positive semidefinite matrix. We translate this
result into a distance problem among points on a hypersphere. We also treat by
this approach the problem of the existence of a positive semidefinite completion of a
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partial positive semidefinite matrix having a nonchordal graph.
nThroughout the paper, for a matrix A (aij)i,j-1 and an index set a C { 1,..., n},

A(a) denotes the principal submatrix of A whose rows and columns correspond to
the index set a. The notation A- represents the (unique Moore-Penrose) generalized
inverse of the Hermitian matrix A.

2. Circumhyperspheres. Using the approach presented in the introduction,
one easily recovers the results of [7] concerning the existence of a circumhypersphere
for a set of points.

THEOREM 2.1. Let D be a distance matrix corresponding to the points P1,..., Pn
in Rn. Then, there is a circumhypersphere for PI,..., Pn if and only if eTD-e O.
This has radius given by r2 (2eTD-e)-.

Proof. Using results on generalized Schur complements (see e.g. [3]), one obtains
that the number i+(M) of positive eigenvalues of a partitioned matrix M (B*A )
is given by

(2) i+(M) i+(C) + i+(A PC-B*) + rank(B ker C),

in which B kerC means the restriction of B to the null space of C. Let D be a
distance matrix corresponding to the points P,..., Pn in Rn. By the observation in
the introduction, the existence of O E Rn such that d(O, Pi) r for 1,..., n is
equivalent to the condition that the bordered matrix

1 0 r2eT
e r2e D

has exactly one positive eigenvalue. Let a --eTD-e, and then, by (2) we have that

-a 1-r2a ))+rank(( eT D)i+(D) =i+(D)+i+ (( l_r2a _r4a r2eT )lker
Since

e D

has exactly one positive eigenvalue, we have that i+(D) 1 and eh 0 for any
h E kerD. Thus

rank(( eT D) =0,r2eT )Iker
and i+(/)) 1 if and only if

( -a l-r2a )(3) 1 -r2a -r4a

is negative semidefinite. This can be realized if and only if a > 0. We always have
a > 0 since

The smallest r that makes (a) negative semidefinite is given by r 1/v, and this
completes the proof, rl
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3. The main results. The following result is a consequence of Corollary 3.2 in
[5]. For the sake of completeness we present a proof.

LEMMA 3.1. Let

R= BT C D
x DT f

be a real partial positive semidefinite matrix, with x an unknown scalar and

rank B p

and

rank DT f
with (necessarily) IP- ql <- 1. Then there is real positive semidefinite completion F
of R such that rankF max{p, q}. Moreover, this completion is unique if and only
if rankC p or rankC q.

Proof. Let U be an orthogonal matrix that diagonalizes C, namely, uTcu Y,
in which Y is a positive semidefinite diagonal matrix. Let U 1 U 1 and

x /r I
in which/} BU and/ UTD. Since [ is orthogonal, the set of numbers that
make R positive semidefinite coincides with that making R positive semidefinite and
rankR=rank/?t. Since

and (/YT /)f
are positive semidefinite, all entries (in the rows and columns corresponding to diag-
onal entries of Y that are 0) equal zero. We may eliminate those rows and columns
and then assume that Y is invertible. Then, R is positive semidefinite if and only if
the Schur complement S of Y in/?t is positive semidefinite. But,

S= I a [Y- [T x [Y- [9 Ix- DTy-IT f- [gTy-1D

and rank/it rank C + rank S. If rank C p or rank C q then a-/Y-T 0,
respectively f- )Ty-1bT 0, and, thus, we must choose x =/}Y-/. If rank C <
p q, the problem has two solutions given by

IX_ y-1/)[2 (a- jr-ljT)(f_ bTy-lb)

that realize the completion of S to a rank-1 negative semidefinite matrix.
LEMMA 3.2. The partial distance matrix

R D2 D22 D23
x D2T3 0
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admits at least one completion to a distance matrix F. Moreover, if

( 0 D12 and05 922 D2T3 0

are distance matrices in Rp, respectively, Rq, then x can be chosen so that F is a
distance matrix in Rs, s max{p, q}.

Proof. Without loss of generality, we may assume that R is at least 3- by- 3,
since, otherwise, we may complete with any positive number. Thus, R has at least
one fully specified row and column. Interchange the first two rows and the first two
columns of R, and then we must complete the partial distance matrix

0 d12 13 d14
d12 0 D23 x

d14 x /)3T4 0

to a distance matrix in R8. By the remark in the introduction, this latter problem is
equivalent to finding completions of the partial matrix

0 1 1 eT 1
1 0 d12 [913
1 d12 0 /23 x

1 d14 x /4 0

to a matrix in which the Schur complement of the upper left 2 by 2 principal
submatrix (0 o) is negative semidefinite and has rank s. This latter Schur complement
is of the form

a B x- d12 d14
BT C D )x-dl2 -d14 DT f

in which

and DT f
are negative semidefinite and have ranks less than or equal to s. Then, any negative
semidefinite completion of S of rank s given by Lemma 3.1 provides a solution to our
distance completion problem.

Remark 1. From the proof of Lemma 3.2 and the uniqueness part of Lemma 3.1,
we obtain that the partial distance matrix in Rk,

0 D12 x

DT2 D22 D23
x D2T3 0

admits a unique completion to a distance matrix in R if and only if

rank(( 0 eT ))e D22
k + 2.



DISTANCE MATRIX COMPLETIONS 651

Our main result is the following theorem.
THEOREM 3.3. Every partial distance matrix in Rk, the graph of whose specified

entries is chordal, admits a completion to a distance matrix in Rk.
Proof. Let R be an n- by- n partial distance matrix in Rk and assume that the

graph G (V, E) of R is chordal. Then from [8], there exists a sequence of chordal
graphs G Go, G1,..., Gt Kn (the complete graph on n vertices), such that each
Gj is obtained by adding exactly one new edge {uj, vy} to G_I. Moreover, each Gy,
j 1,..., t, has only one maximal clique Vj that is not a clique in Gi_.

Consider first the partial submatrix R(V), with one pair of unknowns, symmet-
rically placed on the (Ul,Vl) and (Vl,U) positions. Then, by Lemma 3.2, we can
specify these entries and obtain a partial distance matrix in Rk having G1 as the
graph of its specified entries. Then we complete the partial submatrix corresponding
to the index set V2. We continue this one-entry-at-a-time completion procedure until
we complete R to a distance matrix in R

Example. Given any nonchordal graph G (V, E), V {1,..., n}, we show that
r n such that R has no completionthere exists a partial distance matrix R

to a distance matrix. Assume that the vertices 1, 2,..., k >_ 4 form a chordless cycle
in G. Define the partial distance matrix R by

0 if(i,j}EE and k+l<_i,j<_n,
0 ifli-jl-1, l<_i<_j<_k,
1 for any other (i, j} E E.

Then any fully specified principal submatrix of R is either

0
0 0 eT or 1 0 eT

e e 0 e e 0

each of them being a distance matrix. Thus R is a partial distance matrix, but R
does not admit a completion to a distance matrix. Indeed, the upper left k by k
principal submatrix cannot be completed to a distance matrix since otherwise there
exist points P1,..., Pk such that d(Pi, P+I) 0 for 1,..., k-1 and d(P, Pk) 1,
a contradiction.

THEOREM 3.4. Let R be a partial distance matrix in Rk, the graph G (V, E)
of whose specified entries is chordal, and let S be the collection of all minimal vertex
separators of G. Then R admits a unique completion to a distance matrix in Rk if
and only if

(4) ( 0e R(S) has rank k + 2 for any S S.

Proof. We prove the result by induction on the cardinality rn of the complement
of the edge set of G. If m 1, the result follows from Remark 1. Assume the result
is true for any chordal graph whose complement has cardinality less than m. Let
G (V, E) be a chordal graph such that IEI m and let R be a partial distance
matrix satisfying (4). Let S be an arbitrary minimal vertex separator of G. By Ex.
12, Chap. IV in [6], there exist vertices u and v belonging to different connected
components of Gv-s withthe property that S c Adj(u) and S c Adj(v).

We first prove that the graph G’ (V, E U {{u, v} }) is also chordal. Assume the
contrary, which means that there exists a chordless cycle [U, Xl,..., xk, v], k >_ 2, in
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G. By the definition of a minimal vertex separator, at least one xl E S, 1 <_ <_ k.
This implies that {xl, u}, {x, v} E E, a contradiction, showing that G’ is chordal.

Then S t2 {u, v} is the unique maximal clique in G that is not a clique in G. As
in the proof of Theorem 3.3, consider the principal submatrix R(S U {u, v}) having
only one pair of symmetrically placed unspecified entries. Complete R(S t2 {u, v}) to
a distance matrix in Rk to obtain a partial distance matrix/ having G as the graph
of its specified entries.

If

rank (( 0
e R(S) < k +

by Remark 1 R(S [J {u, v}) has more than one completion to a distance matrix in Rk

and so R admits more than one completion.
If R satisfies (4), then / constructed above is uniquely determined. Since any

minimal vertex separator of G contains a minimal vertex separator of G,/ also satis-
fies condition (4). By the assumption made for m- 1,/ admits a unique completion
to a distance matrix in Rk. This implies that R also admits a unique completion to
a distance matrix in Rk. [:l

Let 0 < m < n be given integers. Since the graph G (V, E) with E {{i, j}10 <
li- Jl <- m} is chordal, Theorem 3.3 and Remark 1 have the following consequence
in the "band" case.

COROLLARY 3.5. Any partial distance matrix R (rij)in,j=l in Rk, with riy

specified if and only if li Jl - m, admits a completion to a distance matrix in Rk.
Moreover, the completion is unique if and only if all the matrices

1)

have rank k + 2 .for any 1,...,n-m + 1.

4. Connections with positive semidefinite completions.
LEMMA 4.1 Let A (aij)n be a symmetric matrix such that aii 1 fori,j--1
1,..., n. Then A is positive semidefinite if and only if there are n points P1,..., Pn

on a hypersphere of radius x//2 in Rk, k rank A, such that d(Pi, Py) V/1 -aiy

.for any i, j 1,..., n.

Proof. As remarked in the introduction, the existence of the points P1,..., Pn
and O in Rk such that d(Pi, Pj) V/1 aij and d(O, Pi) x//2 is equivalent to the
condition that the Schur complement of the upper left 2- by- 2 principal submatrix
(010) in the matrix

0 1 1 1 1
1 0
1 ! 0 1 --a12 1 --aln
1 . 1 a12 0 1 a2n

1 1/2 1 al, 1 a2n 0

is negative semidefinite and has rank k. A straightforward computation shows that
this latter Schur complement equals -A. This completes the proof.

By Lemma 4.1, the result in [8] on positive definite completion of partial positive
definite matrices having a chordal graph can be translated into the following.
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THEOREM 4.2. Let G (V,E) be a chordal graph and {Kj}= the maximal
cliques of G. Consider points P1, Pn in Rn satisfying the following conditions:

(i) The distances d(Pi, Pj) are specified if and only if {i, j} e E.
(ii) Each of the subsets {/}zeg, j 1,... ,m, lie on a hypersphere of radius

R.
Then the points P1,..., Pn can be chosen to lie on a hypersphere of radius R.

Remark 2. The conclusion of Theorem 4.2 is not valid when the graph (7 is not
chordal. Consider G, for example, to be the simple cycle of length 4 and points A,
B, C, D such that d(A, B) d(B, C) d(C,D) 2 and d(A, D) O. Then each
of the pairs {A,B}, {B, C}, {C,D}, and {g,D} lie on a sphere of radius 1, but the
smallest radius of a sphere on which A D, B, and C may lie is 2x/-/3 > 1.

As a particular case of Theorem 4.2 we obtain the following corollary, analogous
to the result on positive semidefinite completion of banded partial matrices in [4].

THEOREM 4.3. Let 0 < m < n be given integers, and consider points P1,..., Pn
in Rn satisfying the following conditions:

(i) The distances d(P, Pj) are specified if and only if li Jl <- m.
(ii) Each of the subsets {Pk,..., Pk+m-1}, k 1,..., n- m + 1, lie on a hyper-

sphere of radius R.
Then the points P1,..., Pn can be chosen to lie on a hypersphere of radius R.
We note that an elementary, purely geometric proof of Theorem 4.3 can be pro-

vided.
Let us also mention the following positive semidefinite completion problem, which

is still unsolved.
(P1) Given is a partial positive semidefinite matrix A (aij)in,j=l such that the

graph of the specified entries of A is not chordal. Determine necessary and sufficient
conditions on A in order that A admits at least one positive semidefinite completion.

Without loss of generality we may assume that A has a unit diagonal, since
otherwise we may apply a diagonal congruence.

Consider now the following distance problem.
(P2) Let G (V, E) be a nonchordal graph and let {gl,... ,Kin} be the maximal

cliques of G. Consider the points P,..., Pn in Rn satisfying the following conditions.
(C1) The distances d(Pi, Py) diy are specified if and only if {i, j} e E.
(C2) Each of the subsets {Pz}teg, j 1,... ,m, lie on a hypersphere of radius

R.
Determine the hypersphere of minimum radius (if any) on which the points

P,..., Pn satisfying (C1) and (C2) may lie.
The problems (P) and (P2) are equivalent. Indeed, without loss of generality,

we may assume that R xf/2. Consider the partial positive semidefinite matrix A
satisfying the conditions of Problem (P) and then consider the points P1,..., Pn in
Rn such that d(Pi, Py) V/1 -aij for any (i, j) e E. Then, by Lemma 4.1, A admits
a positive semidefinite completion if and only if the points P,..., Pn may be chosen
to lie on a hypersphere of radius v//2.
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FAST ALGORITHMS FOR CONFLUENT VANDERMONDE LINEAR
SYSTEMS AND GENERALIZED TRUMMERS PROBLEM*
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Abstract. Asymptotically fast algorithms for both dual confluent Vandermonde linear systems
and generalized Trummer’s problem are presented by using the divide and conquer method. It is
shown that dual confluent Vandermonde linear systems can be solved in O(n log n log p) operations
and generalized Trummer’s problem can be done in O(np log n log ) operations if fast polynomial
multiplication and division are used. Also a fast algorithm for Hermite evaluation of rational functions
is presented.

Key words, confluent Vandermonde linear system, generalized Hilbert matrix, generalized
Trummer’s problem, Hermite evaluation, Hermite inter.polation, divide and conquer
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1. Introduction. Let a0, al,... ,ap be p + 1 numbers, n0,nl,... ,np be p + 1
positive integers and n -i=0 ni. Consider dual confluent Vandermonde linear
systems

(i) VcTx C,

where Vc (Bo, B,..., Bp) is a confluent Vandermonde matrix, (see [5], [7], [8], [23])
and Bk is an n nk matrix with (i, j) entry

X.-"ak

Linear systems (1) and confluent Vandermonde linear systems

(2) Vx=c
arise in various applications such as construction of quadrature formulae [2], [15], [20],
[24] and approximation of linear functionals [3], [29].

In the early part of the 1970s, Bjhrck et al. [6], [5] derived some O(n2) fast algo-
rithms for (dual) Vandermonde linear systems and (dual) confluent Vandermonde lin-
ear systems. Vandermonde-like matrices [9], [17] and confluent Vandermonde-like ma-
trices [18] are generalizations of Vandermonde matrices and confluent Vandermonde
matrices, respectively, in which the monomials are replaced by arbitrary polynomials.
For the case where the polynomials satisfy a three-term recurrence relation, in 1988
and 1990, Higham [17], [18] generalized the results to (dual) Vandermonde-like linear
systems and (dual) confluent Vandermonde-like linear systems. It was shown recently
that the operations of solving both Vandermonde linear systems and confluent Van-
dermonde linear systems can be further reduced if fast polynomial multiplication and
division are used. Using the divide and conquer method, Lu [22], [23] presented an

O(n log2 n) algorithm and an O(n log n log p) algorithm for Vandermonde linear sys-
tems and confluent Vandermonde linear systems (2), respectively, where throughout
the paper, log m means log2 m if m >_ 2 and 1 if 0

_
m < 2.
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(3)

Let Hp be a generalized Hilbert matrix with (i, j) entry

(Hv)ij 1/(ti si)p,
hpi

where p is a positive integer, ti, si, and hpi are points in the complex plane satisfying
ti :fi tj, si sj, ti - si for i j, i,j 1,2,...,n. For the case p 1, ti si ci,

and hli 0, we have a matrix H with (i, j) entry

Let b be any n-vector. In 1985, Golub [13] posed Trummer’s problem as follows:

Give an algorithm for computing Hb in less than O(n2) multipli-
cations. If this is impossible, show that it cannot be done.

Two years later Gerasoulis et al. proposed an O(n log2 n) algorithm for Trummer’s
problem, henceforth the GGS algorithm [12]. Extending the GGS algorithm to include
the matrices defined in (3) in the case ti si, i, j 1, 2,..., n, Gerasoulis showed the
existence of a fast algorithm with O(n log2 n) time complexity for the multiplications
of generalized Hilbert matrices with vectors Hlb, H2b [11]. For the general case, I
showed that there exists an O(np log n log np) algorithm for the multiplication Hpb if
ti sy, i,j 1,2,...,n [21].

Consider generalized Trummer’s problem, i.e., the multiplications of generalized
Hilbert matrices H1, H2,..., Hp with vectors

(4) Hb, H2b,..., Hpb.

Various applications of the problem can be found in the computation of conformal
mappings [30], the numerical evaluation of singular integrals [11], and particle simu-
lations [14], [27].

The purpose of this paper is to construct asymptotically fast algorithms for both
dual confluent Vandermonde linear systems (1) and generalized Trummer’s problem
(4) by using the divide and conquer method and incorporating the fast polynomial
arithmetic.

Let r(x) p(x)/q(x) be a rational function, where p(x) and q(x) are polynomials
of degree 5 and fit, respectively. In 2, we present a fast algorithm for Hermite
evaluation of r(x), i.e., the computation

r(k)(ai), k=0,1, ni-1, i=O, 1,...,p,

where a0, a1,..., ap are p + 1 points in complex plane and no, n1,..., np are p + 1
positive integers. The algorithm needs at most O(N log n + n log n log p) operations
if N _> n and O(n log Nlog Np) operations if N < n, where N max(S, fit) and

n
Pn -=o ni. Using the results in 2, I present divide and conquer algorithms for

dual confluent Vandermonde linear systems (1) in 3 and for generalized Trummer’s
problem (4) in 4. It is shown that dual confluent Vandermonde linear systems can
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be solved in O(n logs log p) operations and generalized Trummer’s problem can be
done in O(np log n log ) operations if fast polynomial multiplication and division are

used. I derive also an O(np log np + n log2 n) algorithm for computing multiplication
Hpb in the case ti sj, i,j 1,2,... ,n in 5. Finally, some comments on practical
aspects of the implementation of the algorithms for Chebyshev points are made in 6.

Let A(x) and B(x) be two polynomials. For convenience, quot(A(x),B(x)) de-
notes the quotient of polynomial division A(x)/B(x), i.e., ignoring the remainder r(x):
A(x) = B(x)quot(A(x), B(x)) + r(x), throughout the paper.

2. Hermite evaluation of rational functions. Let r(x) p(x)/q(x) be a
rational function, where p(x) and q(x) are polynomials of degree and rh, respectively.
For given p+1 numbers ao, al,..., ap and p+ 1 positive integers no, nl,..., up, Hermite
evaluation of r(x) is to compute

r(j)(ai), j=0,1,...,n-l, i=0,1,...,p.

In this section, we present a divide and conquer algorithm for the problem.

2.1. Algorithm. To construct an asymptotically fast algorithm for the problem,
we expand r(x), p(x), and q(x) in Taylor series at ai, i.e.,

hi--1

+ O((x
j=O

hi-1

p(x) pij(X ai)j + O((x ai)n’),
j=0

hi--1

q(x) qij (x ai)J + O((x ai)n’ ).
j=O

Comparing the coefficients of (x ai)j in r(x)q(x) p(x) shows that the coefficient
vector ri (rio, ril,... ,ri,n,-l)T is the solution of the following triangular Toeplitz
linear system

(5) Tiri

where Ti is a triangular Toeplitz matrix of the form

qio

ql qio

qi,n-i qil qio

or simply triT(qi0, qil qi,n-l for convenience, and Pi (Pio, Pil Pi,n-I)T.
Hence, we have

r(j) (ai) j!rij, j=0,1,...,ni-1, i=0,1,...,p.

To solve triangular Toeplitz linear systems (5) we need to compute the Hermite
evaluation of polynomials p(x) and q(x). Let N max(S, rh). Without loss of
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P 2kgenerality, assume n i=0 ni for some nonnegative integer k. Set

i-1

bmi+j ai, mi nt, j 1, 2,..., n, i 0, 1,...,p,
t--O

To(x) x b, 1,2,...,n,

(6) Tj(x) Tj-l,2i-l(X)Tj-l,2(x), 1, 2,..., 2k-j, j 1, 2,..., k.

With an essential modification of Algorithm 3.2 in [23] for reducing operations we con-
struct an asymptotically fast algorithm for Hermite evaluation of rational functions.
Note that it is not hard to construct an algorithm for the problem through a straight-
forward modification of the algorithm in [23], though the computational complexity
needs to be further estimated. The main difference between the two algorithms is
how to compute r(i) (az), 0, 1,..., nz 1 after finding a proper 1. Both algorithms
compute r()(at), 0, 1,... ,nt- 1 by using polynomials, but the new one avoids
using polynomials of high degree. For example, if no n np 1. The
following algorithm obtains r(a), 0, 1,..., n 1 from polynomials of degree zero
while the old algorithm evaluates polynomials of high degree for the same purpose.
However, the complexity analysis of our new algorithm becomes complicated as we
will see.

ALGORITHM HERF.
Given a rational function r(x) p(x)/q(x), p+ 1 numbers a0, a,..., ap and
p + 1 positive integers no, n, np, where p(x) and q(x) are polynomials
of degree fi and fit, respectively, the following algorithm computes Hermite

r(j)(ai),j 0,1,.. ni 1, i=0,1,., p.evaluation of r(x), i.e.,

imlStage I. bmi+j ai, mo 0, mi -t=o nt, j 1,..., ni,

Toi x bi, 1, 2,..., n, Pkl p(x), qk q(x)
Sk {0, 1,...,p}
Forj--l’l’k

IfN+l>_2j then
For i- 1" 1" 2-j

Tyi Ty_1,2i-Ty_,2i
endfor

endif
endfor j
if N >_ n then Qk quot(x2k+1-1, Tk)

if 5 >_ n then p=Div(pkl, Tk, Qkl, n)
endif
if fit _> n then qk=Div(qk Tk Qkl n)
endif

endif
Stage II. For j k" -1 1

For i 1 1 2-y

if Sj {/} then Call Value(pj, q, at, nt)
for m 0" 1 "nt 1

r(m) (at) i!Um
endfor m

i=0,...,p
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elseif Sji 7 then
if2j-1 <N<2jthen

for m 2i- 1, 2i
Qj-I,, quot(x2-, T_,m)

endfor m
elseif N >_ 2y then Qj_,2i_

Qj-l,2i quot(Tj_l,2i_lQj, x2
endif
if fi < 2- then pj_ 1,2i-
else for m 2i- 1, 2i

pj-1,m Div(py, Tj_1,m, Qj-- 1,m, 2Y-)
endfor m

endif
if rh < 2J- then qj_ 1,2- qj-,2 qji
else for m 2i- 1, 2i

qj-,m Div(qyi, Ty-,m, Qy-,m, 2-endfor m
endif
if b(2_1)2-1 b(2-)2-1+ at and at E Sj then

call VMue(pj, qj,
for m- 0 1 nt 1

r(m) (at) i!Um
endfor m
Sj-,2-l={t: t e Sj and t < l}
S_,2={t: t e Sji and t > l}

elseif b(2i- 1)25- at then
Sj_l,2i_={t: t e Sj and t _< l}
Sj_l,2={t" t e Sj and t > l}

endif
endif

endfor
endfor j

FUNCTION Div(A(x), B(x), Q(x), n). Let A(x) and B(x) be two polynomials
of degree fi and n, respectively, and Q(x) be preprocessing of B(x). Based on
Proposition 2.1 (see next page). Function Div computes the remainder R(x)
of division A(x)/B(x) and return R(x).

K(x) quot(A(x), xn), P(x) quot(K(x)Q(x), xn-)
R(x) A(x) P(x)B(x)
Return R(x)

end

ALGORITHM Value(A(x), B(x), n, a). Let n be a positive integer, a be a com-
plex number, A(x) and B(x) be two polynomials. Algorithm Value computes
R(’)(a)/m!, m 0, 1,...,n- 1, where R(x)= A(x)/B(x).

A(’) (a) b, . B(O (a) i=0,1, n -1Compute a .
Solve triangular Toeplitz linear system
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triT(bo, bl,..., an-1)u (co, al,..., an-l)T

We use the preprocessing of Tj (x) in the algorithm for the sake of further reducing
the operations. Given a polynomial B(x) of degree n, by preprocessing B(x), we
define the computation of the quotient of x2n-1 divided by B(x). Assume Qj(x) is

the quotient of x2+1-1 divided by T(x). It is not hard to check from (6) that

Qj-l,2i-l(X) quot(T_l,2iQji(x), x2 ),

Qj_l,2(x) quot(Tj_,2_ (x)Qj(x), x2

are the quotients of x2- divided by Tj_I,2i(x) and of x2-1 divided by Tj_,2(x),
respectively.

The correctness of Function Div is based on the following proposition [25] on the
preprocessing of polynomials.

PROPOSITION 2.1. Let
n

A(x) E ax’ B(x) E bx’ (a 0, bn 0),
i--0 i--0

D(x) be the result of preprocessing B(x) and K(x) quot(A(x),xn). Then

Q(x) quot(D(x)K(x), Xn-l), R(x) A(x) Q(x)B(x)

are the quotient and the remainder of division A(x)/B(x), respectively.

2.2. Correctness and computational complexity. We now prove the cor-
rectness and analyze the computational complexity for HERF. To this end, we need
the following two propositions. The first one is to estimate the computational cost of
Value.

PROPOSITION 2.2. Let A(x) and B(x) be two polynomials of degree - 1 and
h 1, respectively, and m max(t, rh). Algorithm Value(A(x), B(x), n, a) needs
at most C max(n, m)log(min(n, m)) operations if fast polynomial multiplication and
division are used, where C is a positive constant independent of n and m.

Proof. If m >_ n, it follows from [23] (see the proof of Proposition 4.2 [23] for
details) that the computation, ai A(i)(a)/i!, bi B(i)(a)/i!, 0, 1,..., n 1,
needs at most C m log n operations. Triangular Toeplitz linear systems can actually
be solved by fast polynomial division that needs C2 n log n operations (see, e.g., [4]),
where and (2 are positive constants independent of n and m. Choosing C
( + (2 finishes the proof for the case m _> n.

If n > m, ai’s and bi’s can be obtained in ( m logm operations because ai 0
and bi 0 if i _> m. In this case, the coefficient matrix of the linear system included
in Value is of the form T triT(a0, al,..., am-l, 0,..., 0). Without loss of generality,
we assume that n tm for some positive integer t. To solve triangular Toeplitz linear
systems

(7) Tu d,

we partition T into a t t block form

To
T1 To

T1 To
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where To triT(a0, al,... ,am-) and T triT(0, am-,..., a)T, and partition u
and d consistently with T, i.e.,

u0
Ul

11

at-1

do

dil
where ui and di are m-vectors. Let y (Yo, Yl,..., Ym-1)T be the solution

Toy e (1, 0,..., 0)T.
One can easily check that Td- triT(yo, y,...,ym_). Now, we solve triangular
Toeplitz linear systems (7) as follows:

Solve Toy e u0 To-ld0
for/=l’l’t-1

ui To- (di T1ui- ),
endfor i.

As mentioned above, Toy- e can be solved in C2 m logm operations. Since
multiplication of triangular Toeplitz matrices with vectors can be computed by poly-
nomial multiplication, TlUi-1 and ui can be obtained by using multiplication by two
polynomials of degree m, respectively. Hence, Value needs at most

t--1

log m q- 2 m log m q- 23Emlog m n logm
i=0

operations, where (73 is a positive constant independent of n and m and ( +

PROPOSITION 2.3. Let n 2k for some nonnegative integer k, p <_ n be a

nonnegative integer and

(n )(n ) n n
C(n,O)<C2nlogn,(8) C(n, p) < C -,p + C -, p2 + C - log -,
n n and Pl -]-P2 < P,where Pl, P2 are two nonnegative integers such that p <_ -i, p2 <_ -,

and C1 and C2 are two positive constants independent of n and p. Then

(9) C(n, p) < C n log n(log(p + 1) + 1),

where C max(Ci, C2).
Proof. We prove the proposition by induction on n + p. C(n, O) < C2 n log n

implies that (9) holds for n + p 1.
Under the assumption that log 1 means 1 as mentioned in the intr duction of the

paper, n log n (log(p + 1) + 1) < 2n log n log(p + 1) for p > 0. If pl 0, using (8) and
induction hypothesis shows that

(_) (n) nn
C(n,p) < C n,o +C -,p2 +Cllog

n n n n_< (C + C2) 5 log + C log (log(p2 + 1) + 1)
n n<_ Cn log + C n log log(p2 + 1)

N C n log n (log(p + 1) + 1).
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If P2 0, (9) is derived in a similar way.
Otherwise, both pl >_ 1 and P2 >_ 1. It is easy to check that (2(pl + 1)(p2 + 1)) 1/2 _<

p + 1. It follows from (8) and induction hypothesis that

n n
(log(p + 1) + 1) + C n nn n

(log(p + 1) + 1) + C log log
2

C(n, p) < C - log - n n<_ Cnlog n log(2(pl + 1)(p2 + 1))1/2 + (C + C1) log -2
_< 6’ n log n(log(p + 1) + 1),

which completes the proof. [:]

THEOREM 2.4. Given a rational function r(x) --p(x)/q(x),p+ 1 numbers ao, a,
ap and p + 1 positive integers no, n,..., np, where p(x) and q(x) are polynomials

of degree of and h, respectively, Algorithm HERF computes Hermite evaluation,
r(J)(ai), j 0,1,...,ni- 1, i 0,1,...,p. Furthermore, if fast polynomial mul-
tiplication and division are used, the algorithm needs only O(Nlogn + n log n log p)
operations ifN >_ n and O(n log N log Np) operations ifN < n, where N max(fi, rh)n

Pand n -)-=o ni.

Proof. We prove the theorem for the case N n- 1 first. The correctness is
essentially the same as that of Algorithm 3.2 in [23].

It follows from [23] that Stage I needs at most O(n log n log p) operations (see
[23, Prop. 4.1]). Denote by K(n,p) the number of operations needed by Stage II. If
p O, Sk {0}. The alg~orithm calls only Value(pk (x), qkl (x), n, a0). Proposition
2.2 shows that K(n, O) < C n log n.

Otherwise, Stage II divides Hermite evaluation of a rational function, denoted by
HERF(n,p) temporarily, into two subproblems HERF(,p) and HERF(,p2).

Note that function Div performs actually polynomial multiplication twice. Hence,
for fixed and j, Stage II performs multiplication of polynomials of degree at most
2k- finite times independent of .and j, polynomial division at most twice (this case
occurs only if j k) and the Algorithm Value at most once. Incorporating the fast
polynomial arithmetic and using Proposition 2.2 show that there exists a positive
constant C independent of n and p such that

-nn (n)(n)K(n,p) <_ C-- log- + K -,p + g ,p2

where p + p2 < Pz _Proposition 2.3 shows that K(n,p) <_ Cnlogn(log(p + 1) / 1),
where C max(C, C). Hence, the overall computational cost is O(n log nlogp) if
N=n-1.

If N >_ n, we need only to add the computation QI quot(x2k+1 Tx) pkl

Div(Pkl,Tk,Qk,n) if _> n and qk Div(qk,Tkl, Qkx,n) if rh >_ n. After the
computation, we have

(Pkl (X) )
(m)

m=0,1,...,ni-1, i=0,1,...,p.

Since now max(deg(pk(x)), deg(qtc(x))) <_ n- 1, the correctness of the algorithm
for N >_ n follows immediately. On the other hand, Q can be computed by fast
polynomial division and new Pkx (x) and qkl (x) can be obtained by polynomial mul-
tiplication at most four times as we mentioned above. The operations needed are
O(n log n + N log n). Thus, the overall cost is O(N log n + n log n log p) operations.
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If N < n, assume that 2m > N+ 1 >_ 2m- for some positive integer m. Recalling
our algorithm, one finds that except the calculation

x--all

if bi2,-i bi2,-1+1 at the computation of the algorithm is to compute Hermite
evaluation of the form

(11) (p(x) (t)

\q(x)]

where qi= > qi and M < 2k+l-m

0 ifi= 1,
qi

li_+l ifi>l,

if b2-,- ati and b2m-+l = ate,

if bi2.- bi2,- + al

Thus, the correctness of the algorithm becomes clear.
Let be the number of all which satisfy bi2,- bi2--+l. Apparently,_

2k+l-m, 2k-m _< + M < 2k-m+2,
M

+ E(qi q + 1) p+ 1.
i--1

It follows from the previous proof of the theorem that for fixed computing (11) needs

1) + +
m--1<_ C1NlogN + C22 log Nlog(q q +.1)

operations, where C1 and C2 are positive constants. Proposition 2.2 shows that oper-
ations for computing (10) are ( max(N, n) log(min(N, nti)) <: max(N, n) log N.
Hence, the overall operations are bounded by

M

E max(N, nt,)log N + log N E(OlN + 22m-1 log(q q, + 1))
i=l i--1

<- OE(N+n)IgN+OMNIgN+22m-IgN E 1
i:I qi --qi :I

+ 2-1 1ON N E 1og(q. qil + 1)
qi2 --qi >1

<_ (7N log N + OEn logN + MNlogg + (22m-IMlogN
i=1
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+ 2(M + )2m- log N log H (qi qi + 1)
q2--q >1

_< (3 + 2(1 + (2) n log N + 2(2 n log N log 7"iM--1 (qi2 qi_ + 1) +
M+k

2Np(3d + 21 + 02) n log N + 202 n log N log
n

n log N +2n log N log Np,

where ( 3( + 21 + 32. [:]

The Algorithm HERF can easily be adjusted for Hermite evaluation of polyno-
mials with a straightforward modification. When HERF is used for Hermite eval-
uation of polynomials p(J)(ai), j 0, 1,..., ni 1, i 0, 1,... ,p, we denote it by
nEP(p(x), (a, n), 0, 1,..., p).

3. Solution of confluent Vandermonde linear systems (dual). Let Vc
(B0, B1,..., Bp) be a confluent Vandermonde matrix, where Bk is an n nk matrix
with (i, j) entry

dxJ-
x’--ak

pand n -=o ni, ai aj, i j, i,j 0, 1,... ,p. Consider dual confluent Vander-
monde linear systems

(12) VTx c.

It is shown that confluent Vandermonde matrix Vc is nonsingular if and only if a
aj, j, i,j O, 1,... ,p (see [23, Prop. 2.2]). Hence, (12) has a unique solution.
Note that p(x) x + x2x +... + x,xn- satisfies interpolating condition

(13) p(J) (ai) Cm+j+,

i-1where m0 0, mi y=0 ny. Thus, p(x) is a Hermite interpolating polynomial of
degree at most n- 1 for the data {ai, Cm+y+l}, i 0, 1,... ,p, j 0, 1,..., ni 1.
Our purpose is to determine its coefficients of xi. Let

I(X) (X Co)nO (X al)nl (X ap)rip,

li(x) l(x)/(x ai)n, i O, 1,..., p.

As the first step, we represent p(x) as

p

,(x) f,(x),(x),
i--0

where fi(x) is a polynomial of degree at most ni 1. Equation (13) shows that

(14) (fi(x)li(x))(J) ---CmTj-t-1, j =0,1,...,ni-- 1, i=0,1,...,p.
x--ai
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To obtain the representation of p(x) in terms of the basis {x }i=0, we need to
compute the coefficients of fi(x). Expand f(x), l(x) in Taylor series at a,

fi(x) Pio ’[- Pil (x hi) --[-..’--[- Pi,ni-1 (x hi)ni-1,

l(x) lio + lil(X hi) +... + l,n,-l(X hi)n’-I + O((x

Equation (14) implies that u (P0,PI,... ,Pi,n-l)T is the solution of the following
triangular Toeplitz linear systems

Tiui di

Where Ti is a triangular Toeplitz matrix of the form T triT(/0,/1,... ,li,ni-1) and
1
C )T Furthermored is an n-vector given by d (Cm+, Cm-t-2, 2! m+3, (n_l)]Cni

relation li(x)(x- hi)n* l(x) implies that

/}J) (ai) (n+j)
lij

j! (ni + j)!
j O, 1,. ,ni -1.

Let go(x), g (x),..., gq(x) be q( _< p) polynomials over the complex number field.
For convenience, notation p(gi(x), q, (cj, nj),p) stands for a polynomial of the form

q=og(x)li(x). Let v (vo, vl,...,v,_l)T be an m-vector. Notation v(x) de-
m--1notes the polynomial =o vix" Using this notation, we now present the following

algorithm for solving the dual confluent Vandermonde linear systems (12), or for
representing a Hermite interpolating polynomial p(x) of degree at most n- 1 such
that

p(k) (ai) Cm+k+,

in terms of the basis (xi}.
ALGORITHM SCV. Let Vc (Bo, BI,...,Bp) be a confluent Vandermonde
matrix, where Bk is an n nk matrix with (i, j) entry

x--ak

Pwhere n i=0 ni, ai ay, j, i, j 0, 1,...,p. The following algorithm
solves the dual confluent Vandermonde linear systems (12). Without loss of
generality, we assume here n 2k for some positive integer k.
Stage I. Call HEP (l(x), (a, n), 0, 1,...,p)

Fori--0: l:p
For j 0 1 ni 1

lij l(’+J)(a)’
(n-i-j)!

endfor j
Ti triT(/i0, li,..., li,ni-1)
di (Cmi+l, Cmi+2,..., (n:n21)!)T
Solve triangular Toeplitz linear system Tiui =di
fi(x)-Convert(ui(x ai), ni 1)

endfor
Stage II. S {0, 1,...,p}, p(x) (fi(x),p, (ay,nj),p)

Call CHIP(p(x), S)
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ALGORITHM CHIP(p(x), S). Let p(x) p(f(x), q, (cy, ny),p). The Algorithm
CHIP(p(x), S) converts p(x)into the form hx.

Forj=k:-l:l
For 1 1:2k-j

if b(2i_1)2- --at and S then
if b(2i_1)2-+1 at then

Rt (x) ft (x)Tj (x) /(x at )nt
S,={tS, t<l}

l--1if S, then nt 2-* t=o nt, ql l- 1,
p, l, p, (x) ( (x), ql, (aj, nj), p,)
Call CHiP(p, (x), S,)

else p, (x) 0
endif
S2={t, tO,t+l+l S}
if $2 then np-l 2j-1 Pt=l+l nt

form=0:1 :q--l-- 1
f(x) fl+lwi(x)

endfor m
form=0:1 :p-l- 1

ai al+l+i ni nl+l+i
endfor m
q q- 1, P2 P-
p(x) ((x), q2, (aj, nj), P2)
Call CHIP(p2(x), $2)

else p2(x) 0
endif
p(x) p(x)T_, +(x)T_,_ + R(x)

elseS={t, tl,tS},q=l,p=l
p(x) ((x), q, (aj, ny), Pl)
Call CHIP(p (x), S)
$2 {t, tO,t+l+lS}

for 0 1 :q-l- 1
fi(x) ft+l+i(x)

endfor m
for m=0:1 :p-l- 1

ai al+lWi ni
endfor m
q2 q- l- 1, P2 p- l- 1
() (f(x),, (a,),)
can CHIP(p:(x), &)

else pa (x) 0
endif
p(x) Pl (x)Tl-l,2j + p2(x)-l,2j-1

endif
elseif b(2i-)2- at and S

1--1n 2- t=o nt, p
(x) (f(),, (,n),(z))
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Call CHIP(p(x), S)

endif
endfor i

endfor j

FUNCTION Convert(q(x- a), m). Given a polynomial q(x) of degree m, func-
tion Convert converts q(x- a) into the form hixi.

q(),(-a) i=0,1 mCompute qi i!
Return qo + qlx +... + qmxm

end

Note that 0 E Si if Si - 0 and m Si if Si and m > at any step of the
algorithm. Since SCV can be used to determine Hermite interpolating polynomials,
we denote SCV occasionally by HIP(p(x), (hi, n), 0, 1,..., p) in light of hi, n and
p.

THEOREM 3.1. Algorithm SCV solves dual confluent Vandermonde linear system
VcTx b in O(n log n log p) operations if fast polynomial multiplication and division
are used.

Proof. As stated above, Stage I of Algorithm SCV computes correctly the co-
efficients of polynomial fi(x), 0, 1,...,p, of degree at most ni- 1 such that
p(x) fo(x)lo(x) + f(x)ll(x) /... + fp(x)lp(x) satisfies the condition (13). We now
prove that Stage II converts correctly p(x) into the form ’ hix by induction on p.

If p 0, we have Tko(X) (x- Co)n and n0 n. Performing the algorithm shows
that S $2 q}. Hence p(x) fo (:a) f0(x), which shows the correctness of
the algorithm.

If p > 0 and b2k-1 b2k-l+ a, write p(x) as

where [(x) l(x)/Tk_,2(x) if i < and l(x) l(x)/Tk_,(x) if > 1. Per-
forming the algorithm for j k shows that pl(x) -1’i=0 fi(x)[i(z) and p(z)

=+ f(z)l(z). Hence, induction shows that the algorithm represents

(5) p(x) p (x)Tk-,2(x) + p2(x)Tk-, (x) + Rt(x)

correctly in term of the basis {xi}. If p > 0 and b2- : b2-+, the correctness of
the algorithm follows from a similar way.

Note that when j <_ k- 1, the situation b(2-)2- at, S 0, and S may
occur. Consider CHIP(15(x), S), for example, where iS(x) (f(x), , (aj, n),iS), and
$1 {0, 1,... ,}. In this case > , it is readily seen that iS(x) p(x)T_,2i(x),

1-1where p(x) (f, , (aj, j),l), n if i < and fit 2j- Ei=o n. Therefore,
the "elseif" of the algorithm treats the case correctly.

It follows from the proof of Theorem 2.4, Stage I needs at most O(n log n log p)
operations. We now prove that Stage II needs also O(n log n logp) operations. To
this end, denote by T(n, q) the number of operations needed by CHIP(p(x), S) after
all T(x) are converted into the form E hx, where p(x) (f(x), q, (a, ni),p) and
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S {0, 1,..., q}. If q 0, it is readily seen that T(n, q) 0 according to the analysis
of the correctness.

If q > 0, b2k-1 b2k-l+l al, and E S, the algorithm divides the prob-
lem CHIP(p(x),S) into two subproblems CHIP(pl(x),S1) and CHIP(p2(x),S2) af-
ter computing Rz(x) and then converts p(x) into the form hix via (15). Since
(x- al)TM Xn- nlalXnL-1 -b’’" + (--1)na, it needs O(nz) < O(n) operations to
write (x-at)TM into the form hix. Fast polynomial multiplication and division are
used to convert Rt(x) and p(x) into the form hix in C1 log operations, where
C is a positive constant independent of n and q. Hence,

T(n,q) < T -,q +T -,q2 +Clog,
where q 1 and q2 q- 1.

If b2-, -7(: b2-+l and E S, we have similarly

(n) n o
T(n,q)<T -,ql +T ,q2 +C2log,

where ql and q2 q- 1 and C2 is a positive constant independent of n and q.
Note that if the case b2-i at, S and S # occurs, we can estimate T(n, q)

as follows:

,q +ca og,
where C3 is another positive constant independent of n and q.

Hence, T(n, 0) 0 and

(16)
n n n n

T(n,p) <_ T(-,q) + T(-,q2) + C- log ,
where C max(C, C2, C3) and q + q2 _< q. Proposition 2.3 and (16) show that
T(n, p) < C n log n(log(p + 1) + 1).

4. Generalized Trummer’s problem I. Let Hp be generalized Hilbert matri-
ces of order n defined by

(7)
1/(ti-sj)p,

(Hp)ij 1/(ti- si)p,
hpi,

iCj, i,j=l,2,...,n,

i j, t
j, t s,

where p is a positive integer, ti, si, and hpi are points in the complex plane, and
t tj, t # sj, si sj for j. Given an n-vector b (b, b2,..., bn)T, in
this section, we consider the generalized Trummer’s problem, i.e., the computation of
multiplications Hlb, H2b,...,Hpb. Denote

() (x- )(- s)... (x- ,),

(x)
wi(x) (x- si)’

1,2,...,n,

g(x) blw(x) + b2w2(x) +... + bnwn(X),

(18)
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(19)
r(x),

biwi(x)(x)=
(x)- (x)

g(x), x # si,
(0) (z)

(x) ,(x), x ,

Yi Hib (Yil, Yi2,..., Yin)T.

Equations (18), (19), and (20)imply that w(x)ri(x)= gi(x). A simple computation
shows that

(21) Ymi

n
b(t- )’’ t # ,

n
bjE (t_sj)m

j--1,ji

+ hmibi ti 8i

(--1)m-1 (m--l)

(m 1)! r (x)

(-1)m-1 .(m-- 1)
(._ )! .,- (x)

x’-’ti

+ hmibi, ti si.

Therefore, the generalized Trummer’s problem can be computed by Hermite evalua-
tion of rational functions rl(x),r2(x),... ,rn(x). Furthermore, expanding ri(x), l(x),
and gi(x) in Taylor series at ti shows that

Since si sj for j, w(xi) wio 0 if ti si and w’(ti) wi 0 if
ti si. Equaling to the coefficients of x in ri(x)w(x) gi(x) shows that ri
(r/0, r/l,..., ri,p-1)T is the solution of the following triangular Toeplitz linear system

triT(wio, Wil,..., Wi,p-1)ri

if t : si, or

triT(Wil, wi2,..., Wip)ri di2

if ti si, where dil= (gio,gi,... ,gi,p-1)T and di2 (gi,gi2,... ,gip)T.
On the other hand, relation (x- si)wi(x) w(x) implies that

w(,+l) (x)(x- s) + (m + 1)w}") (x) w(m+:)(x).
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Hence, if ti si, the mth derivative of w(x) at point t can be calculated by

w(’)(t)= w(+)(t),
m +----

which together with (20) shows that the mth derivative of g(x) at point ti is given
by

bi
m+l

ti 8i.

w(m+1) (ti) ti 8i.

Therefore, generalized Trummer’s problem Hlb, H2b, Hpb can be computed as
follows.

ALGORITHM G-TRUMMER I. Given p generalized Hilbert matrices H1, H2,
Hp of order n defined by (17) and an n-vector b-- (b,b2,..., bn)T, Al-

gorithm G-Trummer I computes generalized Trummer’s problem, Hb, H2b,
Hpb. Without loss of generality, we assume here n 2k for some positive

integer k.

StageI. SetT=x-s, i=l,2,...,n
Forj=l:l:k

For i 1:1:2k-j

Tj,i(x) Tj-,2i-1 (x)Tj_,2i(x)
endif

endif j
Stage II. g(x) nEi=biwi(x), S= {O, 1,’" n-l}

Call cnIP(g(x), S), w(x) Tk(x)
Call HEP(w(x), (ti, p + 2), 1,..., n)
Call HEP(g(x), (ti, p + 1), 1,..., n)
Fori-l:l:n

w(-)(t))if ti -7: si then Ti triT(w(ti), w’(ti),..., (p_)!
g(p-1)(t) )Tg (g(ti), g’(ti),

else Ti triT(w’(ti), w(2)2!(ti) w(P)(ti)p! T

form=l:l:p
g(m)(t) biw(m+)(t)

dim m! (m+ )!
endfor m
gi (gil, gi2, dip)T

endif
Solve triangular Toeplitz linear system Tixi gi

For j --0:1 :p- 1
if ti si then yj+,i (- 1)Jxij
else Yj+l,i (- 1)Jxij + hj+,i bi
endif

endfor j
endfor
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THEOREM 4.1. Given a set of Hilbert matrices {H1, H2,..., Hp} defined by (17)
and a complex vector b (bl, b2,..., bn)T, Algorithm G-Trummer I computes gener-
alized Trummer’s problem Hib, H2b,..., Hpb in O(np log n log ) operations if fast
polynomial multiplication and division are used.

Proof. The correctness of the algorithm follows from our previous discussion
of the section and its computational complexity follows from Theorems 2.4 and 3.1
immediately. Cl

5. Generalized Trummer’s problem II. In this section, we consider how to
compute the multiplication Hpb fast, where Hp is a generalized Hilbert matrix given
by (17), if ti si, 1,2,...,n. Denote q(x) (x tl)(x- t2)...(x tn),
p(x) (q(x))p and

y Hpb (Yl,Y2,...,Yn)T.

In the case ti si, 1, 2,..., n, (21) shows that the components of y are given by

(-1)p-1
r(p-l) (t), 1, 2,..., n.

Since w(x) and p(x) are prime, there exist unique polynomials u(x) of degree at
most np- 1 and v(x) of degree at most n- 1 such that

(22) u(x)w(x) + v(x)p(x) 1.

To compute the (p- 1)th’derivative of r(x) at points t, 1,2,...,n, we
formulate r(x) from (19)and (22)that

+ w(x)

which implies that

r(P-1)(ti)-- (t(X)g(X))(P--1)lx__ti i 1,2,...,n.

Putting x si in (22) shows that v(x) is a interpolating polynomial such that

1
v(si)=p,si,( i-l,2,...,.n,

and furthermore, we obtain again from (22) that

1 v(x)p(x)
w(x)

Summarizing our discussion, we have the following algorithm for the matrix-vector
product Hpb in the case t # s, 1, 2,..., n.

ALGORITHM G-TRUMMER II. Given a generalized Hilbert matrix Hp defined
by (17) satisfying, in addition, ti # si, i 1,2,... ,n and an n-vector b
(bl, b2,..., bn)T, the following algorithm computes the matrix-vector product
H,b.

StageI. SetT0i(x)=x-si, Roi x ti, l,2,... ,n
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Forj=l’l"k
For i 1 1 2k-j

Tji(x) T-1,2-1 (x) Ty-l,2i(x)
R(x) R_,._() R_,.(x)

endfor i
endfor j

Stage II. w(x) Tk (x), q(x) Rk (x)
Call HEP(q(x), (s{, 1), 1, 2,..., n)
For/: 1" 1 "n

p() (q())
endfor i
Call uIe(v(x), (s, p(si)-, 1), i 1, 2,..., n)
s {0,1,.. n },a() E=x bw(x)
Call cuIe(g(x), S)
p() (q()),, (z)= (1- ()(x))/(x)
() (()a(x))(-), () (x)(mod q(x))
Call HSe(fi, (ti, 1) i 1, 2,..., n)
For/= 1" 1 "n

(..)’ (t)yi (p_)
endfor

To analyze the computational complexity, we need the following proposition on
computing the power of polynomials.

PROPOSITION 5.1. Given are the coejZficients ofpolynomial f(x) of degree n and a
positive integer p. Then the coefficients of (f(x))p can be determined in O(nplognp)
operations if fast polynomial multiplication is used. In particular, the pth power of
any complex number can be computed in O(logp) operations.

Proof. Without loss of generality, assume that p 2 for some positive integer t,
the conclusion follows immediately from (f(x) )P (f(x) )p/2 (f(x) )p/2, fast polynomial
multiplication and induction.

THEOREM 5.2. Given a Hilbert matrix Hp of order n defined by (17) satisfying
ti = si, 1, 2,..., n and a complex n-vector b, Algorithm G-Trummer II computes
the matrix-vector product Hpb in O(np log np+ n log2 n) operations if fast polynomial
multiplication and division are used.

Proof. The correctness of the algorithm follows immediately from our discussion.
As for computational complexity, Stage I needs O(n log2 n) operations (see, e.g., [23,
Prop. 4.1]).

Theorems 2.4 and 3.1 show that performing HEP, HIP, and CHIP needs O(n log2 n)
operations. Proposition 5.1 shows that computation (q(si))p, i 1,2,...,n and
p(x) (q(x))p need O(n logp) and O(nplognp) operations, respectively. If fast poly-
nomial multiplication and division are used, u(x) 1-v(x)u(x) ft(x) (u(x)g(x))(p-)

and 2(x) 2(x)(mod q(x)) need O(np log n) operations. Hence, the overall operations
is bounded by O(rip log np+ n log2 n). [:]

Note that the G-Trummer II needs at most O(n log2 n) operations if p < O(log n)
and O(np log np) if p > O(log n).

6. Conclusions. If p << n for generalized Hilbert matrices and ni << n for
confluent Vandermonde matrices, it is not necessary to use a fast solver for triangular
Toeplitz linear systems in our algorithms. In this case G-Trummer I reduces to the
Gerasoulis algorithm essentially if, in addition, p 1, 2 and ti si, 1, 2,..., n.
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In general, it is difficult to analyze the stability of all algorithms in the paper, but
it becomes possible for some practical cases. If we choose ti and si of a generalized
Hilbert matrix to be Chebyshev points, the computational complexity of G-Trummer
I and G-Trummer II can be further reduced and the algorithms can hopefully be
implemented in a stable way, though further work is needed. For example, if p 1,
t cos((2i- 1)r/2n) and s cos(i/n + 1), following [11], we can easily present an

O(n log n) stable implementation of G-Trummer I through a straightforward modifi-
cation. In this case, the algorithm G-Trummer I shares the same complexity and the
same stability with the Gerasoulis algorithm. It is shown in [1 1] that the performance
of the Gerasoulis algorithm with t cos((2i- 1)r/2n) and s cos(ir/n+ 1) is much
faster and more stable than the O(n2) algorithm of common matrix multiplication
because it requires the application of the fast Fourier transform (FFT) twice.

Acknowledgments. I am grateful to Dr. Nicholas J. Higham for valuable com-
ments and suggestions on the manuscript.
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BACKWARD ERROR ANALYSIS FOR THE CONSTRAINED AND
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Abstract. Backward errors are derived for the solution of the constrained and weighted linear
least Squares problem when using the weighted QR factorization with column pivoting, [SIAM J.
Matrix Anal. Appl., 13 (1992), pp. 1298-1313]. On the way to achieving this goal we attain a
detailed description of the errors produced when using our M-invariant reflections.
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1. Introduction. We analyze the algorithm presented in [9] for solving the con-
strained and weighted linear least squares problem

(1) min (b2 A2x)TW2(b2 A2x) s.t. Alx bl,

where A E Rpn, A2 c=_. Rqn, bl RP, b2 @ Rq, and W2 is a diagonal positive
definite weight matrix. It is assumed that p + q m >_ n > p. The algorithm was
only proved to be backward stable for linear least squares with linear constraints. The
main goal is to make a backward error analysis of the weighted QR factorization and
of the algorithm based on the weighted QR factorization to solve (1).

To our knowledge direct algorithms for solving systems of linear equations or
linear least squares (possibly weighted) are all based on orthogonal or Gauss trans-
formations. Our new concept of M-invariant reflections has given rise to a different
approach in the error analysis. The error analysis is based on two properties of the
M-invariant reflection Q. The first property is that the 2-norm of a vector, x, is pre-
served in a certain weighted norm, i.e., IIN/2Qxll--IIN/2xlI, where N is a positive
semidefinite diagonal matrix. The second property is that vectors in this weighted
norm, up to a factor two in norm, are not amplified by the reflection. The norm
invariance is a generalization of the norm invariance of orthogonal transformations
and the growth of vectors is a generalization of the growth in Gauss transformations.
Our results concerning the error analysis are new but similar to the results in [15]
for unconstrained weighted least squares problems. In [1], least squares with linear
constraints and weighted least squares with one weight is analyzed but it is difficult
to compare their results with ours. Other work on error analysis for the least squares
problem can be found in [2]-[5], [11], and [12].

The only other algorithm for the constrained and weighted least squares problem
proved to be backward stable is Paige’s algorithm; see [13] and [14]. Paige uses the
dual formulation of (1). Paige’s approach has many attractive properties for general
weight matrices, but when W2 is diagonal it requires slightly more work than our
algorithm and is definitely more complicated.

We use the perturbation analysis developed in [16] because it covers our class of
weighted and constrained least squares problems (as well as the rank deficient case).

Received by the editors March 23, 1993; accepted for publication (in revised form) by N. J.
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The outline of the article is as follows. First, in 2 we introduce some special
notation. Section 3 introduces the system equations, which is the problem formulation
we use in the analysis. In 4 we present appropriate assumptions for the existence and
uniqueness of the weighted QR factorization. The next three sections then describe
and analyze the use of M-invariant reflections to solve (1). Backward errors for the
weighted QR factorization and backward errors for the solution to (1) are given in 8
and 9, respectively. In 10 we also use the perturbation theory to get explicit forward
error bounds on the solution. Section 11 summarizes the results and describes some
possible future work.

2. Some special notation. We use some notations that need to be explained.
The variable e, with possible sub or superindices, of order u, where u is the round-
off unit of the floating point system, always has an explicitly stated upper limit.
The greek letter 5 is used in connection with the perturbation analysis to denote
small quantities. Round-off errors, backward and forward, are often, but not always,
denoted by A followed by a matrix or a vector, e.g., AA and Ab. The operator
for element-by-element multiplication of two matrices or vectors is denoted q). The
2-norm of a vector x and a matrix X is denoted by Ilxll and IIXII. Numerically
calculated quantities, where the arithmetic precision is finite, are furnished with a hat
to distinguish them from their exact counterparts. If nu < 1 we follow [12] and define

"n nu/(1 nu), which is used frequently in the analysis. The floating point model
used in the analysis is the same as the one in [12].

3. The system equations. If we define M2 W2-1 then an equivalent formu-
lation of (1) is

0 M2 A2 2 b2
AT A2T 0 x 0

where A1 is the vector of Lagrange multipliers and M2,2 is the residual. We call
the system of equations in (2) the system equations and the matrix in (2) the system
matrix.

It is easily seen that problem (1) has a unique solution if and only if rank(A1) p
and rank(A) n and we assume that these two conditions are fulfilled.

Define the m n matrix A and the vector b of length m as

A
A2 b2

If we take

I ]
we can write (2) in a more general way as

M A(3) AT 0
b

where MA is the residual.
where #1 <_"" <_ #m.

We make the assumption that M diag(#l,... ,#m),
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It is convenient to write the system of equations in (3) as

(4) Ax M b.

For the ordinary least squares problem we have M Im and for an unweighted
constrained least squares problem we have M2 Im-p.

4. The weighted QR factorization. Any matrix Q satisfying the condition

(5) QMQT= M,

will be called M-invariant.
The weighted QR factorization of A E Rmn is defined as

0
QMQT M,

where Q E Rmm and R R’n is an upper triangular matrix and H is a permutation
matrix. From [9] we have the following theorem.

THEOREM 4.1. Given M diag(#l,...,#m) where #1 #p O, 0 <
p+l --’’" -- m _

1 and a matrix A Rmn partitioned as

[ All A12 ] p,A
A21 A2. m-p,

p n--p

then a factorization

A=Q[R10 QMQT=M

with R upper triangular and nonsingular and Q nonsingular exists if and only if A has
linearly independent columns and.All is nonsingular. There is a unique nonsingular
R if and only if M is nonsingular.

The permutation matrix in (6) is, as we shall see, necessary for getting a numer-
ically stable algorithm. If Theorem 4.1 is stated with column permutations, H, the
condition of nonsingularity on All for R being nonsingular can be replaced by the
condition that [All,A12] has linearly independent rows.

Note that if the system matrix in (3) is nonsingular then the weighted QR fac-
torization with column permutations exists and R and Q are nonsingular (R and Q
need not be unique).

Assuming that there are no constraints and defining W M-1 then the relation
in (5), corresponding to the problem formulation (1), is QTWQ W. However, this
relation is not as useful as the one in (5) because very large or infinite weights in W
are better represented as very small elements or zero elements in M.

From (3) we get with (6)

M [R ] lb

If we assume that the system matrix in (3) is nonsingular and partition

M diag(Mn, Mm-n),
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where.Mn diag(#l,... ,#n) and Mm-n diag(#n+l,... ,#m), we get

(8) x=H[R-,O]Q-b
and

(9) A=Q-T[ 0 ]M.- Q-lb.
m--n

5. Calculating the weighted QR factorization using M-invariant reflec-
tions. To keep things as simple as possible we consider the first transformation where,
after pivoting, the first column in A, d, is made parallel to el. For the sake of sim-

plicity we assume that the sign of the first element in d, d1) is greater than or equal
to zero. We want Q to fulfill

Qldi -iei, i 0, Qe I.

It is fairly easy to see that Q can be written as

I- (di + a e )(Nld + aie )T

o/1 (C l -" d))

where a IIN/dll and N diag(1, #1/#2,..., #/#m); see [9] for further details.
We now turn to the general algorithm and are forced to introduce some addi-

tional notation to describe the details for solving problem (4) with our weighted QR
factorization. If we look at iteration k we define in exact arithmetic

(k) ]12

A2) Qk-1. Q1AHT II-l,

where (k) is upper triangular and 1-Ik is a permutation matrix. In a similar way we
define

bk b(2k Qk-lb-,

The first column in (k) after the column pivoting is denoted dk and a general"22

column in n(k) is denoted by ck29.

We assume that the first element in dk, dk) is greater than or equal to zero.
The M-invariant reflection at iteration k is

(10) Qk= [ Ik-1 0 ]0 (k

where

I- (d + ake)(Nkdk + akei)T

o(ck + dk))
nrl/2.$

k ]]lvk Ukll and Nk diag(1, #k+l/#k,..., #m/#k). It is easily seen that (adk
-aael and ( I,_/+.
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The column pivoting is made so that

where the maximum in (11) is taken over all columns, ck in 22
Row scaling can be made to minimize the norm of the M-invariant transformation

matrices. This is done by rescaling A with a diagonal matrix D so that the rows of

A( have approximately the same sie. The matrix M is transformed to D/MD1/

and then sorted by permuting rows in A), i.e., the new M-matrix looks like ./
PD/MD/PT where P is a permutation matrix and we put a bar above the scaled
quantities. One way of scaling the rows of A would be to multiply with D1/2

diag(ti), where

because then we get D1/2dk sign(da)lldall and k II/UD/Udall >_ Ildall, which
with Lemma 7.1 implies that IIQkll <- 8m. Note however that D may contain large
elements and we have transformed the problem such that the large elments in Q have
been put in the right-hand side D/2b. It is this transformation that motivates
why row pivoting is not to be recommended if the diagonal in M has been sorted.

Finally note that for any x E Rm-k+l, k 1, n

(12) r/2IIN/2xll-II,, xll,

which is one of the important properties of the M-invariant matrices, Qk, that makes
the error analysis go through.

6. Detailed results of rounding errors for M-invariant reflections. The
following lemma is a short description of the rounding errors produced when applying
a weighted Householder reflection. For the proof we refer to [8]. Remember that
calculated quantities have a hat.

LEMMA 6.1. With finite precision arithmetic and assuming that the column piv-
oting are known a priori, we have

"k+l ](kk) (Qk -{- AQk)2k,

where

[0 0 ]/XQ= o AQ

Assume that ak is a column in (k).22 Then with 1 + Ik)l/Ck >_ 1 we have

where k
Ii I--< ’0(m+2), Ikl--< /6m+4 and Ihk)l <_ u.

Note that this lemma enables us to write -n+ (Qn + AQn)... (QI + AQ)A
and a similar relation for Dn+ that will be used frequently.



680 MARTEN GULLIKSSON

7. Element growth. We have already seen in [9] that there is a possibility of
exponential growth of elements just as for Gauss transformations with partial pivoting.
The lemma that follows describes how an M-invariant reflection can enlarge a vector.

LEMMA 7.1. Assume that d, x E RTM, dl >_ O. Then for any M-invariant reflection

(13) Q Im (d + Oel)(Nd + Cel)T

a(a + dl)

where N diag(1, #1/#2,..., #/#m), c N1/2d and (lld 2 + 2d1 + 2)/2
we have

(14) "Qxll2 llxl’2 + 2
(Nd + el)Tx

dl)
(Nd W el)Tx

+ dl) (d W el)Tx)
Furtheore,

a(a + d

and if [[N/2x[] a, we have

() iOx iixi + ]]d.

Proof. For any M-invariant reflection Q Rmm we have projection P such
that Q I- 2P. It is fairly easy to see that for ny x Rm we have

In our case when Q is defined in (13), we can write

1 (d + e)(Yd + e)T
2 ( + d)

if we assume that d 0. We assume without loss of generality that (Nd+e)Tx 0
and from (17) we get (14). Our aim is to get an upper bound for

( (e +(is) (+d) (+d)

when llyl/2xl to get the result in (16). It is obvious that the maximum is
attained when N diag(Ip, 0q),p + q m and therefore it is sufficiem to consider
N diag(1, 1, 0,..., 0). Moreover, we may assume that d2 0 because the factor
(gd + e)Tx/[( + d)] is larger for smaller d2 when Ily/2xll . We thus have
d [d, 0, d3, 0, ,0]T a dl, and consequently x [Xl,0, x3,0,...,O]T where

lxl dl. Putting these x and d into the definition of we have

= 2x/d (d + 3d
de

(2dxl + dx3))
and thus

ldll 2 -d 2daxa lld[I 2 + Idl IXll + 2d3 Ixa[ lld[[ 2 + 2lxl ldl,
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which implies that IIQxll <_ Ilxll / Ildll. For verification of (15) we refer to [9].
The next lemma shows that, in contrast to Householder and Gauss transforma-

tions, M-invariant reflections will not preserve the norm of the errors when they are
reflected back to the original matrix A.

LEMMA 7.2. There exists an M-invariant reflection

Q Im (d + ael)(Nd +
(a + Idol)

where N diag(1, #1/#2,... ,#/#m), a IIN1/2dll, and a vectorx [0, x2T] T e Rm

with IIN/2xll <_ a such that supx,d IIQxll Ilxll + Ildll.
Proof. If we choose g diag(1, 1, 0,..., 0), d [0, d2, d3, 0,..., 0], and x

[0, d2,-d3,0,...,0] we get a Id2],dTNx d. From (18) we have 2d22 +
d32 2d22 + 2d32 3d]. When lid211 approaches zero we get the maximal growth, i.e.,
IIQdll-- 211dll. Note that the condition number IIQII IIQ-lll tends to infinity as 114211
tends to zero. U

8. Backward error for the weighted QR factorization. The following theo-
rem gives a bound on the normwise backward error for the weighted QR factorization.

THEOREM 8.1. Let be the computed upper triangular matrix in the weighted
QR factorization using column pivoting and Q Q... Q, the product of the exact
M-invariant reflections defined in (10). Then

Q[]II=A+G,o ]lll-< nZpllAIl/6m+35(1 + ’16m+35)n,

where the growth factor p defined in (21) satisfies 1 <_ p <_ 2n.
Proof. There are two main properties of the M-invariant reflections that enable

us to prove the theorem. The structure in AQkk enables us to use Lemma 7.1 and
together with the norm invariant property in (12) we can limit the backward error as
we now show.

We have from Lemma 6.1 that + (Qn + AQ)... (QI + AQ)A, and thus

(9)
[

Qn Qi+IAQiQi-1.. QA + Q-1K,/xn+l 0
i=1

where K is of second order. Using that Qk.k fi+ AQk in (19) we get

(20) Q A+ Q,...QAQ, + E A+ E + E,0

where we have put the new second order terms in E2.
Consider a column in i, g:i), then we get from Lemma 7.1, equation (16), that

IIQn... QAQ(3)II _< O(m+U) IIdll + .+x4 + IId, II
/=1 /=1

+ u I1)11 + Ildtll
/--1
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Again from Lemma 7.1 we get Ildtll < 2maxj Ilall, I1)11 _< 2imaxj Ilayll, and

IINl/2dll <_ IIdll _< 2’ maxj Ilajll. If we define the growth factor, p, as

max Ila)II
2n(21) p <

maxi Ilaill

we get IlQ... QAQe)II-< nPllAIll,+z and thus IIEII _< nePllAIlm+. The
second order error matrix E2 can be bounded using the same arguments as the ones
used for El. By using the binomial expansion pattern easily obtained by limiting E2
term by term, we get.

n

( )IIE. <_ npllAII -(n -i / 1) ni ")/li
i=2

6m+35"

Finally we have IIEII <_ IIExll + lIE211 n2llAIl((1 + ’16m+35)n- 1), which completes
the proof. [:]

It is probably possible, but not certain, that Theorem 8.1 can be attained from
the analysis in [15] but then with additional analysis and another technique than we
have used.

9. Backward errors for the solution. For the error in the solution we begin
by presenting some results of error analysis concerning the important special case of
the unweighted and constrained linear least squares problem

(22) min 1152 A2xll s.t. Ax b.

If A E Rpn and q m-p then the matrix M for problem (22) is M diag(0p, Iq).
For the proof of the following theorem we refer to [7].

THEOREM 9.1. If 2c is the computed solution we get by solving problem (22) with
the weighted QR factorization using column pivoting, then

(A + F)2c b + f.

For the error matrix FT [FT, FT], we have

cp211AIIFU ] + 0(u2)c2(q(n p) + p(n + p2)p) IIA211FU

where 1 < p < 2p is a growth factor. For fr [if, f], we have

IIfll 0, Ill211 cf(p + (n p)(m n + q)) IIb211u + 0(u2).

The three constants c, c2, and cf are of modest size and independent of the problem
size.

It is important to add that the perturbed problem for the calculated solution has
the same A (for a well-conditioned problem the relative normwise error will be small).
The upper limits bounding the error matrix F and error vector f in the theorem can
certainly be made tighter but we are only interested in the dominating factors in the
bounds. Two interesting special cases are when p 0 and p n- 1, i.e., we have
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no constraints and we have maximal number of constraints. When p 0 we have the
following upper bounds on the error

IIFIIF
_
CFnllAllu / O(uu)

and

Ilfll cn(2m n)llbellu + O(u),

which are nearly as good as the ones given in [10]. When p n- 1 we have

(23) IIFIIF < (m n + 1 + x/ n2(n + 1)p)l[A:llFU" + O(u:)IIFll ..
and

[[fll < c3(2 n)ilb211u -4- O(u).

The case when p n- 1 should be compared with the existing error bounds for
solving a system of linear equations Ax b where A E Rnn and b E R with Gauss
transformations. The computed solution of this system, 2, can be shown (see [6,
p. 67]) to satisfy the perturbed system of equations

(24) (A + AA)& b, IIAA]] _< c4n3pcaussllAllu / O(u2).

If row or column pivoting is performed during the elimination process then the growth
factor pcauss satisfies 1 <_ pCauss <_ 2n. We see that if m n our bound (23) is almost
as good as the bound stated in (24). Moreover, it is a well-known fact that it is very
seldom that the growth factor for Gaussian elimination with partial pivoting is large.
We may thus conclude that if we use column pivoting our growth factor will be of
modest size.

The next result is for problems where A 0. An example of such a problem is
zero residual problems where M is invertible.

THEOREM 9.2. If 36m+122 < 1 and A 0 then the approximate solution 2c of (4)
computed with the weighted QR factorization using column pivoting satisfies

(A / F)2c b, IIFII cln3pllAl[’Tcm+ca 1 -F "c2m..t_ca)n,

where ci, 1, 2, 3 are positive integers of modest size independent of the problem size
and p defined in (21).

Proof. The computed solution & of (4) is gotten by solving/x D1 where/h is
the first n elments of/n+l fl((n.-. (]b). Standard results on error analysis give
that

The assumption that A 0 makes it possible to reflect all the errors made in the
transformation of b back to A. This is easily seen if we look at the system equations

0 Mm- 0 0 2
([ + /) o o o
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From Lemma 6.1 we get (Q1 + AP1)... (Qn + APn)[T + AT,0]T2 b or using
the result in Theorem 8.1 that (A + G + F) b. Invoking Lemma 6.1 gives IIFII <
cn3pllAIl%.m+c3 (1 + %2m+c3)n where c, i 1, 2, 3 are small integers independent of
m and n.

Even if the theorem is a special case we notice that the weight matrix is intact as
well as the symmetry and that the new A for the perturbed problem, 0.

The next theorem is similar to the one given above but now we attack the general
problem (4).

THEOREM 9.3. If a maxl<k<nrk, where ak is defined in (25), then the ap-
proximate solution of (4) computed with the weighted QR factorization using column
pivoting satisfies

(A + F)& b + f,

where

IIFII <_ cn3pllAIl’c2m+ca 1 + "/c.m+ca)n,

Ilfll -< can(np llAII + Ilbll)% m+  (1

ci,i 1,..., 6 are positive integers of modest size independent of the problem size,
and p is defined in (21).

Proof. The difference from the last theorem is that we get a possible magnification
a of the right-hand side. This is due to the fact that if we do not reflect the error in
the right-hand side back to/ + A, Lemmas 7.1 and 6.1 only give us

k

IIQ1... QAQ[II <_ 22m+490"k E I1  11 + 11&(2 )ll u,
i=1

where

(25) a
hrl/2(k)

Using Lemmas 7.1 and 6.1 again on II/   )11 and ignoring second order terms, we get

I1)11 < Ilbll + Ei- aillill and can conclude that

k

llQx Q AQ & ll <- ")/22m-I-49 E IIo  II + ll#llu.
i--1

The rest of the proof consists of collecting the higher order terms.
The theorem is perhaps not as good as one would hope the algorithm would give,

but it is impossible to get rid of the factor a in the right-hand side without altering
the original problem. However, the result in Theorem 9.3 is at least as good as the
result attained in [15] for weighted, unconstrained least squares but the factor a is
given a slightly different form. Indeed, it may be possible to use the analysis in [15]
to prove Theorem 9.1 but with additional analysis and with a technique other than
we have used.
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It is possible to scale the matrix A and the solution x to keep a small and for this
scaled problem the backward error will be small. Imagining b as an extra column in
A this scaling means that bk is never exchanged with any other column in Ak.

We stress the importance of sorting the weights in our algorithm. In fact, it is
easy to show that solving (1) with the weighted QR factorization without sorting the
weights is an unstable algorithm. This corresponds to the well-known fact that the
algorithm in [15] is unstable without row pivoting.

One alternative to Theorem 9.3 is to expand the problem class in some way. First
we consider the case when the system matrix is perturbed in an unsymmetric way.
The proof of the theorem is similar to the proof of Theorem 9.2 and therefore it is
omitted; see [8] for the details.

THEOREM 9.4. The approximate solution 2c of (4) computed with the weighted
QR factorization using column pivoting satisfies

M A+E1 b

where

IIEJll <- cln3pllAIl%.m+c3( 1 +%2m+c3)n j 1,2,

and ci, 1, 2, 3 are positive integers of modest size independent of the problem size
m and n and p is defined in (21).

The theorem might seem a bit suspect because we have managed to get rid of a
in Theorem 9.3 without any scaling. This is unfortunately not the case because when
reflecting the errors from the right-hand side to the matrix we must transform

to

0 M_n Qn Qb

= (QI + AT)-T"’(Qn + ATn)-T [ O0 MnO] (Q -- AZ1)... (Qn -- AZn)bfor some small error matrices AZi and ATe. It is not evident that A is of the same
size as .

The final theorem is interesting because here we have put the errors emanating
from the transformation of b in A and M. In other words we have an ordinary
backward error result if we consider the class of constrained and weighted linear least
squares problems.

THEOREM 9.5. The approximate solution 2 of (4) computed with the weighted
QR factorization using column pivoting satisfies

(A+E)T 0 0

where

IIEll <_ cnpllAll%..+. (1 + %.+c.)"
and AM (AM)T has the componentwise bound

Il < c4np%+( ++o) 1,..., m, j=i,...,m.
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The integers ci >_ 0, 1,..., 6 are of modest size and independent of the problem
size and p is defined in (21).

Proof. Using the same technique as in the proof of Theorem 9.4 we multiply
from the left with (Q1 + Ap1)... (Q, + Apn) but from the right with the transpose
(Qn + APn)T... (Q + Ap)T. The symmetry is retained but M is transformed to

(26) _/= (Q + AP)... (Qn + APn)M(Q, + APn)T... (Q + AP)T

or M + AM, where the symmetry of M and implies the symmetry of AM.
We now assume, without loss of generality, that M is invertible. Consider the first
order terms Gi QI... Qi-APMQT_I... QT in (26), where Ap has the same size
and structure as AQi in Lemma 6.1. We are now able to use the same arguments
as in the proof of Theorem 8.1 to show that the lower (rn + 1) (rn + 1)
block of M-1/2GiM-1/2 only contains elements smaller than np#i/e2,2+e3

for some
constants 51,2 and 53 (the rest of M-1/2GM-/2 is zero). The rest of the proof
consists of collecting the higher order terms, which gives the exponential factor in the
theorem.

10. Perturbation bounds and explicit bounds on the calculated solu-
tion. Following [16] the inverse of the system matrix

AT 0 B -BMBT

where B is a generalized inverse of A, i.e., BA In, and H satisfies HA O. If we
define t IIAII IIBII, tx -IIAII IIBMI/211/IIM/211, and t -IIMII IlSll we have from
[16] (see also [17]) that

IIAll Ilxll Ilbll ) +II,;Xllll,Xll <-/,A -’]’- /) M -’t- IIMII IliXll A
-1--

IIMll II,Xll

and

Ilxll IIAIIIlxl’b + IIAII Ilxll M
IIMII II),11

EA -- 0(2)+ IIAII Ilxll
where eM --II,MII/IIMII, f.A -’-IISAII/IIAII, , -IlSbll/llbll, and e max{eM, A, b}.
The bounds in Theorem 9.3 or 9.5 can now be applied to get normwise relative errors
in x and A if we have an approximate solution 2 and an approximation of A.

The factor a in Theorem 9.3 is a nuisance because it seems as if the relative
error in x will become large even for well-conditioned problems, i.e., the method is
potentially unstable. For a general weight matrix we have not shown that the relative
error will not be amplified by a large a but for the constrained and unweighted least
squares problem and zero residual problems we have come further. For constrained
least squares, it is easily seen that cr max IIbkl)ll/lldk)ll where dk) and (k)

’21 are

the parts of dk and bk) corresponding to the constraints. Furthermore, we have
from the constraints that b Ax and with the column pivoting we have IIbll

_
nlldk)ll Ilxll, i.e., Ilxll >_ Ilbll/(n[Idk)ll ). Both b and A1 are transformed by orthogonal
transformations and thus we have Ilxll >_ IIbk)ll/(nlldk)]l) and consequently cr/llxll <
n. Zero residual problems are treated similarly but to get the inequality Ilxll >_

arl/2.IIN/2b)ll/ll,k ukll we must use that b- dx together with the property in (12).
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11. Conclusions and further work. We have proved that the algorithm com-
puting the weighted QR factorization is backward stable and that the algorithm for
the constrained and weighted linear least squares problem is backward stable when
the right-hand side b is properly scaled.

Future work could consist of an investigation of how the backward error bounds
depend on the right-hand side. Givens rotations can be generalized to M-invariant
Givens rotations and it remains to prove their stability and the backward stabil-
ity when using them for the constrained and weighted linear least squares problem.
Finally, it is quite possible to use M-invariant transformations in a weighted Gram-
Schmidt algorithm and the error analysis used in this article is well suited for analyzing
this algorithm.
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Abstract. In this paper we consider a result of Hoffman [J. Res. Nat. Bur. Stand., 49
(1952) pp. 263-265] about approximate solutions to systems of linear inequalities. We obtain a new

representation for a corresponding Lipschitz bound via singular values. We also provide geometric
representations of these bounds via extreme points. The latter have been developed independently
by Bergthaller and Singer [Linear Algebra Appl., 169 (1992), pp. 111-129] and Li [Linear Algebra
Appl., 187 (1993), pp. 15-40], but, our proofs are simpler. We obtain a particularly simple proof of
Hoffman’s existence result which relies only on linear programming duality.
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1. Introduction. For a vector u E Rk, let u+ be the vector in Rk with (u+)i
max{ui, 0} for each 1,..., k. The following result was first established by Hoffman
[8]; for an alternative proof see Robinson [21].

THEOREM 1.1 (Hoffman [8]). Let A e Rm’ and let I1 and I1 be norms
on Rn and on Rm, respectively. Then there exists a scalar K/(A), such that for each
b Rm for which the set {x Rn Ax <_ b} and for each x’ Rn,

min [Ix x’ll. < K,z(A)[I(Ax’- b)+llz.
Ax<b

In particular, the minimum on the left-hand side of (1.1) is attained.
We refer to a coefficient Kz(A) that satisfies the conclusion of Theorem 1.1 as a

Lipschitz bound of A. In this paper we obtain a particularly simple proof of Hoffman’s
existence result that relies only on linear programming duality. As such it extends from
the real field to arbitrary ordered fields. The new proof simplifies that of Mangasarian
and Shiau [18] who also used linear programming duality. We also provide geometric
representations of the bounds via extreme points. The latter generalizes results of
Mangasarian [15] and gangasarian and Shiau [18] who considered the case where

I1 is the l norm; they overlap recent results of Bergthaller and Singer [3] and Li
[11], which were derived independently. Finally, we use singular values of submatrices
to express relaxations of the Lipschitz bounds for the case where both I1 and

IIZ are the 12 norms.
Theorem 1.1 has many applications in optimization, perturbation theory, and

sensitivity analysis. A complete list of references is beyond the scope of this paper
and we mention only a few examples. Agmon [1], Motzkin and Schoenberg [19], and
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Goffin [5] use Theorem 1.1 to prove the linear convergence rate of relaxation algo-
rithms. Polyak and Treti’akov [20] use Theorem 1.1 to prove the finite convergence of
the proximal minimization algorithm for solving linear programs, and Giiler [7] uses
it to establish a finite convergence of an accelerated version of the Polyak-Treti’akov
algorithm. Robinson [21] applies it to study the solution set of perturbed linear pro-
gramming problems. Theorem 1.1 has been applied recently to obtain results in con-
vex programming. Mangasarian and Shiau [17], [18] use it to obtain error bounds for
monotone linear complementarity problems. Iusem and De Pierro [10] use a version of
Theorem 1.1 to prove the (asymptotic) linear convergence of Hildreth’s "row action"
algorithm for solving large scale quadratic programs arising from image reconstruction
problems in computerized tomography. Luo and Tseng [13] use a weaker version of
Theorem 1.1 to develop convergence measure for solving a class of convex programs,
which is used to prove the (asymptotic) linear convergence rate of some popular algo-
rithms, including the gradient projection method and the matrix,splitting algorithms
for linear complementarity problems. Ye et al. [23] used Theorem 1.1 to determine
convergence rates of a particular interior point method.

There have been a number of recent generalizations of Theorem 1.1 and studies
of the bound K,(A) that appears in (1.1). Robinson [22] extended this bound to a
system of convex inequalities which defines a bounded feasible region with a nonempty
interior, and Mangasarian [16] extended it further to a system of differentiable convex
inequalities which satisfy Slater’s condition and an asymptotic constraint qualification
instead of the boundedness assumption on the feasible region. Auslender and Crouzeix
[2] relaxed the differentiability assumption and replaced it, among others, by the
assumption that the underlying functions are proper and closed and that the interior
of their effective domain contains the feasible set. Hu and Wang [9] generalized Theo-
rem 1.1 to infinite systems of linear inequalities. Cook et al. [4, Thm. 1] extended
Theorem 1.1 to integer problems. Bergthaller and Singer [3] and Li [11] sharpened
these extensions and obtained results that are related to ours and that are valid
in infinite dimensional spaces. Luo and Tseng [14] studied uniform boundedness of
the constant K,(A) as the underlying matrix A and the right-hand side b of the
corresponding inequality systems are perturbed.

Some of the above references consider a variant of Theorem 1.1 where both linear
equalities and inequalities are present in the left-hand side of (1.1). But, the stan-
dard representation of linear equalities through pairs of linear inequalities reduces this
apparently more general situation to the more restricted one that is considered here.
When linear equalities are not present, those previous results relate to those of the
present paper.

2. Proof via linear programming duality. We denote the l and l norms
in Rn and Rixn by [Io and Ill, respectively, e.g., for a vector a in Rn, Ilallo
max{lai I" i 1,..., n} and IlXlll il lail We next use linear programming duality
to obtain an explicit representation of the coefficient Kz(A) for the special instance of
Theorem 1.1 with the l norms, thereby obtaining a new elementary proof of Theorem
1.1 for that special case. The general case of Theorem 1.1 is then derived from the
equivalence of all norms in Rn.

THEOREM 2.1 Let A E Rmxn

(2.1) a(d) =_ {i e Rm" >_ 0, IITAII1 <_ 1}
and

(2.2) K(A) max{[IAIIl" A is an extreme point of a(d)}.



690 O. G//ILER, A. J. HOFFMAN,.U.G. ROTHBLUM

Then for each b E Rm for which the set {x Rn Ax < b} 0 and for each x’ Rn,

(2.3) min IIx- x’ll 
Ax<b

In particular, the maximum on the right-hand side of (2.2) and the minimum on the
left-hand side of (2.3) are attained.

Proof. Let b Rm and x’ Rn be given where {x Rn Ax < b} O. Standard
arguments show that the minimum of the left-hand side of (2.3) is attained. Thus, we
have that

(2.4) min IIx- min IIx x’ll min Ilzll min Ilz[l 
Ax<_b A x-x’ <b-Ax’ Az>Ax’ -b Az>a

where a =_ Ax’-b. In particular, {z Rn" Ax > a} # 0 and all minima in (2.4) are
finite and are attained.

For i 1,...,n, let e be the ith unit vector in Rn, let F- {ei" 1,...,n} U
{-ei" i 1,..., n}, and let B be the 2n x n matrix whose rows are all the possible
arrangements of +l’s and -l’s. Then the convex hull of F, denoted conv(F), is the
set {u R’ Bu < 1}, where 1 denotes the vector all of whose coordinates are 1. It
follows that for each vector z Rn,

Ilzll max{zTf" f F) max{zTf" f conv(F)} max{zTf Bf < 1}.

Also, conv(F) is the 11 unit ball, i.e.,

]]u]ll <1 if and only ifBu<l.

These facts and the duality theorem for linear programming imply that

min [Izll min max zTf min min yT1 min
Az>a Az>_a Bf<l Az>ayTB:zT Az>a

y>O gTy--z---O
y>O

max )tTa max
ttTBT <_IT zTABT<IT
,kTA_Iz

T 0
A>O

max ATa-- max ATa.
IIAT)II1 <1

A>0

yT1

We note that equality of the optimal primal and dual objective values of linear
programs must be justified, e.g., by verification that either one is finite. Indeed, we
observed in (2.4) that the first term of (2.5) is finite. We conclude that the rain and
max at the extreme ends of (2.5) are attained and are finite. But, the last term of
(2.5) is the maximal value of a linear functional on a pointed polyhedral set (i.e.,
a polyhedral set containing no lines) and therefore equals the maximal value of this
linear functional over the extreme points of this set. For each such extreme point A,

(2.6) ATa <_ AT(a)+

As a(A) is a polyhedral set, it has finitely many extreme points. Thus, the right-hand
side of (2.2) is well defined and (2.3) follows immediately from (2.4)-(2.6) and the
definition of a.



APPROXIMATION TO SOLUTIONS TO LINEAR INEQUALITIES 691

Our proof of Theorem 2.1 simplifies the proof of Mangasarian and Shiau [18, Thm.
2.2] who consider a more general situation where the lo norm on the right-hand side
of (2.3) is replaced by an arbitrary norm and the 11 norm in (2.2) is replaced by the
dual of that norm. In 3, their generalization of Theorem 2.1 is further extended by
replacing the l norm on the left-hand side of (2.3) by another arbitrary norm and
the norm in (2.1) by the dual of that second norm.

The following known corollary of Theorem 2.1 shows that the correspondence
where b E Rm is mapped into {x Rn Ax b} is uniformly lower semicontinuous;
see Mangasarian and Shiau [18, Thm. 2.2]. A proof is included for the sake of
completeness.

COROLLARY 2.2. Let A Rmxn and let K(A) be defined as in Theorem 2.1. Let
X Rn and b RTM satisfy Ax b, and let b
Then there exists a vector x R satisfying Ax b with

(2.7) ]x’ x] K(A)[b’ b[.

Proof. Theorem 2.1 implies the existence of a vector x R satisfying Ax b
and

(2.8) ]x’ x] K(A)]](Ax’ b)+]].

Let s b- Ax Rm. As 8 0, we have that

lib’-bll II(Ax’ + s) -bll -II(Ax’- b)
(2.9)

max{[(Ax’ b)i]+} I](Ax’-

and (2.7) follows directly from (2.8) and (2.9).
We derived Corollary 2.2 from Theorem 2.1. We next observe that we also have

the reverse implication. Specifically, suppose that A Rmn and K(A) R satisfy the
conclusion of Corollary 2.2 and that b Rm, x Rm, and (x Rn Ax b} O. Let
b’ b V Ax’ (where V denotes pointwise maximum). Then Ax’ b’, and (2.7) implies
that for some x satisfying dx b, x’-x] g(A)]b’-bll g(A)l[(Ax’-b)+l.

The following example demonstrates that the function mapping a matrix A
R to the corresponding coefficient K(A) defined in Theorem 2.1 is not continuous
and is not bounded in terms of the coefficients of the matrix.

Example. For 0, let

1+ -1
-1

Then the set a(A) consists of the set of all nonnegative vectors A R2 that satisfy
the inequalities

1 + [(1 +) ] + [- + (1 + )] 1,

(e + )( ) [(1 + )1 1- [- + (1 + )] 1,
(2 + )(A A) -[(1 + )A A2] + [-A + (1 + )A2] 1- -[(1 +) ] -[- + (1 + )] 1.

As the extreme points of these sets are [0, 0], [(2 + )-, 0], [0, (2 + )-1], -(2 + )-
[(1 + ), 1], and -(2 + )-[1, (1 + )] when > 0 and [0,0], [0, 2-], [2-,0] when

0, we have that

K(A)=- if>0 and K(A)=2- if=0.
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In particular, we see that K(.) is not a continuous function; in fact, K(A) is not
bounded in terms of the elements of A; see Luo and Tseng [14] for a more detailed
study of the behavior of K(A) under various perturbations of the data (A, b).

Recall that for every pair of norms and I1’ on R there exists a positive
constant C such that for every x E Rn, I[xll’ <_ CIIxll. This fact combines with standard
arguments to yield the following corollary of Theorem 2.1.

COROLLARY 2.3. Let A Rmn and let K(A) be the constant defined as in
Theorem 2.1. Also, let IIs and I1 be norms on R and on R", respectively,
and let L and M be positive scalars such that Ilzlls <_ L[Izll for z R’ and
Mllyll for all y Rm. Then for each b R for which the set {x R Ax
and for each x Rn,

(2.10)
Ax<b

where Ksz(A) LMK(A). In particular, the minimum on the left-hand side of (2.10)
is attained.

Robinson [21] established Theorem 1.1 by first considering the 12 norm. He then
used the equivalence of all norms over a finite dimensional normed space and the
arguments of the above proof of Corollary 2.3 to establish the general case. But
Robinson’s representation of the coefficient Ksz(A) for a given matrix A in the specific
case where IIs and I1 are the 12 norms was not explicit. In 4 we obtain explicit
bounds for the case where IIs and I[ are the 12 norm.

Corollary 2.3 and the arguments used to deduce Corollary 2.2 from Theorem 2.1
can next be used to extend Corollary 2.2 to arbitrary norms IIs and IIZ by
replacing (2.7) with

(2.11)

3. Bounds for general norms. For a norm on Rk, let I1" be the dual
norm defined for each Rk by I[AII* =_ max{ATx x Rk, Ilxll <_ 1}. h norm on

R is called polyhedral if the unit ball {z R Ilzll _< 1} is a polyhedral set. It is well
known that a norm is polyhedral if and only if its dual norm I1" is polyhedral.
Now, if is a polyhedral norm and the unit ball {z Rn "llzll* <_ 1} of its dual
norm I1" has the form {z E Rn" Bz <_ b} for some matrixB Rqn and vector
b Rq, where q is a positive integer, then for every u Rn, [[ul[ I[u[l** max{uTf:
Bf <_ b}. It follows that the arguments used in the proofs of Theorem 2.1 and Corollary
2.2 (that rely only on linear programming duality) can be carried through and the
conclusion of Theorem 1.1 holds with

Ksz(A) mx{llll" is an extreme point of as(A)},

where
as(A) { Rm" >_ O, IIXrAII,

_
1}.

So, a direct proof to Theorem 1.1 is obtained with a coefficient Ks(A), which obvi-
ously yields tighter bounds than those derived in Corollary 2.3.

In this section we establish corresponding improvements when IIs and IIZ
are arbitrary (not necessarily polyhedral) norms. In this situation, linear programming
duality, as employed in 2 is not enough to obtain the desired results. Overlapping
results were obtained, independently, by Bergthaller and Singer [3] and Li [11].
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The next lemma extends (2.5) from the l norm to arbitrary norms. The proof
we provide augments the use of the duality theorem of linear programming, used to
establish (2.5), with a standard separation theorem for convex sets.

LEMMA 3.1. Let A E Rmn, a Rm, II, be a norm on Rn and

(3.1) as(A) {, Rm" >_ 0, IIATAII <_ 1}.

Suppose, {z Rr" Az > a} 7 O. Then

(3.2) min [[zll - max ,Ta,
Az>_a AEa(A)

in particular, the min and the max in (3.2) are attained.
Proof. Compactness arguments show that the min on the left-hand side of (3.2)

is attained, say in 2. Furthermore, if z Rn and Rm satisfy Az >_ a, ) >_ 0, and

IIATAII <_ 1, then ATa <_ ATAz <_ IlATAIlllzll <_ Ilzll, establishing the inequality

min IIzll sup ATa.
Az>a

We complete our proof by establishing the existence of E a,(A) for which ,,Ta >_

If 2 0,/k 0 is in a,(A) and ,XTa 0 11211,. Next assume that 2 0. In this
case, 11211, : 0 and the interior of {z e R’ Ilzll, <_ 11211,} is nonempty and equals
{z e Rn Ilzll, < 11211,). As the minimality of 2 assures that there is no z e R with
Az >_ a and [Izll, < 11211,, i.e., the intersection of {z G Rn" Az >_ a} and the interior
of {z e R Ilzll, _< 112,11-} are empty. It now follows from the Eidelheit Separation
Theorem (see Luenberger [12, Whm. 3, p. 133]) that for some nonzero vector It Rn

sup{#Tz" Ilzll, <-112,11,} <-inf{#Tz" Az >_ a}.

By possibly normalizing #, we may and do assume that II#ll 1, implying that
sup{#Tz Ilzll _< 1121l.} -11211.. Furthermore, as 2 {z R Iizll. _< 1121l.} vi {z
R Az >_ a}, we conclude that the above sup and inf are attained and that

11211. max{#Tz Ilzll. _< 11211.} #T2 min{#Tz Az >_ a}.

Next, using the duality theorem of linear programming and the established fact that
min{#Tz: Az >_ a} is attained, we have that

min{#Tz Az >_ a} max{ATa >_ 0, ,kTA =ttT}.

Let A be an optimal solution of the latter maximization problem. Then _> 0,
IIAT,klI --II/tll 1 and Ta min{#Tz: Az >_ a} 112,[I,. So, E a,(.A) and ,,Ta

We are now/ready to establish the main result of this section. Its proof requires the
following additional notation. For a matrix A R"xn and a subset J of {1,..., rn},
let Aj be the submatrix of A consisting of the rows indexed by J, and for a subset
J of {1,..., n} let AJ be the submatrix of A consisting of the columns indexed by J.
Furthermore, if J consists of a single element j, we use the notation Ay for A{y} and
A.- for A(J}.
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THEOREM 3.2. Let A E Rmn and b R", where {x R’ Ax <_ b} O, let
IIs and I1 be norms on Rn and Rm, respectively, let as(A) be defined by (3.1)

and let

(3.3) Ksz(A) sup{llAIl" A is an extreme point of as(A)}.

Then for each x Rn,

min IIx- x’]ls < Ksz(A)ll(Ax’-
Ax<b

in particular, the supremum on the right-hand side of (3.3) is finite, and the minimum
on the left-hand side of (3.4) is attained.

Proof. Let x Rn be given and a =- Ax- b. Compactness arguments show that
the minimum of the left-hand side of (3.4) is attained. Furthermore,

(3.5) min IIx- x’lls min IIx- x’lls min Ilzlls min Ilzlls;
Ax<_b A x-x’ <_b-Ax’ Az>_Axt-b Az>_a

in particular, {z R Az >_ a} 7 0 and all minima in (3.5) are finite and are
attained.

Next, by Lemma 3.1, min{llzlls" Az >_ a} max{ATa: A e as(A)}, where
the max on. the right-hand side of the equality is attained. So, the linear functional
mapping each A in the closed convex set as(A) into ATa attains a maximum. Also, as

ors (A) is a subset of {/ Rn" ) >_ 0}, it contains no lines. Thus, standard arguments
imply that the above linear functional attains a maximum over cs(A) at an extreme
point. For each such extreme point A,

(3.6) )Ta <_ ATa+ <_

These observations, (3.5), (3.2), (3.6), and the definitions of Ksz(A) and a, imply that

min [Ix-x’IIs min Ilzll max ATa
Ax<_b Az>_a Aao,(A)

max{ATa A is an extreme point of as(A)}
_< sup{llAll" A is an extreme point of a(A)}Ia+]IZ
K.(A)II(Ax’- b)+ll.

It remains to show that the supremum on the right-hand side of (3.3) is finite.
Let U(A) be the set of subsets of {1,..., m} for which the corresponding rows

of A are linearly independent. For J U(A) there exists a matrix B(J) G R’m
such that AjB(J)J is the identity matrix in RIJIIJI and B(J)J 0( Rm) for
each j E {1,... ,n} \ J. As the unit ball {v Rn Ilvll <_ 1} is bounded, for each
J e U(A), g(J) sup{llB(J)Tvil* v e Rn, Ilvll <_ 1} is finite. Let A be an extreme
point of as(A) and let v =_ AT). Then A > 0, Ilvll < 1, and standard arguments show
that {Ai" /i > 0} are linearly independent, i.e., J {i 1,..., m "Ai > 0} U(A).
As VT ,TA ()j)TAj, we have that, vTB(J)J (Aj)TAjB(J)d (j)T and
therefore vTB(J) AT. Thus,

I111 sup IIB(J)Tv’II-- K(J) <_ max K(J’) < cx
IIv’ll*<_ J,EU’(A)



APPROXIMATION TO SOLUTIONS TO LINEAR INEQUALITIES 695

and the finiteness of the right-hand side of (3.3) follows.
Mangasarian and Shiau [18] establish (3.4), where I1 is the ll norm and

Kt(A) sup{llAII}" IIATAII 1,A > o, {i 1,... ,m "i > 0} E U(A)}.

Our proof of Theorem 3.2 shows that our bound yields that of Mangasarian and Shiau.
The following corollary of Theorem 3.2 shows that inequality (2.11) of the gen-

eralization of Corollary 2.2 can be improved. Its proof follows directly from Theorem
3.2 by the arguments used to establish Corollary 2.2 from Theorem 2.1.

COROLLARY 3.3. Let A Rmn, let I1 and I1 be norms on Rn and
on Rm, rdspectively, and let K(A) be the constant defined through (3.1) and (3.3).
Then for each x R" and b RTM satisfying Ax < b and for each b Rm satisfying
{x Rn Ax <_ b} O, there exists a vector x Rn satisfying Ax < b with

(3.7)

4. Bounds and singular values..For a matrix A Rmxn, let K2(A) be the
coefficient Kz(A) defined through (3.1) and (3.3) when the norms II I1 and II I1
are the 12 norms. In the current section we bound K2(A) by expressions that depend
on the singular values of submatrices of A.

Let A ]mzn. Recall that the singular values of A are the square roots of the
nonzero eigenvalues of the matrix ATA. The smallest singular value of the matrix A
is denoted p(A). The following result is well known; see Golub and Van Loan [6].

PROPOSITION 4.1. Let A Rmxn. Then for every nonzero vector b R" for
which Ax b is feasible,

min Ilxll/llbll <_ lip(A).(4.1)
{xenn:Ax=b}

THEOREM 4.2. Let A Rmn, let U(A) be the set of subsets of {1,...,m}
for which the corresponding rows of A are linearly independent and let U*(A) be the
maximal elements in U A Then

(4.2) K2(A) < max lip(Aj).
JEU*(A)

Proof. Let A be an extreme point of a2(A) and let w _=_ AT). Then Ilwl12 < 1
and, as was shown in the proof of Theorem 3.2, for some J U(A), )ti 0 for every
i {1,..., m} \ J. Let J* be a maximal set in U(A) that contains J. In particular,
wT ATA (zXj.)TAg. and the linear independence of the rows of Aj. assures that
Aj. is the unique solution of the system (Aj.)Tx w. So, Proposition 4.1 implies
that

IlSXll= II) J-112 II>,J-112/11w112 rain Ilxll2/llwll2 1/_.p[(Aj*)T].
{xERIJ*I:(Aj. )Tx=w}

As the. singular values of a matrix are known to coincide with those of its transpose,
we conclude that

max lip(Aj,),I1>,11 1/p[(AJ*)T] 1/p(Aj <_
J’eU*(A)

and (4.2) follows.
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Theorem 4.2 and the equivalence of all norms over a finite dimensional normed
space yield another representation for the bounding coefficient; see the arguments of
Robinson [21] and the proof of Corollary 2.3.
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SECOND DERIVATIVES FOR OPTIMIZING EIGENVALUES OF
SYMMETRIC MATRICES*

MICHAEL L. OVERTONt AND ROBERT S. WOMERSLEY$

Abstract. Let A denote an n x n real symmetric matrix-valued function depending on a vector
of reM parameters, x E m. Assume that A is a twice continuously differentiable function of x, with
the second derivative satisfying a Lipschitz condition. Consider the following optimization problem:
minimize the largest eigenvalue of A(x). Let x* denote a minimum. Typically, the maximum eigen-
value of A(x*) is multiple, so the objective fdnction is not differentiable at x*, and straightforward
application of Newton’s method is not possible. Nonetheless, the formulation of a method with local
quadratic convergence is possible. The main idea is to minimize the maximum eigenvalue subject
to a constraint that this eigenvalue has a certain multiplicity. The manifold t of matrices with
such multiple eigenvalues is parameterized using a matrix exponential representation, leading to the
definition of an appropriate Lagrangian function. Consideration of the Hessian of this Lagrangian
function leads to the second derivative matrix used by Newton’s method. The convergence proof is
nonstandard because the parameterization of t is explicitly known only in the limit. In the special
case of multiplicity one, the maximum eigenvalue is a smooth function and the method reduces to a
standard Newton iteration.

Key words, nonsmooth optimization, multiple eigenvalues

AMS subject classifications. 15A18, 65F15, 65K10, 90C25

1. Introduction. Let A denote an n x n real symmetric matrix-valued function
depending on a vector of real parameters, x E m. Assume that A depends smoothly
on x, specifically that it is at least twice continuously differentiable, with the second
derivative satisfying a Lipschitz condition in x. Denote the eigenvalues of A(x) by

>... >

The eigenvalues Ai are Lipschitz continuous functions of x [7] and, in any region
where they are distinct from one another, it is well known that they are (Frchet)
differentiable; in fact, they inherit the C2 smoothness of the function A(x) [7, p. 134].
Let be given, with

where

(1.2) A Diag(A1,..., An), Q [’1,...,

Thus, {Ai} and {}} are, respectively, the eigenvMues and an orthonormal set of
eigenvectors of A(). Assume that A1 >_ _> An, so that A A{(}). Then formulas
for the first and second partial derivatives of the eigenvalues Ai at x }, assuming
that the Ai are distinct, are

OA(})
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(1.4)
OXkOXj

The first of these formulas is well known, and the second may be found in a variety
of sources; see [8], [9], as well as (in a somewhat less accessible form) [7, p. 95]. Both
will follow as special cases of the results given in this paper.

However, if A(x) has multiple eigenvalues at a point x , its eigenvalues, while
still Lipschitz continuous, may not generally be written as differentiable functions of
several variables at x . For example, consider

x2 1 xl

The eigenvalues are

Thus /1, the largest eigenvalue of A(x), is generally not a smooth function of x;
furthermore, it cannot even be written as the maximum of n smooth functions of x,
if x has two or more components. Also, the eigenvectors of A(x) cannot generally be
written as continuous functions of x; this is a consequence of the fact that eigenvectors
corresponding to simple eigenvalues are unique (up to sign and normalization) while
those corresponding to multiple eigenvalues are not.

Generally speaking, applications involving eigenvalues of matrices depending on
free parameters fall into one of two categories. In the first, it is specified that some or
all of the eigenvalues l(x) achieve some given values t; this is known as an inverse
eigenvalue problem. If these given values are distinct, the inverse eigenvalue problem
may be formulated as a differentiable system of nonlinear equations, and, if the num-
ber of free parameters and the number of equations is the same, the application of
Newton’s method is straightforward, using (1.3). In [4] it was shown how, even in
the multiple eigenvalue case, the inverse eigenvalue problem may be formulated as a
differentiable system of nonlinear equations, so that Newton methods, with generic
quadratic convergence, are applicable.

In the second class of applications., the eigenvalues are not required to have par-
ticular values, but rather it is desired to solve some optimization problem involving
the eigenvalues. A particularly common case is the min-max problem

(1.5) min (x),

where (x) ,l(X), the largest eigenvalue of A(x). Let x* be a locally unique
minimizer .of . If x* has the property that the eigenvalue Al(x*) is simple, i.e., has
multiplicity one, then the function to be minimized, A1, is twice continuously differen-
tiable in a neighborhood of x*, and Newton’s method for unconstrained minimization
may be applied, using the Hessian matrix defined by (1.4). However, it is more often
the case that A(x*) has multiple eigenvalues; this is a consequence of the optimization
objective, which in driving all the eigenvalues down as much as possible usually forces
the coalescence of some of them. In such a case A1 is generally not differentiable at
x=x*.
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This paper is concerned with the formulation of a method to solve optimization
problems involving eigenvalues in exactly this case, where multiple eigenvalues occur
at the solution. We shall show that the correct problem formulation leads to a method
with generic quadratic convergence. This method was first given by [10], inspired in
part by [3], [4]. Quadratic convergence was demonstrated by numerical examples. The
purpose of this paper is primarily to prove the quadratic convergence property for the
method presented in [10], justifying the Hessian matrix formulas given there, which
were originally derived only formally and stated without, any derivation or proof. The
ideas of this paper can be applied to other classes of eigenvalue and singular value
optimization problems, e.g., those discussed in [1], [6], [11], [12], [14], [18], [19], as well
as many other references which can be found in these papers. However, we concentrate
on the model problem (1.5). We consider only the issue of local convergence. For
details of how to use the method and related methods in practice, see [11].

2. Tensor notation. We shall have frequent need to refer to the first and second
derivatives, with respect to several variables, of matrix-valued functions. Such objects
are, respectively, tensors in three and four dimensions, a matrix being a tensor in two
dimensions. We shall use subscripts to denote differentiation: thus As and Ax refer
to the first and second derivatives of the matrix-valued function A, with respect to the
variable x E m. Rather than attempt to describe the elements of a tensor, however,
we shall describe its action as a linear operator, the result having the same dimension
as the undifferentiated quantity, whether a matrix, a vector, or a scalar. For example,
we write [AxAx] to mean

o__A
k=l

and [AxxAxAx] to mean

We reserve square brackets [, for this purpose, and use parentheses (,) primarily
to mean "evaluated at." We shall use braces {, } to indicate expression precedence.
For example, the first and second derivatives of (x) ,kl (x) at x , when X1 () is
simple, given by (1.3)-(1.4), are written in tensor notation as

[x()Ax] h’T[A()Ax]h’
and

[()AxAx] "T[A.xAxAx]’ + 2E {’T[AAx]h’8}2

Because the second derivative of a twice continuously differentiable function is sym-
metric with respect to its two arguments of differentiation, there is no ambiguity
in this notation. There should be no confusion between those subscripts indicating
differentiation and those indicating components.

We shall use I1" to denote the Euclidean vector norm. The expression A B,
where A and B are symmetric matrices of the same dimension, means the matrix
inner product

A B tr AB.
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The operator "vec" maps the set of symmetric matrices of dimension t into the cor-
responding vector space t(t+l)/2, multiplying the off-diagonal components by the
factor x/ so that

Consequently,

(vec A)T (vec B) A B.

Ilvec All- IIAI]F,

the Frobenius norm of A.

3. The matrix exponential formulation. Let x* be a locally unique mini-
mizer of -- A1, and let A}* A(x*), 1,... ,n. Suppose that

> >... >

i.e., the maximum eigenvalue of A(x*) ha8 multiplicity t, but all other eigenvalues are
simple. The latter assumption usually hold8 in practice; it could be relaxed, at the
cost of more complex notation. Let

(3.2) A AI, h Diag(A+,... ,A),

the identity block having order t, and let Q* [q,..., q] be a corresponding orthog-
onal basis of eigenvectors, with

(3.3) Q* *= q*[q qt], Q2 t+l.., qn]"

The matrix Q is unique, up to the choice of signs for its columns, but the matrix
Q is not, since any particular choice of basis may be rotated by postmultiplying by
a t x t orthogonal matrix.

It was shown in [11] that a necessary condition for x* to minimize (x) is that
there exist a t by t symmetric matrix V*, with V* positive semidefinite, such that

(3.4) tr V* 1, V* {Q}T[A(x*)Ax]Q 0

for all Ax. In the ce t 1, when Q consists of a single column q, this reduces to
the statement that {q}T[A(x*)Ax]q 0, equivalently [(x*)Ax] 0 for all Ax,
i.e., the gradient of (x*) is zero. If A(x) is an affine function, the necessary condition
is also sufficient for optimality.

We wish to consider the correct local formulation of a Newton-based method so
that quadratic convergence to x* is obtained generically. We assume that the optimal
multiplicity t is known. This is not the case in practice, and must be determined
during the course of the computation, as explained in [10], [11]. If t is set incorrectly,
the method to be described would converge locally to a minimizer of subject to
the wrong multiplicity constraint, which might not be a minimizer of . This can
be avoided by computing an approximation to V* and verifying that the necessary
conditions for optimality, including the positive semidefinite condition on V*, are
satisfied. See [11] for discussion of the case where all optimality conditions except the
positive semidefinite condition are satisfied.

Assuming, then, that the optimal value of t is known, the local minimizer x* of
clearly also locally solves the constrained problem

(3.5) rain w

(3.6) subject to A(x) (t, w),
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where x E }m, 03 is a real parameter, and f(t, 03) is the set of matrices whose greatest
eigenvalue has multiplicity t and value 03. The set f(t,03) is an analytic manifold
contained in the space of n by n symmetric matrices. The structure of this manifold
is well known. It was observed as early as 1929 [17] that the number of conditions
imposed on the space of symmetric matrices by the restriction that a matrix lie on
this manifold is t.(t+l) In other words, the codimension of the manifold 12(t w) is2
t(t+l) Formulas for the tangent space to the manifold f(t,03) at any point can2
be computed using standard techniques in differential geometry [13], [15]. Much less
obvious, however, is how to parameterize a description of the manifold that is suitable
for the application of Newton methods. This is really the main point of the paper.

The key idea, following [4], is to parameterize the orthogonal matrix of eigenvec-
tors using a matrix exponential. Any orthogonal matrix P with det P 1 can be
represented by

P =eY I+Y + 1/2Y2 +...,
where Y is skew-symmetric, i.e., Y _yT. Since eigenvector signs are arbitrary, the
assumption that det P 1 is not a restriction. A proof that this representation is
always possible and locally unique is given in the Appendix.

Let be a given point, with the eigenvalues and eigenvectors of A() given by
(1.1)-(1.2). Let

and let

A Diag(Al,..., At), A2 Diag(At+x,..., An),

Define the twice continuously differentiable n n symmetric matrix-valued function

(3.9) (x, Y,w, O) [ 0310 ] YOTA(x)OeY0 0
-e-

where x E m, 03 is a real scalar, 0 Diag(01,..., On-t) is a real diagonal matrix of
order n- t, and Y is a real n n skew-symmetric matrix. From the context, it is clear
that I is used to mean the identity matrix of order t. Subsequent block matrices will
have dimensions conforming with those of F. We shall find it useful to write

[ YI1 Y12 1(3.10) Y=
-Y12T Y22

where Y and Y22 are kew-symmetrc but Y12 is not. Note that^ the definition of F
depends on through Q. Of course, Q could be removed from F by asorbing it into
eY. The reason for the explicit inclusion of in the definition of F is so that the
function eY can always be expanded about Y 0.

Now consider the nonlinear program

(3.11) min 03
x,Y,w,o

(3.12) subject to F(x, Y, 03, O) O.

It is clear that if (x, Y, w, } solves (3.12), with 03 > 0, 1,..., n t, then {x, 03}
satisfies the constraint (3.6), with A(x) having eigenvalues 03,..., 03, 0,... On-t, and
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eigenvectors given by the columns of eY. Conversely, if x,w satisfy (3.6), then,
regardless of , (3.12) has a solution {x, Y,w, O}, with 0i )t+(x) and eY TQ,
where Q is an orthogonal matrix of eigenvectors for A(x).

nThe number of equations in (3 12) is. Formulation (3 11)-(3 12) introduces
additional variables Y, which are not present in (3.5)-(3.6), with corresponding
space dimension n(n2-1) + n- t n(n+l) t. The difference between the number of2
equations and number of extra variables is t, which is not the codimension of t(t, w).
This shows that there is a difficulty with regularity in the parameterization of Ft(t, w)
given by (3.12).

This difficulty is clarified by a key observation. Consider

F*(x Y,w O)= [ wI
L 0

0 ] e_Y Q, ,ey
0 )TA(x)Q

and the associated nonlinear program

(3.13) min w
x,Y,w,o

(3.14) subject to F* (x, Y, w, O) 0.

The functions F and F* coincide if x* and the same basis Q Q* is used in
both definitions. We have A(x*) E t(t,A) and

(Q, )TA(x,)Q, [AI0 A0 ]
so Y satisfying (3.14) is not unique if t > 1. Specifically, any Y of the form

solves (3.14) with x x*, w , O A. Consequently, to obtain regularity in
(3.13)-(3.14), the additional condition

(3.5) =0

should be imposed in (3.10). The number of equations in (3.14) reduced by the
dimension of the space of variables Y, O is then

n(n+l)
_2 (n(n-1)_2 t(t-1) ) (n t(t+l)2

which is the codimension of (t,w). Ideally then, we would like to parameterize
(3.5)-(3.6), not by (3.11)-(3.12), but by (3.13)-(3.14) together with (3.10), (3.15).
However, this is not possible in practice, because Q* is known only in the limit. The
best we can do is to use (3.11)-(3.12), where Q is the matrix of eigenvectors for , the
current best approximation to the solution x*. Thus, we shall work with a different
function F at each step of the iteration.

But now a second key point must be emphasized. Although the Yll variables are
redundant in (3.14), they are not redundant in (3.12) if x*, or more specifically
if A() fl(t, A1). On the contrary, the freedom in Yll is necessary to ensure that
a feasible solution to (3.12) exists in general. Clearly, the closer is to x*, i.e., the
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closer A($) is to t(t, A1), the closer the Yll variables come to being redundant. This
observation is quantified by the following theorem, which follows directly from [4],
Corollary 3.1, and subsequent remarks. It will be convenient to denote the variables
{x, Y,w, O} collectively by a single variable Z, which lies in a space of dimension

2 +m+l-t.
THEOREM 1. There exist e > O, C < such that, ff ]]-x*] e, then F(Z) 0

has a solution Z* {x*, Y*, A,A} with

and with the leading t by t block of Y* satisfying

z* 2.

Here Y* and Z* are so denoted because, unlike x*, they depend on the choice of
function F.

Roughly speaking, the Y variables describe the rotation of the eigenvectors
needed to transform them to eigenvectors of A(x*), while Yll describes the rotation
of the first t of these eigenvectors within the t-dimensional space they span. The
rotation of the latter kind becomes relatively unimportant, as x*, because of the
nonuniqueness of the eigenvectors of A(*).

Straightforward application of Newton’s method to solve (3.11)-(3.12) is not satis-
factory, since inclusion of the Y variables, which are redundant in the limit, prevents
rapid convergence. On the other hand, setting Nil 0 in (3.1)-(3.12) makes (3.12)
infeasible in general. We shall see that the solution to these difficulties is to remove

YI from each linearization step, but include YI in the convergence analysis of this
procedure. Thus, our convergence analy2is is nonstandard.

Let us calculate the derivatives of F. The appearance of the matrix exponential
Nnction in the definition makes this an easy task. We obtain

[yAY] -B BT, where

B {-AY + g{AY}Y + 1/2Y{AY} + O(y2)}TA(x){I + Y + O(y2)};

(3.18) [/Aw]= [ AwI 0]0 0

(3.19) [oAO]=[0 0 ]0 AO

Here Ax, Ay, Aw, zO are variable8 with the same dimension8 as x, Y,w, O, respec-
tively; for example Ay, like Y, i8 an n by n skew-symmetric matrix, with

(3.20) AY= -{AY}T2 {AY}22

where AYII and AY22 are skew-symmetric (but AY12 is not). We shall use AZ to
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denote {Ax,
Now let us evaluate F and its derivatives Fx, Fy at the point

(3.21) Z= {, Y, A1, A2},

where
Y =0,

this equation being essential to keep the formulas simple. The derivatives Fo and Fo
are constant. We have

[^ ](3.22) (2) AII-A 0
0 0

(3.23) [/9 (2)Ax] _(TlAx()Ax]0;

(3.24) [Fy(Z)AY] -A{AY} + {AY}A

-A{AY} + {AY}IA -A{AY}2 + {AY}12A2

Notice that the leading t by t block of this matrix is zero if and only if A is a multiple
of the identity matrix, i.e., A() E 9(t, A).

An immediate consequence of Theorem 1 which we shall need later is

(3.25) IIZ z* o(11 x* II),

using (3.21) and the Lipschitz continuity of the eigenvalues.
The rest of the paper is organized as follows. In the next section, we analyze

(+)the special case 2 m + 1, when the dimension of the variable space matches
the number of conditions imposed by the multiple eigenvalue, and hence quadratic
convergence to a local solution of (1.5) can be achieved by a method that only uses
first derivative information. In the subsequent section, we consider the general case,
where second derivative information is necessary.

4 A special case. In this section we assume ,t(t+i) m+l where t as before, is
the multiplicity of A. This is the case when the number of variables equals the number
of conditions imposed by the multiple eigenvalue, and hence x* is a locally unique
solution of (3.14), given a nonsingularity condition to be defined shortly. Consider
the following iteration.

ITERATION 1. Given an initial value :
1. Define A, Q by (1.1)-(1.2), and F by (3.9). Let Z- {, 0, A,A2}.
2. Solve the n by n symmetric matrix equation

(4.1) [Fz(Z)AZ] -F(Z)

for AZ, imposing also the condition

Set Z Z + AZ.
3. Replace by-2, the x component of Z. Go to Step 1.
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Iteration 1 consists of a Newton iteration applied to a varying function, since
the function that is differentiated, F, changes at each step. Such a situation is not
unusual; see [5], [16]. The linear system (4.1) is equivalent to

(4.3) + + +

Because of the assumption that 2 m + 1, together with the fact that YI
is constrained to be zero, this is a system of n(n+) equations in the same number2
of variables. Examining (3.18)-(3.24), we see that it separates very conveniently.
Imposing the condition {AY} 0, the 1,1 block of (4.3) reduces to the t by t
symmetric matrix equation

(4.4) Aw I T[Ax(’)Ax]OI I.
Let us denote this system of linear equations by

(4.5) K Ax b,

where

(4.6) K= vecI, -vec
Ox Oxm

which can be solved for {AY}12 in terms of Ax by

(4.9) ZYij
q[Ax(’)Ax]j

for 1 <_ i <_ t, t < j _< n; the denominator is bounded away from zero for in a small
enough neighborhood of x*. The 2,1 block of (4.3) contains the same information as
the 1,2 block. The 2,2 block of (4.3) is

(4.10) AO )2T[Ax()Ax])2 2{AY}22 + {AY}22.2 O.

The off-diagonal equations of this symmetric system can be solved for {AY}22 in a
manner similar to equation (4.9), while the diagonal equations, which vanish in the
last two terms, can be solved for AO.

In fact, though, we see that each step of Iteration 1 actually requires solving only
one linear system for Aw and Ax namely (4.5) a system of t(t-t-1) linear equations in2
m + 1 variables and therefore square by assumption. The variables AY and AO are
not required to continue with the next iteration; their only purpose is their use in the
problem formulation and convergence analysis. Iteration 1 is therefore equivalent to:

(4.7) b vec (A AI).

Note that K has dimension t(t+ 1)/2 by m+ 1, i.e., it is square under the assumptions
of this section. (The operator "vec" was defined at the end of 2.)

The 1,2 block of (4.3) is the t by n- t matrix equation

(4.8) T[Ax(’)Ax],2 .{AY}2 + {AY}2.2 0
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ITERATION 2. Given an initial value :
1. Define A, Q by (1.1)-(1.2).
2. Solve the linear system[5x] b, defined in (4.6)-(4.7), for AT, Ax. Set

=+Ax.
3. Replace by , and go to Step 1.

Let us analyze the rate of convergence of Iteration 1, equivalently Iteration 2. We
first need the following theorem.

THEOREM 2. Define

(4.11) K*= [vecI, -vec (QTOA(X*)QOxl) ...-vec (QTOA(x*)Ox----Q
Then the smallest singular value of K* is independent of the choice of basis Q.

Proof. The freedom in Q is that it may be postmultiplied by any t by t orthogonal
matrix. The smallest singular value of K* is, by definition,

(4.12) min

The vector norm being minimized is in fact

[lAw I- {Q}T[A(x*)Ax]QI[F

(see the discussion at the end of 2). This quantity is not changed if Q is postmul-
tiplied by an orthogonal matrix.

Using this result, we can speak unambiguously about whether or not K* is sin-
gular. The convergence result may now be stated.

THEOREM 3. Suppose K* is nonsingular. Then there exist constants and C
such that, if- x*] e, then

I[ x* c x*.
Consequently, Iteration 1, equivalently Iteration 2, generates points that converge
quadratically to the solution x*.

Proof. That Iterations 1 and 2 generate the same poin follows from the equiv-
alence of (4.1)-(4.2) with (4.5), (4.8), (4.10). Expanding F in a Taylor series about
Z, using the point Z* whose existence is guaranteed by Theorem 1, gives

(4.13) 0 (2) ?(2) +
By definition of Iteration 1, we also have

(4.14) 0 F(Z) + [Fz(Z){Z- Z}],

noting that the Y component of Z is zero. The difference of these two equations
gives

(4.15) [ffz(2){- 2"}1 o(I12- 2"II).
Some comments here will be helpful. As usual, the proof of convergence of Newton’s
method involves three points: the current iterate, the new iterate, nd the solution
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point. Here,..these are, respectively, Z, Z, and Z*, the subtlety being that Z* is the
solution to F(Z) 0, an equation whose definition depends on Z. Equation (4.15)
states that

[Fx{-- x*}] + [F{yll}{-Y;1}] + [F{y,.}{{AY)I2 Y*2}]
(4.16) + [F{y,,}I{AY}22 Y;e}l + [F{A + Aw 1}]

+ [Yo{X + ao h}] O(11- x*ll),

all of the derivatives being evaluated at 2, the appearance of O({- x*I[ 2) instead
of O([2- 2"[2) on the right-hand side being justified by (3.25). By Theorem 1, the

F{y} term on the left-hand side can be absorbed into the right-hand side, reducing

(4.17) to a linear system of n(n+) equations in n(n+l) variables. By precisely the2 2
argument which showed the equivalence of (4.1)-(4.2) with (4.5), (4.8), (4.10), this

system can be reduced to t(+l) equations in (+1) unknowns, namely2 2

The proof is then complete if we can assert that the norm of the inverse of K is
bounded for in a neighborhood of x*. Theorem 1 shows that there is an orthonormal

basis of eigenvectors for A(x*), namely Q* Oe?* for which

(4.18) I1 Q’l[--IIT( Q*)I[- III eY" O(ll*ll) o(11- x*ll).

Using this choice of Q* in (4.11), we have

(4.19) IlK K*II- O(ll- *11).

Since K* is nonsingular by assumption, and thisonsingularity is independent of the
basis choice, the boundedness of the inverse of K follows from the standard Banach
lemma.

Note that the use of the notation O([1" 2) to denote neglected terms in the
Taylor expansion is valid..even though a family of functions F is being considered,
for a sequence of values Q defining F. This is because the definition of F in (3.9)
shows that second and higher derivatives cannot blow up regardless of Q, given the
corresponding smoothness assumptions on the matrix function A(x), together with
the orthogonality of Q.

5. The general case In this section we assume that t(t+l) < m + 1 Since the2

codimension of gt(t, w) is t(t+l) and the dimension of the x w variable space is m + 12
the opposite inequality can hold only nongenerically. Equality can be expected to
hold only occionally since relatively few of the integers have the form t(t+) In the2
general ce, the constraints (3.12) are not enough to define x* locally, so minimization
of (3.11) must also be considered.

Define the Lagrangian function for (3.11)-(3.12) by

(.1) L(Z, U) V F(Z),

where U is an n n symmetric matrix of Lagrange multipliers corresponding to the
n n symmetric matrix constraint (3.12). The matrix U is called the dual matrix since
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its components are dual variables. The Frobenius inner product A B was defined
at the end of 2. Assuming a full rank condition to be discussed in detail later, the
first-order necessary conditions for Z to mininize (3.11) subject to (3.12) are that, in
addition to the satisfaction of (3.12) by Z, there exists U satisfying

(5.2) Lz(Z,U) =0,

that is,

(5.3) U.Fx(Z) =0,

(5.4) U Fy(Z) O,

(5.5)

and

(5.6) u Fo 0.

Here (5.3), for example, is understood to mean U. [Fx(Z)Ax] 0 for all Ax, i.e.,

U 0, 1 < k < m. A pair Z, U which satisfies conditions (5.3)-(5.6) is

denoted Z*, U*.
In the following Newton iteration we shall, as in the previous section, impose

the additional condition that {AY}I 0, and we shall therefore also relaz the
corresponding dual condition U F{n} (Z) 0, replacing (15.4) by

(5.) u. F(,(Z) o, U F,.(Z) 0.

Each step of the iteration requires a dual matrix estimate U, which is necessary to
define the Lagrangian function. It is important to note that a dual matrix estimate
from the previous step of the iteration cannot be used, since the function F changes
from one iteration to the next, with the basis Q, which defines F, not converging in
general.

ITERATION 3. Given an initial value :
1. Define A, Q by (1.1)-(1.2), and F by (3.9). Let Z- {,0,1,A2}.
2. Define U to be any n n symmetric matrix^ such^ that^ the norm of the residual

of (5.3), (5.7), (5.5), (5.6), with Z Z, U U, is O(IIZ- Z*II ).
3. Solve the quadratic program

(5.8)

(5.)
[Z(2, O)z] + 1/2 [(2, )/z/z]

subject to [Fz(Z)AZ] =-F(Z)

with the restriction also that

(5.o) {xy} =o.

Set Z Z + AZ.
4. Replace by 5, the x component of Z. Go to Step 1.
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Like Iteration 1, Iteration 3 can be substantially simplified using the structure of
the problem. We begin with a closer look at the dual matrix. Suppose we choose

(5.11) 0= Ull 0
0 0

and consider (5.3)-(5.6) with Z 7, U . We see then that, for U , (3.19)
implies (5.6) and (3.24) implies (5.4). In order to satisfy the condition in Step 2, then,
we see from (3.18) and (3.23) that we need only ensure that

tr UI 1 + O([1- x*ll)
and

(.) 0,A() 0, o(11- *11), < < ..
Ox

This is a system of m / 1 equations in t(t+D unknowns, which can Mso be written2

(5.14) T{vec 11} el + O(]]-- x*]).
As we shall see in Theorem 6, this can be achieved by solving the let squares problem

(5.15) in ]]T{vec 1} e ].
u

The constraints (5.9)-(5.10) are identical to the condition in Step 2 of Iteration 1,
the only difference being that the system of linear equations is underdetermined rather
than square. The same argument given following Iteration 1 therefore shows that
(5.9)-(5.10) is equivalent to the constraint (4.5) on Ax, Aw together with (4.8, (4.10)
defining {AY}2, {AY}22.

It is instructive to consider the special ce t 1 at this 2oint: in this ce the
max eigenvaiue function (x) is differentiable at x*. Then Q consists of a single
column , Ui is a scalar that can be taken to be the number 1, (5.13) states that
the gradient of at x is O(l- x*I), and the constraint (4.5) states that

(5.16) Aw

Now let us consider the quadratic objective function (5.8). The linear term may
be replaced by Aw, since the rest of this term is fixed by the constraint (5.9). To
evaluate the quadratic term in (5.8), we need to calculate the second derivatives of F.
Clearly, all terms involving w or O are zero. Differentiating (3.16)-(3.17) we obtain

[(2)x] -[A()xx]O;
[F(z)zYl [F(Z)Yz]

{Y}O[A()]O O[A()x]O(Y};

Since U satisfies (5.11), we need only the 1,1 block of each of these terms. Using
(5.10) and (3.20), we obtain

[.(2)xY] {y}O[A()z]O + O[A()x]O{Y};
[rr(2)AYAY]I
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But since Ay must satisfy the constraint (5.9), whose 1,2 block is (4.8), we see that

(5.17) [Fyy(Z)AyAY]I,1 -[Fxy(Z)AxAY].

We therefore have

[Fzz(Z)AZAZ]ll [Fxx(Z)xx]ll + [Fzy(Z)AxAY]
+[Fv(Z)AYAx] + [Fvy(Z)AxAY]
-[A()AxAx] +
+Of[Ax()a]O{aY}.

Let us denote the right-hand side of this equation by -M; then we see that, under
the constraints (5.9)-(5.10),

[nz(Z, V)aZaZ] V M.

Using (4.8) we see that the elements of the .t x t matrix M are given by
n

(.8) G [d,()axax] + ,[Aax] [A,ax],
s=t+

wherelit, ljtand

1 1 2
= + = +o(ll-*]).(5.19)
A Aj A A

Writing out the double sums in the square brackets explicitly we see that, under the
constra,nts (5.9)-(5.10),

(.o) [zz(2, )zz] {x}{x},
where W is an m by m symmetric matrix whose k, element stisfies

(.1) ,
with kt defined to be the t by t symmetric matrix with elements

02A() r0n() on()(5.22) {kt}ij qT
OXkOX’ + 7ijq, OXk

qs T oX, qs.
s=t+l

Again, the case t 1 is instructive: then, since 1, t is the scalaruantity
(1.4) (with 1), i.e., the second partial derivative of at x , and W is the
Hessian matrix of at x .

Therefore, Iteration 3, with U satisfying (5.11), reduces to the following iteration.
ITERATION 4. Given an initial value :

1. DCne A, Q by (1.1)-(1.2).
2. DCne U by any t by t symmetric matrix such that (5.14) holds.
3. DCne W by (5.19)-(5.22). Solve the following quadratic program:

(5.23) min Aw +
Aw,Ax

(.24) sNect to K z b

where the ltter constraint is defined b (4.6)-(4.7). Set + z.
4. Replace b N nd o to Step 1.
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In the case t- 1, we see from (5.16) that (5.23)-(5.24) reduces to the ordinary
Newton iteration

+

Iteration 4 is the method given by [10], with two exceptions: (i) [10] addresses a
slightly different problem, namely, minimizing max(Al(x),-An(x)), with A assumed
to be an affine matrix function; (ii) the method of [10] substitutes the quantities

2/{A1 As} for 7ijs, dropping the last term on the right-hand side of (5.19). With
this simplification, the corresponding formulas for (5.18), (5.22) can be written con-
veniently using matrix notation as

(5.25) / T[Axx()AxAx]. + 2T [Ax()Ax]2D-IT2 [A()Ax]
with D AI- A2

(5.26)

The use of W instead of W does not affect the convergence rate of Iteration 4, but
the advantage of the latter formula is that it leads to the following observation, due
to M.K.H. Fan [2].

THEOREM 4. SU]).OSe A is an affine function, i.e., Axx O. Then if U is
positive semidefinite, W is also positive semidefinite, regardless of the magnitude of

Proof. Since A: 0, it is clear that, for any choice of x, M.s positive semidef-
inite. Since Nil is positive semidefinite, the inner product U M is nonnegative for
all Az, which is equivalent to the condition {Az}W{Az} >_ 0 for all Ax. [1

Clearly, the same result holds if [Ax()AzAz] is positive semidefinite for all
Ax. Furthermore, if is close enough to x*, and W is positive definite, then W
is positive definite. However, even if A is affine, W is not positive semidefinite in
general. For example, suppose n , t 2, and Q I. The condition that M is
positive semidefinite then reduces to the condition 7laTa > 32. regardless of Ax123

Choosing A Diag.(2, 1, 0) gives

7113 1, 7123 --7213 1.5, 7223 2,

so that M is indefinite. Then UI can be chosen positive semidefinite such that (5.20)
is negative. However, substituting 2/(A A3) for 7ijs results in the matrices M and

W, which are positive semidefinite.
The positive semidefinite condition on UI is a natural one, because, as indicated

by the next two theorems, UI is an approximation to the matrix V* given in (3.4).
Specifically, note that (5.30) defining U{ in the following theorem is identical to (3.4)
defining V*. There is no condition on the definiteness of U, because in the formula-
tion of the nonlinear program (3.13)-(3.14) we assumed that the optimal multiplicity
t is known; consequently, indefiniteness of UI indicates that t was chosen incorrectly
and hence that x* does not minimize .
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THEOREM 5.
1. Consider the r by (m+ 1) matrix K*, defined by (4.11), where r t(t + 1)/2.

Then the rth singular value of K* does not depend on the choice of basis Q.
2. Suppose that the rth singular value of K* is nonzero, i.e., K* has linearly

independent rows. Consider the nonlinear program (3.13)-(3.15), noting that the latter
constraint removes Yll from the variable set. Let

L*(Z,U)-w-U.F*(Z).

A necessary condition.for Z* (x*, O, , A) to solve (3.13)-(3.15) is that there exists
an n n symmetric matrix U*, satisfying

(5.28) L*z(Z*, U*) O.

Furthermore, U* is unique, with

(5.29) U,= [ UI O]0 0

where the t by t block U satisfies

(5.30) {K*}T{vec al } el.

3. Define W* to be the m by m symmetric matrix with elements,

where G*kl is the t by t symmetric matrix with elements

G*kt QTO2A(x*)Q + 2{QI}TOA(x*) Q{AII A}-I{Q}TOA(x*)OxOx Ox Ox
Then W* is independent of the choice of basis Q.

4. The null space of K* is independent of the choice of basis Q. Consequently,
if N* is a matrix with orthonormal columns spanning the null space of K*, the eigen-
values of the reduced Hessian matrix

(5.31) {N*}T[ 00 W*0 IN*
are independent of the choice of bases Q, N*. (The matrix in the center of this
expression has dimension m + 1 by m + 1.)

Proof. 1. The th singular value of K* can be written

rain {K*}T{vec S}
IIsIIF=I

where S is a t by t symmetric matrix. (The quantity (4.12) is zero in the general case
that K* has more columns than rows.) The quantity being minimized is

{trS}2+E S.{Q}TOA(x*)
2 2

k--1
Ox---QI
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This minimum value is independent of the choice of basis Q, since any rotation of
the basis can be absorbed into S.

2. Let

U*-- [ UI U2 ]{v 2}r

We claim that (5.28) is equivalent to the two conditions (5.29)-(5.30). To see that
(5.28) implies (5.29)-(5.30), observe, by analogy with (5.3)-(5.7) and (3.18)-(3.24),
that U*.F 0 implies the diagonal elements of U2 are zero, while U* .F2. (Z*) 0
and U* F.I.(Z* 0, together with (3.1), imply respectively that the off-diagonal
elements of U2 and all elements of U2 are zero. The conditions U* F 1 and U*
F(Z*) 0 then reduce to (5.30). Conversely, if (5.29)-(5.30) hold, it is easily verified
that (5.28) holds. The linear independence of the columns of {K* }T, equivalently the
columns of the coefficient matrix of the linear system (5.28), provides a constraint
qualification guaranteeing the existence andniqueness of U*.

3. Let M* be defined by (5.25) with , A, Q replaced respectively by x*, A*, Q*.
(This is equivalent to (5.18) in this case since A A.) When Q is postmul-
tiplied by a t by t orthogonal matrix P, it has the following effect: the first column
of K* is unchanged and the others are replaced by vec pTQ OA(x*)Qp; the matrix

M* is replaced by pTM*p; the matrix UI is replaced by pTuIP. By analogy with
(5.20), {Ax}TW {Ax} Vl M* for all {Ax}, so it follows that W* is independent
of the choice of basis Q.

4. The null space of K* is

that is,

{v K*v 0}

voI + y vk(Q)TOA(x*---) Q 0

= Ox

which is unchanged if Q is postmultiplied by an orthogonal matrix.
The previous theorem was concerned only with quantities involving x* and F*.

In order to prove convergenceof Iterations 3 and 4, however, we need to quantify the
relationship .between U and U*, the latter quantity being the dual matrix associated
with the solution of (3.11)-(3.12).

THEOREM 6. Suppose K* has linearly independent rows and that is sufficiently
close to x*. Consider the nonlinear program (3.11)-(3.12), which has no constraint

that Y O. A necessary condition for Z* (x*, Y*, A,A) to solve (3.11)-(3.12)
is that there exists an n n symmetric matrix U* satisfying

(5.32) Lz(Z*, U*) O,

i.e., (5.3)-(5.6) hold for Z-- Z*, U-- U*. Furthermore, U* is unique. Now assume
that the discrepancy in (5.3)-(5.6), with Z Z, U U is O(llZ- Z*ll), as required
by Iteration 3. Then

(5.33) liu u* o(llz z* II).

Furthermore, such a matrix U is obtained by using the block structure (5.11) and
solving the least squares problem (5.15).
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Proof. From Theorem 5, the independence of the rows of K* and the independence
of the columns of the coefficient matrix defining the linear system (5.28) are equivalent.
Using (4.18)-(4.19), it follows that if I1-x*ll is sufficiently small, the columns of the
linear system (5.32) are also independent. (The fact that the columns of the latter
system have more rows than the columns of the former, because of the presence of the
additional variables Yll, does not affect the linear independence.) This rank condition
provides a constraint qualification guaranteeing the existence and uniqueness of U*,
satisfying (5.32), i.e.,

(5.34) U* Fz(Z*) v,

where v is a vector with one nonzero element, namely 1, in the position corresponding
to the variable w. By definition, U satisfies

u Fz(Z) + O(llZ

which has no equations corresponding to YI. Subtracting this equation from the
corresponding equations in (5.34), ignoring the Y equations in (5.34), and noting
that Fz is Lipschitz, gives

{u u*} Fz(Z) o(llz

The independence of the columns of the coefficient matrix defining this system then
gives (5.33).

The proof of the final statement of the theorem is as follows. From (5.30),

and, from (5.15),

K*{K*}T{vec U} K*e

’T{vec 11}- [Tel.

It follows as a consequence, using (4.19) and the fact that K* is full rank, that

Combining this equation with (4.19) and (5.30) gives

T{vec 1} e + 0(11-

from which the result follows.
We are now ready to prove the main convergence theorem.
THEOREM 7. Suppose that K* has independent rows and that the reduced Hessian

(5.31) is positive definite. Then there exist constants
then

for both Iterations 3 and 4. Consequently, both iterations generate points that con-
verge quadratically to the solution x*.

Proof. From Theorem6, assuming that is sufficiently close to x*, a necessary
condition for a pair Z*,U* to solve the nonlinear program (3.11)-(3.12) (without
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the condition Yll 0 imposed), is that, in addition to (3.12), the equation (5.32)
holds. Theorem 1 shows that we can take the Y* component of Z* to satisfy IIY*
O(11- x*ll and I1’111 O(I]- x*l12). Furthermore, we can expand in a Taylor
series just as in the proof of Theorem 3, obtaining all of (4.13)-(4.17) exactly as before,
the only difference being that these equations are not square systems. Specifically,
(4.17), with its Y terms absorbed into the right-hand side, gives

(5.35) [z(2){- 2,}] o(11-

Now let us expand (5.32) in a Taylor series. We have

0 Lz(Z*, U*) Lz(Z, U) + [Lzz(Z, U){Z* Z)] + [Lzv(Z, U)(U* U)]
+o(112- 2"11= / 112-

using the linearity of L(Z, U) in U. Note that the terms in square brackets, although
involving second-order differentiation, are summed over only one argument and are
therefore vectors of length n(n + 1)/2 + m + 1 t, the number of variables in Z.
This system of equations has a row and a column corresponding to each element
of Z (x, Y,w, O). Let us discard the rows corresponding to Y, and absorb the
columns corresponding to YI into the O term, which is permissible .since Y 0,

* O(]]- x* I]2). Using the fact that zv -z, this gives

(5.36) o z(2, ) + [zz(, ){2" 2)] {* 5) z(2) + o(11- x*ll 2)

with the understanding that all YI terms are omitted. The O(11- x*l[ 2) term on the
right-hand side is justified by (3.25) and (5.33).

The necessary condition for a pair AZ, AU to solve the quadratic program defining
a step of Iteration 3 is, in addition to the constraints (5.9)-(5.10), that there exists a
dual matrix AU such that

(5.37) AU Fz(Z) Lz(Z, U) + [Lzz(Z, U)AZ],

where rows and columns of the coefficient matri_x corresponding to Yll have been
omitted because of (5.10). Noting that AZ Z- Z and subtracting (5.36) from
(5.37) gives

[z(2,){- 2")] {g *) Pz(2) o(11-

where U U + AU.
Equations (5.35), (5.38) state the first-order optimality conditions for the quadratic

program

(5.39)

(5.40)

where the first term in (5.39) is an inner product, with h (which has the same structure
as Z) satisfying h O(11- x*l12). It. is understood that there are no YI terms in

Z, Z*. Note that the Hessian and constraint coefficients of this quadratic program
are identical to those of (5.8)-(5.9). We shall now simplify this quadratic program,
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using an argument similar to that which reduced (5.8)-(5.9) to (5.23)-(5.24). First
consider the linear term in (5.39). We have

(5.41) h.{-*}=. [+Aw- ]-x* +’

where h e m+l and e satisfy h O(11- x*ll 2) and O(ll- x*l14). This
equation holds because of the constraint (5.40), which defines the Y and O elements
of Z- Z* in terms of the x and w components, by analogy with (4.8)-(4.10). Now
consider the quadratic term in (5.39). The argument that showed that the quadratic
form in (5.8) reduces to that in (5.23) uses (5.17), which follows from the 1,2 block of
(5.9), namely, (4.8). We now use a similar argument to simplify the quadratic term
in (5.39). Instead of (4.8), we have, from the 1,2 block of (5.40),

--)T[A(){5- x*}](2 ,I{AY *}2 + {AY *}2-2
Instead of (5.17), we conclude that

[Fyy(Z){AY- Y*}{AY V*}]ll + [Fay(Z){5- x*}{AY V*}]ll

O(ll - : *ll: ll Y P* II).

Again using (5.40) to define Ay- y* in terms of the x and w components of Z- Z*,
we see that the right-hand side consists of two terms, of which one can be absorbed
into the first term of (5.41), and the other into the second. We therefore see that, just
as the quadratic form in (5.8) reduces to that in (5.23), the quadratic form in (5.39)
reduces to

(5.42)
_. ,1 -- td , .._1 {5- x*}T{5 X*},

5-- x*

where h O(11- x*l12). The constraint (5.40) reduces to (4.17), i.e.,

(.4a) ,x + zxo O(11-

The optimality conditions for the quadratic program defined by (5.42)-(5.43) are

(5.44) 0 o(11 -
K 0 vec {UI Ull }

By assumption, K* has full rank and (5.31) is positive definite, so

0 W* {K*
K* 0

is nonsingular. Therefore using (4.18)-(4.19) and noting that
we see that the inverse of the coefficient matrix of (5.44) is bounded for near x*.
The desired quadratic contraction is therefore proved.
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6. Concluding remarks. The convergence proof just given is complicated, be-
cause of the disparity in the number of free parameters in the equations F 0 and
F* 0, even as --. x*. An alternative analysis of the same method has been given
recently by Shapiro and Fan [15] in contemporary, independent work. Our results and
those of [15] complement each other nicely. The analysis in [15] is shorter than ours
but rests on several nontrivial results. The principal idea is that although eigenvectors
are not smooth, eigenprojections are differentiable, and indeed derivative formulas are
known (Kato [7]). Shapiro and Fan show how to construct a smoothly varying or-
thonormal basis for the eigenprojection, which agrees with a given orthonormal basis
of eigenvectors at a point, though not in a neighborhood of the point. Neither the
results from Kato nor the construction of the eigenprojection basis could be said
to be elementary, though both are powerful. By contrast, our convergence proof is

completel self-contained. The Hessian formulas arise simply from differentiating the
function F and do not require any machinery from Kato. The only outside result that
is needed is Theorem 1, whose proof is elementary [4].

Appendix. The following shows that any real orthogonal matrix P with
det P 1 may be written in the form P eY, where Y _yT. This deriva-
tion was suggested by J.-P. Haeberly. It is undoubtedly well known, though we lack
a standard reference.

An orthogonal matrix has eigenvalues of the form 1 and cos 0 + sin 0, with a
corresponding orthogonal set of eigenvectors. Thus, there exists an orthogonal matrix
V such that

VTPV Diag(D1,..., Dk),

where each Dj is either the number d:l, or a 2 2 matrix of the form

cos 0 sin 0
sin 0 cos 0

Since det P 1, the number of -l’s that occur must be even, so we may assume that
the Dj’s are either the number +1 or a 2 2 matrix as above. But 1 e, and

sin0 cos0 exp 0 0

Hence, Diag(D1,..., Dk) ex for some block diagonal matrix X with nonero diag-
onal blocks of the form

0 0

Note that X -XT. Defining Y VXVT, we have

P VDiag(D,...,Dk)VT VexVT eY.
It remains to show that Y is skew-symmetric:

(vxvT)T vxTvT V(-X)VT _VXVT.
The matrix Y is not unique, since incrementing by multiples of 2r does not change
eY, but the solution set consists of isolated points in matrix space. In our local
convergence analysis, we are concerned only with P eY in a neighborhood of the
identity matrix and the corresponding Y in a neighborhood of the zero matrix (see
Theorem 3.1).
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A MINIMAX THEOREM AND A DULMAGE-MENDELSOHN TYPE
DECOMPOSITION FOR A CLASS OF GENERIC PARTITIONED

MATRICES*

SATORU IWATAt AND KAZUO MUROTAt

Abstract. This paper discusses an extension of the Dulmage-Mendelsohn decomposition for
a certain class of matrices whose row-set and column-set are divided into couples or singletons.
A genericity assumption is imposed and an admissible transformation is defined in respect of this
partition structure. Extensions of the KSnig-Egervry theorem and the Hall-Ore theorem are es-
tablished. The latter states that the rank of such a matrix is characterized by the minimum value
of a submodular function, of which the set of minimizers yields a canonical block-triangularization
under the admissible transformations.

Key words, combinatorial matrix theory, Dulmage-Mendelsohn decomposition, generic parti-
tioned matrix, minimax theorem, submodular function

AMS subject classiflcations. 15A21, 05C50

1. Introduction. A generic matrix, which is a basic concept in combinatorial
matrix theory, is a matrix whose nonzero elements are indeterminates (indepen-
dent parameters). The rank and other properties of a generic matrix are deter-
mined by the zero-nonzero pattern. The Dulmage-Mendelsohn decomposition (or
the DM-decomposition)[4] of the generic matrix is a canonical block-triangularization
by means of independent permutations of the row-set and the column-set. The DM-
decomposition is characterized (see 3) by the set of minimizers of a certain submod-
ular function, say PDM, whose minimum value in turn characterizes the rank of the
generic matrix. The practical significance of the DM-decomposition is now widely
recognized in numerical computation and systems analysis.

This paper discusses an extension of the DM-decomposition. Specifically, we are
concerned with a class of matrices whose row-set and column-set are independently
divided into couples or singletons as follows:

We assume that the matrix A is generic in the sense that A tA for a
1,...,#; 1,...,, where T {tan a 1,...,#; 1,...,} is the set of
independent parameters (indeterminates) and Af are constant matrices of size 2 2
or smaller. We call such a matrix A a GP(2)-matrix. Equivalence transformations of
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the form

(1)

with Sa and T being constant matrices, preserve the partition structure as well as
the genericity in the above sense and are called admissible transformations for GP(2)-
matrices. Note that the resulting matrix is also a GP(2)-matrix.

It will be shown that the rank of a GP(2)-matrix is characterized by the minimum
value of (a variant of the subrnodular function p introduced in [7]. This result can
be understood as a minimax theorem since the rank is a maximum size of nonsingular
submatrices. In fact, this is an extension of the Khnig-Egervry theorem and the
Hall-Ore theorem for generic matrices (bipartite graphs). The set of minimizers of
p yields the finest proper block-triangularization of a GP(2)-matrix under admissible
transformations, just as the submodular function PDM induces the DM-decomposition
of a generic matrix. The uniqueness of this decomposition is established by using a
result of [7].

In the literature, a number of extensions of the DM-decomposition have been
considered in different directions. Murota [10] has introduced the concept of layered
mixed matrices and multilayered matrices, and established the combinatorial canon-
ical forms for them (See also Murota [11] and Murota, Iri, and Nakamura [12]). All
these cases have a common feature that the rank of a matrix is characterized by the
minimum value of a certain submodular function on a boolean lattice. More general
framework is investigated in Ito, Iwata, and Murota [7] under the name of partitioned
matrices without reference to the genericity. It has been shown that the rank of a
partitioned matrix is bounded from above by the minimum value of a submodular
function defined on a modular (nonboolean) lattice and that a DM-type decomposi-
tion exists if and only if the bound is tight. Partitioned matrices with a genericity
assumption (to be defined in 2) will be named generic partitioned matrices, of which
our GP(2)-matrix is a special case. The minimax theorem for the rank, however, does
not hold in the general framework even under this genericity assumption, as will be
shown by a counterexample in 6. Apart from linear algebra, Iri [6] has discussed a
decomposition principle for combinatorial systems characterized by submodular func-
tions.,

The outline of this paper is as follows. The concept of GP(2)-matrix and the
block-triangularization is described in 2. Section 3 affords preliminaries on the DM-
decomposition. The rank identity for GP(2)-matrices, which is the main result of this
paper, is proven in 4. Section 5 is devoted to the existence and the uniqueness of
the block-triangularization of GP(2)-matrices. The extension of our result to generic
partitioned matrices of general types is discussed in 6.

2. Generic partitioned matrix. Let K be a field, e.g., the rational numbers
Q, and Af be an ma nf matrix over the field K for 1,..., #; / 1,..., .
Put A,f taAz, where T (t, 1,...,#; / 1,...,} is the set of
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independent parameters (indeterminates). Then

All A12 Aiv
A21 A22 A2v

A, A,2 A,.
is a matrix over the field K(T) of rational functions in T over K. Such a matrix
A is named here a generic partitioned matrix (or GP-matrix) of type (m,... ,m;
nl,...,n) with base field K. In particular, A is called a GP(2)-matrix if ma <_
2 for a 1,...,# and n <_ 2 for / 1,...,. An equivalence transformation
S-AT is said to be an admissible transformation for a generic partitioned matrix
A, if S (=1 S and T =Tf with ms-dimensional nonsingular matrices S
and nz-dimensional nonsingular matrices TZ over the field K (see expression (1) in

For a matrix A in general we denote by Row(A) and Col(A) the row-set of A and
the column-set of A, respectively. We also denote by AIRt, C] the submatrix of A
with row indices in R’ N Row(A) and column indices in C’ Col(A).

We now define precisely the notion of a block-triangular form, following Murota
[11] and Ito, Iwata, and Murota [7]. Let A be a generic partitioned matrix. We say
that A is in a block-triangular form or block-triangularized if the row-set R Row(A)
and the column-set C Col(A) are split into a certain number of disjoint blocks:
(R0; R1,..., Rb; R) and (Co; C1,..., Cb; C) in such a way that

or IR01--IC01 0,
for k= 1,...,b,
or IR I=IC I=0

and

A Rk C O if 0_<l<k_<

A is said to be properly block-triangularized, if, in addition,

rankA[Rk, Ca] min(IRkl, ICkl) for k 0, 1,..., b, oc

is satisfied. A[Ro, Co] and A[R, C] are called horizontal tail and vertical tail of A,
respectively. It is clear that if A is block-triangularized in the above sense, we can

put it into an explicit upper block-triangular form A PAQ in the usual sense by
using certain permutation matrices P and Q.

A partial order is induced among the blocks {Ca k 1,...,b} in a natural
manner by the zero-nonzero structure of a block-triangular matrix A. The partial
order is the reflexive and transitive closure of the relation defined by: Ck is "smaller"
than or equal to C if A[R, C] O. We denote this poset ({C1,..., Cb}, ) by 7)(A).

A generic partitioned matrix A is said to be GP-irreducible if rankA min(m, n)
and it can never be transformed into a proper block-tria_ngular form with two or more
nonempty blocks by any admissible transformation. If A is a proper block-triangular
matrix obtained from A by an admissible transformation and.if, in addition, all the
diagonal blocks A[R, C] for k 0, 1,..., b, oc are GP-irreducible, we say that A is a

GP-irreducible decomposition of A and A[Rk, Ck] are the GP-irreducible components
of A.
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Example 1. Consider the following 6 x 6 GP(2)-matrix:

2tit tll

t21

;31 t31

t12

22

$13
t13
23
t23

Using admissible transformation matrices:

1 -1
0 1

1 0
-1 1

1 0
0 .1.

we obtain

= S-1AT

tll tll

31

t12

t22

32
t32

t13 t13
13
t23
t23
t33
t33

This is a block-triangular matrix since it can be put into an explicitly upper block-
triangular form:

A PAQ

$13 ill ill t12 t12 t13
$21 t22 t23
t31 t32 t33

$32 t33

t23

by using permutation matrices

1 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1

Q=
0 0 0 0 1 0

OLOOOO ooooo 1
0 0 0 1 0 0 1 0 0 0 0 0

Thus A is a GP-irreducible decomposition with the horizontal tail A[Ro, Co] 13 1, ),
2 .2) andthe vertical tail A[R C] ( ), square diagonal blocks A[Rt Ct] (t23

AIR2, C2] (). Note that the partiM order in P(A) is trivial, i.e., neither C1 C2
nor C C2 since A[R, C2] O.
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The GP-irreducible decomposition A is finer than the DM-decomposition (see 3)
of A. In fact, by using permutation matrices

1 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1

Q=
0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 0

we obtain the DM-decomposition of A:

t13 2tll tll t12
t21 t21 t22

i= PA( t31 t31 t3. -t32
t32

13
23

33
13
23

3. Recapitulation on DM-decomposition. We review a construction of the
DM-decomposition (cf., e.g., [6], [8], [10]), which will serve as a prototype of the
argument in 4 and 6 for GP(2)-matrices.

A matrix A is said to be a generic matrix [3] if its nonzero elements are i.ndetermi-
nates (independent parameters). Since the determinants of submatrices of a generic
matrix are free from numerical cancellations, the rank and other related properties
are determined by its zero-nonzero pattern.

With a generic matrix A (aj) is associated a submodular function PDM defined
as follows. Set R--Row(R), C- Col(A) and put

r(j) J {i e R laij = 0},
jEJ

(g)
PDM(J) (J)-

for J c_ C, where aiy denotes the (i, j)-entry of A. As is well known, PDM is submod-
ular, i.e.,

PDM(J1) + PDM(J2)

_
PDM(J1 kJ J2) + PDM(J 3 J2), Jh C_ C (h 1,2).

The rank of a genexic matrix A is characterized by the minimum value of this sub-
modular function:

rank A-- min{PDM(J) J C_ C} + ICI,

which follows from the genericity and the Hall-Ore theorem for bipartite graphs [9].
The rank identity (2) is called here the Hall-Ore theorem for generic matrices.

Since the set of minimizers of a submodular function on a lattice forms a sublat-
tice, the set of minimizers of PDM, i.e.,

/)(PDM) {J C C IPDM(J min PDM(J’)},
J’C_C
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is a distributive lattice. Consider a maximal chain

dDM" J0 C J1 C... C Jb,

of 79(PDM and put

C Jh Jh-i,
C C- &,

R0 r(J0),
r(J )
R-

for h- 1,...,b,

Then A is in a block-triangular form with respect to the blocks (R0;R1,... ,Rb; R)
and (Co; C1,..., Cb; C). Furthermore, it follows from (2) that A is in a proper
block-triangular form. This block-triangularization is the Dulmage-Mendelsohn de-
composition (or DM-decomposition).

4. A minimax theorem. In this section we introduce a submodular function p
for a GP(2)-matrix, similar to PDM in 3, and establish an analogue of the Hall-Ore
theorem (2).

Let A be an m x n generic partitioned matrix and V be an n-dimensional vector
space over the field K given by V Z=l Vt, where VZ is an n-dimensional vector
space for each/3. Similarly, set U = Ua, where dim Ua ma for each a. We
denote by V the modular lattice which consists of all the subspaces of V that can be
represented as the direct sums of subspaces of V’s.

Regarding A AI A2 A. as a linear map, we define

p(W) := dim AaW dim W,

Then p" V --, Z is a submodular function, i.e.,

WEV.

p(W) + p(W2) > p(W + W2) + p(W f3 W2), Wh e V (h 1,2).

The following lemma as well as its proof shows that the function p is relevant in
dealing with the rank of generic partioned matrices. Though this is essentially the
same as Lemma 3.14 in [7], we include here a simple direct proof. Note also that the
genericity does not play a rSle.

LEMMA 4.1. For an m x n generic partitioned matrix A of any type,

(3) rank A <_ min{p(W) W e l/V} + n.

Proof. For any W E W, A can be transformed, by a certain admissible transfor-
mation, to another matrix

J-W C-J
A[R,J] AI[R,C- J]
2JR, J] 2JR, C J]

A, JR, J] A, JR, C J]
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such that the set of basis vectors corresponding to J spans the subspace W E V (as
indicated by "J

_
W"). Then we have

rankA rank A

< ranka JR, J] + rank [R, C J]

_< dimAcW + n dimW

(w) + .
Hence we obtain the inequality (3). v1

One of the main objectives of this paper is to show that the equality holds in (3)
if A is of type (2,..., 2; 2,..., 2).

We denote by 32 the modular lattice consisting of such subspaces of U that can
be represented as direct sums of subspaces of Us’s. Put

A(Y, W) dim(AW/Y) dimAW dimAW fq Y,

and then we have the following lemmo;s.

LEMMA 4.2. The function " 32 Yt) - Z is submodular, i.e.,

(Y, w) + (Y, w) > (Y + Y,w + w) + (Y n Y,w n w)

for Yh 3, Wh Y (h 1, 2).
Proof. It is clear from the following manipulation:

,k(Y1, W1) + A(Y2, W2) dimAW + dim AW2 dim AWl fq Y dim AW2 fq Y2
dim A(W + W2) + dim(AW fq AW2)/(YI fq Y2)
dim((AW1 fq Y) + (AW2 N Y2))

> dimA(W + W2) + dim A(W q W2)/(Y fq Y2)
-dim A(WI + W2) fq (Y + Y2)
(Y + Y,W + W) + (Y Y,W W).

LEMMA 4.3. For an m n generic partitioned matrix A of any type, there exists
a pair Y* and W* Y such that

(i) dim W* dim Y* A(Y*, W*) n rank A.
(ii) A(Y’, W’)= A(Y*, W*) for any Y’ D Y* and W’ c W* such that dim Y’=

dim Y* + 1 and dimW --dim W*- 1.

Proof. Consider a pair (Y*, W*) which minimizes dim W* -dimY* subject to
(i). Such (Y*, W*) certainly exists since (i) is satisfied by ({0}, Y). Then for any
Y’ D Y* and W’ c W* such that dim Y’ dimY* + 1 and dim W’ dim W* 1, it
follows from Lemma 4.2 that

(Y*, w*) + (’, w’) > (’, w*) + (*, w’).

Because of the minimality of dim W* -dimY* we have A(Y’, W*) /k(Y*, W*)
since otherwise (Y’, W*) would satisfy (i) with dim W*-dim Y’ < dim W*-dim Y*.
Likewise we have A(Y*, W’) /(Y*, W*). Therefore A(Y’, W’) > ,k(Y*, W*). On
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the other hand, it is clear that A(Y’, W’) <_ A(Y*, W*) since Y’ D Y* and W’ C W*.
Hence (Y*, W*) satisfies (ii). r]

Whereas the above three lemmas are valid for generic partitioned matrices of any
type, the following theorem (Theorem 4.4) states a key property valid for GP(2)-
matrices (and not for generic partitioned matrices of general type). A special case of
Theorem 4.4 with A being a generic matrix (i.e., gP(2)-matrix type (1,..., 1; 1,..., 1))
is nothing but the Khnig-Egervry theorem for bipartite graphs.

THEOREM 4.4. For an m x n GP(2)-matrix A, there exists a pair Y* E 32 and
W* I/V such that

(i) dim W* dim Y* n rank A.
(ii) A(Y*, W*) O.

In other words, there exists an._ admissible transformation A S-1AT and subsets
R* c_ Row(A) and C* C Col(A) such that

(i’) IR*l+lC*l=m+n-rankA,
(ii’) rankA[R*,C*] O.
Proof. Given a pair (Y*, W*) of Lemma 4.3, consider an admissible transforma-

tion A S-1AT such that a subset of the column vectors of S spans Y* and a subset
of the column vectors of T spans W*. We denote by R* the complement of the subset
of Row(A) corresponding to Y* and by C* the subset of Col(A) corresponding to W*.
Note that Row(A) and Col(A) have natural one-to-one correspondences with Col(S)
and Col(T), respectively, and that IR*] m- dim Y* and IC*l dim W*.

We claim that rank Az[R*, C*] = 1 for each (a, Z). Assume to the contrary that

Az[R*, C*] has rank 1 for some (a,3). We may further assume that A[R*, C*] is

in its rank normal form (i.e., (2 ), (2), (,. o) or (,)) and that Az[R*, C*]
has the only nonzero element at (i,j)-entry of A. Let A[I*, J*] be a maximum-size

nonsingular submatrix of AIR* {i}, C* {j}], and then d[I* kJ {i}, J* t2 {j}] is

nonsingular since the nonzero terms arising from t/ det A[I*, J*] would not vanish in

the determinant expansion of A[I*t2 {i}, J*t.J {j}] because of the genericity. Therefore
we have

rank AIR*, C*] > rank AIR* {i}, C* {j}],

which contradicts the condition (ii) of Lemma 4.3. Hence rank A[R*, C*] is 0 or 2.
Consider a generic matrix B (b) with Row(B) {1,..., #} and Col(B)

{1,..., } defined by

b
tag if rankA.JR*, C*] 2,
0 if rank Az[R*, C*] 0.

Note the correspondence between the entry bz of B and the submatrix AZ of
A. The DM-decomposition of B splits R Row(B) and C Col(B) into blocks
(R0; R1,..., Rb; R) and (Co; CI,..., Cb; C), respectively. Accordingly, R* and
C* are split into blocks (R;; R,... ,R;; R) and (C; C,..., C; C), respectively.
Since rank A[R*, C*] is either 2 or 0, it follows from the genericity that

rank AIR*, C*] 2 rank B.

Moreover, AIR*, C*] is in a proper block-triangular form with respect to the blocks
(R;; R,..., R; R) and (C; C,..., C; C). For any e R* R, we would have

rank AIR* {i}, C*] < rank A[R*, C*],
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which contradicts the condition (ii) in Lemma 4.3. Similarly, for any j E C* -C, we
would have

rank AIR*, C* {j}] < rank AIR*, C*],

which also contradicts the condition (ii) in Lemma 4.3. Therefore R* Ro and
C* C. That is to say, AIR*, C*] O, i.e., rank AIR*, C*] 0.

We now state the main result of this paper, namely the rank identity for GP(2)-
matrices which is an extension of the Hall-Ore theorem for generic matrices.

THEOREM 4.5. For an m n GP(2)-matrix A,

(4) rank A min{p(W) W e l/Y} + n.

Proof. Let (Y*, W*) be the pair of Theorem 4.4. From (ii) it follows that AsW*
Y* N Us. Using this and (i) we obtain

rank A dim Y* dim W* + n

E dim AsW* dim W* + n

p(W*) + n.

The other direction of the inequality is given in Lemma 4.1.
REMARK 1. Lemma 4.3 has been inspired by a recent result of Bapat [2],

which gives a matroid-theoretic abstraction of the Khnig-Egervry theorem and its
extensions (Theorem 1 of Hartfiel and aoewy [5], Theorem 16 of Murota [11]) to mixed
matrices. However, neither Lemma 4.3 nor Theorem 4.4 follows from these previous
results.

5. Dulmage-Mendelsohn type decomposition.

5.1. Construction of the decomposition. In this section we consider a DM-
type decomposition of GP(2)-matrices. The minimax result of Theorem 4.5 imme-
diately yields such a decomposition (cf. Theorem 3.15 of [7]). In fact, the following
construction is essentially the same as the one in [7] except that we consider here the
linear subspaces over the subfield K.

It is well known that the set of the minimizers of a submodular function on a
lattice is a sublattice and that a sublattice of a modular lattice is also modular [1].
Therefore

(p) := {W e )4;Ip(W min p(W’)}

is a modular lattice.
Let C be a maximal chain of (p):

Wo c W c c W.
Denoting Wh V# by Wh#, we obtain from C a family of increasing chains

W0

_
W _... _

W
for 1,..., . Let h/ be a set of linearly independent column vectors spanning

Wh for h 0, 1,..., b and Z spanning VZ such that
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Then I/h U3--1 II/h;3 spans Wh for h 0, 1,... ,b, and U;3--1 I/o becomes
a basis of V. Order the n column vectors of as [o1, 2,..., o/2] to get a
nonsingular matrix T D=I T.

Similarly, we obtain from C another family of increasing chains

Ase AWo C_ AsW1 C_ C_ AsWb
for a 1,..., #. Let ha be a set of linearly independent column vectors spanning
AaWh for h 0, 1,..., b ands spanning U such that

Then h Us--1 (I)hc spans AWh for h 0, 1,..., b, and U=I becomes
a basis of U. Order the m column vectors of as [, o2,...,] to get a
nonsingular matrix S

Put S-1AT. Let Ch C_ Col() be the column subset corresponding to @h,
and Ru C_ Row() the row subset corresponding to @h, where

Then we have

Since

it holds that

for h l, b,

A[Rk, Ct]=O if 0<_l<k<_.

k k

p(Wk) E IRhl E IChl’
h--0 h----0

for k 0, 1,...,b,

IRI I@1 for = 1,...,b.

It follows from Theorem 4.5 that

rankA[R, C] min([R[, [Ck[) for k 0, 1,..., b, x.

That is to say, A is in a proper block-triangular form, where the number of square
blocks b is given by the length of C. The maximMity of C guarantees that A is a
GP-irreducible decomposition (cf. 2) of A. Thus we have the following theorem.

THEOREM 5.1. For a GP(2)-matrix A, there exists a proper block-triangular ma-
trix A with GP-irreducible diagonal blocks which is obtained from A by an admissible
transformation (of the form (1)).

5.2. Uniqueness ofthe decomposition. In this section, we discuss the unique-
ness of the GP-irreducible diagonal blocks in the decomposition of a GP(2)-matrix.

Example 2. Consider an 8 8 GP(2)-matrix
/’ tll

2t
t22

t32

t4 t42
t41 2t4

t22

t32
2t42
4t42

t23
t14

-2t23
$23

’t33 ’2t33
$33

$43

t43
t44

t44
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with the base field Q. Let S and T be nonsingular matrices:

1 0
0 1

1 0
0 1

T=

1 o

1 2
0 1

Then we have

A S-1AT

41
\

By using permutation matrices

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0P=
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0

\0 0 0 0 0 1 00

$22

$32
22

$32

2t42 4t42
t42 2t42

t43 2t43
t43 2t43

Q=

(1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0

\00010000
we obtain an explicitly upper block-triangular matrix:

A- PAQ

(tll t14
2$11

t41 t44 2t42 t43 4t42 2t43
t41 $44 t42 t43 2t42 2t43

t22 t23
32 33

22 23
32 t33 )

Thus A is a GP-irreducible decomposition of A with empty tails and square diagonal
blocks

I ill

AIR1, C1] t41

.[R C] (
\ ;32

2tll t14
t44

$41 44

t23)t33 and [R3 C3] ( t22t32
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On the other hand, let S’ and T’ be nonsingular matrices:

1 -2
0 1

1 -2

1 0
0 1

Then we have

f tll

A" S’-IAT

2tll

t41

By using permutation matrices

[0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0, 0 0 0 0 1 0 0 0

t22 t23
22

t32 t33
t32

2t42 t4a

$23

$33

0 0 1 0 0 0 0 0 N

we obtain an explicitly upper block-triangular matrix:

0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

fi’ p’’Q’
tll

t41

t14
2tll t14
t41 t44 t42 t43

t44 2t42; t43
t22 t23
t32 t33

Thus A’ is a GP-irreducible decomposition of A with empty tails and square diagonal
blocks

A"[R C]= (t22 t23)t32 33
t

A’[R, C] 2t t4
t41

\t4 t44

and .’[R C] t22
t44 t32 t33

44
t44 )



GENERIC PARTITIONED MATRICES 731

It is easy to see. that we have a permutation a of { 1, 2, 3} such that A[Rk, Ck] and

A[R(k), Ca(k) are connected by an admissible transformation for each k 1,2,3.
In the following we prove that such is always the case.

The following argument is not directly affected by the type of GP-matrices and
is valid for all GP-matrices for which the inequality (4) holds.

Let F be a field in general and A be a matrix over F of the form

All A12
A2 A22 A2v

A, A,2 A,
Then A is said to be a partitioned matrix. An equivalence transformation of the form
(sl) is called a partition-respecting equivalence transformation (or PE-transformation),
where the matrices S and T are matrices over the field F in this case. It has been
shown by a module-theoretic argument that, provided a PE-irreducible decomposi-
tion exists, the set of PE-irreducible components of a partitioned matrix is unique to
within PE-transformations of each component [7].

A GP(2)-matrix is a special kind of partitioned matrix over the field F
Admissible transformations for a GP(2)-matrix, with S and T being matrices over K,
are more restricted than PE-transformations, which employ transformation matrices
over F. Hence a GP-irreducible decomposition can possibly be coarser than a PE-
irreducible decomposition. However, a GP-irreducible decomposition has the same
number of components as a PE-irredu.eible decomposition if the field K is infinite, as

follows.
LEMMA 5.2. Suppose K is an infinite field and let A be a GP(2)-matrix with base

field K. Then a GP-irreducible decomposition of A is a PE-irreducible decomposition

of A over the field
Proof. Let A be a GP(2)-matrix and - -IA be its PE-irreducible decompo-

sition with S and T over K(:Y). Since K is an infinite field, we may choose a suitable

set of parameter values from K such that S and T remain nonsingular when those
values are substituted for the parameter_s in q-. Let S and T be the matrices obtained
from and by this substitution. Put A S-1AT, and then (i, j)-entry of . remains

zero if (i,j)-entry of A is zero. Therefore A is in a block-triangular form with the
same number of blocksas A has. Furthermore this is a proper block-triangularization
since rank A rank A. Since a GP-irreducible dec_omposition can not be finer than
PE-irreducible decomposition, we conclude that A is a GP-irreducible decomposition
of A.

Before establishing the uniqueness of a GP-irreducible decomposition, we claim
the following lemma.

LEMMA 5.3. Suppose K is an infinite field and let A and A be GP(2)-matrices
with base field K connected by a PE-transformation over K(T). Then A and A are
connected by an admissible transformation (over K) for GP(2)-matrices.

Proof. Suppose -- -A, where ]= a and =1 are over

K(qZ). Note that for any a and we have

where ’a and Aa are matrices over K. Let S (=1 S and T (=T be

nonsingular matrices over K obtained from S and T, respectively, by substituting
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suitable values to the independent parameters. Such parameter values exist since K
is an infinite field. Then clearly we have. S AaT
for any a and/. Hence -- S-AT.

Suppose we have two GP-irreducible decompositions A and A of A (cf. Example
2). Both of them are also PE-irreducible decompositions by Lemma 5.2. We denote
by D and D the kth irreducible component of A and A, respectively, for k
0, 1,..., b, oc. Then, by Theorem 3.7 of [7], there exists a certain permutation a of
{ 1,..., b} such that Dk is PE-equivalent to D(k) It follows from Lemma 5.3 that Dk
and D(k) are connected by an admissible transformation. Thus we have the following
theorem.

THEOREM 5.4. The set of GP-irreducible components of a GP(2)-matrix is unique
to within admissible transformations of each component.

The DM-decomposition of a generic matrix is uniquely determined with respect
not only to irreducible components but also to the partial order defined by the
zero/nonzero pattern. However, for a GP(2)-matrix, Theorem 5.4 shows the for-
mer uniqueness only. The latter uniqueness does not hold in this case as is seen in
Example 2 above. In fact, A has the partial order

\/

whereas A’ has

6. Discussions.

6.1. Summary on generic partitioned matrices. From the previous works
[7], [10], it has been known that the rank identity (4) holds for the following types of
generic partitioned matrices.

Generic matrix: ma 1 for a 1,..., # and nz 1 for - 1,..., u.
Generic multilayered matrix: nz 1 for/3 1,..., u.
Transposed generic multilayered matrix: ma 1 for c 1,..., #.

Our present result (Theorem 4.5) added another type.
GP(2)-matrix: ma <_ 2 for a 1,..., # and n _< 2 for/3 1 .

Hence, it seems natural to expect that Theorem 4.5 is valid not only for GP(2)-
matrices but also for generic partitioned matrices in general. However, this is not the
case, as we see in the following counterexample.

Example 3. Consider a 6 6 generic partitioned matrix of type (3, 3; 2, 2, 2):

tll
tll

t2
t21

t12

t22
t12

t22

t13

t23
t13

t23

It can be easily verified that rank A 5 < minp(W) + n 6.
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6.2. Remark on the base field. As long as we are concerned with the DM-
decomposition of generic matrices, it does not matter what the base field is. However,
when it comes to the GP(2)-matrices, it depends on the base field how fine a given
matrix can be decomposed. Let us see such a situation in the following example.

Example 4. Consider a 4 4 GP(2)-matrix:

12
$12

22
t22

Regarding A as a GP(2)-matrix with the base field Q, we can easily verify that A is
GP-irreducible. If A is with the base field R, on the other hand, we have the following
block-triangularization of A:

. S-1AT
t22

with

1 2

By using permutation matrices

1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0
0100

’Q=
0100

0001 0001

we obtain an explicitly upper block-triangular (block-diagonal) matrix:

A PAQ

tll --t12
t21 t22

tll t12
t21 t22

Thus A is in a block-triangular (block-diagonal) form with two square blocks and
empty tails.

7. Conclusion. We have introduced the notion of generic partitioned matrices
and proved a Hall-Ore type minimax theorem on the rank of a subclass of generic
partitioned matrices, called GP(2)-matrices. This minimax relation provides a decom-
position (or proper block-triangularization) of GP(2)-matrices which is an extension
of the DM-decomposition of generic matrices.
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ON h SPECIAL CLASS OF GENERALIZED DOUBLY STOCHASTIC
MATRICES AND ITS RELATION TO BIZIER POLYGONS*

MIROSLAV FIEDLERf

Abstract. We introduce and study a new set B of m x n nonnegative integral matrices Bran,
m >_ n >_ 1. They have column-rhomboidal form and are closely related to the confluent Vandermonde
matrices Ymn with n-tuple node 1 and to B6zier polygons.

Key words, doubly stochastic matrices, Vandermonde matrix, Hadamard product, combinato-
rial identity, interpolation, Bzier curve

AMS subject classifications. 15A36, 65D10, 05A19

1. Introduction. In the present note we intend to investigate the set B of non-
negative integral matrices Bran, m, n being positive integers, m >_ n; the matrix Bran
is an m x n matrix with entries

(1) (Bran)i\-- k n- k ""

Example 1.1. We have

6 0 0 4 0 0 0
3 3 0 1 3 0 0

B53 1 4 1 B54 0 2 2 0
0 3 3 0 0 3 1
0 0 6 0 0 0 4

It is immediate that for m n, Bmn is the identity matrix of order n; for
m > n, it is centrosymmetric and has a column-rhomboidal form. Here, we say that
an m x n matrix A (aik) is in column-rhomboidal form if its transpose .is in the row-
rhomboidal form in the sense of [4], i.e., if m > n, aj 0 for 1 <_ i < j _< n as well as
for 1 <_ j < i+n-m <_ n, and all entries a,i 1,...,nandam_j,n_j,j 0,...,n-1
are different from zero.

We shall investigate properties of B, show connections with the confluent Van-
dermonde matrix Vmn (1) with entries

(2) (Ymn(1))ik k

and also with the Bdzier polygons.
For simplicity, we shall write Vmn instead of Vmn (1). We also denote by Jt the

flip matrix of order t, i.e., the t t matrix

(3)

0 0 0 1

jt
0 0 1 0

1 0 0 0

Received by the editors November 23, 1993; accepted for publication (in revised form) by R. A.
Horn April 20, 1994.

Academy of Sciences of the Czech Republic, Institute of Computer Science, Pod vodrenskou
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Using this notation, we can express the centrosymmetry of Bmn by

(4) Bmn= JmBmnJn.

As usual, we denote by o the Hadamard product of matrices, the binary operation
of entrywise multiplication of matrices having the same dimensions.

2. Properties of B.
THEOREM 2.1. If Bran E B, if Vmn is the Vandermonde confluent matrix in (2),

and Jm, Jn the flip matrices from (3), then

Proof. The proof follows immediately from (1) and the fact that (JmVmnJn)ik

n--l-k D
The main property of B is the following theorem.
THEOREM 2.2. Let m, n, s be integers, m > s > n > 1. Then,

1
Bran BmsBsn

Also,

(6) B.
(m--n)!
Bm,m-lBm-l,m-2"" Bn+l,n.

Proof. It suffices to prove (5) for s n + 1 and use induction. To prove

Bran ml_nBm,n+lBn+l,n
for m > n > 1, we shall use the formula

(8) (P):P-q+I (P)q q-1
p>q>l_

and the fact that

(9) (Bn+l,n)jj n- j, (Bn+l,n)j+l,j j - 1 for j 0,..., n 1,

and zero otherwise. The (i, k)-entry of the product Bm,n+lBn+l,n in (7) is

(Bm,n+l)ik(n- k)q-(Bm,n+l)i,k+l(k + 1)

_-( i)(m-l-ikn-k )(n-k)+( k+li )(m-1-/n_k_l )(k+l)
( ) ( ) k+li-k(k+l)]i m-l-i m-1 i-n+k+ln_k+

k n-k-1 n-k
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which is easily seen to be (m- n)(Bmn)ik. D
THEOREM 2.3. Every matrix in B is generalized doubly stochastic, i.e., all the

row-sums are mutually equal as well as all the column-sums are mutually equal. In

n n

Proof. Follows from (6) by postmultiplication (resp. premultiplication) by the
vector en (resp. eTm) with all n (resp. m) coordinates equal to one and by an easy
induction since the formulae are true for m n + 1. D

Remark. The row-sums condition is the convolution identity of Vandermonde [3,. ].
The following basic theorem shows that the column-spaces of Bran and Ymn from

(2) coincide.
THEOREM 2.4. Let m, n be integers, m >_ n >_ 1. Then

(10) Bran- VmnDmn(Vnn) -1,

where Dmn is the diagonal matrix of order n

(11) Dmn diag( ( mm_n- k -1 k O,...,n- 1.

Remark. The matrix Vn-n is the Vandermonde confluent matrix with n-fold node

-1, i.e., the matrix ((-l)i+k ()).
Proof. Let us show first that

Bn/l,n-- Yn+l,nDn/l,nYn-n1.

Indeed, by (2)and (9)

(Bn+l,nVnn)ik (n i) k + -k

which can be written by (8) as (n- k) k

(Vn+l,nDn+l,n)ik yields the same result.
By (7), it suffices for induction to show that

VmnDmnVnl Ym,n+l -1 Vn+,nDn+ Vjm--n Din,n+ Yn+1,n+ 1,n

or equivalently, that

(12) Vm,D.. m Kin,n+ Din,n+ V’_ n+ Vn+1,,D,+

Since Yn/l,n is obtained from Yn/l,n+l by removing the last column, the matrix
V-1 Vn+l,n is the identity matrix of order n + 1 with the last column removed.nWl,n+l

The product Dm n+Vn-l,r+ Yn+l,nDn+l,r is thus the diagonal matrix

diag((n-k)(m-k-))m--n--1 k=O,...n,

with the last column removed.
It is then easily checked that both sides of (12) are equal, their (i, k) entry being

ok m--n
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From this theorem, another characteristic property of the matrix Bran for m > n
follows.

THEOREM 2.5. Let m, n be integers, m > n >_ 1. Then Bmn is the unique matrix

of the form Vm,X where X is square nonsingular, which has column-rhomboidal form
and all column-sums equal to m

\],
Proof. The matrix Bran satisfies the mentioned property. Suppose that Cmn

also has the property. Theorem 2.1 of [4] asserts that if two. matrices, both in the
row-rhomboidal form, are left multiples of an m n matrix then they differ by premul-
tiplication by a nonsingular diagonal matrix. Applying the transpose of this theorem,
we get that Cmn is obtained from Bran by postmultiplication by a nonsingular diag-
onal matrix. Comparing the column sums, equality follows.

Another consequence of Theorem 2.4 is a property of Vmn.
THEOREM 2.6. Let m, n be integers, m >_ n >_ 1. Then, if Jm is the flip matrix

from (3), there exists a unique square matrix Zmn such that

(13) JmYmn--YmnZmn

This matrix Zmn i8

(14) Zmn D,nVJ, --1

where Dmn is defined in (11).
Proof. If we substitute from (10)into (4), we obtain

This implies the result. Uniqueness follows from the fact that Vmn has full column
rank.

THEOREM 2.7. Let m, n be integers satisfying rn n >_ 1. The matrix Bran is
the unique m n matrix which has column-rhomboidal form, all column-sums equal
to (’ ) and satisfiesn\/

(15) FmnBmn -0,

where for

(16) fk’--(--1)n-k( n )k k:O,...,n,

Fm is the (m- n) m matrix

(17)
foO fl f, 0 0

Fm,= fo f, 0

0 0 fo f fn

Proof. The matrix Vm from (2) satisfies FmnVmn 0 since fk are the coefficients
in the polynomial (x- 1). Since Vmn has full column rank, every m n matrix Wmn,
which has full column rank and satisfies FmnWmn 0 is of the form V,X where X
is nonsingular.
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By (10), Bran satisfies (15), and also the remaining conditions. By Theorem 2.5,
it is the unique matrix with these properties.

THEOREM 2.8. Let m > n >_ 1. Then the matrix Bmn is the unique m x n matrix
C (cij) which satisfies the following four properties:

(i) cj-O forl <_i < j <_n;
(ii) cj O for l <_ j < i - n m <_ n;
(iii) FranC 0 for Finn defined in (17) and (16);
(iv) the first n row-sums of C are equal to ( m-1 )n

Proof. The matrix B,n clearly satisfies (i) (iv). Let now C- (cj) satisfy (i)
(iv). By (iii), C BmnX for some n x n matrix X (xij) since Bmn has a full column
rank. By(i),xij-0forl_<i<j_<n. By(ii),xj-0forl_<j<i_<n. ThusXis
diagonal. By (iv), it follows easily that X is the identity matrix and C Bran.

We conclude this section by finding the formula for the maximal singular value
of Bmn.

THEOREM 2.9. The maximal singular value al of Bmn E ] is

o’1 mn n n

Proof. Since Bran is generalized doubly stochastic by Theorem 2.3, the vector em
with all coordinates one is the Perron eigenvector of the nonnegative matrix BranBTmn
with eigenvalue (m)(n m-1)n This is the square of the maximal singular value
of Bmn.

3. Application to combinatorial identities. We now present a few combina-
torial identities that follow from the formulae in the previous section and which seem
to be new.

THEOREM 3.1. Let m, n, s, i, k be integers satisfying m >_ s >_ n >_ 1, m- n _>
i-k>_0, n- l >_ k. Then,

sml

)( )
j=0

In particular, for s n + 1,

n- n-

j=O

k n k s n

) =(,-n) __
(5).

Proof. Follows immediately from the formula for the (i, k)-entry of both sides of

THEOREM 3.2. Let m, n, i, k be integers satisfying m >_ n >_ 1, 0 <_ i <_ n-1, 0 <_
k <_n-1. Then,

and also

n--1

j=0

n-1
m-l-i mm-n I

j=0
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Proo]. The first identity follows from the matrix equality (10) by considering the
(i, k)-entry, the second identity in a similar way from the same equality postmultiplied
by Vnn.

THEOREM 3.3. Let m, n be integers satisfying m > n >_ 1. Then for i
0, 1,..., n 1 and k O, 1,..., n 1 the following identities hold:

m--1

j=O
i-}-I n-l-k

Proof. The proof follows from explicitly expressing the (i, k)-entry of (15) using
(17) and (16).

As a final remark of this section let us mention the following. Since the matrix
Bm, can be completed (compare Cor. 2.6 of [4]) by an rn x (m- n) matrix Pmn and

the matrix Fmn by an n x m matrix Qmn in such a way that the matrices F
and (Bm, Pm) are inverse to each other, the determinants formed by any n rows
of Bran and the determinants formed by the complementary m- n columns of
to the previous rows are proportional up to a factor of (-.1) ,where s is the sum of
indices of the chosen rows in Bn. The constant of proportionality can easily be
found from some particular choice of the rows. This observation allows evaluation of
the mentioned determinants in Bran by using the simpler determinants of Finn.

4. Bzier polygons and Bzier curves. Let (Ao, A1,..., An-l) be an ordered
n-tuple of points in a Euclidean (or, affine) point space $8. We shall associate with
it a polygon Pn consisting of the n points Ao,... ,An-1 and of the n- 1 segments
AoA1, AIA2,... ,An-2An and denote it in the same way. The dimension s of s is
irrelevant and all points considered in the sequel are in the linear hull of the given
points.

We call Bdzier simple refinement of P the polygon

where

n-k
(18) A(o1)-- Ao, A(n) An-, A1)-- k-Ak--}-A, k- 1,...,n- 1.

n n

We write Pn+ R(Pn) and allow continuation to the second refinement Pn+2
R(Pn+I), etc.

This recurrent process has been studied ([1], [5]) and it is well known that the
continuation to infinity leads to a parametric curve P, called Bdzier curve [2, p. 120].

We intend to show the connection of the matrices Bran with the mentioned pro-
cess. In particular, we find explicit (not just recurrent) formulae for the rth refined
polygon and introduce an (apparently new) family of B6zier curves.

THEOREM 4.1. Let n >_ 2, let Pn (A0, A,... ,An-) be a polygon in s. Then
the rth Bdzier refinement Pn+r is obtained as follows:

The kth point A(r) is the linear combination of the points Ao,... ,An-1 whose

coefficients are the entries of the (k + 1)st row of Br+n,n divided by ( n +r-1 )n-i
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Remark. Observe that the sum of the parametric barycentric coordinates of A(kr)
is one by Theorem 2.3.

Proof. By (18) and (9), the result is correct for r 1. The proof is then completed
by induction using (6).

In the next theorem we present a geometric characterization of the rth B6zier
refinement Pn+r of a polygon Pn which is, in a sense, a counterpart of the algebraic
Theorem 2.8. To formulate the result, let us say that an ordered set of N / 1 points
(Bo, B1,..., BN) in an affine space is in the (a]fine) (N- 1)-parabolic position if the
vector (the sum of the coefficients is zero)

is the zero vector.
THEOREM 4.2. Let Pn (Ao, A,...,A-) be a polygon in $n-1 with linearly

independent points, let r be a positive integer. Then the rth Bdzier refinement Pn+r
,’", "’n+r-1) Of Pn is the unique polygon in n-1 with n r points having

the following properties:

(i) For j O,...,n- 2, the point Ar) belongs to the linear hull of the points
A0,...,Aj.

(ii) For j 0, n- 2, the point (r) belongs to the linear hull of the’n-t-r-l-j
points An-I,..., An-l-j

(iii) Any n + 1 consecutive points in Pn+r are in the (alCfine) (n- 1)-parabolic
position.

Proof. It is easily seen that the rth B6zier refinement of Pn has all three properties.
In particular, the property (iii) follows from (15), (16), and (17).

If, conversely, the properties (i), (ii), and (iii) are satisfied for some polygon

Pn+r in Sn-1 then the ( n n-l+r-1 )-multiple of the (n + r)x n matrix formed by

the parametric barycentric coordinates of the points A(r) with respect to the points
Ao,... ,An-1 satisfies the properties (i)-(iv) in Theorem 2.8. By Theorem 4.1, Pn+
is the rth B6zier refinement Pn.

Another geometric property of the B6zier refinements is the following theorem.
THEOREM 4.3. The centroid of the points o.f every Bdzier refinement of a polygon

P coincides with the centroid of the polygon P.
Proof. The proof follows from the doubly stochasticity of Bran and the algebraic

equivalence in Theorem 4.1.
The explicit formula (1) allows us to formulate a continuous version. If we set

i (m- 1)t, 0 _< t _< 1, we obtain instead of the m x n matrix Bran the parametric

We call this curve the (m- n + 1)st Bdzier curve. For m n, the first B6zier
curve has the equation

n--1

(20) Xl(t)---( (n-1)t ) ((n-1)(1-t))Ak t E [0,1]k n-l-k
k--0

N

=0

curve
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THEOREM 4.4. Let Pn (A0,... ,An-l) be a polygon in 8, Pn+r its rth Bdzier
refinement. Then the (r + 1)st Bdzier curve of Pn contains all n + r points of Pn+r;

k k=O, n+r-1.their parameters are tk n+r-l’
Proof. The proof is immediate. [:]

Remark. In the case that the points Ak (xk,yk) are in the plane (x,y) and
satisfy xk _k the first Bzier curve has parametric equationn--I

(t) (t, t e [o,

where y(t) is the interpolation polynomial with nodes (Xk, Yk), k 0,..., n- 1.
The well-known parametric equation of the (classical) B6zier curve follows now

easily for r -- oc.
THEOREM 4.5. Let Pn (Ao,A1,... ,An-) be a polygon in . Then the Bdzier

curve corresponding to the polygon Pn has the parametric equation

n--1

(21) X(t) E ( ’1 )(1- t)n-l-ktknk, t [0, 1].
k’-O

Proof. Using the two formulae

lim (Nu) (N)=uJ for uOj / j
and nonnegative integer j

and

lim (N) (N } ( N ) (j+k)forN--,oo j k / j+k j
nonnegative integers j, k,

we obtain (21) by an easy limiting procedure from (19).
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BOUNDING THE SUBSPACES FROM RANK REVEALING
TWO-SIDED ORTHOGONAL DECOMPOSITIONS*

RICARDO. D. FIERRO? AND JAMES R. BUNCH$

Abstract. The singular value decomposition (SVD) is a widely used computational tool in
various applications. However, in some applications the SVD is viewed as computationally demanding
or difficult to update. The rank revealing QR (RRQR) decomposition and the recently proposed URV
and ULV decompositions are promising alternatives for determining the numerical rank k of an m x n
matrix and approximating its fundamental numerical subspaces whenever k min(m, n). In this
paper we prove a posteriori bounds for assessing the quality of the subspaces obtained by two-sided
orthogonal decompositions. In particular, we show that the quality of the subspaces obtained by the
URV or ULV algorithm depends on the quality of the condition estimator and not on a gap condition.
From our analysis we conclude that these decompositions may be more accurate alternatives to the
SVD than the RRQR decomposition. Finally, we implement the algorithms in an adaptive manner,
which is particularly useful for applications where the "noise" subspace must be computed, such as
in signal processing or total least squares.

Key words, rank revealing, orthogonal decomposition, URV, subspaces, subspace angle, nu-
merical rank

AMS subject classifications. 65F25, 65F05, 65F30

1. Introduction. The singular value decomposition (SVD) is a widely used com-
putational tool and is the most reliable tool for detecting near rank-deficiency in a
matrix [14, p. 246]. It has important applications, for instance, in matrix approxima-
tion, subset selection, spectral estimation, direction of arrival estimation, optimiza-
tion, rank-deficient least squares (LS), total least squares (TLS), etc. [1], [3], [12],
[201, [211, [22].

The SVD of A (see [14, 2.3]) is denoted

A UEVT(1)

where, for m _> n,

and

u= vo v: y0]

Therefore

k n-k
F,k 0 ]k0 o n- k
0 0 m-n.

A UkkVkT / UoFoVoT.
The nonnegative diagonal elements of E, denoted ai, are the singular values of A and
are arranged in decreasing order. The numerical rank of A is k. Also, -_- ak+/ae,
and the "gap" in the singular values of A is large when 1 -7 is close to 1.
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In particular, the SVD can be used to characterize the solutions or solve the
matrix approximation problems in the LS and TLS methods. These methods are
used to solve the overdetermined system of linear equations

(3) AX B,

where A E ,n, B ,mxd, and m >_ n. Due to various sources of errors, the
system usually lacks a solution and the relationship between the columns of A and B
must be estimated. To estimate the relationship, many direct methods solve a nearby
compatible system CX D, and this is a plausible strategy when
is small. For stability reasons, when A is ill conditioned with numerical rank k, it
makes sense to require that C be of rank k. In some applications, due to the potential
instability, the LS problem

(4) min

is replaced by the "stabilized" LS problem

(5) min I]dkX Bll2,

where Ak is the nearest rank-k matrix approximation to A in the 2-norm. This is
essentially the same as solving the compatible system AkX Bk where Bk is the
orthogonal projection of B on the range (column space) of Ak. The TLS approach
to (3) requires the minimum norm solution of

(6) Ax
where [/}] is the nearest rank-k matrix approximation to [A B] in the 2-norm. The
SVD is a convenient tool in solving the matrix approximation problem associated
with these two methods, as well as providing elegant formulas for the solutions. A
comprehensive treatment of the full rank TLS problem is given in [27]. The LS
and TLS methods can be viewed as orthogonal projection methods, and a sensitivity
analysis for the LS and TLS solutions is presented in [11]. The subspace angle is a

key factor in the analysis.
For applications where a sequence of LS or TLS problems must be solved, or a

"noise" subspace must be adaptively estimated, the SVD is viewed as computationally
demanding or difficult to update. Therefore, alternative decompositions have been
considered that yield the numerical rank, subspace information, or matrix approxi-
mations that are nearly as reliable as the powerful but computationally demanding
SVD.

The rank revealing QR (RRQR) decomposition of Chan [4] is a potentially useful
alternative to the SVD. In this algorithm the rectangular matrix A is preprocessed
by an initial QR factorization, and then condition estimation, careful column pivot-
ing, and plane rotations on the left side are employed to produce a rank revealing
decomposition. Some applications of RRQR are discussed in [2], [6], and [17].

G. W. Stewart [24], [25] introduced rank-revealing "two-sided" orthogonal (or
complete) decompositions, so-called URV and ULV decompositions, as alternatives.
While complete orthogonal decompositions have been around for some time (e.g., see

[16]), Stewart’s technique is quite promising because it is guaranteed to reveal the
numerical rank. In this algorithm the rectangular matrix A is preprocessed by a QR
factorization, and then condition estimation and plane rotations on both sides are
employed to produce a rank revealing decomposition.
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The RRQR, URV, and ULV algorithms are designed for the case k min(m, n),
where k is the numerical rank of the m n matrix. For the low-rank case k <<
min(m, n), more efficient algorithms are available: Chan and Hansen [7] present and
analyze the L-RRQR algorithm, and Fierro and Hansen [10] present and analyze low-
rank URV and ULV algorithms. We also mention that a perturbation analysis for
two-sided orthogonM (or complete) decompositions is given in [9].

For a URV decomposition of A, there exist orthogonal matrices UR E mm and
VR "’ such that

[u Uo u+/-] R [V Vo]r

where

k n-k

0 G n-k
0 0 m-n

is upper triangular and k <_ n. Based on this decomposition,

(8) VT URt:FVo URoGVo.A URt:Rt: Rt: + +

Also, ARt: =-- URt:Rt:VtZt: is a rank-k matrix approximation to A satisfying

I1" II- I1 I1 unless otherwise indicated. For a ULV decomposition of A, there exist
orthogonal matrices UL mm and VL nxn such that

(9)
[u Uo u+/-] L [V Vo]r

where

k n-k

H E n-k
0 0 m-n

is lower triangular. Based on this decomposition,

(0) A ULt: Lt: VLTk + ULoHVLTk + ULoEVLTo
denotes a rank-k matrix approximation to A satisfying

In [24] it is shown how so-called "left" and "right" iterations may be used to itera-
tively refine the decompositions (in the sense that the norm of the off-diagonal block
decreases). Based on this refinement strategy, error bounds for estimating the singular
values of the matrix A are also provided in [18] and [24].
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Ideally, it would be useful for the user to have some kind of a diagnostic measure
to assess the quality of subspaces obtained by a two-sided orthogonal decomposition
as compared to the reliable SVD. This has important applications in areas where the
SVD might be used, for instance, in matrix approximation, subset selection, signal
processing, LS, and TLS problems.

The objectives of this paper are to:

provide error bounds for the subspaces determined by any two-sided orthog-
onal decomposition;
show the importance of a good condition estimator in the high-rank revealing
URV and ULV algorithms; and
show how these decompositions may be more accurate alternatives to the
SVD than RRQR.

The paper is organized as follows.. In 2 we derive a posteriori error bounds for
decompositions of the form (7) and (9). These bounds, which are independent of
the numerical rank, suggest that if IIHII IIFII, a ULV decomposition may yield a
more accurate estimate of the numerical nullspace than a URV decomposition, while
the URV decomposition may yield a better estimate of the numerical range. In 3
our theoretical results show that the quality of the subspaces obtained by Stewart’s
high-rank revealing URV and ULV algorithms depend on the condition estimator, not
on the gap in the singular values. This is illustrated in our numerical simulations.
We implement the rank revealing two-sided orthogonal decompositions in an adap-
tive manner. In our simulations the refinement procedure is based on the repeated
estimation of the singular vectors using the Cline-Conn-Van Loan (CCVL) condition
estimator [8]. Our experimental evidence shows that this process has the tendency to
reduce the nearest off-diagonal elements when estimating a small singular value in a
cluster of small singular values. This improves the subsequent estimation step by the
CCVL condition estimator. In 4 we compare the subspaces obtained by the RRQR
decomposition and the URV and ULV decomposition. The analysis implies that rank
revealing two-sided orthogonal decompositions may be more accurate alternatives to
the SVD than the RRQR decomposition. In 5 we summarize our conclusions.

Finally, C(1 :i, 1 :i) denotes the leading submatrix of C of order i, and super-
scripts and T denote the pseudoinverse and transpose, respectively.

2. Subspace bounds. It is well known [23], [28] that a singular vector corre-
sponding to a singular value in a cluster is extremely sensitive to small perturbations,
but that the span of the singular vectors corresponding to the cluster is well deter-
mined, i.e., relatively insensitive to small perturbations. Thus we provide bounds
for the error in approximating the span. The following definition defines subspaces
associated with the SVD.

DEFINITION [23]. Let A E .mxn and let X C n and Y C m be subspaces of
dimension 1. Then X and Y form a pair of singular subspaces for A if

(i) AX C Y
(ii) ATy C X.

7(Vk) and 7(Uk) are subspace pairs of dimension k, and 7(V0) and TO(U0) are sub-
space pairs of dimension n- k, where 7(C) denote the range of matrix C. n(V0) is
termed the numerical nullspace of A, sometimes referred to as the "noise" subspace.
T4.(Uk) is termed the numerical range of A.
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For the (nonunique) URV decomposition in (7), there exist matrices Q and P
(see [23]) such that T(URk + URoQ) and n(VRk + VRoP) form a pair of singular
subspaces for A with

211Fll 
ami. (Rk)

where II IIF denotes the Frobenius norm and amin(C) denotes the smallest singular
value of the matrix C. If F 0 then T(URk) and 7(Vk) form a pair of singular
subspaces for A as well as T(URo) and T(VRo). If [[F[[ is small then (Ui) and ()
(i = Rk, RO) nearly form a pair of singular subspaces for A (similar statemems can
be made for the ULV).

However, we wish to determine the "distance" between the subspaces (V0) and
n(VRo) (and n(V0) and (VL0)), well as n(Uk) and n(URk) (and n(Uk) and
(ULk)). We will need the following definition for the distance between two subspaces.

DEFINITION [14, p. 76]. Let W [W W2] and Z [Z1 Z2] be orthogonal
matrices, where W, Z Npx(p-q) and W2, Z2 Npxq. If 8 (W) and 82
n(Z) then dist(S,S2)= ilwZ2ll.

2.1. Subspac bounds for the URV and SVD. If sin0 dist(S,S2) then
0 is the subspace angle between S and 2. Let sin0uv dist((Vo), n(Vno)) and
let sin Cuv dist(n(U), (Uaa)). Based on the definition, it easily follows that

iT T
sin 0uRv [[ VIVa0 [I vv0 and sin CuRv II u; UR uk Uk II,

where U- [U0 U+/-] and U =- [URo UR+/-]. However, for our analysis in 2 a more
useful expression for sin CURV is needed and requires some preliminary work. We will
use the following result throughout the paper.

LEMMA 2.1. Given the usual SVD and URV factorizations of A, then

sin CwRV--IIUUoll IIu  Uoll.

Proof. First we will find an expression for U-TUR and show uTunk

TURk uT
AvRR-

0 0 I
0

=[EoVoTVnkR- ]0

+/-Tand thus IIU} UR I] IIEoVVn}R-II., Now, from the URV factorization of A,
Vk

-T T AT -T TR V/k Thus, UkUo R} VR}ATUo R-TvTkVoEo and there-
+/-Tfore IIUaUoll--II(UkUo)TII--IIUk URklI. Similarly, one can show IIukTUkll--

IIGVoVk;l ll IIU’Uoll,
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A corresponding lemma can be proven.for the ULV decomposition. Now we are ready
for the main result of this section.

THEOREM 2.2 (URV error bounds). Let A E Rmn have the usual SVD and URV
decomposition, and define 1 ak+l/ak. Then the distance between the numerical
nullspace T(Vo) and the URV approximate nullspace T(VRo), and the distance between
the numerical range T(Uk) and its URV estimate T(URk) are bounded by

(a) I11111FII < dist(n(V0) n(Vlo)) <+ llcll
O’min(k IIFII
as. (Rk)--akA-1

Taking norms,

and solving for sin 0urtv yields

sin0uRv < IIRIII IIFII ffmin(Rk)IIFII
1 IIR;II2 2 = (Rk)- 2

ffk+l ffmin

To prove (b), we use an argument similar to (a). Using uTUn0 El(VVno)GT, it
remains to find an expression for VVao"

wWo uTwo (UTUF+ UTU.o).
Upon substitution, UUno 2(UUnF + UUnoG)G. It follows

sin uav S 2(lIFII I111 + sin

Solving for sin uav yields

sin Cuav N
1- liCil22

To prove the lower bound in (a), it is straightforward to show

F= T T

Taking norms in an obvious manner,

Ilnll sinOv + IIuUoll

(1111 + IIGII) sinOuv,

(b) dist(TE(Uk), 7E(URk)) <

Proof. To prove the upper bound in (a),

wWo n(v- Wffo)o
() n(vVoro ,oWo).
Now we need to find an expression for UUo. First, AVn UnRk implies U
R-TVAT. Second, UUo R-TvVoEo. Substituting into (11),

wWo n(n WoWo)VnVoEo- FVoVo.R Rk VRkVoE R-
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hence the lower bound follows. This completes the proof of the theorem.
It can also be shown

dist(7(V0), (Vno)) _< and dist(7(Uk),T(URk)) <_ IIFII ak+l

Note that it is possible to find a posteriori upper bounds by using Theorem 2.2
together with the facts amin(Rk) <_ ak, r _< 1, and ak+l <_ IIGII. Given the above,
the following corollary is immediate.

COROLLARY 2.3 (A posteriori bounds for URV). Under the assumptions of The-
orem 2.2, the following a posteriori bounds hold:

2

These bounds show explicitly that when ]]F]] is small then the subspaces nearly
coincide. In 3 we discuss a way to achieve a smM1 I[F so that high-quality subspaces
are obtained.

2.2. Subspace bounds for the ULV and SVD. In this section we are con-
cerned with the ULV decomposition. Let A have the usual SVD and ULV in 1.
Let sin 0ULV dist(n(V0), n(VL0)) and sin CULV dist(n(Uk), n(ULk)). After the
ULV factorization is complete, we wish to determine upper bounds on the errors in
the approximate subspaces.

THEOREM 2.4 (ULV error bounds). Let A Rmxn have the usual SVD and ULV
decomposition, and define ak+/ak. Then the distance between the numerical
nullspace n(V0) and the ULV approximate nullspace n(VLo), and the distance between
the numerical range (Uk) and its ULV estimate (ULk) are bounded by

(a) dist(n(V0) n(VLo))< :.(L

g < dist(n(U), n(UL))

Proof. To prove the upper bound in (a), we have

(12) V[kVo L;U[kAVo i;1U[kUoEo.
Now to find an expression for UkUo A [ULk ULo]L[VLk VLO]T implies Uk
L;T(VkAT- HTUo). Hence,

v[vo L;( HV[o)Vo
(13) L;T(VAT HTU[o)Uo
(4) L;(yro H[oVo).
Substituting (14) into (12), it follows that- grV[oVo)o),VYo L;l(n (VLVoo
nd taking norms,
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Solving for VkV0 sin 0ULV, we get

a2min(L)- +"
To prove (b), substituting VLTkVo L-I(U[kUo)Eo into

U[kUo L- (V[kVoEo HTU[oUo),

it follows that

U[kUo L-T L- U[kUo E HTU[oUo
L-TL-I (UfkUo)E L-THTU[oUo.

Taking norms in the obvious way yields

sin CuLV _< IIL-lll 2 2
0"k+ sin CULV + IIL-I] IIHII,

and solving for sin (/)ULV yields

sin CULV
__

IIL- IIHII min(Lk)]lHI]
1 2 IILi-ll2(7k+

2
(Tmin (Lk) --0"+

The lower bound for sin (ULV follows analogously to proof for the lower bound for
sin OURV. This completes the proof of the theorem.

It can also be shown that

dist(n(V0), n(Vio)) <

dist(n(Ua), n(Uik)) <

and2 (Lk) 0"+O’min
IlHllamin(L)

O’kO’min(Lk) a+lllEII
As before, it is possible to generate a posteriori upper bounds for the subspace

angles in terms of computed ULV factors. The necessary facts are amin(Lk)
r] < 1, and ak+ <_ IIEII, as well as Theorem 2.4.

COROLLARY 2.5 (A posteriori bounds for ULV). Under the assumptions of The-
orem 2.4, the following a posteriori bounds hold:

(a) dist(T(V0) T(VLo)) < (,2.mln(ik)-l]EII 2,

(b) llill+llEII
Ilull <_ dist(n(U),n(Ui)) <_ m,,(/k )_llEll2.

This shows that a large IIHll translates to a large sin CULV. In the next section
we discuss a way to produce a small IIHII for the high-rank case k min(rn, n).
Comparing the a posteriori bounds for the URV and ULV, we may conclude that the
ULV can be expected to yield a higher quality estimate of the numerical nullspace
than the URV. Tables 1-4 summarize the results of some typical experiments that
verify this conclusion. We remark that in a few cases the bounds "appear" violated,
but we emphasize that it is due to round-off errors; hence in those cases they are

numerically satisfied.
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TABLE 1
Results of typical experiments verifying the a posteriori error bounds for the URV and ULV

subspace angles . The matrices {Ai} have various singular value spectrums (cf. 3). The numerical
rank of the matrices was k 7 for tol 0.003 and max_iter 1.

O’8/O’7

A1 1016
A2 104
A3 103
A4 102
A5 101
A6 101

I[F[I sin 0URV IIFita’min(R)’
IIRIl+llall (Rkl-Ilallrain

6.1329e-17 1.3910e-15 6.1329e-15
3.2106e-ll 3.2008e-09 3.2106e-09
3.2105e-09 3.2008e-07 3.2106e-07
3.2100e-07 3.2009e-05 3.2107eo05
3.1848e-05 3.2104e-03 3.2202e-03
1.3264e-05 1.1913e-03 1.3304e-03

sin OULV
arain

1.4571e-15 2.5784e-43
1.0951e-15 7.0547e-17
4.0770e-13 7.0546e-13
4.0752e-09 7.0503e-09
3.7756e-05 6.6495e-05

!.8277e-06 2.6570.e,-.06
TABLE 2

Results of typical experiments verifying the a posteriori error bounds for the URV and ULV
subspace angles . The matrices {Ai} have various singular value spectrums (cf. 3). The numerical
rank of the matrices was k 7 for tol 0.003 and max_iter 1.

Ai 0"8/O’7

A1 1016
A2 104
A3 103
A4 102
A5 101
A6 101

singbURV IIFII IIGII
Cr2min (Rk)-- [IGl[2

2.9483e-15 3.5002e-29
3.1667e-13 3.2106e-13
3.1980e-10 3.2106e-10
3.1981e-07 3.2107e-07
3.2077e-04 3.2202e-04
5.7760e-05 6.6519e-05

sin CULV H amin (Lk
amin (Lk)--[IE[[2

4.5179e-31 2.8743e-15 4.5179e-29
7.0547e-15 4.8397e-13 7.0547e-13
7.0546e-12 4.8157e-10 7.0546e-10
7.0489e-09 4.8119e-07 7.0503e-07
6.5765e-06 4.4795e-04 6.6495e-04
5.2981e-07 4.0374e-05 5.3141e-05

3. Algorithm and numerical simulations. As mentioned earlier, any URV
or ULV decomposition may be refined iteratively using orthogonal transformations,
cf. [24]. The purpose of refinement procedures is to concentrate less "energy" of R
(or L) in the 1,2 (or 2,1) position so as to decouple the matrix as much as possible.
Recall from 2 that when the triangular matrix is decoupled (i.e., the off-diagonal
block is a zero matrix) then we have obtained singular subspaces for the matrix, and
when the off-diagonal block is small then we have obtained good singular subspace
approximations. In [24] it is shown how so-called "left" and "right" ("shiftless" QR)
iterations may be used to iteratively reduce the norm of the off-diagonal block, and
hence refine the subspaces. Based on this particular refinement strategy, error bounds
for estimating the singular values of the matrix A are provided [18], [24]. In this section
we show that a small off-diagonal block is achieved in the high-rank revealing URV
and ULV algorithms by using a good condition estimator.

3.1. Algorithm. Now we turn our attention to a brief but important discussion
of the algorithms by Stewart. At the ith step of the URV algorithm, we work with
the upper triangular matrix

n-i

0 Gi n-i

correspond-and a unit estimate Vesti of the exact i 1 right singular vector Vmin
ing to amin(Ri). Using plane rotations, find an i i orthogonal matrix Qi such that

R(Qi)Tvs (0, 0 1)T and iQ is upper Hessenberg. Then determine an i i or-

thogonal matrix P such that (P)T(RQ) is upper triangular. Partition the updated
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TABLE 3
Results of typical experiments verifying the a posteriori error bounds for the URV and ULV

subspace angles O. The matrices (Ai} have various singular value spectrums (cf. 3). The numerical
rank of the matrices was k 7 for tol 0.003, max_iter 2, e le 09.

Ai

A1 10TM

A2 10a

A3 103
A4 102

A5 101
A6 101

6.1329e-17 1.3910e-15 6.1329e-15
2.8124e-16 2.8124e-14 2.8516e-14
5.3222e-14 5.0362e-12 5.3222e-12
2.7995e-12 2.7914e-10 2.8001e-1
1.0899e-10 5.4685e-09 1.1020e-08
3.6423eo09 3.0300e-07 3.6532e-07

sin 0ULv a2mi" (Lk --II E

1.4571e-15 2.5784e-43
1.0951e-15 7.0547e-17
4.0770e-13 7.0546e-13
8.1686e-13 8.2493e-12
7.3859e-08 2.9776e-07
6.1356e-10 6.8873e-10

TABLE 4
Results of typical experiments verifying the a posteriori error bounds for the URV and ULV

subspace angles dp. The matrices (Ai} have various singular value spectrums (cf. 3). The numerical
rank of the matrices was k 7 for tol 0.003, max_iter 2, and le-09,

A1 1016
A2 104
A3 103
A4 102

A5 101
A6 101

sin CuRv amin(R)" IIGII

2.9483e-15 3.5002e-29
3.9864e-15 2.8124e-18
1.6643e-15 5.3222e-15
2.7838e-13 2.8001e-12
2.7313e-10 1.1020e-09
2.8756e-09 1.8266e-08

sin ULV IIHIlrmin(Lk)
a2mi (Lk)--IIEll

4.5179e-31 2.8743e-15 4.5179e-29
7.0547e-15 4.8397e-13 7.0547e-13
7.0546e-12 4.8157e-10 7.0546e-10
8.2477e-12 8.1642e-10 8.2493e-10
2.9449e-08 1.4772e-06 2.9776e-06
1.3733e-10 1.2276e-08 1.3775e-08

triangular matrix by

i-1 1 n-i

0 0 Gi n i.

Analogously, at the ith step of the ULV algorithn we work with the lower triangular
matrix

i n-i

Hi Ei n

correspondingand a unit estimate Uesti of the exact 1 left singular vector Umin
to Crmin(Li). Using plane rotations, find an orthogonal matrix Pi such that
p (0 O, 1)T and PL is lower Hessenberg. Then use plane rotations toUes
determine an i i orthogonal matrix Qi such that (PiLi)(Qi)T is lower triangular.
Partition the updated triangular matrix by

i-1 1 n-i

Hi(Qi)T Ei h e 0 1

H e Ei n- i.

The following result shows how the accuracy of the estimate Vesti is related to the
norm of the subcolumn fi, the approximation of O’min2(Ri) by r,i2, and IIFII, as well
as how the accuracy of the estimate is related to the size of the subrow hT thenest
approximation of (:r2min(Li) by I.2., and IIHII.
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THEOREM 3.1.. Using the notation above, let Vesti with unit 2-norm denote an
estimate of the right singular vector of Ri corresponding to amin (Ri). If OvavVmn,
denotes the angle between Vesti and Vmin then

[[f/l[ < sin V/- 2 (Ri)O’min Owav0uav and < sin

Analogously, using the notation above, let Uesti with unit 2-norm denote an estimate

of the left singular vector of L corresponding to amin (Li). If CULV denotes thetmin,
angle between Uesti and Umin/, then

O’min < sin JLV"[[hll < sin and v/l2 2 (L/)
ilL/l[ ULV ilnil[

Moreover,

IIFII < v/n_ k sin max and IIHII < k sin ,max

IILII ULV,

where "uav/lmax max{0av ak+l ,/,max ,4k+1 }.’URV} and =- max{LV, WULVWULV
Proof. We begin with

iQ ) (Qi) Vestll
2

[[Rivtst[I 2--- lipiT R T

2

Let Ri have the SVD

T
(Ri) (Vmin)Ri URi Ri VRT A- Umin(Tmin

where ER is an i- 1 x i- 1 diagonal matrix. Then it follows

]IUR,vTVest II2/ + (Train(Ri)2
2<_ IIll2 (ain Ov)= / O’min(-Ri ).

Vest

Hence,

2 <llRill2(sin )2 2 (ni)IIfll + . 0URV -t- tTmin

which implies

ilkll 2 2
rii-- O’min (/’i) <_ (sin ORv)2

Since each term on the left is nonnegative, then

(sin 0jRv) 2
2 man(R/)and r/i <._..(sin0ev)2

and the desired result follows immediately. Now we bound IIFII/IIRII. We use the fact
that the Frobenius norm I1" IIF is orthogonally invariant.

IIFII 2 < IIFII 2F
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n

i--k-b
n

--< ][RI]2 E (sin i0URV)2
i--k+l

< ]lR]12(n k) (sin t}max 2
t’URV

hence [IF[[/[[R[[ < v/n k sin"max This proves the URV results Since the ULVURV"
results can be shown analogously, the theorem is proved.

This means good estimates of the right (left) singular vectors of R (L) for
i n,..., k + 1 lead to a small ][f[[ ([[g[[). By Corollaries 2.3 and 2.5 this means
the quMity of the subspaces depends on the quality of the estimated singular vectors.
Theorem 3.1 generalizes [26, Theorem 1], where it is proven that if all the estimates

(orVes Uest) are indeed singular vectors, then F 0 (or H 0) and the relevant
subspaces coincide.

We consider a refinement strategy that monitors the columns (rows) of the off-
diagonal block of the triangular matrix as it is generated one column (row) at a time.
We proceed to the next step (a deflation step) provided the newly generated column
(row) of the off-diagonal block is sufficiemly small. Our refinement step is based on
the repeated estimation of the singular vector using the CCVL condition estimator
[8]. The following algorithm slightly modifies Stewart’s algorithm [24], [25] by giving
it an adaptive flavor.

AN ADAPTIVE VERSION OF THE CRY DECOMPOSITION

Input: An m x n data matrix A, parameter tol for numerical rank determination,
integer max_iter to control the maximum number of singular vector estimates per
step, and e to bound ][F[[.

Step 1. Compute a QR factorization A Q( R0 ), where Q is orthogonal and R E Nn n

is upper triangular.

Step 2. Initialize i -n, V -- I, U +-Q.

Step 3. Compute a unit estimate Vestn of the right singular vector corresponding to
arnin(R) using condition estimator CCVL.

Step 4. While (IIR(I’i,I’i) Vest < tol and > 1) do

Set t-- 1.
While t < max_iter

(4a) Compute a sequence of plane rotations Q1,..., Qi-1 so that
QTi--1 "QTvilest (0, 0, 0, 1)T. Update V and R

VV
0 In-

andR,--R
0 In_

where Q Q... Q_.
(4b) Determine a sequence of plane rotations P,..., P_ so that

PT_I pTR(1 i, 1: i) is upper triangular. Update U and R

U U
0 I,_i

and R - 0 I_i
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where P _= PI"’" P-I.
(4c) If t max_iter or IIR(1 i- 1, i)l <

Deflate: set i +- 1 and t max_iter + 1
else

t=t+l.

(4d) Compute a unit estimate of the right singular vector correspondingVest
to amin(R(l:i, 1:i)) using condition estimator CCVL.

End while

End while.

END.

It is important to remember that when max_iter -1 then this algorithm is the
URV algorithm with condition estimator CCVL. When max_iter > 1, our experiments
show this refinement process has the tendency to reduce the nearest off-diagonal el-
ements when working in a cluster of small singular values, which improves the sub-
sequent estimation step by the CCVL condition estimator. See [15] for an excellent
survey on condition estimators.

For the ULV algorithm we implemented, the following changes were made in the
URV algorithm described above.

Given an initial QR factorization of A, initialize U +-- QZ, V +- Z, and
L -- ZRZ where Z is the anti-identity matrix (zeros everywhere except for ones in
the j, n- j / 1 position).

Compute an estimate Umini of the left singular vector corresponding to the
smallest singular value of L(1 i, 1 i). Transform Umin to (0, ,0, 1), thereby
transforming L(1 i, 1 i) to lower Hessenberg using i- 1 plane rotations on the left.
Accumulate the left plane rotations. Then restore lower triangularity to L using i- 1
plane rotations on the right. Accumulate the right plane rotations.

We monitored IlL(i, 1: i- 1)11 each step.
The numerical results herein indeed verify that the quality of the subspaces is

independent of the gap in the singular value spectrum of A, but instead depend on
the quality of the estimated singular vector as proved in Theorem 3.1 (cf. Tables 4
and 5).

However, the gap may have an indirect effect in a practical implementation
it can affect the ability of the condition estimator to deliver good singular vector
estimates. A poor gap can hamper the rate of convergence when improving the
estimated vector using inverse iteration or using repeated condition estimation as
described in the algorithm, and a few extra singular vector estimates may be needed
before deflation. This is illustrated by the following numerical simulations.

3.2. Numerical simulations. The matrices {A{}6=1 of dimensions m 25,
n 10 with numerical rank k 7 are created by generating random matrices and
replacing the singular values by the following values as in [5, 7]. The first seven
singular, values are fixed at

r1 1, a2 0.5, (73 0.2, a4 0.1, a5 0.05, r6 0.02, a7 0.01,
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with the remaining singular values varying as follows:

a A1
88 1.0.10-I8

09 1.0.10-18

0010 1.0.10-18

A2
1.0.10-6

1.0.10-7

1.0.10-8

A3 A4
1.0.10-5 1.0.10-4

1.0.10-6 1.0.10-5

1.0.10-7 1.0.10-6

A5
1.0.10-3

1.0.10-4

1.0.10-5

A6
5.0- 10.4

We implemented the adaptive algorithms (as described earlier) in MATLAB [19]
with machine precision 2.2 x 10-16. We

compared the quality of the approximate subspaces and
verified the a posteriori bounds.

The a posteriori bounds in Corollaries 2.3 and 2.5 and Theorem 3.1 prove that the
two-sided orthogonal decompositions do not depend on the gap and that the ULV
decomposition yields a more accurate estimate of the numerical nullspace, while the
URV decomposition yields a more accurate estimate of the numerical range. This is
verified in the numerical simulations (see Tables 1-7) with max_iter 1 and 2, where
the experiments also illustrate the quality of the a posteriori bounds.

The bounds are not overly pessimistic and in most cases provide an extremely
accurate indication of the quality of the subspace. Note that when max_iter 2
then CCVL provides improved estimates of the singular vectors resulting in higher
quality subspaces, which confirms that this strategy is a good refinement strategy.
In addition, Table 5 confirms the theoretical implications of [26, Theorem 1] and
Theorem 3.1, which proves that exact estimates of the singular vectors yield singular
subspaces (Dmax 0 and Amax 0)\’URV WULV

TABLE 5
Results of typical experiments for the error bounds for the RRQR, URV, and ULV subspace

angles 0 and . The matrices {Ai} have various singular value spectrums (see 3). The numerical
rank of the matrices was k 7 for tol 0.003, max_iter 1. The exact singular vectors were
supplied in this experiment. No subspace refinement for any factorization.

Ai sin 0RRQR sin 0URV sin 0ULV
A1 5.6861e-15 2.7846e-15 3.6910e-15
A2 5.2541e-10 3.7177e-15 3.3077e-15
A3 5.2541e-08 2.3045e-15 3.2493e-15
Aa 5.2541e-06 4.1955e-15 2.3565e-15
A5 5.2598e-04 4.5027e-15 4.5145e-15
A6 2.4305e-04 1.6924e-15 1.3442e-15

sin CRRQ,R sin (URV sin (ULV
2.7010e-14 1.6871e-15 2.9126e-15
1.8372e-04 2.4332e-15 5.0195e-15
1.8372e-03 1.5029e-15 3.1826e-15
1.8369e-02 1.5318e-15 6.4979e-15
1.8070e-01 1.8536e-15 5.8246e-15
9.4604e-02 8.4914e-16 5.1436e-15

4. Rank revealing QR factorizations. An RRQR factorization of A (with
numerical rank k) is any factorization

(15) AH QR

(16)
k n-k

=[QIQ2] [ Rll R12 ] k
0 R22 n- k,

where R is upper triangular, IIR2211 is order 00k+1, Rll is well conditioned, and H is a
permutation matrix. In this factorization the approximate nullspace is not exhibited
explicitly since the 1,2 position of R, namely, R12 is generally not small. In [4] Chan
presents an RRQR algorithm where the matrix A is preprocessed by an initial QR
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factorization followed by condition estimation, strategic column pivoting, and plane
rotations applied on the left to restore triangularity. When the algorithm runs to
completion, it can be shown [5] that

(17)

where the columns of

IIA(HW)II <_ v/n- k ak+l,

store the estimated n- k right singular vectors. Hence 7(HW) is an approximate
nullspace for A. More rigorously, from [5, Theorem 4.1], if OQt denotes the subspace
angle between 7(HW) and TO(V0) and sin OQR ----dist(T(HW), T(V0)), then

(18) dist(TC(HW), 7(V0)) _< (1 + IIW  llv/n k).

In addition, it can be shown [6] that if CRRQR denotes the subspace angle between
7(Uk) and TO(Q1) and sinmQ ----dist(Ti(Q),Ti(Uk)), then

(19) dist(T(Q), T(Uk)) <_ IIWIIV’n k.

The RRQR bounds show that if

r] is small (large gap in the singular value spectrum of A),
A has low rank-deficiency (k not too much smaller than n), and
W2 is well conditioned (IIW2-111 not too large),

then T(HW) (T(Q)) is a good approximation to the numerical nullspace (range)
in the sense that the subspace angle is small. Hence, from these bounds and the
numerical evidence in [5] the quality of the RRQR-based subspaces depends on a gap
condition. This contrasts with the upper bounds we derived in Theorems 2.2 and
2.4 for rank revealing URV and ULV factorizations; for these factorizations is not
required to be small (cf. Theorem 3.1 in 3). Table 5 demonstrates this property.
In practice, we need only a good estimate of the singular vector to which the plane
rotations are applied! The condition estimator CCVL is well suited for this purpose
as demonstrated in 4; so is inverse iteration as demonstrated in [26].

The numerical results in Tables 5-7 illustrate that the rank revealing URV and
ULV factorizations may be more accurate alternatives to the SVD than RRQR. Using
the same simulation setup as described in 4, Tables 5-7 compare the subspace angles
0tRQrt, 0uRv, 0ULV and mQt, Cvtv, CULV as computed by the URV and ULV
algorithms we implemented and by Chan’s RRQR algorithm.

The results in Table 5 confirm that the URV and ULV decompositions do not
depend on the gap, unlike the RRQR factorization. For these results the exact singular
vectors were supplied to the algorithms. However, in Table 6 we supply the algorithms
with estimates obtained from CCVL. In the absence of refinement, the results show
0wtv is comparable to 0mQ. 0vtv could be better if we used better estimates;
however, in fairness we supply both of these factorizations with the same estimated
right singular vector. Note that 0ULV is superior to both. Both Cvav and CULV are
conspicuously better than CRRQt. Note that tRQt exhibits the dependence on as
in (19) and that decreasing the gap (i.e., decreasing 1/7) affects the ability of CCVL
to deliver good estimates.
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TABLE 6
Results of typical experiments for the error bounds for the RRQR, URV, and ULV subspace

angles 0 and . The matrices (Ai} have various singular value spectrums (see 3). The numerical
rank of the matrices was k 7 for tol 0.003, max_iter 1. The singular vectors were estimated
by the CCVL condition estimator. No subspace refinement for any factorization.

Ai
A1
A2
A3
A4
A5

sineq sin 0uav sin 0ULV sin CRRQR sin CURV sinvLV
5.6861e-15 1.3910e-15 1.4571e-15 2.7010e-14 2.9483e’15 2.8743e-15
5.2541e-10 3.2008e-09 1.0951e-15 1.8372e-04 3.1667e-13 4.8397e-13
5.2541e-08 3.2008e-07 4.0770e-13 1.8372e-03 3.1980e-10 4.8157e-10
5.2541e-06 3.2009e-05 4.0752e-09 1.8369e-02 3.1981e-07 4.8119e-07
5.2598e-04 3.2104e-03 3.7756e-05 1.8070e-01 3.2077e-04 4.4795e-04
2.4305e-04 1.1913e-03 1.8277e-06 9.4604e-02 5.7760e-05 4.0374e-05

TABLE 7
Results of typical experiments for the error bounds for the RRQR, URV, and ULV subspace

angles O. The matrices (Ai} have various singular value spectrums (see 3). The numerical rank
of the matrices was k 7 for tol 0.003, max_iter 2 and e le-09. The singular vectors were
estimated by the CCVL condition estimator. The RRQR approximate nullspace was improved by
one step of simultaneous inverse iteration.

Ai

A2
As
Aa
A5
A6

sin ORRQR sin OURV sin 0ULV
5.2048e-15 1.390e’15 3.7295e-15
5.8684e-13 2.8516e-14 1.0951e-15
4.6403e-13 5.0362e-12 4.0770e-13
1.4888eo10 2.7914e-10 8.1686e-13
1.4931e-06 5.4685e-09 7.3859e-08
9.6430e-08 3.0300e-07 6.1356eo10

However, when CCVL makes an additional pass per iteration (max_iter 2), it
delivers a markedly improved estimate of the singular vectors, as indicated by the
smaller subspace angles in Table 7. For max_iter 2, the URV and ULV decomposi-
tions make more appreciable gains in estimating the singular subspaces of A than the
RRQR factorization with one step of simultaneous inverse iteration.

5. Conclusion. In this paper we derived a posteriori error bounds (2) for as-
sessing the quality of subspaces obtained by a rank revealing two-sided orthogonal
decomposition, which is a product of an orthogonal matrix, a triangular matrix, and
another orthogonal matrix. The bounds are independent of both the numerical rank
of the matrix and the algorithm used to compute the decomposition. The theoretical
results show how the quality of the subspaces (compared to the singular subspaces of
the matrix) depend on the size of the off-diagonal block of the triangular factor, and
that the ULV provides a better estimate of the numerical nullspace than the URV
decomposition. Specifically, we considered the promising high-rank (k min(m, n))
revealing URV and ULV decompositions introduced by G. W. Stewart. The theo-
retical analysis shows that the quality of the subspaces depend on the quality of the
estimated singular vectors and not on a gap condition (cf. 2 and Theorem 3.1). We
implemented the algorithms in an adaptive manner. Based on our analysis in 4, we
conclude that the URV and ULV decompositions may be more accurate alternatives
to the SVD than the RRQR factorization. Finally, we provided numerical examples
to illustrate our conclusions.

Acknowledgment. The authors wish to thank Sabine Van Huffel for suggesting
the comparison in 4 and Chris Bischof for supplying the CCVL routine.
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Abstract. Given upper triangular matrices R, G and column vectors x, f such that RTR xxT

and (R + G)T(R + G) (x + f)(x + f)T are positive definite, let U and U T T be the corresponding
Cholesky factors. In this paper, upper bounds on IITII in terms of IIGII and Ilfll and upper bounds on

IITII/IIUII in terms of lIGil/llRII and Ilfll/llxll are given, and the first order perturbation expansions
of IITII and IITII/IIUII are derived. Moreover, a perturbation analysis of the QR updating problem is
also given.

Key words. Cholesky factorization, Cholesky downdating problem, QR factorization, QR
updating problem, perturbation bound, condition number

AMS subject classifications. 15A23, 65F99

1. Introduction. Let A E 7nn be a symmetric positive definite matrix. Then
there exists a unique upper triangular matrix R ’nn with positive diagonal el-
ements such that A RTR. This factorization is known as the Cholesky factor-
ization of A, and R is called the Cholesky factor [7, p. 141]. Let A Tmn with
rank(A) n. The QR factorization of A is a unique decomposition of the form
A QR, in which R Tnn is an upper triangular matrix with positive diagonal
elements, and Q Tmn satisfies QTQ I, the identity matrix. The matrices Q
and R are referred to as the QR factors of A [7, p. 211].

In this paper we consider the following problems. (i) Given an upper triangular
matrix R Tnxn and a vector x E Tn such that RTR -xxT is positive definite, find
an upper triangular matrix U nxn with positive diagonal elements such that

RTR xxT uTu.

This problem is called the Cholesky downdating problem, and the matrix U is referred
to as the downdated Cholesky factor [7], [10]. (ii) Given A 7mn,x Tm, and
y 7n such that rank(A) rank(A / xyT) n, find an upper triangular matrix
U Tnn with positive diagonal elements and P Tmn satisfying pTp I such
that

A + xyT PU.

This problem is called the QR updating problem, and the matrices P and U are
referred to as the updated QR factors [4], [7]. The Cholesky downdating and QR
updating problems have many important applications, and there are several stable
algorithms (see [1], [3]-[8], [10] and the references contained therein).

Recently, Pan [8] presented a first order perturbation analysis of the Cholesky
downdating problem. In this paper, we shall give upper bounds on the perturbation of
U in terms of the perturbations of R and x, and then derive a first order perturbation
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Plemmons May 6, 1994. This subject was supported by the Swedish Natural Science Research
Council contract F-FU 6952-300 and the Department of Computing Science, Ume University.
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bound of U, which is simpler and in most cases is sharper than those of [8]. Moreover,
we shall give a perturbation analysis of the QR updating problem by the same way.

We start with the simplest case. Let # be a positive number and p, E T such
that p2 2 2. Let u /p. Then for any , , e E 7 satisfying

I1/ < 1 and
u + II/P
1- I1/ <

there is a unique number T(e) such that # + -(e) is positive and

(1.1) ( +) ( +) (, + ()).

From (1.1) we get

r() [1 + 2..p(-v)+(2-2)2 1/2
1

1_u2 e+O(e2)

(1.2) [’r(e)[ < 1 ({-[ + u2 I-[) {e[ +O(e2) e--,O
# l_u2

Moreover, taking p, , and # as variables and differentiating p2 2 2, we get

1
d# X/(l u2)(dp- ud)

and

1

In 2 we generalize the relation (1.3) to the Cholesky downdating problem, and
apply the elementary calculus (ref. [2], [12], [13]) to get perturbation bounds for the
downdated Cholesky factor U, and then derive first order perturbation bounds of U.
Moreover, we present results of numerical tests, and give remarks. In 3 we derive
first order perturbation bounds of the updated QR factors.

The symbol II 1t2 will be used for the Euclidean vector norm and spectral matrix
norm, and liE the Frobenius norm. A denotes the Moore-Penrose inverse of a
matrix A. Amax(A) and Amin(A) denote the largest and smallest eigenvalues of a
symmetric matrix A, respectively. For a full rank matrix A we define

(1.4) a:(A)---IIAII2ii112.

If A is nonsingular, then a(A) I[AII2[IA-1II2.

2. The Cholesky downdating problem.
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2.1. Perturbation theorems. For a matrix A (aij) we define the differential
of A by dA

We first derive some differential inequalities.
THEOREM 2.1. Let R E Tnn be upper triangular and x Tn such that RTR-

xxT is positive definite, and let

(2.1) v R-Tx.

Moreover, let

(2.2) RTR- xxT uTu

be the Cholesky factorization of RTR xxT. Then

v(u)[[dU]lF < (1._[iv.i[)1/2 (][dR[[F A-

(2.3)
< (n)

1 -Ilvll 2 (IIdRIIF + Ilvll21ldxll2),
2

where (.) is defined by (1.4).
Proof. It is known that the elements of U are differentiable functions of the

elements of R and x. Differentiating the relation (2.2) we get

dRTR + RTdR dxxT xdxT duTu + UTdU

and
(2.4)

(dRU-1)TRU-1 + (RU-I)TdRU- U-Tdx(U-Tx)T U-Tx(U-Tdx)T

(dUU-)T _it_ dUU-1.

Since dUU- is upper triangular, we have [9]

I](dUU-1)T -4-dUU-IIF > VIIdUU-IIF > v/-IIUIIIIdUIIF.
Combining it with (2.4) we get

(2.5) IldV[[F <_ V[[U[[211U-i[[2([[RU-II211dR[[F + [[V-Tx[]2[[dx[[2).
Observe the following facts.
(i) By the hypothesis the matrix RTR xxT is positive definite. It is easy to see

that this hypothesis is equivalent to I[v[12 < 1. From (2.1) and (2.2)

(2.6) RU-I(Ru-1)T (I- vvT)-1.

Thus, we have

(2.7)

(ii) From (2.1)

1/2IIRU- ll = llEI vvT) 1112 (1- IIvI122)/2"

U-Tx-- (RU-1)Tv,
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which combined with (2.7) gives

(.s)

Hence, substituting (2.7) and (2.8) into (2.5) we get the first inequality of (2.3).
Notice that

(IIRT(I vvr)nlllln-(I vvr)-n-TIl)l

<_ (R)/(1- Ilvll)/.

Substituting it into the first inequality of (2.3) we derive the second inequality of
(2.3). rG

We now use the differential inequalities of (2.3) to derive perturbation bounds for
the downdated Cholesky factor U. The main results are Theorems 2.2 and 2.3.

THEOREM 2.2. Given an upper triangular R E 7"nn and an x n. Assume
that the Cholesky factorization (2.2) exists, and define v R-Tx. Moreover, given
an upper triangular G Tn n and an f Tn. If G and f satisfy

(2.10) lIR-ll211Gll2 < 1 and u-- llvll2 + lIR-ll2ilfll2 < 1,
1 IIn-llllmll

then there is a unique Cholesky factorization

(2.11)

and

(n + G)T(n + G) (x + f)(x + f)T (U + T)T(U + T),

<
(1 v)(1 -IIR-111.llmll)(llmll + ’11./11),

IITIIIIIUII,,

< v/[(llR-llllmll)(,(R) + 1) 11 (I111 I1.11)(1 u2)(1 -Ilvll)’/ \ IIRII,, + ,,’llvll I111

,<(R) (llaii-<
(1 ,,,)(1 -I111)/(. -IIR-IIIImlI) t,, IIRII,, + ,"llvll Ilxll

where p 2, F, and the function w(t) is defined by

1 !(2.14) w(t) ln 1 t’

Proof. Observe that for e [0, 1] we have

(n -f- G)T(R -t- eG) (x -f- ef)(x -f- f)T
(R + eG)T[I (I + eGR-1)-T(v + eR-Tf)(v + eR-Tf)T(I + eGR-i)-l](R +
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and

Hence, if G and f satisfy (2.10), then

(R + )(R +) (x + f)(x +
is positive definite, and consequently there is a unique Cholesky factorization

(R 4- 15G)T(R 4- 15G) (x 4- 15f)(x 4- 15f)T (U 4- T(15))T(U + T(15))

for each 15 e [0, 1].
Write

(2.16) R(15) R 4- 15G, x(15) x 4- 15f, .U(15) U 4- T(e), v(15) R(15)-Tx(15)

for 15 e [0, 1]. Let a] (15) >_ >_ a,(15) be the singular values of R(15), and let aj
aj(0), j 1,..., n. Then by the second inequality of (2.3)

(2.17)

Observe that by Mirsky’s theorem on perturbation bounds for singular values (ref.
[11, p. 204]) we have

O"1(t5) < O"1+ IlClI.
O’n(15) O’n --IlCll’

and from

v(15) R(15)-Tx(15) (I + 15aR-])-T(v + 15R-T/)

we get

IIv()l12 < Ilvl12 + llR-l1211fl12 =_ ().
1 llR-111211all2

Hence, from (2.17)

(2.19) IITIIF <_ x/ O’1 / IlGiJe 1
a, -Ilall.e" 1 u(e)e (IIGllF / u(e)ll/Ji.)de.

For simplicity, we use the relation u(15) _< u for 15 e [0, 1], where u and u(e) are
defined by (2.10) and (2.18), respectively. Then from (2.19)

(2.20) IITIIF < v(llallF + 11/112) A x + Ilal12
i ii; 
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By integral techniques [12]

(2.21)
((R) / 1),-(11R-lil211C112)- 1,

where w(.) is defined by (2.14). Combining it with (2.20) we get the first inequality
of (2.12).

Moreover, the inequality

gives

Combining it with (2.20) we get the second inequality of (2.12).
Finally, observe the following facts.
(i) From (2.7) it follows that for p--- 2, F

(2.23) IIUIIp-II(RU-X)-XRIIp IIRU-11IIlIRIIp
(1- Ilvl122)l/21lRiip.

(ii) Prom (2.1)

(2.24) IIRII > Ilxll.lllvll..

Hence, combining (2.23) and (2.24) with (2.12)we derive (2.13). E]

THEOREM 2.3. Let R, x, U, v, G, f, v be as in Theorem 2.2, in which G and f
satisfy (2.10). Let (2.11) be the unique Cholesky factorization of (R + G)T(R + G)
(x + f)(x + f)T. Moreover, let

(2.25) 9’ II GTR + RTG fxT xfTll2, /2 IIGTG ffTll2, /-- 1 + 2

and

(2.26) n /min(RTR XXT).

If 7 < An, then

(2.27) IITIIF --<

and

co (llCllF+ullfll)

(2.28) IITII <
1/2( 1/20 + ullvll2 _= bv,IIUIIr, (1 u2) 1 -Ilvll:) IIRII,

where p 2, F, and the function w(t) is defined by (2.14).
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Proof. On the basis of the proof of Theorem 2.2 there is a unique Cholesky
factorization (2.15) for each e e [0, 1]. Define R(e),x(e), U(e) and v(e) by (2.16), and
let

,i()-- Am&x(U()Tu()), %()- min(U()Tu()).

Then by the first inequality of (2.3)

(2.29)
N(U()) (lldR(e)llF + iiv(e)ll211dx(e)ll2)<_

( -iiv()ll)/

< //ol (.Ai(e))\()
1

(1

Moreover, by Weyl’s theorem on perturbation bounds for eigenvalues (ref. [11, p. 203])
we have

,1() <_ ,1 -I-‘7, n() >_ )n- ‘7,

where An ,n(0) (by (2.26)), and we define A1 AI(0). Combining it with (2.29)
and (2.18) we get

(2.30) IITI]F < V /o A + ,e 1

An --‘7e (1 (e)2)/2 (llallF + (e)llfll2)de.

For simplicity, we use the relations u(e) _< u and

‘7 ) 1/2 (AlAn) 1/2
< w e [0, ].An-e A ‘7e

Then from (2.30)

X/(IlalIF + llfl12)()1)n)1/2/01 de

(1 u2) 1/2 n ‘7

Combining it with

(AlAn)l/2/0 de AI

we get the inequality (2.27).
Finally, from (2.27) and (2.23)-(2.24) we derive (2.28).
The following two results, as corollaries of Theorems 2.2 and 2.3, present first

order perturbation expansions for the downdated Cholesky factor U.
COR,OLLAR,Y 2.4. Let R,x, G, f be as in Theorem 2.2, and assume that the

Cholesky factorization (2.2) exists. Define v R-Tx. Let eo > 0 be small enough so
that the Cholesky factorization

(R + eG)T(R + eG) (x + ef)(x + el)T (U + T(e))T(U + T(e))
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always exists for e E (-co, eo). Then we have

(2.31)

and

1 ]lvll2 (IIClIF / Ilvl1211fl1211l / o(2)

(2.32) IIT()IIF < ()/ O() e 0,IIUII,
where p 2, F, and

(2.33) p(1) Va(R) (IIGIIF Ilfl[.2) [el.(1-Ilvi[)a/ IIRII + I1,11 Ilxll

and

COROLLARY 2.5. Let R, x, G, f, v, eo be as in Corollary 2.4. Then we have

(v)IIT()II _<
( ilvll)l/ (IIGII + Ilvllll’ll)ll + O()

(2.35) IIT(e)IIF < b(l) + O(e) e 0,
IIUll,

where p 2, F, and

(2.36) b(l)__ x/(u)(IIG[IF Ilflla) [el.

We now cite the main result of [8], which also presents a first order perturbation
expansion for the downdated Cholesky factor U.

THEOREM 2.6 (Pan). Let R, x, G, f, v, , e, U, T(e) be as in Corollary 2.4, and
define

and

(2.37)

Then

C(v)

(2.38) IlT(e)ll < f(1) 0(2 O.

Comparing Theorem 2.6 (Pan) with Theorems 2.2 and 2.3 and Corollaries 2.4
and 2.5 we see that the perturbation bounds of this paper are simpler. Moreover,
numerical tests show that in most cases, especially for an ill-conditioned downdating
problem (i.e., (R) >> 1 and/or 1 -Ilvl[ 0), the perturbation bounds of this paper
are sharper than the bound of (2.37)-(2.38).
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2.2. Condition numbers. The estimates (2.32)-(2.33) and (2.35)-(2.36)show
that the quantities

.(R) .(U)(R, x) (,) =_
(1 11vl]22)3/2’ 1- IIvll 22

can be used to measure the (relative) sensitivity of the Cholesky downdating problem,
where v R-Tx satisfies 0 < IIvll2 < 1, and U is the Cholesky factor of RTR- xxT.
Note that from (2.9) we have c(R,x) <_ ;(R, x).

In view of the estimate (2.37)-(2.38) Pan [8] suggests using the quantity

(R,) (R) -Ilvll + 1

to assess the condition of the downdating problem. Comparing x(R, x) with a(R, x)
and c(R, x) we see that when IIv}}2 is near zero, the three quantities are approximately
equal; otherwise it is difficult to assess which one is the smallest. But numerical
tests show that in most cases the quantity c(R, x) is the smallest. Especially, when
(R) :>> 1 and/or 1 -IIvI]22 0 the quantity c(R, x) is, in general, much smaller than
x(R, x). Consequently, we suggest using c(R, x) as the (relative) condition number of
the Cholesky downdating problem.

2.3. A numerical example. In this section we present some results of numer-
ical tests.

Example 1. Let

1 -c -c -c -c 0.240
0 1 -c -c -c -0.899

Re= 0 0 1 -c -c x0= 0.899
0 0 0 1 -c 1.560
0 0 0 0 1 -2.390

0.2113
0

Go-- 0
0
0

-0.4649 0.6174 0.4857 -0.6167
0.4524 0.8441 -0.7382 0.4374

0 -0.6538 0.6630 0.5072
0 0 0.7469 0.1891
0 0 0 -0.1167

-0.4237
0.2190

-0.8531
0.1194
0.4762

R=diag(1, s,s2,sa,sa)Rc, x xo, G eGo, f efo,

where c 0.95, s V’I c2 and e 1.0e 10. Computation gives a(R) 1901.
Assume that U and U + T(e) are the downdated Cholesky factors of RTR- xxT

and (R + G)T(R + G) (x + f)(x + f)T, respectively. Then by Theorem 2.6 (Pan)

"Pan (by (2.37)- (2.38)),

and by Theorems 2.2 and 2.3 and Corollaries 2.4 and 2.5

]lUll2 liUii2 IIUlI2 11112
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(see (2.32)-(2.33), (2.35)-(2.36) (2 13) and (2.28) respectively) in which f(1)
ean

and b(21) are the first order perturbation bounds. Numerical tests show that in most
cases the bounds b(21) and b2 are better than the others.

Some numerical results obtained by using MATLAB are listed in Table 1, in which
v--" R-Tx, and we take

T1 1.004015006005433e 02, T2 1.003021021209640e 02,

T3 9.036225416303058e 03

and T4 T3"e--01, T5 T3 e-- 03, T6 T3" e-- 05.

TABLE

0.99999 0.000009

b2t)

b2
x(R,)
,(R, a)
c(R, a)

1.44e+04
1.07e+02
8.04e+01
1.10e+02

1.81eTll
2.13e+10
1.59e+10

0.999

1.46e+02
1.07e-01

8.05e-02
1.07e-01
8.25e-02
1.81e+09
2.13e+07
1.59e+07

0.9

1.36eT00
1.05e-04

8.41e-05
1.05e-04
8.41e-05
1.54e+07
2.30e+04
1.84eT04

0.09

1.16e-02

1.12e-06

1.12e-06
1.12e-06
1.12e-06
3.14e+04
1.92e+03
1.92e+03

0.0009

1.13e-04

2.73e-07

2.73e-07
2.73e-07
2.73e-07
1.90e+03
1.90e+03
1.90e+03

1.27e-06

2.65e-07

2.65e-07
2.65e-07
2.65e-07
1.90e+03
1.90e+03
1.90e+03

2.4. Block Cholesky downdating problem. Given an upper triangular ma-
trix R E ,"nn and a matrix X E Tnr such that RTR- XXT is positive definite,
find an upper triangular matrix U Tnxn with positive diagonal elements such that

RTR_ XXT uTu.
This problem can be called the block Cholesky downdating problem. We note that
there is no difficulty in applying the technique of this paper to get perturbation bounds
for the block downdated Cholesky factor U. For example, we have the following result.

Let V R-Tx. Given an upper triangular G 7nxn and a matrix F 7nxr.
Let e0 be small enough so that the Cholesky factorization

(R + eG)T(R + eG) (X + eF)(X + eF)T (U + T(e))T(u + T(e))

always exists for e (-e0, e0). Then

(2.39) IIT(e)llF < 1;1)
_
0(2) and

IIT(e)llF < b(p1) + O(e2) e -- 0,
Ilvll Ilvll 

where p- 2, F, and the first order perturbation bounds p(1) and b(p) are

{’ IlalIF IIFIIF’ (2.40) ;1) [min(I VVT)]3/2 \ IIRIIp + IIVII Ilxllp ]
and

(2.41) b(pl x/-a(U) (tlGIIF IIFllF ",’min(/- VVT) IlRllp + IIVIl lixllP ] If’l"
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The relations (2.39)-(2.41) show that the quantities

(R) (R,X) =_ (U)a(R, X) =- [Amin(I VVT)]3/2’ )imin(I VVT)

can be used to measure the (relative) sensitivity of the block Cholesky downdating
problem. Note that c(R, X) <_ (R, X).

Recently, Eld(!n and Park [5] presented a perturbation analysis of the block
Cholesky downdating problem. Perturbation bounds for the block downdated Cholesky
factor U are given when only R or X is perturbed. It follows from [5, Theorem 3.2
and Corollary 3.3] that

(2.42) IIT(e)llF < 2v/na2(R) IIGII2
IlVl12 min(I VVT) IIRII2 I1 - O(2) if F 0

and

(2.43) IIT(e)IIF < 2x/n2(R) IIFII2 [E + O(e2) if G 0.

Therefore, Eldn and Park [5] take the quantity

a2(R)
/down

min(I VVT)

as a condition number for the block downdating problem. But numerical tests show
that in most cases, especially when a(R) >> 1 and/or ,min(I--VVT) ,, O, the quantity
c(R,X) is much smaller than adown- Consequently, we suggest using c(R, X) as the
(relative) condition number of the block downdating problem.

3. The QR updating problem. We first derive some differential inequalities.
THEOREM 3.1. Let A E Tmn,x Tm and y T such that rank(A)

rank(A + xyT) n. Let A QR and

(3.1) A + xyT PU

be the QR factorizations of A and A + xyT, respectively. Moreover, let

(3.2) u QTx, v R-Ty,

(3.3) s(, v, ) + uv + w + Ilxlliw
and

(3A) (t,V,X)--" )min(S(zt, v,x)), D(,V,X) max(S(t,v,x)).

Thn
(3.5)

<_ v,x) ). 5(u, v,x) [a(A)(dA]]F + JJxl2lJdyJJ2) + IJAJJ2l]vlJ2Jldxll2]



THE CHOLESKY DOWNDATING AND Ql:t UPDATING PROBLEMS 771

(3.6)
IIdPIIF <_ x/ [[[(A + xyT)tll2([[dA[[f + Ilxll2[Idyl[2)+ (e(,,,x)),/211"ll"

1- ((u, v,x)) 1/2 []]At[[2([[dA[[F + [[xll2[Idy[[2) 4r- [[v][2[[dx[[2]

Proof. We first prove the differential inequalities of (3.5). It is known that the
elements of P and U are differentiable functions of the elements of A, x, and y. Dif-
ferentiating the relation (3.1), we get

(3.7) dA + dxyT -t- xdyT dPU + PdU

and

(3.s) pTdp -t- dUU-1 pTdAU-I + pTdx(U-Ty)T + pTxdyTU- =-- .
Notice that

(3.9) dpTp + pTdp O.

Therefore, from (3.8)

dUU- + (dUU-1)T -t- oT.

Combining it with

[IdUU-1 + (dUU--1)TllF x/llUIllldUlIF,

we get

(3.10)

Observe the following facts.
(i) rank(A + xyT) n if and only if $(u, v, x) > 0.
This is an important fact. We now give a proof. Take Q+/- E Trex(m-n) so that
(Q, Q+/-) is orthogonal. Then x can be expressed as

where u is defined by (3.2) and w QT+/-x. Thus

(3.11)

where

(3.12) C=( I ) (u) vT
0 +

W

and v is defined by (3.2). The relation (3.11) shows that rank(A + xyT) n if and
only if CTC is positive definite. From

cTc (I + uvT)T(I -I- UVT) -t- vwTwvT, wTw xTx uTu
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it follows that

(3.13) cTc S(u, v,x),

where S(u, v, x) is defined by (3.3). Consequently, rank(A + xyT) n if and only if
’min(S(U,V,X)) > O, i.e., 5(u,v,x) > 0 (by (3.4)).

(ii) From (3.1)

(3.14) [[U[[ [IA + xyT[[, IIU-[[. [[(A + xyT)ll.

(iii) It follows from (3.1), (3.11), (3.13), and (3.14) that

IIUIl. --IIPUII- IIA / xyTII. IICRII.
IICIIIIRII (p(u, v,x))/IIRII.,

(3.16)
/eI[(UTU)-I[[/2= [[R-I(CTC)-R-TII2

1/2 1/2IIR-111.IIS-Ile IIR- II/(,S(u, v, x))

and

I[U-TylI2 (yT(UTU)-ly)I/2 (yTR-(CTC)-IR-Ty)/2
(vrS(, v,x)-v)/ < Ilvll/((u, v,:))/.

Hence, combining (3.10) with (3.14), (3.17), and IIPTxlI <_ Ilxll., we get the first
inequality of (3.5). Furthermore, combining (3.10) with (3.15)-(3.17), I[pTx[12 <
[[x[[2, I[R[12 [[A[[2, and [[R-[[2 [IAt[[2, we get the second inequality of (3.5).

Now we are going to prove the differential inequalities of (3.6). Take Y E
Tm(m-n) so that V (P, Y) is orthogonal, and let

5X() )(3.18) 5X VTdp
5X(2 5X(1) E

Then from (3.7)and (3.9)

(3.19) 5x VT(dA + dxyT + xdyT)U-I ( dUU-
and

(3.20) (X(1))T - 5X(1) 0.

Observe that any matrix X can be split uniquely as

X XL At- XD + Xu,

where XL is strictly lower triangular, XD is diagonal, and Xu is strictly upper trian-
gular, i.e., (XL)ij 0 for all i <_ j, (XD)ij 0 for all i - j, and (Xu)i 0 for all
i > j. Thus, the relation (3.20) implies (bX)D --0. Moreover, from (3.18)-(3.20) we

get

(X)L (vT[(dA + xdyT)U- + dx(U-Ty)T])L
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(3.22)

Hence, from (3.18), (3.21), and (3.22)

(3.23) [[dP[[F---JinX[IF V/[[(X)L[[ -[-[[(X)v[[ 2F
<_ X/ [][u-l[[2([[dd[[F + [[xJJ2]Jdy[[2) / [[U-Ty[[2JJdxJ[2]

Combining (3.23) with (3.14) and (3.17) we get the first inequality of (3.6). Combining
(3.23) with (3.16) and (3.17) we get the second inequality of (3.6).

Remark 1. The differential inequalities of (3.5)-(3.6) show that the quantities
(u, v, x) and p(u, v, x) defined by (3.4) are important for the Qa updating problem.
We now give the explicit expressions of the two quantities.

Let S(u, v,x) be the n x n symmetric positive definite matrix defined by (3.3).
Take V2 6 7nx(n-1) so that Y (v/[[v[[2, V2) is orthogonal, and let

a 1 + 2uTv / Ilviilizll, a(3.24)

Then

VrS(u, v, z)V ( aa
It is easy to know that the eigenvalues A1 >_ A2 >_ >_ An of the matrix So (i.e., the
eigenvalues of S(u, v,x)) are
(.)

p(U, V,X) 1 c’bl-bv/(c-l)2"b4[lal122 (U, V X) )n2 2

and A2 An- 1. Moreover, from (3.24)

(3.26)

Combining (3.25) with (3.24) and (3.26) we get the explicit expressions of (u, v,x)
and p(u, v, x).

By using the same technique of 2 .and [12] and [13], from the differential inequal-
ities of (3.5)-(3.6) we can derive perturbation bounds for the updated QR factors P
and U. But for avoiding quite complicated mathematical expressions we are going to
derive the first order perturbation expansions of P and U. From the expansions it is
easy to see which quantities affect the condition of the updating problem. We now
state the main result of this section.

THEOREM 3.2. Given A E Tmn,x TTM and y Tn such that rank(A)
rank(A q- xyT) n. Let

A QR, A + xyT PU

be the QR factorizations of A and A / xyT, respectively, and define u QTx, v
R-Ty. Let eo > 0 be small enough so that the QR factorization

A q- eE (Q + W(e))(R + G(e))



774 JI-GUANG SUN

and

A + eE + (x + ef)(y + eg)T (P + Z(e))(U + T(e))

always exist .for e e (-eo, eo). Then
(.)

T() ]a(A + xyT)(IIEIIF +
[

(3.28)

[(A)(IIEIIF + Ilxllllll) + IIAIlllvllllfll] I1 + o(u),

(3.29)
_< v [II(A + xyT))II2(IIEIIF + Ilxll211gll2) +

k

and
(3.30)
IlZ()lIF

(5(u, v,x))/. Ilfll I1 + o(d)

1

((u, v,x))/2 [IIAVlI2(llEilF + IIx11211112)+ Ilvll2ilf[[2] ]el+O(e2)

Proof. For e E [-eo, eo], let

A(e) A + eE, P(e) P + Z(e), U(e) U + T(e),

x(e)=x+ef, y(e)=y+eg, u(e)=(Q+W(e))Tx(e), v(e)=(R+C(e))-Ty(e).

Then by the hypotheses and the first differential inequality of (3.5),

(3.31)

Observe that when - 0

Hence, from (3.31) we derive the perturbation expansion (3.27).
By the same way we derive (3.28)-(3.30) from the other differential inequalities

of (3.5)-(3.6).
Remark 2. The first terms of the right-hand sides of (3.27)-(3.30) give the first

order perturbation bounds for ]IT(e)IIF and ]IZ(e)IIF, respectively. These bounds show
that we can take the quantities

cu(A, x, y) =_ [((A + xyT))2 +
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cp(A,x,y) = [II(A + xyT)*II + 5(u,v,x)

1/2

as the (absolute) condition numbers of the QR updating problem corresponding to U
and P, respectively, where u, v, and 5(u, v, x) are defined by (3.2)-(3.4), and 5(u, v, x)
has the explicit expression (3.25).

Remark 3. Given A E Tmn,X E T"r and Y 6 7n such that rank(A)
rank(A/XYT) n, find an upper triangular matrix U Tnn with positive diagonal
elements and P Tmn satisfying pTp I such that

A + XYT PU.

This problem can be called rank-r updating of the QR factorization. We note that
there is no difficulty to apply the technique of this paper and [12] and [13] to get
perturbation bounds for the updated QR factors U and P.
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Abstract. This paper extends a recent statistically based vector-norm estimator to matrices.
The new estimator requires only a few matrix-vector multiplications and can be applied when the
matrix is not known explicitly. It is useful for efficiently estimating the sensitivity of vector-valued
functions and can be applied to many problems where the power method runs into difficulties. Lower
bounds for.the probability that an estimate is within a given factor of the correct norm are derived.
These bounds are straightforward to compute and show that a very inaccurate estimate is extremely
unlikely in most cases. A conservative lower bound has been derived and a tighter bound is given
in the form of a conjecture. This conjecture is true in some important special cases and the general
case is supported by considerable empirical evidence.
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1. Introduction. A novel method for efficiently estimating the sensitivity of a
scalar function at a point was recently introduced in [18]. This method is based
on implicitly projecting an approximate gradient of the function onto a uniformly
randomly chosen low-order subspace, and then computing the norm of the result.
Properly scaled, this gives an estimate of the norm of the gradient, and thereby the
condition number of the function at the estimation point. The method requires only
the evaluation of the function at this point and a few nearby points.

This paper extends the results of [18] to the estimation of the Frobenius norm
of the Jacobian of a general vector-valued function. Thus, let f lRn -. lRq be a
function differentiable at a point x, and define the Jacobian at x as

J(x) Of

The norm of the q x n matrix J(x) is a measure of the sensitivity of f at x [25]. In
fact, the Taylor expansion of the function about x,

f(x + 6z) f(x) + 6J(x)z + O(62),

where 6 is a small scalar, indicates that if J(x) is large in some sense, then small
perturbations in x can result in large perturbations in the value of the function.

The Jacobian is usually not easy to compute explicitly if its dimensions are large,
but the Taylor expansion suggests a simple approximation of the product J(x)z for
any vector z,

(1) J(x)z .. f(x + ,Sz) f(x)

where 6 is sufficiently small. The method introduced in [18] and generalized in this
paper is based on this approximation.
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Equation (1) can be used as a basis for the power method for approximating
the 2-norm of the Jacobian if f maps square matrices to square matrices of equal
dimensions (see, e.g., [17]), but in no other case can this otherwise useful method be
employed unless the Jacobian is known explicitly. This is because the power method
requires the evaluation of the product of jT(x) and a vector, and this can usually not
be approximated in the same manner as the product of J(x) and a vector.

Our method inherits the benefits of the power method (when it can be applied),
namely the use of the finite difference approximation (1) of the Jacobian, but elim-
inates the difficulty incurred by the transpose step. Moreover, this paper includes a
lower bound on the’probability that a ample of the estimator is within a given factor
of the true norm of the Jacobian. The validity of this lower bound is contingent upon
the verity of a certain conjecture, which has been shown to be true in some special
cases. A conservative version of the conjecture has also been proved, and the general
case is supported by considerable empirical evidence. Similar bounds for the power
method have not been derived, but some discussion of the statistical properties of
that method can be found in [7] and [20].

Note that the important example of the Jacobian of a function shows that methods
for estimating the norm of a matrix implicitly, using only products of the matrix and
a vector or approximations thereof, can be very useful. Similar situations arise when
various other scalar functions of a matrix are desired, such as the largest or smallest
eigenvalue of a positive definite operator [21], the size of the transient "hump" of
a matrix exponential [22], the stability radius and distance to uncontrollability of a
linear system [16], the norm of a Hankel operator [10], and the structured singular
value [8]. Therefore, we assume throughout most of the paper that when the norm of
a matrix is to be estimated, the product of the matrix and a vector can be computed
exactly. We then return to the case of estimating the sensitivity of vector-valued
functions when we discuss specific examples.

In the next section of the paper we introduce the estimator for the norm of a
matrix, derive some of its statistical properties, state an important conjecture about
the probability of an accurate estimate, and prove a conservative version of that
conjecture. In 3 we derive an expression that, according to the conjecture, is a
lower bound on the. probability of an accurate estimate. This bound depends only on
the dimensions of the randomly selected projection subspace. In 4 the estimator is
applied to the computation of the sensitivity of some specific functions. Finally, some
concluding remarks are made in 5.

In the remainder of this section, we review some important probability distribu-
tion functions. A beta distribution with parameters (pl, p2) has density function

1 zPl/2-1(1 z)p/2- for 0 < z < 1fz(z) B(p/2,p2/2)

where B(al,a2) is the beta function

B(a ,a2) r(a 

and F is the gamma function [2], [26],
q-

F(c) te-le-tdt

for Re(c) > 0. If a random variable z has a beta distribution with parameters (pl, p2),
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then its mean and variance are given by

E(z)

Vat(z)

pl

pl

2plp2
(p + p2)2(p + p2 + 2)’

respectively [9]. A useful interpretation of a random variable z with a beta distribution
is as the sum

Z

Pl
2?i

i----1

where u, u2,..., Up1, up+l,..., Up+p2 are the elements of a vector u- x/[[x[[2, and
x is a standard normal (pt + p2)-variate normal vector.

A logical extension of the beta distribution to multiple variables exists. Let Z
be an n m matrix with orthonormal columns and denote the Riemann space of
such matrices by Vm,n. This space is called the Stiefel manifold, and studies of many
different probability distributions of its elements can be found in the literature [14],
[28], [23], [27], [4], [5]. We are especially interested in the uniform distribution, i.e., the
Stiefel manifold with elements whose span is uniformly distributed in IRn. A sample
matrix from this distribution can be generated from m samples from the standard
n-variate normal distribution by forming an orthonormal basis for their span. This
can be done very efficiently, for example, by using a simplified QR decomposition
[],[S].

For future reference we note that the joint density of the elements of Z is [14]

1
Iz(Z) onI-Im__ A(n + 1)

where A(k) is the area of the unit sphere in IRk, given by

27rk/2
A(k) r(k/2)"

This density has an important property, which we state in the form of a lemma.
LEMMA 1.1. The joint density of the elements of Z is invariant under rotations

of the coordinate frame.
Proof. See [23]. v1

2. An estimator. In this section we introduce an estimator for the Frobenius
norm of a q n matrix L. A sample of this estimator is easily computed using a few
matrix-vector multiplications, and, moreover, its statistical properties are such that
the sample can be expected to be close to the norm of L in most cases.

DEFINITION 2.1. Let L E ]I:qn and let Z be a uniformly random matrix on the
Stiefel manifold Vm,n. Define an estimator for IIL]I2F by

n
eL(m)-- IILZII.

A Riemann space is a manifold to which a metric is attached [3].
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If we denote the rank of L by r < min(q, n) and its nonzero singular values by
i 1,2,...,r, where

a >_ a >_ a >_... >_ a > 0,

we have the following result.
LEMMA 2.2. The expected value and variance of eL(m) are

and

respectively.

m(n+2)(n-1)
n ai-IILIl

i--1

The proof is elementary, but rather lengthy, and will be deferred to the Appendix.
Note that the variance is independent of the dimension q, but does depend on the
rank of L. In fact, the variance has the following important property.

LEMMA 2.3. The quantity

R Var(L(m))

is maximized when L is of unit rank.
Proof. We can rewrite R as

2(n-m) ( ( 2 )
2)n1

+R
=l =la

For each value of r, the single extremum of R is eily shown to be at al 62
av, and the largest of those extrema clearly occurs when r 1.

This suggests (but does not guarantee) that the probability of a sample of the
estimator being close to the mean is minimized when L is of unit rank. But before
we discuss this further we look more closely at the probability distribution of the
estimator.

The probability density function of the estimator eL(m) can in principle be de-
rived from the results of [11] and the density of Z. An expression for it is

(t) [. Iz(z)5(t dZ
Z m

(3) H A(n + 1)
e t- --IILZII dZ.

, m

This expression can be reduced to an elliptic integral [13], but since analytical evalu-
ation of such integrals is generally impossible, we must use other approaches to study
the statisticM properties of the estimator.

We will focus on the properties of the probability that the estimator eL(m) is
close to the correct value. By this we mean the probability that
factor of the mean, Pr(n/a2 eL(m) a2]]n]]) for a > 1. For ee of notation
we denote this probability function by PL(a),

(4) PL(a) Pr(n/a2 eL(m)
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To simplify the analysis in the sequel, we note that the set of admissible matrices
can be reduced considerably. First we need the following.

LEMMA 2.4. The probability PL(a) is identical for all matrices L with the same
relative singular values, i.e., for all L E , where

is fixed for 1, 2,..., r }.
Proof. Using the singular value decomposition L UVT of a matrix L, the

probability can be written as

1 n
PL(a) Pr - <- --m U II 2 )E

VTZ <_ ol
2

IlL[IF F

Since the Frobenius norm is unitarily invariant and the distribution of Z is invariant
under rotations of the coordinate frame (Lemma 1.1), the probability is identical for
all L for which E/I[L[[F is identical, i.e., for all L

This defines an equivalence class of matrices, and we can use any particular ele-
ment to represent the whole class.

COROLLARY 2.5. The matrix L can, without loss of generality, be taken to be
square of dimension n, diagonal of the form

L diag(az, a2,..., at, 0,..., 0),

and of unit Frobenius norm,

2a =1.
i=1

Thus the probability function PL(() depends only on the relative distribution of
the singular values of L, the accuracy factor a, and the dimensions n and m of Z.

Since a computable expression for the function PL(() does not seem to be gen-
erally obtainable, our goal is to establish a computable lower bound for the function.
Lemma 2.3 suggests that for fixed m and n, the probability function PL(a) is smaller
for the equivalence.class of rank 1 matrices than for any other matrix. Moreover, as
we will see later, this smallest probability function can easily be computed exactly.

DEFINITION 2.6. For any fixed pair of integers n and m with n > m, an n x n ma-
trix Lo in the equivalence class of rank 1 matrices is called extremal. The correspond-
ing estimator CLo (m) is called the extremal estimator and the probability function
PLo () of the extremal estimator is called the extremal probability function.

A conservative lower bound on the probability function PL() can be written in
terms of the extremal probability function.

THEOREM 2.7. Let L ]Rqn be of rank r, let PL(O) be the corresponding
probability function (4) for some value ofm, and let PLo () be the extremal probability
function for n and m. Then

PL(O) >_ 1 r(1 PLo(O)),

with equality if r 1.

Proof. By Corollary 2.5, L can without loss of generality be assumed to be zero,
except for the first r diagonal values. Thus we can assume that only the first r rows
of the product LZ are nonzero.
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For i 1, 2,..., r, denote the ith row of that product by (LZ)i, the ith row of L
by Li, and define the estimator

L(m)
n II (iZ)i 112Fm

Let T denote the statement

02
let Ti denote the statements

oz2 F

for i 1, 2,..., r, and denote the converse of each statement by an overbar. Since

r

F

and

then, clearly,

eL(m)
n IILZII 2

n

i--1

i--1

Pr(T) > Pr(T T2 ... O Tr)

> 1 Z(1 Pr(Ti)).

But each of the statements Ti involves the product of Z with a rank 1 matrix, so
Pr(T) PLo(O), the extremal probability, for i 1,2,...,r, and thus the result
follows.

In fact, we believe that a stronger statement is true, namely, that the extremal
probability function bounds all other probability functions from below for fixed n
and m. This statement has been shown to be true in some special cases [13], and the
general case is supported by Lemma 2.3. More importantly, the considerable empirical
evidence that supports the general case shows that the statement can be assumed to
be true in practice. For future reference we state this as a conjecture.

CONJECTURE. Let L E IRqxn, let PL(a) be the corresponding probability function
(4) for some value of m, and let PLo (a) be the extremal probability function for n and
m. Then

>

with equality if r-- 1.
In 4 we discuss some of the empirical evidence supporting this conjecture. Note

that since PLo() is very close to 1 in most cases, as we shall see in the following
section, the difference between the conservative bound and the conjectured bound is
usually very small.
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3. The lower bound. This section is devoted to the probability distribution
function Pr(Lo (m) _< x) of the extremal estimator )Lo (m). We will show that it is
easily computed from an exact analytical expression, and, therefore, that the function

PLo (a) is easily computed. Note that some of the results in this section are proved
for a slightly different estimator and in different notation in [18]. The differences are
significant enough to warrant giving the proofs here also.

We assume, without loss of generality, that L0 diag(1, 0,..., 01 of order n, as
in Corollary 2.5.

3.1. General results. The probability distribution function of the extremal es-
timator CLo (m) can be computed recursively.

THEOREM 3.1. Let Lo (m) be the extremal estimator for some m > 3, let n > m,
and let O < b < l. Then

Pr(Lo (m) _< bn/m) Pr(Lo (rn- 2) <_ bn/(m- 2))
2b(m-2)/2(1 b)(-m)/2

(n m)B(m/2, (n m)/2)"

Proof. Since the matrix L0 has only one nonzero singular value, we can write the
extremal estimator as

"
m lk

k--1

where zlk are the elements of the first row of the matrix Z. Since this row can be
augmented to form a unit n-vector,

n

m

where Zm has a beta distribution with parameters (m, n- m). This enables us to
write Pr(Lo (m) < bn/m) Pr(zm < b) for 0 < b < 1, whence

1 fo
b

Pr(Lo (m) _< bn/m) B(m/2, (n m)/2)
t(m-2)/2(1 t)(n-m-2)/2dt"

Using the relationship (2) and standard relations for the gamma function [2], the
result is immediate. [3

By expanding the result of Theorem 3.1 and evaluating Pr(/o (2) _< bn/2) via

(51, we can compute the extremal probability distribution directly for even integers

m/2 2bi_l(1 b)n/2_
Pr(Lo (m) _< bn/m) 1 E (n- 2i)B(i:-7/- i)"

i--1

Similarly, for odd m >_ 1, we can write

Pr(Lo(m) <_ bn/m)= Pr(Lo(1) <_ bn)
(m-l)/2 2bi_/2(1 b)(n_2i_l)/2E (n- 2i- llB(i + 1/2, (n- 2i- 1)/2/’

i--1
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TABLE 1
The probability of a sample of the extremal estimator being within a factor 5 or 10 of

the mean for different values of n and m.

20 0"8474 0"9646 0"9912 0"9978 0.9994

4010"844410"9627 0"990310"9974 0.9992
5 60 0.8434 0.9620 0.9900 0.9972 0.9992

80 0"8429 0"9617 0"9898 0"9972 0.9992
100 0.8426 0.961510,.989710.9971 0.9992

l 20[ 0.9234 0.9910 10.998 0.99986 0.999982

4010"92-8 0"990510"9988 0"99983 0.999977
10 6010.9213 0.9904]0.9987]0.99982 0.999975

8010"9211 0’9903]0"998710"99982 0.999974
100 0.9209 0.9902 0.9987 0.99981 0.999973

where Pr(Lo(1) < bn) can be evaluated using (5), but is left unresolved here for
clarity. The probability of the extremal estimator CLo(m) being accurate follows
immediately from the density function

(8) PLo (a) Pr(L0 (m) <_ a2) Pr(Lo (m) <_ a-2)
by applying the above with b replaced by a2m/n and m/a2n, respectively.

This lower bound is not necessarily very tight, but since it is usually very close
to unity when a is not very small, it guarantees good performance of the estimator
in most cases. In Table 1 the probabilities of the extremal estimator being within a
factor of a 5 and a 10, respectively, are given for various combinations of n and
m. For m 1 the bound does not predict very accurate results, but for larger values
of m a sample estimate is almost certainly within a factor of 10 of the correct norm.

If we allow the accuracy factor a to be larger, we can apply the results of [18].
There, it is shown that the function PLo (a) is very closely approximated for a > 10
and all values of n by

(9) PLo () 1 a-m,
where is on the order of unity. Thus, for example, the probability of the estimator
being accurate to within a factor of 100 is approximately 1-10-2m, which approaches
1 very fast as m increes.

3.2. Asymptotic behavior. Using the fact that the estimator becomes less
accurate as n increes, we can get a uniform lower bound on the probability of a good
estimate for each m and a, independent of n. This may simplify the computation of
the lower bound in some ces.

LEMMA 3.2. Let PLo () be an extremal probability function for some value of m.
Then if m is even,

m/2 i--I --c C--I
r(i)

i=I

and, if m is odd,

e-x2dx + C1 e--c1 C2 e--c2

-+ #v ,=,. r(i + 1/2)

where ci mc-2/2 and c2 ma2/2.
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Proof. The proof is based on three standard results:

(10) lim (1 C) n/2-i --c/2
n-,+ n

lim n
iF(n/2- i) 2i

lim ni+1/2
F(n/2- i- 1/2) 2i+1/2"

The second equation can be derived using the property F(s / 1) sF(s) and the third
equation by using the same property, along with expressions for r(p / 1/2) and F(p),
where p is an integer, and Wallis’s infinite product for r/2 [1], [2], [26].

Previously in this section we have shown that, for even m,

PLo (O) 2 (rn/2n)i-l(1 m2n)n/2-i (2m/n)i-(1 2m/n)n/2-i
i--1

(n 2i)B(i, n/2 i)

Using (10) and (11), along with the relationship (2) between the beta and gamma func-
tions, the first result of the lemma follows immediately. By employing (10) through
(12) we can similarly show that the latter part of Pio () for odd m,

i--1
(n- 2i- 1)B(i + 1/2, (n- 2i- 1)/2)

converges to the summation term in the second stated result. Thus, it remains only
to derive the limit as n-, /cx) for the remaining part of PLo () for odd m,

Pr(Lo(1) <_ mc2) --Pr(Lo(1) _< talon2).

We begin by writing the expression (5) for Pr(Lo(1)

_
c) for some constant c,

1 fcln t-/2(1 t)(n-3)12dt.Pr(Lo(1) _< c)= B(1/2, (n- 1)/2) J0

The integral can be written as

which behaves like

when n grows. Equation (12) gives the result as stated.
The asymptotic bounds corresponding to Table 1 are given in Table 2. We see

that those bounds are not very far from the actual lower bounds when n is large.
For larger values of , we can again use the approximation PLo (() 1- s-m, as

in (9).
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TABLE 2
The asymptotic probability of a sample of the extremal estimator being accurate to within a

factor

51’84-51 .9681.98931.996971.999114
10 0.9203 0.9900 0.9986 0.99980 0.999970

4. Numerical examples. Experiments have shown that the probability of an
estimate being off by a large factor is very small in most cases. This is particularly
true for matrices that are well conditioned with respect to inversion.2 In the more
interesting case of ill-conditioned matrices, the probability of an accurate estimate is
lower, and is in general fairly well estimated by the lower bound determined by the
extremal probability function.

In this section we examine how well our estimator approximates the norms of
certain matrices. For each of the three examples described we used several different
values of m, the dimension of the random subspace, and for each such value we
computed the "true" probability function using a large number (10,000) of samples of
the estimator. We also examine how well the lower bounds derived in 3 approximate
the "true" probability function.

The first example problem is the estimation of the condition number of a matrix,
the second problem involves the condition of the matrix exponential map, and the
third problem is concerned with the map from the coefficient matrices of the Riccati
equation to the solution. The first two problems are also discussed in [18], but there
the sensitivity of the entries of each function is considered, while here we estimate the
sensitivity of the function itself via the norm of the Jacobian matrix.

Example 1. This example concerns the sensitivity of the solution of a linear
system Ax b. The condition number of A with respect to inversion, defined as

for some norm II. II, is a good indicator of the sensitivity. The norm of A is easy to
compute, but the norm of the inverse is much harder [6]. When solving the system,
however, we factor A such that x can be computed by solving triangular systems, and
once this factorization is accomplished, solving the system is relatively inexpensive.
This also means that solving for a few more right-hand side vectors can be done
without significantly increasing the computational effort. Thus we can apply our
estimator to the estimation of IIA-1 II in a very efficient manner. Note that we do not
use the finite difference approximation (1) in this example, because we can use the
matrix whose norm we want to estimate directly.

To illustrate, let A be an Ostrowski matrix of order n [24]. That is, A is an upper
triangular matrix with -1 on the main diagonal and all of the upper entries equal to
1. Even though all of the eigenvalues of A are -1, this matrix is nearly singular if n
is large, with the smallest singular value on the order of 2-n+l.

If we take n 30 as in [18] the Frobenius norm of A-1 is approximately 3.58 l0s.
For each of four different values of m we computed the "true" probability function

PA-1 (a) for c between I and 5. Then we computed the lower bound using the extremal
estimator (see (6)-(8)), as well as the asymptotic lower bound (see Lemma 3.2),
and compared those to PA-I (a). The results are shown in Fig. 1, with each graph
representing a different value of m. The estimator usually does very well, especially

2 In the extreme case of an orthogonal matrix L every estimate is correct.
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FIG. 1. Probability functions for Example 1. Each graph shows three curves, the "true" prob-
ability function PA-1 (a) (solid), the lower bound using the extremal estimator (x-marked), and the
asymptotic lower bound (dotted). The four graphs represent, respectively, m 1, m 4, m 7,
and m 10.

for higher values of m, in effect guaranteeing a result within a factor of about 3 of the
correct norm. Moreover, the lower bound given by the extremal estimator is almost
indistinguishable from the "true" curve in each case, and even the asymptotic lower
bound is fairly good. This is consistent with the results reported in [18].

Example 2. In this example we examine the map X -. eX, where X is an

no no matrix. In accordance with our convention, we set n n and define the map

f(x) vec (eU"’ecx)

where the vec operator stacks the columns of a matrix, and the unvec operator reverses
the process.

To estimate the condition of the map f at a particular matrix X unvec x, we
form an n m matrix Z with orthonormal columns and span randomly chosen on
the unit n-sphere. Then we choose a small number 5 > 0, and, for each column zi of
Z, we form the difference

1 (eXd-6 unvec ziWi vec
Finally, we form the matrix W with columns wi, and compute our estimate of the
Frobenius norm squared of the Jacobian J of f at X as

lj(m) nllwll .m
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FI(. 2. Probability functions for Example 2. Each graph shows three curves, the "true" prob-
ability function Pj(() (solid), the lower bound using the extremal estimator (x-marked), and the
asymptotic lower bound (dotted). The four graphs represent, respectively, m 1, m 2, m 3,
and m 4.

To test the estimator we applied it to a matrix from [18], originally reproduced
from [30],

[ 1-lgl 19 18
x -a9o 56 54

-387 57 52

using 5 10-12 and four different values of m. We computed the "true" probability
function Pj(a) for a from 1 to 5, using the Frobenius norm of J. We computed the
latter using the power method and a trapezoidal approximation of order 20 to J [17].

The results of this experiment are shown in Fig. 2. We see similar results as in the
previous example, namely that for m > 2 the estimator is almost guaranteed to be
within a factor of 3 of the correct norm. Thus, a good estimate can be obtained with
good confidence, using as few as three extra evaluations of the exponential. Again,
this is consistent with the results reported in [18].

Example 3. In this last example we look at the sensitivity of solving an algebraic
Riccati equation [15],

ATx .-I- XA XFX + G O,

where all matrices are of dimension no x no, F and G are symmetric, and a unique
nonnegative definite solution X is assumed to exist. We define the map f ]R3n
IRn from the entries of the matrices A, F, and G to the entries of the solution X,
with the convention that the input vector is ((vec A)T, (vec F)T, (vecG)T)T and the
output vector is ve X.
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As a specific example we use the matrices

0 0 0 1
G=

0 1

To compute the exact norm of the Jacobian we use the results of [19], namely that
the Frobenius norm is equal to the 2-norm of the matrix D (DT, DT2, D)T, where

D IIGIIFK-,
D IIAIIFK-1(I (R) X + X I)27,
Da IIFIIFK-(X X),
K ((A- FX)T (R) I / I (R) (A Fx)T),

S is a permutation matrix depending only on the dimension of X, and (R) is the
Kronecker product operator [12]. In this case the exact norm is approximately 7.07
l0s

To apply our estimator, we begin by generating m orthonormal vectors zi of length
n-- 3n, with i-- 1, 2,..., m. Then we partition each vector as zi (aTe, fiT, g)T
with each part of length n, perturb A, F, and G by the matrices

AAi 5 IIA F unvec ai,

iF 5 IIFIIF unvec fi,

AG 5 IIGIIF unvec gi

for a small scalar 5, and solve the associated perturbed Riccati equations. We use the
solutions Xi to form the vectors

1
(13) wi vec(Xi X),

form the matrix W wl w2 Wm ], and finally compute the estimator

Cj(m)
T

iiwilF"

Some results are shown in Fig. 3 for 10-13 and four different values of m. Note
that the lower bound is slightly higher than the theoretical norm in some cases. This
is because of the error incurred by using a first-order difference (13) to approximate
the product of the Jacobian and a vector. In fact, a smaller value of makes the
approximation more accurate and eliminates the effect.

Note that in this example an no x 3n0 matrix [A F G] is mapped into an

no no matrix X, so the power method cannot be applied to the sensitivity es-
timation without first evaluating the Jacobian explicitly (see the discu8sion in the
Introduction).

5. Conclusions. We have introduced a method for estimating the Frobenius
norm of a matrix that is not necessarily known explicitly. The method is based on
projecting the matrix onto a randomly generated low-dimensional subspace, and re-
quires only the ability to compute the product of the matrix and a basis for that
subspace. This approach is ideal for estimating the sensitivity of vector-valued func-
tions, at the cost of only a few function evaluations.

Numerical experiments have shown that the probability of the estimate being
off by a large factor is very small in most cases, in particular when the matrix or
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function is well conditioned. A conservative lower bound on the probability of an
accurate estimate is derived, and a tighter bound is given in the form of a conjecture.
This conjecture is supported by the results of numerical experiments, as well as some
special cases. A proof of the general case is under investigation.

The lower bound stated in the conjecture is uniform for all estimators involving
matrices with domains of a given dimension n and subspaces of a given dimension
m. Moreover, this bound often gives a good approximation of the probability of an
accurate estimate when the matrix or function is ill conditioned.

The estimator introduced in this paper is a generalization of a previously studied
estimator for vector norms [18]. Like that estimator, the new one can be applied to
problems where the domain and co-domain of the function are of different dimensions.
This is in contrast to the power method, which is only applicable, if the Jacobian (or
its transpose) is not available explicitly, to maps between square matrices of equal
dimensions.

Some illustrative examples are given, including both the estimation of the condi-
tion number of a matrix and the estimation of the sensitivity of vector-valued func-
tions. One of these functions has domain and co-domain of different dimensions.

6. Appendix. Proof of Lemma 2.2. We begin by deriving the mean of the
estimator bL(m). Let L UVT be a singular value decomposition of L, and note
that since the Frobenius norm is unitarily invariant, the estimator can be expressed

eL(m)
n II VTZII2- F"
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The distribution of Z is also unitarily invariant (see Lemma 1.1), so for the purpose
of statistical analysis, Z can be replaced by any product WZ, where W is unitary. In
particular, Z can be replaced by VZ, giving

n
eL (m) II: Zll 2F,

where the columns of the new Z are uniformly random on the unit sphere in lRn.
Now, the Frobenius norm is easy to expand in terms of the nonzero singular values of
L (the first r diagonal values of ), giving the mean as

i-----1 k=l

where zik is the (i, k)th element of Z. Since the distribution of Z is invariant under
rotations, as noted before, the expected value E(z2k) is the same for each pair (i, k).
Thus we can replace each of those by the expected value of the first element of the
first column of Z. This element has a beta distribution with parameters (1, n- 1)
(see discussion in 1), and its mean equals l/n, so

m ri n
i=1 k=l

The derivation of the mean is based on the invariance of the distribution of Z
under rotations, and a similar approach, albeit somewhat more involved, gives the
variance. By expanding the Frobenius norm as before, the second moment of
can be shown to be

(14) E((I[LZ[I)2) aia
2 (zikz)2 2

i=1 j--1 k=l /=1

By the same argument as before, the terms E 2 2(zikzi) can have only four different
values according to the combinations of i, j, k, and l. Define

el E(z4k),
e2 E(z2kz) for i j,

e3 E(z2z2) for k # l,

e4 E 2 2(zikz) fori#j,k#l.

Since the distribution of Z is invariant under unitary transformations, any particular
column can be assumed to be the one selected first. Thus, when the other columns
are not important, each column can be assumed to be randomly selected from the
uniform distribution on the Stiefel manifold. Therefore each zik can be assumed to
be an element of a uniformly random unit vector, and thus has a beta distribution
with parameters (1, n- 1). Therefore el is the second moment of a beta-distributed
random variable

+ 2)’
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To evaluate e2 we expand 2 2
ZikZk a follows. Let wl, W2, and w3 be three X2

variables, the first two with 1 degree of freedom and the third with n- 2 degrees of
freedom. Since zik2 and zk are two elements of the same normalized vector,

2 2 WlW2zz (w + w2 + w3)2

1 ( +
2 (Wl J- W2 J- W3)2

Each term is the square of a beta-distributed random variable, the first one with
parameters (2, n- 2) and the others with parameters (1, n- 1). Thus e2 is one half
the sum of the respective second moments,

1(8e2 - n(n + 2)
1

+

3

n(n + 2) n(n + 2) ]

The matrix Z can be extended to an orthogonal matrix with the elements of
the extension having all the same statistical properties as the elements of Z, so the
statistical relationship between the elements of Z and ZT must be the same. In
particular, this indicates that e3

Before we look at e4, we expand (14) as

and replace each expected value by the correct ei. This gives the second moment as

Since we can add a column to Z without changing the relationship between the previ-
ous columns, none of the expected values can depend on m. Therefore we can consider
the special case m n for the purpose of deriving the remaining e4. In that case

IILZII IILII F,
so the estimator is exact for all samples Z. Thus,

E((IILZII)2) I}LII

o" -t- o" o’j.
i=1 i=1 j=

By equating this expression and (15) with m n we obtain an expression for e4,

n+l 1
e4

n + 2 n(n-1)’

from which the result follows.
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DOWNDATING THE SINGULAR VALUE DECOMPOSITION*

MING GUt AND STANLEY C. EISENSTAT:

Abstract. Let A be a matrix with known singular values and left and/or right singular vectors,
and let A be the matrix obtained by deleting a row from A. We present efficient and stable algorithms
for computing the singular values and left and/or right singular vectors of A We also show that
the problem of computing the singular values of A’ is well conditioned when the left singular vectors
of A are given, but can be ill conditioned when they are not. Our algorithms reduce the problem
to computing the eigendecomposition or singular value decomposition of a matrix that has a simple
structure, and solve the reduced problem via finding the roots of a secular equation. Previous
algorithms of this type can be unstable and always solve the ill-conditioned problem.

Key words, singular value decomposition, downdating, secular equation

AMS subject classifications. 65F15, 15A18

1. Introduction. Let

(1) A UVT

be the singular value decomposition (SVD) of a matrix A E Rren, where U Rmm
and V Rnn are orthogonal and ] Rmxn is zero except on the main diagonal,
which has nonnegative entries in nonincreasing order. The columns of U and V are
the left singular vectors and the right singular vectors of A, respectively, and the
diagonal entries of ] are the singular values of A.

In many least squares and signal processing applications (see [5], [21], and [27]
and the references therein) we repeatedly update A by appending a row or a column
or downdate A by deleting a row or a column. After each update or downdate we
must compute the SVD of the resulting matrix. We consider the updating problem
in [15] and [17]; here we consider the downdating problem.

Since deleting a column of A is tantamount to deleting a row of AT, we only
consider row deletions. Without loss of generality we further assume that the last row
is deleted. Thus we can write

(2) A= aT

where A’ E R(m-i)xn is the downdated matrix. Let the SVD of A’ be

(3) A’= U’tV’T,
where U’ E R(m- 1) X (m-- 1) and V’ E Rnxn are orthogonal and ]’ E R(m- 1) X n is zero
except on the main diagonal, which has nonnegative entries in nonincreasing order.
We would like to take advantage of our knowledge of the SVD of A when computing
the SVD of A’.

Received by the editors July 2, 1993; accepted for publication by N. J. Higham (in revised
form) May 13, 1994. This research was supported in part by U. S. Army Research Office contract
DAAL03-91-G-0032.

Department of Mathematics and Lawrence Berkeley Laboratory, University of California, Berke-
ley, California 94720 (minggunath. berkeley, edu).

Department of Computer Science, Yale University, P. O. Box 208285, New Haven, Connecticut
06520-8285 (eisenstat-stan@cs. yale. edu).

793



794 M. GU AND S. C. EISENSTAT

We assume that m > n; the case m <_ n is similar and is treated in detail in [15]
and [16]. We write

0 =(el G) 0

where Ui E Rmxn, U2 E Rtax(m-n), U E R(m-i)xn, Ui E R(m-i)x(m-n-i), and
D, D’ E Rnxn are diagonal matrices. Then (1) and (3) can be rewritten as

A U’VT u1 U2 ( D ) VT
and

D’ ) v,T UD’V’TA’ V’.’V’T V U 0

There are three downdating problems to consider.
1. Given V, D, and a, compute V’ and
2. Given U (or U), V, and D, compute U’ (or U), Y’, and D’.
3. Given U (or U) and D, compute U’ (or U) and D’.

We assume that Problem 1 has a solution, i.e., that a is the last row of some
matrix A with singular value decomposition (4). Equations (1) and (2) imply that

A,TA V’D’2V’T V(D2 zzT)VT,

where z VTa E Rn. Thus the singular values of A’ can found by computing the
eigendecomposition D2-zzT S 2sT, where S Rnn is orthogonal and Rnn
is nonnegative and diagonal. The diagonal elements of D’ are the singular values.
The right singular vector matrix V’ can be computed as VS. We present Algorithm I
to solve Problem 1 stably in 2-3.

Since Problem 1 requires computing the eigendecomposition of D2 zzT, small
perturbations in V, D, and a can cause large perturbations in V’ and D’. We analyze
the ill-conditioning of the singular values in 6. Our perturbation results are similar
to those of Stewart [26] in the context of downdating the Cholesky/QR factorization.

Problems 2 and 3 always have a solution. We show that there exists a column
orthogonal matrix X R(m-1)xn such that

A’= XCVT,

where C Rnxn is given by

( ;),uu D,C= I
1+#

with ul a vector and # >_ 0 a scalar..The singular values of A’ can found by computing
the singular value decomposition C Q gt WT, where Q, W Rnn are orthogonal

We use the definition of stability in Stewart [25, pp. 75-76]. Let ’(A’) be a function of the input
data A’. We say that an algorithm for computing ’(A’) is stable if its output is a small perturbation
of ’(), where . is a small perturbation of A’. This notion of stability is similar to that of mixed
stability [2], [3] and is used in the context of downdating least squares solutions and Cholesky/QR
factorizations [2], [3], [{22], [26].
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and gt E Rnn is nonnegative and diagonal. The diagonal elements of D’ fl are
the singular values. The left singular vector matrix U can be computed as XQ. The
right singular vector matrix V can be computed as VW. We present Algorithm II to
solve Problems 2 and 3 stably in 4-5.

For Problems 2 and 3 the singular values are well conditioned with respect to
perturbations in the input data, whereas the singular vectors can be very sensitive to
such perturbations (see 4.1).

Bunch and Nielsen [5] also reduce Problem 1 to computing the eigendecomposition
of D2 zzT but their scheme for finding this eigendecomposition is based on results
from [6] and [11] and can be unstable [5], [6]. They solve Problem 2 by reducing it
to Problem 1, which risks solving a well-conditioned problem using an ill-conditioned
process.

Algorithm I solves Problem 1 in O(n3) time, and Algorithm II solves Prob-
lems 2 and 3 in O(mn2) time when U1 is given. As with the SVD updating, algorithm
in [15] and [17], Algorithm I can be accelerated using the fast multipole method of
Carrier, Greengard, and aokhlin [7], [14] to solve Problem 1 in O(n2 log22 e) time, and
Algorithm II can be accelerated to solve Problems 2 and 3 in O(mn log22 e) time, where
e is the machine precision. This is an important advantage for large matrices. Since
the techniques are essentially the same as those in [15] and [17], we do not elaborate
on this issue.

We take the usual model of arithmetic:2

fl(a o ) (a o ) (1 + ),

where a and are floating point numbers; o is one of +, -, x, and +; fl(a o ) is the
floating point result of the operation o; and I[ <_ e. We also require that

fl(V/) V/ (I q- )

for any positive floating point number a. For simplicity we ignore the possibility of
overflow and underflow.

2. Solving Problem 1. From (2), (4), and (5) we have

A= aT -U
0

and At---U’ (D’) V’T
0

so that

VD2VT= ATA AtTA + acT= V’Dt2V’T + aaT.

Letting z VTa, this equation can be rewritten as

V’Dt2V’T Y (D2 zzT) YT.

Thus the eigenvalues of D2- ZZT are the diagonal elements of Dp2 and must be
nonnegative. If .’2sT is the eigendecomposition of D2 zzT, then V VS and
D .

2 This model excludes machines like the CRAY and CDC Cyber that do not have a guard digit.
Algorithms and II can easily be modified for such machines.
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Algorithm I uses the scheme in 3 to compute a numerical eigendecomposition
J’2T satisfying

=+O(e) and ’=J0’+O(ellD[12)
where the eigendecomposition

D2 22r D’2T

is exact and

D D + O(IIDII.) and 2 z + O(elIDII).

It then computes a right singular vector matrix satisfying

?’= vg +
Since V is orthogonal, the error in z can be attributed to an error in a:

Thus D and VS are the exact 8olution to Problem 1 with slightly perturbed input
data V, D, and , so that Algorithm I is stable.

Since small perturbation8 in D and a can cause large perturbations in D and S,
it follow8 that/ and can be very different from D and S, respectively. We analyze
the ill-conditioning of the singular value8 in 6.

The scheme in 3 takes O(n2) time, and computing VS takes O(n3) time. Thus
the total time for Algorithm I is O(n3).

Barlow, Zha, and Yoon [1] compute the eigendecomposition of D2 zzT by using
a variant of the LINPACK downdating procedure [10] to "reduce" D to bidiagonal
form and then solving the bidiagonal singular value problem. The total time appears
to be at least as large as that for Algorithm I.

3. Computing the eigendecomposition of D zzT. In this section we
present an algorithm for computing the eigendecomposition of D2 zzT, where D
diag(dl,...,dk), with dl _> _> dk >_ O, and z (l,...,k)T. In light of (6) we
assume that the eigenvalues of D2 zzT are nonnegative.

We further assume that D and z satisfy

(7) dk > O, d d+l >_ 9[[D[[2, and [1-> 9[[D[[2,

where 0 is a small multiple of e to be specified in 3.4. Any matrix of the form
D2 zzT can be stably reduced to one that satisfies these conditions by using the
deflation procedure described in 3.5.

3.1. Properties of the eigendecomposition. The following lemma charac-
terizes the eigenvalues and eigenvectors of D2 zzT.

LEMMA 3.1 (Bunch and Nielsen [5]). The eigenvalues ofD2-zzT are nonnegative

if and only if zTD-2z <_ 1.
Assume that zTD-2z

_
1. The the eigendecomposition of D2- zzT can be

written as S2T where S (sl,..., sk) and diag(wi,... ,w). The eigenvalues
2 k{wi }i=1 satisfy the secular equation

(8)
.= dj
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and the interlacing property

(9) dl > wl > d2 > > d > wk > 0.

The eigenvectors are given by

(10) si d2-wi j=l

Conversely, given D and the eigenvalues of D2 T, we can reconstruct .
LEMMA 3.2. Given a diagonal matrix D diag(dl,..., dk) and a set of numbers
}=1 satisfying the interlacing property

dl > O1 > d2 > > dk > Ok >_ O,

there exists a vector (l,...,k)T such that the eigenvalues of D2 2T are

}=1" The components of are given by

where the sign of i can be chosen arbitrarily.
Proof. This is Lhwner’s construction [20] of 2 given -D2 and the eigenvalues of

(_D + SSr. n
3.2. Computing the eigenvectors. In practice we can only hope to compute

an approximation &i to wi. But problems can arise if we approximate si by

(1 __k )T/I^2 (d ^222 d w

(i.e., replace wi by &i in (10), as in [51). For even if &i is close to wi, the approximate
^2ratio Cj/(d-wi can still be very different from the exact ratio j/(d-w2), resulting

{wi}i=l are computed andin a unit eigenvector very different from si. After all the k

all the corresponding eigenvectors are approximated in this manner, the resulting
eigenvector matrix may not be orthogonal.

But Lemma 3.2 allows us to overcome this problem (cf. [18]). After we have
computed all the approximations k{wi}i=l, we find a new vector such that 2 k

are the exact eigenvalues of D2 ;;T and then use (10) to compute, the eigenvectors
of D2 T. Note that each difference

&y d/2 (&j di)(&j + di) and d d (dj di)(dj + di)

in (12) can be computed to high relative accuracy, as can each ratio and each product.
Thus Iil can be computed to high relative accuracy. We choose the sign of i to be the
sign of i. Substituting the exact eigenvalues {b2}k= and the computed into (10),
each eigenvector of D2 T can also be computed to componentwise high relative
accuracy. Consequently, after all the singular vectors of D2 T are computed, the
eigenvector matrix will be numerically orthogonal.
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To ensure the existence of , we need {i}/_.1 to satisfy the interlacing prop-
erty (11) But since k(wi}=l satisfy the same interlacing property (see (9)), this
is only an accuracy requirement on (&i}k= and is not an additional restriction on
D2 zzT.

We use the eigendecomposition of D2 22T as an approximation to the eigende-
composition of D2 zz This is stable as long 2 is close to z.

3.3. Finding the eigenvalues. To guarantee that 2 is close to z, we must ensure
that the approximations {&i}ki= to the singular values are sufficiently accurate. The
key is the stopping criterion for the root-finder, which requires a slight reformulation
of the secular equation (cf. [5], [18]).

Consider the root w (d+, d), for 1 k- 1; the root w [0, d) is treated
in a similar manner.

First sume that3 wi (di+ d+d+.) Let 5 d -di+ and let

and i() (j )(dj + di+l + )i()
(5i )(di + di+ + )

Setting w di+ + , we seek the root wi di+ (0, 5/2) of the reformulated
secular equation

gi() =- fl( -- di+l) -1 + i() + () 0.

Note that we can compute each ratio /((5j -)(dj + di+l + ()) in gi() to high
relative accuracy for any ( E (0, 5/2). Indeed, either 5j ( is a sum of negative terms
or I(I <- 15jl/2, and dj + di+l + is a sum Of positive terms. Thus, since both ()
and i(() are sums of terms of the same sign, we can bound the error in computing
gi(() by

+ +
where is a small multiple of e that is independent of k and (.

Next we assume that wi [d+2d+1, di). Let 5j dy di, and let

Y and ()= E (sj )(dj+d+)i() (5 )(dj + di + )j=l j=i+l

Setting w di + (, we seek the root i wi -di [5i+1/2, 0) of the equation

+ d,) -1 + + 0.

For any ( e [5i+/2, 0), we can compute each ratio /((hj ()(dj + di + ()) to
high relative accuracy (either 5j is a sum of positive terms or ( 5/2, and
dj +d+( dj + (di +(), where ( di/2), and we can bound the error in computing
gi(() before.

In practice a root-finder cannot make any progress at a point where it is im-
possible to determine the sign of gi(() numericMly. Thus we propose the stopping
criterion

(13)

This condition can easily be checked by computing fl ( di+di+l di+di+l
2 )" Iffl( 2 ) > O, then

di+di+l(di+l 2 ) otherwise 2
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where, as before, the right-hand side is an upper bound on the round-off error in
computing gi(). Note that for each there is at least one floating point number that
satisfies this stopping criterion numerically, namely, fl().

We have not specified the scheme for finding the root of g(). We can use the
bisection method or the rational interpolation strategies in [4], [5], [13], and [19]. What
is most important is the stopping criterion and the fact that, with the reformulation
of the secular equation given above, we can find a that satisfies it.

3.4. Numerical stability. We now show that the vector defined in (12) is
close to z.

THEOIEM 3.3. /f 0 2v]k2 in (7) and each satisfies (13), then

The proof is nearly identical to that of the analogous result in [18]. As argued
there, the factor k2 in and (14) is likely to be O(k) in practice.

3.5. Deflation. We now show that we can stably reduce D2 zzT to a matrix
of the same form that further satisfies

dk > O, di-di+l >_ OIIDII2, and ]4il >_/IIDll2,

where is specified in 3.4. Similar reductions appear in [5] and [91.
Partition D and z as

( )D D1 and z

First assume that dk O. Since D2 zzT is nonnegative definite, its diagonal
elements must be nonnegative, so that d- >_ 0. Thus 0 and

0

The eigenvalue 0 can be deflated, and the matrix D Zl 2:17‘ has nonnegative eigen-
values and is of the same form but of smaller dimensions. This reduction is exact.

In the following reductions we assume that d > 0. Recall from Lemma a.1 that
the eigenvalues of D zz are nonnegative if and only if

Assume that Iil < OIIDll2 We illustrate the reduction for i- k. Changing k to
0 perturbs z by O(OllDII2). In the perturbed matrix

the eigenvalue d can be deflated, and the matrix D zlz satisfies (115) and is of
the same form but of smaller dimensions. This reduction is stable.

Now assume that d- d+ < OIIDIl. We illustrate the reduction for i k- 1.
Changing d to dk_ perturbs D by O(OIIDII). Let a be a Givens rotation in the
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(k- 1, k) plane such that (Gz)k O. Then when we symmetrically apply G to the
perturbed matrix, we get

dk-1
zl zl

d2k-1 )
(where 1 1,... ,k-2, -1 + The eigenvalue d_ can be deflated, and

the matrix O12 1T satisfies (15) and is of the same form but of smaller dimensions.
This reduction is also stable.

4. Solving Problems 2 and 3. In this section we present an algorithm that
solves Problems 2 and 3 by reducing them to the problem of finding the singular value
decomposition of a simple matrix.

4.1. The algorithm. Partition U1 and U2 as

and

where Ull E R(m-1)n, Ul E Rn, V12 R(m-1)(m-n), and u2 Rm-n. Then from
(2) and (4)we get

\/0
aT uT1DVT.

The decomposition of A’ in (16) is almost a singular value decomposition Ull
is close to being column orthogonal since it is obtained by deleting the last row from
U1. In the following we decompose Ull into a product of an (m- 1) x n column
orthogonal matrix and a simple n x n matrix. To this end we will need a scalar # > 0
and a vector x Rm-1 such that Ilulll 2 + 2 1 and the matrix

Uii

is column orthogonal. We show how to compute Y in 4.2.
Note that if # 1, then ul 0 and x 0, so that Ull is column orthogonal. In

general # 1, but we can orthogonally transform the rows of Y so that # 1. The
matrix

1 uluTH=
I- 1+---

-Ul
T

is orthogonal and (UlT, #)H (0,..., 0, 1)T. Since YH is column orthogonal, it follows
that

(18) YH Ull I
1 + 0 1

0 1

where

xX=Vll I-- 1+----
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is column orthogonal.4 Thus

(Ull x) (V x) HHT (X O) HT X (I-
\

which implies that

Vii Z (I(i.)

Plugging (19) into (16), we get

( 1
(20) A’=X I

1+#uluT1) DVT :_ XCVT.

Let Q 2WT be the SVD of C, where Q, W E Rnn are orthogonal and F/E Rnn is
nonnegative and diagonal. Substituting into (20), we get

A’ XQ awTvT (XQ) gt (VW)T.(21)

Comparing with (5), we have U XQ, D’ , and V’ VW. We specify U
in 4.2.

Algorithm II computes a numerically column orthogonal matrix Y and a numer-
ical singular value decomposition ( T satisfying (see 4.2 and 5)

(22) ]Y / O(e),

where

Y= tilt #

is a column orthogonal matrix with

and

and

( 1 T)/ Qf’lWC-- I
1+/2

D D + O(ellDIl).

is an exact SVD with

Let

--Ull I
1+/2

Algorithm II then computes numerical approximations to U and V satisfying

O XQ + O(e), 0 + O(e), and IY’ VITV + O(e),(23)

4 Paige [22] has proven similar relations.
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where (XQ,) e R(m-1)x(m-1) is orthogonal (see 4.2). Since XQ, , and VI/V
solve Problems 2 and 3 exactly for slightly perturbed input data rl, D, and V,
Algorithm II is stable.

It is well known that the singular values of A’ are always well conditioned with
respect to perturbations in A’, but that the singular vectors of A’ can be very sensitive
to such perturbations [12], [25]. Since

A’= UllDVT ]IDVT + O(IIDII.) 20v + O(ellDIl.),

this guarantees that ’ ’ is close to D’. However, ( and can be very different
from Q and W, respectively, and thus/) and ’ can be very different from U and
V’, respectively.

Consider the case where U is given. It takes O(mn) time to compute / and
x (see 4.2), it. takes O(mn) time to compute X, it takes O(n2) time to compute
the SVD of C (see 5), and it takes O(mn2) and O(n3) time to compute XQ and
VW, respectively.. Algorithm II computes both XQ and VW for Problem 2 and
computes XQ for Problem 3. Thus the total times for solving Problems 2 and 3 are

O((m + n)n2) and O(mn2), respectively.

4.2. Computing Y. In this subsection we show how to compute the column
orthogonal matrix Y (see (17)).

First we assume that U2 is known. Let P be an orthogonal matrix such that
Pu2 [[u2[[2el, where e (1,0,...,0)T, and define (z2,X12) V12PT, where
z2 E Rm- and X12 E R(m-1)x(m-n-1). Since

u u pT uT I1  .11 0

is orthogonal, the matrix

is column orthogonal and + . Thus we set x = z2 and #--Ilull. It
takes O(m (m- n)) time to compute x and #. This computation is stable (see (22)).

From (18) we have

uT # 0 Im-n- 0 I 0

and thus (X, X2) e R(m-)(m-) is orthogonal. We set U X2 (see (5) and (21)).
It takes O(m (m-n)) time to compute X12. This computation is also stable (see (23)).

Next we assume that U2 is not known. Let u (xT,/) be the result of applying
the Gram-Schmidt procedure with reorthogonalization [8, 4] to orthonormalize e
(0,..., 0, l)T to the columns of U. If u 0, then

is column orthogonal and yyTen en, SO that

1 (yyTen)n uTuz + #2.



DOWNDATING THE SINGULAR VALUE DECOMPOSITION 803

If u 0, then U1UTen en, so that 1 (UiUTen)n uTlu, and we get a nonzero u
by repeating the Gram-Schmidt procedure with a random unit vector in place of en
(note that in this case # 0).5 The time for computing x and # is O(lmn), where
is the number of reorthogonalization steps, which is a small constant in practice [8].
These computations are stable (see (22)).

4.3. Another perspective. In this subsection we present another derivation of
the decomposition A XCVT, which relates Algorithm II to a method for downdat-
lug the QR decomposition (cf. [23]).

Consider the augmented matrix

From (18), (17), and (16) we have

y (u D)(0 ViiD) (0 AtY)# 0 1 uTD 1 aTv

On the other hand, from (18) we get

p, 0 # 0 0 1 1 uTD 1 uT1 D

Thus AV XC, and the result follows.
Park and Van Huffel [24] downdate by using plane rotations to reduce Ji to a

matrix of the form

(0 .)
where B F’TA’VG is bidiagonal and F and G are orthogonal, and then solving
the bidiagonal singular value problem. The total time appears to be at least as large
as that for Algorithm II.

5. Computing the SVD of C. In this section we present an algorithm for
computing the singular value decomposition of the matrix C E Rkk given by

1 uuT)D,( 41 c I-
1

where D diag(d,... ,dk) with d > d2 > > dk > 0, ui (#1,... ,l-k)T with

Iluil12 _< 1, and #-- V/1- Iluill. For convenience we define dk+i 0 and #k+ #.
We assume that

(25) di- di+. > OliDII and I#il > 6,

where is a small multiple of e to be specified in 5.3. Any matrix of the form (24)
can be reduced to one that satisfies these conditions by using the deflation procedure
described in 5.4.

5 The same construction is used in downdating the QR decomposition [8].
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5.1. Properties of the SVD. In this subsection we establish some properties
of the singular value decomposition of C. The following lemma characterizes the
singular values and singular vectors.

LEMMA 5.1. Let Q ([2, O) WT be the SVD of C with

Q (ql,..., qk), f diag(wl,...,Wk), and W (Wl,... Wk).

Then the singular values k{03i}i=1 satisfy the secular equation

k+l 2

(26) f2(w) .= jd2-" #J_ w2 --0

and the interlacing property

(27) 031 > d2 > > dk > 03k > O.

The singular vectors are given by

(28)

2where i,j 03 + #d, and

(29)

Proof. Since # > 0 and dk > 0 (see (25)), C is nonsingular and 03k > 0. Since C
is square and CTC D(I uluT1)D, the squares of the singular values 2 k{03 }i=1 and
the right singular vectors {qi}k= are the eigenvalues and eigenvectors, respectively,
of n2 -(DUl)(Du)T. Relations (27) and (29) follow immediately from Lemma 3.1
with z Dul. Moreover, the singular values satisfy the secular equation

k )2 k+l k+l 2 2d)#j
03
2(30) 0 f() - + (’ ,+

j=l d 032
=1 = dj

k+l 2

j=l d _032’

which implies that they satisfy (26) as well.
From (29) we see that wi is a multiple of (D2 -032I)-1Dul. Since 03iqi Cwi, it

2i)-Du Simplifying,follows that qi is a multiple of C(D2
-03

2I)-1Dul2I)-IDu uT D(D2 032I)-1Dul D(D2 -03i ul(31) C(D2
03i 1+#

Because 03i satisfies (30), we have

k 2 2

uT D(D2 03I)-1Dul .= ddJ#- 032
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Plugging this into (31), we have

1+#

Ignoring the first factor and normalizing, we get (28). D
The following lemma allows one to construct a matrix of the form (24) using D

and all the singular, values.
LEMMA 5.2. Given a diagonal matrix D diag(d,..., dk) and a set of numbers

{}= satisfying the interlacing property

(32)

there exists a vector f*l and a scalar fz > 0 with I1111 + P 1 such that i=1 are
the singular values of

1O= I-- 1+----
The vector fi: (/2x,... ,k)T and scalar/2 +1 are given by

(33) ifzil q - ffay -d fi ga -d 1<i<k+1,
j=l d d2i j--i d32"/1 d/2,

where the sign of f-zi can be chosen arbitrarily for 1 <_ <_ k.

Proof. The numbers {&i k}= satisfy the interlacing property (11). By Lemma 3.2
there exists a vector 2 (,... ,k)T satisfying (12) such that the eigenvalues of

^2 kD2 ;;T are {wi}i=. Defining 21 D-:2, it follows that /2i satisfies (33) for
1 <_ i _< k. The first result of Lemma 3.1 implies that fiTczl TD-2p. <_ 1, so that
we can define/2 _/k+x V/1- 112x1122 It then follows that

OTO D2 DIzT D D2 T,

so that k{wi}=x are the singular values of 7. Consequently,

,
( 1H &J det(() det I

1+----j=l

k

?1:) det(D) =/2 H dj,

and hence

k/l-- H -5J’j=l

which is (33) for i k + 1.
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5.2. Computing the singular vectors. In practice we can only hope to com-
pute an approximation &i to wi. Yet it is well known that equations similar to (28)
and (29) can be very sensitive to small errors in wi (see 3.2). Lemma 5.2 allows us to
overcome this problem. After we have computed all the approximate singular values

k(&i}il of C, we find a new matrix whose exact singular values are (wi}i= and
then compute the singular vectors of ( using Lemma 5.1. Note that each difference,
each product, and each ratio in (33) can be computed to high relative accuracy.6 Thus

Ifil can be computed to high relative accuracy. We choose the sign of ]2i to be the
sign of #. Substituting the computed and and the exact singular values {&}
into (28) and (29), each singular vector of 7 can also be computed to componentwise
high relative accuracy. Consequently, after all the singular vectors are computed, the
singular vector matrices of C will be numerically orthogonal.

To ensure the existence of , we need {&i k}i= to satisfy the interlacing prop-
erty (32). But since the exact singular values of C satisfy the same interlacing prop-
erty (see (27)), this is only an accuracy requirement on the computed singular values
and is not an additional restriction on C. We can use the SVD of as an approx-
imation to the SVD of C. This is stable as long as fi and are close to ul and #,
respectively.

5.3. Stably computing the singular values. To guarantee that and f are
close to u and #, respectively, we must ensure that the approximations (&i}ki=t to the
singular values are sufficiently accurate. As in 3.3, the key is the stopping criterion
for the root-finder, namely,

(34)

where the secular equation (26) has been reformulated as gi() i() + i() 0 in
the analogous manner.

THEOREM 5.3. /f ---2k2 in (25) and each satisfies (34), then

(35) Ifi- #i.I <- 4rik211ul12, 1

_ _
k + 1.

The proof is again nearly identical to that of the corresponding result in [18]. As
argued there, the factor k2 in and (35) is likely to be O(k) in practice.

We have been assuming that Ilu 112+#2 1. In practice this is not always true due
to round-off errors. However, since a vector with norm near unity is close to an exact
unit vector to componentwise high relative accuracy, in practice u and # are given
to componentwise high relative accuracy. This implies that each term in the secular
equation (26) is still computed to high relative accuracy after the reformulation. Hence
the stopping criterion (34) holds, and and are close to u and #, respectively.

5.4. Deflation. We now show that we can reduce C to a matrix of the same
form that further satisfies

where is specified in 5.3.

6 Note that k+l is not computed from f- V/1 -I11 1122, which might not give high relative

accuracy.



DOWNDATING THE SINGULAR VALUE DECOMPOSITION 807

Assume that # #k+l < 0. Changing # to 0 perturbs # by 0(0). The perturbed
matrix

1 uu)D(I- 1+
h the same form but with 0. This reduction is stable (see 5.3).

Next sume that i} < for some i k. We illustrate the ce 1. Changing
1 to 0 perturbs u by O(). Partition Ul and D

(1) and D: ( dl )
Then in the perturbed matrix

(1 1 1)(d ) (dl)I
1+

the singular value d can be deflated, and is another matrix with the same form
but smaller dimensions. This reduction is also stable (see 5.3).

Now sume that di-di+l < 0llDll2 for some N k-1. We illustrate the reduction
for 1. Changing dl to d2 perturbs D by O(OllDII2). Let G be a Givens rotation
in the (1, 2) plane such that (Gu) 0, and let

, +,,,3,...,,k and diag(d2, d3,...,dk).

Then symmetrically applying G to the perturbed matrix, we get

G (I 1+# )) GT

1 GuluT1)GT(d2

0 0
T1=(I 1+

1
I- 1+

The singular value d2 can be deflated, and the remaining matrix has the same form
but smaller dimensions. This reduction is stable as well.

Finally assume that dk < OIIDII2 and d:-I- dk >_ OIIDII2. Changing dk to oIInl12
perturbs D by O(OIIDII2 ). Let

/ diag (dl,..., dk-2, dk-1, OIIDll2).

Then the perturbed matrix

1 lUlT ) /I--
1+-----

has the same form but with dk >_ 0llDlle. If the relation d:-i -dk >_ OIIDIIu no
longer holds, then we can apply the previous reduction to reduce the matrix size.
This reduction is again stable.
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6. Ill-conditioning of Problem 1. In this section we bound the effect of per-
turbations in a on the singular values of A. The effect of perturbations in V and D
is similar. We assume that D is nonsingular.

From (20) and the second relation in (16), we have A’ XCVT, where X is
column orthogonal and

C=D
1ulu’D,

1+#
2with Ul D-iVTa and

Let 5 be a vector slightly perturbed from a with IID-1VTs]I2 <_ 1, and let .’ be
the downdated matrix for the input data V, D, and 5. As before, we have ft XCVT,
where X is column orthogonal and

’--D 1
-fi tT D,1+#

with t D-IVT5 and
Let wi and i be the ith largest singular values of A and A, respectively. Since

the singular values of A and A are the singular values of C and C, respectively, we
have Ii- wil <_ IIC- CII2 (see [12, p. 428]).

Since

1 ul D-1VT(5 a),

we have

Similarly,

so that

Since

we have

(1 I1111) (1 IIlll)
x/i- II’all + x/1- Iluxll:

( + u)T ( u)
x/1- II’alll / V/1 Ilulll"

2- C 1--j---ulaTV 1--J---u15Tv
1+

(1 + p,)(1 +/9,) 1+/5,
(a- a)Tv,

I,z,- ’1-< I1’- cii2
Ilaxll2<

(1 + g)(1 + ,a) Ilall: + 1 + p i + ,a
<- IP gl I1’1-1: + I1 ux I1= I1’11: + Ila ,11=

4 max { lID-x I1. Ilall:, 1} Ila ’11:.<
v"i- I1111
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When the factor IID-111211al12 is very large, or when Ilu1112 is near unity, we cannot
guarantee that is close to w. This result parallels that of Stewart [26, p. 205] in
the context of downdating the Cholesky/QR factorization.

To better explain the role of Ilu1112, Stewart [26] also shows that

Ilu ll > 1

(di/wi)2 + 1"

Thus if Ilux 112 is near unity, then Wn is close to zero and C (and hence A’) is close to
being singular. And if any di is reduced (to wi) by a large factor, then Ilu1112 is near
unity.
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OPTIMALLY WEIGHTED MUSIC FOR FREQUENCY ESTIMATION*

PETITE STOICAt, ANDEITS ERIKSSONt, AND TORSTEN SDERSTR)M?

Abstract. This paper introduces a weighted MUSIC (multiple signal classification) algorithm
for estimating the frequencies of sinusoidal signals from noise-corrupted measurements. The large-
sample variance of the weighted MUSIC is determined, and the optimal weighting matrix which
minimizes that variance is derived. The optimally weighted MUSIC is shown to provide more accurate
frequency estimates than the unweighted MUSIC and ESPRIT (estimation of signal parameters via
rotation invariance techniques).

Key words, signal processing, spectral line analysis, frequency estimation, eigenanalysis-based
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1. Introduction. MUSIC (multiple signal classification) has received consider-
able attention in the recent signal processing literature, owing to its high-resolution
capabilities and its conceptual simplicity; see [1], [6], [8]-[10], [14], [15], [18]. In this
paper we are interested in using MUSIC for frequency estimation. This application
of MUSIC is less studied, from the statistical standpoint, than the use of MUSIC in
array processing. For thorough statistical analyses of the performance of MUSIC in
the array processing application, the reader is referred to [10], [14], [15].

The statistical properties of the frequency estimates obtained with MUSIC have
been recently established in [18]. Making use of the results in [18], Eriksson, Stoica,
and Sbderstrbm [2]. considered the problem of optimizing the statistical accuracy of
an eigenanalysis-based frequency estimation method related to MUSIC by using a
Markov-based estimation approach. In this paper we tackle the problem of optimally
designing a MUSIC frequency estimator from a different perspective. In contrast
to [2], we herein consider the standard form of MUSIC, which we extend by the
appropriate inclusion of a weighting matrix. We derive an optimal form for the weight
and show, by means of simulations, that the optimally weighted MUSIC performs
slightly better in the studied cases than both MUSIC and ESPRIT. Note that the
unweighted MUSIC is usually less accurate than ESPRIT, even though none of these
two methods is uniformly better than the other; see [18]. The work reported in this
paper was inspired by the related work in [10] which deals with weighted MUSIC
for the array processing problem. Other related works are [11] and [16] which derive
optimally weighted ESPRIT algorithms for array processing. It is interesting to note
that in the standard array processing case, the optimal weight for MUSIC is equal to
the identity matrix (i.e., the unweighted MUSIC is optimal) [15], whereas this is not
the case for ESPRIT; see [11], [16]. An optimally weighted ESPRIT algorithm for
the frequency estimation problem has not yet been derived, but this could be done
by combining the analysis techniques in this paper and in [11], [16].
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2. Statement of the problem. Consider the following complex-valued sinu-
soidal signal

where it is assumed that the frequencies (wk} are distinct, the phases (k} are in-
dependent random variables uniformly distributed on [0, 27r), and the amplitudes
{k} are strictly positive. It is further assumed that noisy measurements of s(t) are
obtained as

+

where the noise e(t) is white, Gaussian distributed, and independent of {x(t)}, with

(2.3) Ee(t) 0; Ee(t)e(s) 0; Ee(t)e* (s) a26t,8 V t, s.

Hereafter, E stands for the expectation operator, the superscript denotes the com-
plex conjugate, and 5t,8 denotes the Kronecker delta. Concerning other notational
conventions to be used in the sequel, the superscripts T and H denote the transpose
and complex conjugate transpose, respectively. Furthermore, T(.) and Af(.) denote
the range and the null space of the matrix in question.

The problem of interest in this work concerns estimation of the frequencies
from the samples {z N-t-m-(t)}t= (here m is a positive integer to be chosen by the user,
see below, and N + m 1 is the number of available data samples). The number n
of sine waves in the observed signal is assumed to be known. For estimation of n, we
refer to [41, [8], and [9].

3. Weighted MUSIC. The following additional notation is required to describe
the MUSIC algorithm and its weighted version considered in this paper. Let

+ 1))r,

where m > n. Also, let

Note that A is a Vandermonde matrix which has full column rank under the assump-
tions that {wk} are distinct and m > n (see, e.g., [5]). Using (3.2)-(3.5), y(t) can be
expressed as

(3.6) y(t) Ax(t) + e(t).

Under the assumptions made, the covariance matrix of y(t) can be readily derived
from (3.6) as

R = Ey(t)yH (t) APAH + a2I,
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where P is the covariance matrix of the signal vector,

(3.8) P = Ex(t)xH (t) "..
0 2On

Let {,kk)’=l denote the eigenvalues of R, arranged in nonincreasing order, and let
V mk)k= denote the corresponding orthonormal eigenvectors. The so-called signal

eigenvalues (k)= are assumed to be distinct (this condition is required to conduct
the analysis later on, and apparently cannot be relaxed; however, it is a minor restric-
tion that excludes very few combinations of signal parameters, if any). Introduce the
following matrices,

(3.9) S--(v v,), G-(v,+ Vm)

and note the following well-known properties of the range spaces of S and G (see,
e.g., [2], [8]-[12], [14], [15], [18]):

n(s) n(A), T(G) Af(AH),

which can be rewritten in the following equivalent forms,

SSH A(AHA)-IAH, YI = GGH I- A(AHA)-:AH.

0.) nMUSIC relies on the above properties. The frequencies { }k=: are estimated as the
locations of the n smallest minima of the function

f(w) aH (w)Ia(w), w e [-Tr, r),

where

and where C (and, similarly, ) is the matrix G (S) made from the orthonormal
eigenvectors of the sample covariance matrix

(3.13) -- ".

?*m--1 r0

I N+l-k z(t)z*(t + k), (k > 01.
t=l

The MUSIC frequency estimator described above is often referred to as the "spec-
tral MUSIC." Another form of MUSIC, called the "root MUSIC," is outlined in Ap-
pendix A.1. Root MUSIC usually is preferred to spectral MUSIC, owing to its simpler
implementation and higher finite-sample resolution. In Appendix A.1, however, we
show that the asymptotic variances of the frequency estimates obtained with these
two versions of MUSIC coincide. This means that in the following, all results derived
for the spectral MUSIC also apply to the root MUSIC.

Let I2V denote a nonnegative definite weighting matrix. We modify the MUSIC
cost function (3.12) by including I)d in the following way,

f(w) aH
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Since lI is idempotent, (3.14) reduces to (3.12) for I2d I (the unweighted case).
The method which estimates the frequencies by minimizing (3.14) is called weighted
(spectral) MUSIC.

It should be noted that a seemingly simpler form of weighting the MUSIC cost
function is

(3.15) f(w) aH(w)OHa(w).

However, the weighted form (3.15), if treated directly, leads to a more complicated
statistical analysis than (3.14) does. The reason is the nonuniqueness of the so-called
noise-eigenvector matrix G (any post-multiplication of G by a unitary matrix gives
another valid G). This means that, in a large-sample analysis, ( cannot be just
replaced by G; or if it is, then G should be considered as random (dependent on
the realization). See [15] for more details on this aspect. Now, interestingly enough,
(3.15) can be obtained from (3.14) by .setting Ifd (Id(H in (3.14) (and vice versa,
(3.15) with I (H( reduces to (3.14)). This means that (3.15) does not need to
be analysed separately from (3.14).

4. Some preliminary results. The derivation of the large-sample variance of
the weighted MUSIC and the minimization of that variance with respect to the weight,
require a number of results that are presented in the following. A central role in the
subsequent analysis in 5 and 6 is played by the notion of centro-symmetric matrices.
That is why the next definition and properties refer to this type of matrices.

Let I denote the so-called exchange matrix,

(0 1)
(the dimension of which will follow from the context).

DEFINITION 1. A n n-matrix Q is said to be centro-symmetric (cs) if

iQi Q* or equivalently Qn-i+l,n-j+l Qi*,j,

where Qi,j denotes the (i, j)-element of Q.
If Q is Hermitian then the above definition reduces to requiring that

Qi,j Qn--j/1,n--i/1,

which, in turn, is equivalent to requiring that Q is symmetric about its "northeast-
southwest" diagonal (such a matrix is called persymmetric; see, e.g., [5]). The matrix
R defined in (3.7) is Hermitian and Toeplitz (hence, persymmetric), which means that
it is cs as well.

LEMMA 1. Let Q be cs and let Qf denote the Moore-Penrose pseudoinverse of Q.
Then Q is also cs.

Proof. Let the singular value decomposition of Q be

Q u-,vH"

Then the Moore-Penrose pseudoinverse of Q is (see, e.g., [13], [5])
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It follows at once that

However, (Q*)t (Qt)*, and the lemma is proven.
LEMMA 2. The signal-eigenvector matrix S satisfies

IS S’D,

where

0 O)ei’n

{%} e [0,
Proof. Since R is cs it follows that

Since the orthonorinal eigenvectors associated with distinct eigenvalues are unique,
modulo a multiplication by a unit-amplitude scalar, it readily follows that

iVk veik for some 0’k e [0, 2r) (k 1,...,n),

which proves the assertion columnwise.
LEMMA 3. Let

(4.2) A ".. h A a2I.
0 An

The matrix

Proof. Since An+l Am a2, it follows that one can write R as

(4.3) R SASH 4- r2GGH SSH -}- rr2I,

which implies at once that S;kSH is cs. Then, by Lemma 1, S-ISH (S;kSH) is
cs as well.

Alternatively, by Lemma 2 we get

which is the sought result. El
LEMMA 4. The orthogonal projector H defined in (3.11) is cs.

Proof. Using Lemma 2 and (4.3), we get

R* iRi i(SASH)i + a2iHi (SASH)

which immediately gives the stated result.
LEMMA 5. Let

da(w)(4.4) d(w)=
dw
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i() *()(-*) o e [0, 2.),
dT(w)H* dH(w)IIiei(m-1)w for w Wk (k 1,..., n).

Proof. Equation (4.5) follows by direct calculation. To prove (4.6), first note (for
example from (3.11)) that

Ha(wk)--O, k-1,...,n.

In the above equation {wk}=l in H and a(wk) are to be seen as n scalar-valued
variables. Taking the derivative of both sides of the above equation with respect to
wk, we get

0 [Ha(wk)]’ n’a(wk) + Hd(wk),

which gives

Hd(w) -H’a(wk).

From Lemma 4, (4.5), and (4.7) we get

H*d* (wk -(il]i)’ia(w)e-(- ) iH’a(w)e-(-

.Hd(wk)e-i(m-)

and the proof is finished. [:]

The next section makes use of the above results to establish some relevant prop-
erties of the weighted MUSIC cost function, (3.14), and of its minimizing arguments
(which give the frequency estimates).

5. Statistical analysis. First we establish a simple but essential result.
THEOREM 1. Any function of the form (3.14), possibly corresponding to a non-cs

weighting matrix W, can be realized using a cs weighting matrix.

Proof. Let P in (3.14) be an arbitrary Hermitian (nonnegative definite) matrix.
For N -- oc, the orthogonal projection matrix II in (3.14) is cs, by Lemma 4. Next,
we prove that lI is cs also for N < oc. First note that since the eigenvalues of/
are distinct (with probability 1) and since/ is cs, it can be shown by paralleling the
proof of Lemma 2, that ( satisfies

where/ is diagonal with diagonal elements of unit magnitude. This readily implies
that lI is cs for N < oc as well. Using this observation along with Lemma 5, one can
write (3.14) as

f(w) aT(w)I***a* (w) aH(w)ei(m-)I*V*I*ia(w)e-i(m-)
aH(w)(iI*])(l*)( .I*)a(w) aH(w)I(l*)Ia(w).

Combining (3.14) and (5.1) gives

f(w) aH(w)IVIa(w),
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where

1v +

Since V is cs, the assertion follows.
From here on, we assume that the weighting matrix IV in (3.14) is cs. According

to Theorem 1, this is no restriction.
Next, we proceed to derive the large-sample variance of the weighted MUSIC

estimates. The following notation will be required:

(5.2) Rp = Ey(t)yH (t p),

0 0

(5.3) Qp = Ee(t)eH(t -p) a2
1 cr2jp

0 0

In addition, it should be noted that the matrix I2d in (3.14) is allowed to depend on
sample variables. Usually, I]d is a consistent estimate of some desired but unknown
weighting matrix W. The theorem that follows shows that replacement of W by
in (3.14) has no effect on the asymptotic variance o.f the weighted MUSIC estimates.
Thus, in the theorem, W denotes the limit of IV as N tends to infinity.

THEOREM 2. Let {&k} denote the estimates of {wk} obtained by minimizing the
weighted MUSIC cost function (3.14). The asymptotic (for N >> 1) variances of {&k }
are given by

dHWCkWHda(5.4) var() (diiWiid)2
k 1, n,

where

(5.5) Ck IIFkII,
if4

(5.6) Fk - E (/kHJpZk)jTp

(5.7) S S’a ,

and where ak and dk are shorthand notations for a(wk) and d(wk), respectively. Fur-
thermore, the matrix Ck introduced above is cs.

Proof. See Appendix A.2. [:l

For W I, formula (5.4) gives a simplified version of the variance formula for
the unweighted MUSIC derived in [18]. The simplification consists of reducing the
two-term formula for Fk in [18] to the one-term formula in (5.6). This simplification,
for the general case of W # I, relies heavily on Theorem 1, and the result proved
in 4 turns out to have important consequences for both the ensuing analysis and
the implementation of the optimally weighted MUSIC which is derived in the next
section.
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6. Derivation of optimal weight. This section addresses the problem of min-
imizing var(&k), as given by (5.4), with respect to W. First, however, we need to
show that the matrix Fk defined as

is positive definite.
LEMMA 6. The matrix Fk, (6.1), is positive definite for any finite value of rn.

Proof. See Appendix A.3.
Using the above lemma, the minimization of var(&k) is immediate. Let

(6.2) GHdk, H GHwG.

Then, using (6.1) and (6.2)in (5.4)we have

(6.3) var(&k) CkHHFk
H 2

By the Cauchy-Schwartz inequality,

(6.4) (HCk)2 ,k’l’H rml/2 F[/2k 12 <_

where use was made of the fact that F[1/2 exists (c.f. Lemma 6). From (6.3) and
(6.4) we immediately get the following result.

THEOREM 3. The large sample variance (5.4) of satisfies the inequality

(6.5) var(&k) _>
k k )k

Furthermore, the lower bound in (6.5) is achieved with the weighting matrix

(6.6) Wo GF[ GH.

Proof. Straightforward utilization of (6.2)-(6.4).
Since C GFGH (c.f. (5.5) and (6.1)), a straightforward calculation shows

that Wo is the Moore-Penrose pseudoinverse of Ck,

(6.7) Wo Ck.
This observation shows (by Lemma 1 and Theorem 2, last part) that Wo is cs, as
required. It also makes the connection between Theorem 3 and a similar result derived
in [10] for the related problem of array processing with spatially smoothed data. It
should be noted, however, that the derivation of (6.7) in [10] is incorrect (see Appendix
A.4). In order to obtain a correct derivation, the algebraic structure of the problem
under study must be fully exploited, as done above.

The optimal weight (6.6), when inserted into (3.14) in an estimated form, converts
that form of weighted^MUSIC cost function to a simpler expression of the form of
(3.15). To see this, let Ft denote an estimate of Ft (obtained, for example, as described
in 7), and let

(6.8) lo (/(H.
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Since (6.6) is invariant to post-multiplication of G by a unitary matrix, it follows that
IVo in (6.8) is a consistent estimate of Wo. By inserting Wo in (3.14), in lieu of
we obtain the following optimally weighted MUSIC cost function:

(6.9) fo(W) aH(w)P[Ha(w).

The implementation of the frequency estimator obtained by minimizing (6.9) with
respect to w, is described in the next section.

7. Implementation of the optimally weighted MUSIC. There is one fea-
ture of the optimal weight previously derived that should be discussed. The weight
(6.6) depends on the specific frequency whose variance is to be minimized, which
means that the optimal weight is not the same for all frequencies. This, however,
might have been expected as MUSIC estimates the frequencies one by one, and there
is no reason why a weighting matrix which is optimal for some wk should also be
optimal for another wt wk. The dependence of Wo on wk, (k 1,..., n), increases
the computational cost of the optimal MUSIC estimator. This difficulty aside, the fol-
lowing multistep procedure may be used to implement the optimally weighted MUSIC
frequency estimator.

1. Compute / and its eigenelements. Determine unweighted (root) MUSIC
estimates of Wk.

2. For k 1,...,n perform the following: Let &k denote the estimate of
obtained in Step 1. Use &k and the eigenelements of/ to obtain a consistent esti-
mate k of Fk in (6.1). Then determine an improved estimate & of w, by locally
minimizing the function (6.9) around &k (a Gauss-Newton algorithm, as developed
in [3], appears to be a good choice for solving the minimization problem).
Note that estimation of &g in Step 2 is completely decoupled from the determination
of the other frequencies. Thus, if so desired, Step 2 may be performed for only some
frequencies in which one has particular interest. Note also that Step 2 might be
repeated using wk,

o in lieu of &k, to estimate Fk. This additional step may have a
beneficial effect on the estimation accuracy whenever the standard MUSIC estimates

{&} have poor accuracy.
The next section studies, by means of numerical calculations and simulations, the

statistical performance achieved by the optimally weighted MUSIC frequency esti-
mator implemented as outlined above, and makes comparisons with the performance
corresponding to the unweighted MUSIC (Step 1 above) and ESPRIT [12].

8. Numerical examples. Example 1. Consider the case of estimating the fre-
quency of a single sine wave, n 1. Some straightforward calculations show that the
large sample variance of the optimally, weighted MUSIC is given by

2(y4
(8.1) varopt MUS,C(&) aaNm2(m 1)’
which is the same as the large sample variance of ESPRIT (see [18]). The variance of
unweighted MUSIC is given by (once more, see [18])

12a4(m2 + 1)var(&) 5o4Nm3(m2_ 1)

The factor aa/N in the expression for Fk (5.6) may be omitted since it has no effect on the
estimates obtained. Also, recall from the discussion preceding Theorem 2 that the frequency esti-
mates, obtained from the minimization of (6.8) with or without the on G and Fk, have the same
asymptotic accuracy.
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FIG. 8.1. Comparison between MUSIC and optimally weighted MUSIC for estimating two fre-
quencies, varMusIc(&j)/varoptMUSiC(&j) versus frequency separation Aw, m 5, 10, 20, and 40.

which is slightly larger than (8.1).
Example 2. Consider the case of two sine waves, n 2. For this case, the

variance of the estimates &z and &2 depends only on the frequency separation Aw
Iwz -w21 (see, e.g., [18]). In Fig. 8.1, the optimally weighted MUSIC is compared to
the unweighted MUSIC. The ratio varMusic/VaroptMUSIC is displayed versus frequency
separation, for m 5, 10, 20, and 40. Note that the large sample variance expressions
can be written as f(Aw, m)/(NSNR2), and thus the ratio varMusic/VaroptMUSiC does
not depend on the number of data samples, N, and the signal-to-noise ratio (SNR). In
Fig. 8.2, a comparison between optimally weighted MUSIC and ESPRIT is presented.
The ratio varESPRIT/VaroptMUSIC is displayed versus frequency separation, for m
5, 10, 20, and 40. From these diagrams we see that optimally weighted MUSIC always
is more accurate than unweighted MUSIC, as expected. The performance gain offered
by the optimally weighted MUSIC over MUSIC is more noticeable in the practically
relevant case of (very) small frequency separations. It can also be noted that the large
sample variance of the optimally weighted MUSIC frequency estimates is less than, or
equal to, the large sample variance of ESPRIT in the case of this example (whether
or not this is true enerally, however, s an open question).

Example 3. For the two cases in Examples 1 and 2, we compared the asymp-
totic variance expressions with empirical mean-square-errors (MSEs) obtained from
Monte Carlo simulations. Table 8.1 displays empirical and theoretical variances for
estimating the frequency of a single sine wave, the case considered in Example 1. The
number of data points is N 100, the true frequency is w 1.00 rad/s and the
signal-to-noise ratio is SNR 0 dB. Two different values of m are used; viz. m 5
and 10. In Table 8.2, the theoretical variance and empirical MSE are displayed for
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FI{]. 8.2. Comparison between ESPRIT and optimally weighted MUSIC for estimating two fre-
quencies, v&rESPPIT(&j)/varoptMUSIC(&j) versus frequency separation Aw, m 5, 10, 20, and 40.

TABLE 8.1
Theoretical variance and empirical MSE .for estimating a single frequency at w 1.00 rad/s

from 100 data samples, SNR 0 dB, m 5 and 10.

N-- 100, w-- 1.00rad/s, SNR--- 0dB

MUSIC optimal MUSIC ESPRIT
m MSE variance MSE variance MSE variance

5 2.13.10-4 2.08.10-4 2.10.10-4 2.00.10-4 2.17. 10-4 2.00. 10-4

10 4.33.10-5 2.45.10-5 3.89.10-5 2.22.10-5 4.01.10-5 2.22.10-5

the case of estimating the frequencies of two sine waves, separated by 0.2 rad/s; cf.
Example 2. Here we have Wl 1.00 rad/s and w2 1.20 rad/s, N 400, SNR 0
dB, and m 20. From Tables 8.1 and 8.2, we see that there is a reasonable agreement
between the theoretical and empirical results.

9. Conclusions. We have introduced a weighted MUSIC algorithm for estimat-
ing the frequencies of sinusoidal signals. From the large sample variance expression for
the weighted MUSIC frequency estimates, the optimal weighting matrix has been de-
rived. In a numerical study, we have shown that the variance of the optimally weighted
MUSIC frequency estimates always is less than the variance of the unweighted MUSIC
estimates. Also, the variance of the optimally weighted MUSIC frequency estimates
has been found in some numerical examPles to be less than the variance of the ESPRIT
estimates. However:, optimally weighted MUSIC is computationally more demanding
than unweighted MUSIC and ESPRIT, and from an application viewpoint the gain
in performance may not motivate the extra computational complexity. On the other
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TABLE 8.2
Theoretical variance and empirical MSE for estimating two frequencies at wl 1.00 and w2

1.20 rad/s from 400 data samples, SNR 0 dB, m 20.

MSE

N--400, Wl 1.00rad/s, w2-- 1.20rad/s, SNR--- 0dB, m-- 20

MUSIC optimal MUSIC ESPRIT
variance MSE variance MSE variance

Wl 2.80. 10-6 2.41. 10-6 2.29. 10-6 1.97. 10-6 2.57. 10-6 2.06. 10-6

w2 2.88. 10-6 2.41 10-6 2.34. 10-6 1.97. 10-6 2.51 10-6 2.06. 10-6

hand, from a theoretical standpoint, the optimally weighted MUSIC is believed to
have a special place as the first eigenanalysis based frequency estimation method that
was shown to asymptotically outperform both (unweighted) MUSIC and ESPRIT. In
addition, the statistical and matrix analysis tools developed in this paper to study
the weighted MUSIC frequency estimator may also prove useful in other similar per-
formance studies.

Appendix A.

A.1. On root MUSIC and its asymptotic equivalence to spectral MU-
SIC. For the simplicity of the notation, consider the unweighted case. Introduce the
symmetric polynomials

B() 10f()l ,, b, ,_
pgm--1

(A.1) for k 1,...,m-n,

where k denotes the kth column of . Next, observe that the MUSIC cost function
(3.12) can be written

(A.) I() B() I..
k=l [pm-1

The coefficiems of f(w) are readily determined from those of Bk(ei):
m-n

(A.a) h ,,, (f f-,).

Let B(e) denote the spectral factor of f(w) O. Then one can write the MUSIC
cost function

(A.a) () IB()l:.
Note that the coefficients {bk,p}, defining Bk(e) and f(w), are eily obtained from
{k}. Then B(e) can be obtained from f(w) by using a standard spectral factor-
ization algorithm (see, e.g., [13]). The root MUSIC estimates the frequencies the
angular positions of the n roots of B(ei) which are closest to the unit circle.

In the above setting, the spectrM MUSIC determines the frequencies the loca-
tions of the n largest peaks of the pseudospectrum 1/[B(e)[2. It then follows from
the general equivalence result in [17] that root MUSIC and spectral MUSIC have the
same ymptotic properties.

The previous considerations clearly apply mutatis mutandis to the weighted
MUSIC well.
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A.2. Proof of Theorem 2. Since &k minimizes f(w), we have

(A.5) f’(&k) 0.

For large values of N, &k is close to Wk. Then a Taylor series expansion of (A.5)
around wk gives

(A.6)

Hereafter, the symbol
_

is used to denote a first-order approximation. In (A.6),

(A.7) f’(wk) 2ae[dIiak] 2ae[dHWIak],
(A.8) f"(wk) 2Re[dIiIdk] + 2ae[(dH)’lIIIIak]

_
2dlHWHdk.

The approximations in both (A.7) and (A.8) have been obtained by using the fact
that IIa (lI- II)ak tends to zero as N --. c. Inserting (A.7) and (A.8) in (h.6),
gives the following expression for the asymptotic estimation error:

(A.9) (vk wk
Re[dfnWIak]
d4HWHdk

In order to prove (5.4) it remains to derive the (asymptotic) second-order moment of
the numerator in (A.9). Let

(A. 10) #k

A simple calculation gives,

Iak f-IIak -- IIak H(/- H)ak -HHak
(A.11) - -HSHa -G(GH)sHak.

Let {k} denote the eigenvalues of/, and let

/1 0 / / n+l 0 /(A.12) /= ".. = "..
0 A, 0 A,

Using this notation, one can write

(A.13)

Using (A.13) in (A.11) and the so-obtained result in (A.10), gives the following asymp-
totic expression for #k,

(A.14) #k dHWnSh-sgae dH HWH.
Using Theorem 1 and Lemmas 3, 4, and 5, it can be shown that #k is real-valued, as
follows:

(A.15)

#k* dTk n*W*H*-f:l* (Sft-lsg) *ak
ei(m-)dfniw*r, in*i. /*i. ’i(S-IsH)*. ake-i(m-)

dIHWH(S-SH)ak
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Thus,

(A.16) (&k wk) dfIIWHdk
In order to write #k in a more convenient form, introduce

(A.17) p/= dIgwg

and observe that replacement in (A.14) of/ given by (3.13) with

N

(A.18) - y(t)y (t)
t--1

has no effect on the asymptotic behaviour of #k. Thus, from (A.14)

(A.19)

Hwhere use was made of the fact that pk A 0. Using a well-known formula for the
expectation of the product of four Gaussian random variables (see, e.g., [7]) as well
as the independence of (t) and x(s), we get

E(t)(t)()() (
(A.e0) ( _)(ZR_Z)

(since H
Pk Zk 0). Inserting (A.20) in (A.19) and noting the fact that Qp 0 for

]p m, give

1

]p]m-1

which asymptotically (for N >> 1) becomes

1
(p Qp)(R1.(A.21) E# Z H T

Next we show that Rp in the right-hand side of (A.21) can be replaced by Qp, which
leads to a much simplified variance formula. By comparing the two expressions of R
in (3.7) and (4.3), we obtain

(A.22) APAH SSH.

Pre- and post-multiplying (A.22) by SH and S, respectively, gives

(SHA)P(AHS) = (AHS)-Ip-I(SHA)-I h--1 == p-1 AHsfk-IsHA

or, columnwise,

1
(A.23) a--k

k

1 0... o)T=AH3k, (k=l,...,n).
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Next, note that

(A.24) Rp APAPAH + Qp,
where

(A.25)
eiwl 0

*Oo
0 eiw’

Using (A.23) and (A.24), gives

(A.26) H H 1 i-wk Rpk Zk APApAH "[- Qp)Zk --e "p + ZkHQpZk.

The first term in (A.26) contributes to (A.21) the following term:

(A.27)

The bracketed sum in (A.27) can be shown to be zero as follows:

\p=-m+ ei(m-1)w 1

pa(wk)aH(wk)pk O.

Thus, (A.21) reduces to

(74
Jp P)(A.28) E#- N E (pH T g

which, when used together with (A.16), gives (5.4).
It only remains to show that Ck is cs. A simple way to see this consists of making

use of the expression of C that follows from (A. 15),

(A.29) Ck HE [I(SX-SH)ak a(Sk-sH)] H.

From (A.29) and Lemmas 3, 4, and 5, we get

Ck II. E [. (Sk-sH)[ ak aI (Sk-sH) ] II

akak (Sk-1SH) Ck

and the proof is completed.

A.3. Proof of Lemma 6. In this appendix, we omit the index k of k, etc.
(indicating the dependence on the kth frequency), in order to simplify the notation.
Let {/j }n--1 denote .the elements of , defined in (5.7), and

,A(A.30) % Hjpf
m-1

E ,5’..+p for p >_ 0,
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where we made the convention that fj 0 for j >_ m. Using (A.30), we get

(A.31) [Hjp[ (HjTp )H (Hj_p). .p for p < 0.

It follows from (5.6) and (A.30), (A.31) that

is the Toeplitz covariance matrix corresponding to a moving average process of order
(m- 1) and with the coefficient vector equal to . Thus, F is positive definite for any
finite m (see, e.g., [13]), which implies that F is so since G in (6.1) has full column
rank.

A.4. On the approach in [10]. Let

h= Hd.

(In this appendix we omit the index k of dk, etc., for notational convenience). Then,
(5.4) can be written as

hHWCWh
(A.32) var(&) (hHWh)2

It is claimed in [10] that, for a given C,

(A.33) var() hHCh

for any positive semidefinite matrix W. However, this is not generally true as the
following example shows. Let W I and C uuH, for some vector u of dimension
m. It is readily verified that the Moore-Penrose pseudoinverse of C is given by

uuH

(uHu)2

Thus, (A.33) becomes

IhHu[4 >_ (hHh)2(uHu)2

which, in view of the Cauchy-Schwartz inequality, is invalid for almost any u.
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SIGN PATTERN ANALYSIS OF CONTROL COEFFICIENTS OF
METABOLIC PATHWAYS *

THOMAS LUNDY AND ASOK K. SEN)

Abstract. Using directed graphs we analyze the sign pattern of the control coefficients of the
enzymes in linear metabolic pathways. The following pathways are examined: linear pathways with

(a) neither feedback nor feedforward regulation and (b) possible feedback and/or feedforward loops.
We establish the different pathway topologies that lead to a sign-nonsingular elasticity matrix. For
a given topology with a sign-nonsingular elasticity matrix, we determine the control coefficients that
have their signs unambiguously determined and the control coefficients that are sign-indeterminate.
The enzymes and metabolites whose control coefficients are sign-indeterminate can be identified
directly from the topology of the feedback and feedforward loops in the metabolic pathway.

Key words, sign pattern matrices, control coefficients, metabolic pathways

AMS subject classifications. 15A09, 92C40

1. Introduction. The sign pattern of a real-valued matrix A [aij] is custom-
arily described by a sign-pattern matrix S [sij] whose entries are defined by

+ if
sij if aij 0,

0 if aj 0.

The symbols 1,- 1, and 0 are also used to designate such a matrix. Two real matrices
A and B have the same sign pattern if for all and j, aiybiy > 0 or aij biy O. A
matrix A is said to be sign-nonsingular if every matrix with the same sign pattern
as A is nonsingular. For a sign-nonsingular matrix the signs of all the entries in the
inverse may be unambiguously determined, or some of the entries in the inverse may
be sign-indeterminate.

Sign-nonsingular matrices are encountered in a wide variety of applications rang-
ing from economics [1] to ecology [2]. They are found also in the study of metabolic
regulation. The purpose of this paper is to examine the sign-nonsingularity proper-
ties of the elasticity matrices of linear metabolic pathways and to determine the sign
pattern of the control coefficients of the various enzymes. The sign of a flux (con-
centration) control coefficient of an enzyme determines if the metabolic flux (concen-
tration) will increase/decrease when the enzyme concentration is increased/decreased.
A knowledge of the signs of the control coefficients may be useful in interpreting the
results of experiments that involve perturbations of enzyme activity.

We examine linear metabolic pathways with neither feedback nor feedforward
regulation, as well as pathways containing feedback and/or feedforward loops. We
establish the different topologies of a linear pathway that have a sign-nonsingular
elasticity matrix. For a given topology with a sign-nonsingular elasticity matrix,
we determine the control coefficients whose signs are unambiguously determined and
those that are sign-indeterminate. The results are illustrated with linear pathways
containing four enzymes.

* Received by the editors March 24, 1992; accepted for publication (in revised form) by J. S.
Maybee May 23, 1994.

Department of Mathematical Sciences, Purdue University School of Science, 402 N. Blackford
Street, Indianapolis, Indiana 46202 (+/-xyll00(C)+/-ndyvax. +/-upu+/-. edu).
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In recent work [3]-[6], directed graphs have been used for calculating the con-
trol coefficients of enzymes in metabolic pathways. In this paper we will use signed
digraphs to analyze the sign pattern of the control coefficients.

The main results of this paper can be summarized as follows. In the absence of
feedback and feedforward regulation, the elasticity matrix of a linear metabolic path-
way is sign-nonsingular and the flux control coefficients and the concentration control
coefficients are all sign-determined. The elasticity matrix is also sign-nonsingular for
a linear pathway containing an arbitrary number of feedback inhibition loops or feed-
forward activation loops. If the pathway contains feedforward inhibition or feedback
activation, the elasticity matrix will not be sign-nonsingular. Finally, if a feedback
inhibition loop and a feedforward activation loop are both present, then the elasticity
matrix remains sign-nonsingular except when the two loops overlap each other in an
overhanging fashion and the enzyme being inhibited is located upstream of the acti-
vating metabolite in the pathway. If a linear metabolic pathway has a sign-nonsingular
elasticity matrix, then all the enzymes and metabolites whose concentration control
coefficients are sign-indeterminate can be identified directly from the topology of the
feedback and feedforward loops in the metabolic pathway.

2. Metabolic control analysis: A review. Consider a linear metabolic path-
way in which a substrate X1 is converted to a product P by a series of enzyme-
catalyzed reactions.

(A)

Here El En denote the enzymes and X2 Xn represent the intermediate metabo-
lites. The metabolite immediately preceding an enzyme is referred to as its substrate,
whereas the metabolite immediately following the enzyme is called its product. In
general, there may be additional interactions between metabolites and enzymes, with
certain metabolites either inhibiting or activating nonadjacent enzymes. The pathway
will then include feedback or feedforward loops. In any metabolic pathway, the reg-
ulatory effect of an enzyme on the metabolic flux or a metabolite concentration can
be assessed in terms of its flux control coefficient or concentration control coefficient
[7], [8]. The flux (or concentration) control coefficient of an enzyme is defined as the
fractional change in metabolic flux (or concentration of a metabolite) in response to a
fractional change in enzyme concentration. Mathematically, the ilux control coefficient
of an enzyme Ei is given by

Cj_ ei OJ
J Oe’

where J is the flux and ei is the concentration of the enzyme Ei. The concentration
control coefficient of an enzyme Ei with respect to a metabolite Xj has the definition

xj being the concentration of the metabolite Xj. These control coefficients are gov-
erned by a system of linear algebraic equations that can be written in a matrix form
as EZ I, where the matrix E, usually referred to as an elasticity matrix, is an n n
matrix containing the so-called elasticity coefficients; the control matrix 2 contains
the flux control coefficients and concentration control coefficients, and I is the n n
identity matrix. The elasticity coefficient (ji) of an enzyme Ei towards a metabolite
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Xj is a measure of the sensitivity of the rate of the reaction catalyzed by the enzyme
with respect to a fractional change in concentration of the metabolite. This elasticity
coefficient is expressed as

xj Ov
ji

v Oxj

Here vi is the rate of the reaction catalyzed by enzyme Ei. For pathway (A), we have

-1 -1 -1 -1 1 -1 -1 -1
--21 --g22 0 0 0 0 0 0
0 --g32 --g33 0 0 0 0 0
0 0 --43 --g’44 0 0 0 0

0 0 0 0 ’n,-- 3,’n-- 3 0 0 0
0 0 0 0 n--2,n--3 --n--2,n--2 0 0
0 0 0 0 0 --n--l,n--2 --n--l,n--1 0
0 0 0 0 0 0 --n,n--1

It should be pointed out that e+l, is the elasticity coefficient of enzyme E due to
inhibition by its product and is always negative, whereas eii refers to the elasticity
coefficient of enzyme Ei with respect to its substrate X and is always positive. The
control matrix Z is given by

"--CJ1 C1X2 C1X.3 C1X4 61xn-3 C1Xn-2 C1X-n-1 C1Xn
-cg2 C2X2 C2X3 C2X4 62zn-3 C2Xn-2 C2Xn-1 C2xn
c c3X2 c3X3 c3X4 c3X c3Xn c3Xn C3

xn

C c4X2 c4X. c4X4 C c c4Xn C4Xn

"J k k k4 .n--3 n--2 n--1 kn--Cn_ Cn_ C,_ C,_ ,_ C,_ C,_ Cn_
J X2 X3 X4 t.Xn Xn Zn Xn-c,_: Cn_ C,_: C,_: "n--: "-- Cn_ C,_:

C__ X2 X3 X4 -.Xn .Xn Xn Znc._, c._ Cn_, "n- "n-1 On-1’ Ca-1
Xn Xn Xn_-cZ c Cn C& C;;- C;- C;; Cn

Clearly, if all the elasticity coefficients are known, then the flux control coefficients
and concentration control coefficients can be found from the inverse matrix E-1.
In particular, the entries in the first column of/-1 give the negatives of the flux
control coefficients of the enzymes E En; the entries in columns two through n
yield the concentration control coefficients of the various enzymes with respect to the
metabolites X2, X3... Xn, respectively. The sign of a flux control coefficient of an

enzyme indicates the direction in which the flux will change in response to a change
in activity of the enzyme. For example, if the flux control coefficient of an enzyme
is negative, the flux will decrease (increase) with an increase (decrease) in enzyme
activity. Similarly, the sign of a concentration control coefficient of an enzyme with
respect to a particular metabolite indicates the direction of change in the concentration
of the metabolite due to a change in enzyme activity.

We indicate the elasticity matrix of a general linear pathway, i.e., one with pos-
sible feedback and/or feedforward loops, by E. Our goal is to investigate the sign-
nonsingularity of the elasticity matrix and determine, whenever possible, the signs of
the flux control and concentration control coefficients. Our approach of a purely qual-
itative analysis encompasses the quantitative restriction that each entry in the first
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row of an elasticity matrix is always equal to -1, since by definition, if an elasticity
matrix is sign-nonsingular, it must be nonsingular. On the other hand, if a matrix has
the property that every elasticity matrix with the same sign pattern is nonsingular,
then it must itself be sign-nonsingular. To put this in perspective, consider an n n
elasticity matrix/. Suppose that a matrix B [bij] has the same sign pattern as/
and B is singular. If F [fij] is the diagonal matrix defined by

blj

then it follows that E BF is also singular, E has the same sign pattern as E, and
every entry in the first row of E is equal to -1. A similar reasoning demonstrates
that we may also use a purely qualitative approach for the problem of finding which
flux control and concentration control coefficients have their signs unambiguously de-
termined. In the following development we represent all matrices as sign pattern
matrices.

Consider the n-enzyme linear pathway (A), which has neither feedback nor feed-
forward regulation. We refer to this pathway as the unregulated pathway. The sign
pattern of the elasticity matrix of this pathway is given by

+ 0 0 0 0 0 0
0 + 0 0 0 0 0
0 0 + 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 + 0 0
0 0 0 0 0 + 0

.0 0 0 0 0 0 +
Note that this sign-pattern matrix has a bidiagonal structure with a first row of
negative entries. The entries on the main diagonal are all negative, whereas the
entries on the subdiagonal are all positive.

3. Sign-nonsingularity. We begin this section with some graph theoretic defi-
nitions. A directed graph, or digraph, D, is an ordered pair (N, E) where N is a finite
set and E is a set of ordered pairs of elements of N such that E contains no pair of
the form (v, v) for v E N. Each element of N is called a vertex and each element of E
is called an arc of D. For any vertex we may define an indegree and an outdegree,
denoted respectively by id(i) and od(i). The indegree (outdegree) of a vertex is the
total number of arcs entering (leaving) the vertex. A subdigraph of a digraph D is
an ordered pair (N, E), with N C_ N and E c_ E. Suppose that in a digraph D
there is an ordered set of distinct vertices (il, i2,..., iq) with q > 1, and each of the
arcs (ik, ik+l) E E for k 1, 2,..., q- 1. This ordered set is called a path of D. We
commonly indicate a path from vertex i to vertex j by the symbol p(i -- j). A digraph
is said to be strongly connected or simply strong if, given any two distinct vertices
and j, there exists a path p(i - j). An ordered set of vertices (il, i2,..., iq, il) is
called a cycle of D if (il, i2,..., iq) is a path and (iq, il) E. With any real n n
matrix A [aij] we may associate a digraph D (g, E) where N {1, 2,..., n} and
(i, j) E if and only if aji O. It is well known that a matrix is irreducible if and
only if its digraph is strongly connected.
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FIG. 1. The signed digraph n.

A signed digraph S (D; a) is a digraph D, along with a mapping a" E - {+,-},
i.e., a digraph with a plus or minus sign given to each arc. A path (cycle) in a signed
digraph is negative (positive) if the product of the signs of the arcs constituting the
path (cycle) is negative (positive). If all the cycles in a signed digraph S are negative,
then S is said to have the negative cycle property.

With the elasticity matrix E [eij] of a linear pathway, we may associate a
digraph (/) and a signed digraph (/) (D(); a) that is generated from D(/)
by assigning to each arc (i,j) the sign a(i,j), where a(i,j) + if eji > 0 and
a(i, j) if eji < O. Thus, to construct the signed digraph of an n n elasticity
matrix E, n vertices are drawn numbered 1, 2, 3,..., n. If eij 0, for j, then an
arc is directed from vertex j to vertex i; this arc is given the sign of eij. The diagonal
entries of E do not contribute to any arcs or cycles in the digraph.

We will denote by / the sign-pattern elasticity matrix of an n-enzyme linear
pathway with possible feedback and feedforward loops. The corresponding signed
digraph will be designated by Sn. For the unregulated n-enzyme pathway (A), the
sign-pattern elasticity matrix and its digraph are denoted by E and , respectively.
The matrix E is given in 2. The signed digraph n has the following structure, as
shown in Fig. 1.

A characteristic feature of n is the Hamilton cycle/n (1, 2,..., n, 1) in which
every arc is positive, except the arc (n, 1). Thus is strongly connected; accordingly,
the matrix En is irreducible. Since contains n as a subdigraph, we may conclude
that the elasticity matrix of any linear pathway is irreducible.

From the signed digraph of a matrix, sign-nonsingularity of the matrix can be
characterized by the following theorem due to Bassett, Maybee, and Quirk [9].

THEOREM A. Let A [aij] be a (0, 1,-1) matrix of order n with a < O,i
1, 2,..., n. Then A is sign-nonsingular if and only if the associated signed digraph has
the negative cycle property.

It should be mentioned that the signed digraph referred to in this theorem has the
following definition: it contains n vertices designated 1, 2,..., n, and if aij 0, then
an arc is drawn from vertex to vertex j carrying the sign of aij. In contrast, in Fig. 1,
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FIG. 2

+ 0 0
0 + 0
0 + +

FIG. 3

an arc is drawn from vertex j to vertex i carrying the sign of eij whenever eij 0.
Thus, our procedure for constructing the signed digraph for an elasticity matrix E is
equivalent to that of Bassett, Maybee, and Quirk [9] for the transpose of E. Theorem
A applies for our convention as well, since there is a one-to-one correspondence, which
preserves signs, between the cycles of the two types of signed digraphs. Our convention
is more prevalent in the engineering literature and was used earlier in metabolic control
analysis [3]-[6].

To illustrate the application of Theorem A for determining the nonsingularity
of an elasticity matrix, we present a few examples. First, consider a four-enzyme
pathway (B) that contains neither feedback nor feedforward regulation.

(B) Xl X2 X3 X4 P.

For this pathway the sign pattern of the elasticity matrix and the associated
signed digraph are shown in Fig. 2.

Clearly, since all the cycles in this signed digraph are negative, Theorem A implies
that the elasticity matrix for pathway (B) is sign-nonsingular.

Next we examine the effect of feedback inhibition. Consider a four-enzyme path-
way in which the enzyme E2 is inhibited by the metabolite Xa.

E E Ea E
(C) Xl X2 $ X3,,, 4
The sign-pattern elasticity matrix and its signed digraph are depicted in Fig. 3.

Note that the sign-pattern matrix in Fig. 3 is derived from the matrix/4 (see
Fig. 2) by replacing the zero in the (4, 2) position with a plus sign to account for
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0 + 0
0 0 +

l

FIG. 4

feedback inhibition. Accordingly, the signed digraph of Fig. 3 results from that of
Fig. 2 with the addition of the positive arc from vertex 2 to vertex 4. Since the
addition of this arc introduces only a negative cycle (1, 2, 4, 1) into the signed digraph,
it follows from Theorem A that the elasticity matrix of pathway (C) is also sign-
nonsingular.

Consider now the role of feedforward activation. For this purpose, we examine
pathway (D) in which the enzyme E3 is activated by the metabolite X2.

El
(D) X Xg.

E:z E3 E4- X3 X4

The sign-pattern elasticity matrix of this pathway and the associated digraph are seen
in Fig. 4.

The matrix in Fig. 4 is obtained from/4 by replacing the zero in the (2, 3) position
with a minus sign, representing the feedforward activation loop. The elasticity matrix
of this pathway is sign-nonsingular, since all the cycles in the signed digraph are
negative.

More generally, we consider an n-enzyme pathway with (a) neither feedback nor
feedforward regulation, (b) an arbitrary number of feedback inhibition loops, and (c)
an arbitrary number of feedforward activation loops.

THEOREM 3.1. If a linear pathway has neither feedback nor feedforward regula-
tion, or contains only feedforward activation loops, then its elasticity matrix is sign-
nonsingular and is contained in a maximal sign-nonsingular matrix in upper Hessen-
berg form. If a linear pathway contains only feedback inhibition loops, then its elasticity
matrix is sign-nonsingular and is contained in a maximal sign-nonsingular matrix that
is permutation equivalent to a matrix in lower Hessenberg form.

A square matrix A [aij], i,j 1, 2,..., n, is called a lower (upper) Hessenberg
matrix if aj 0 for all pairs (i, j) such that i + 1 < j(j + 1 < i).

Proof. Note that the elasticity matrix/ (see 2) of an unregulated n-enzyme lin-
ear pathway is in upper Hessenberg form. For an n-enzyme pathway with feedforward
activation, the elastici^ty matrix/ is obtained from E by replacing certain zeros in
the upper triangle of En with minus signs. The resulting matrix is obviously contained
in a maximal sign-nonsingular matrix in upper Hessenberg form. To establish the re-
sult for a linear pathway with feedback inhibition loops, let P [pq] be the n n
permutation matrix with p 1 if and only if j (i + 1) mod n and let T [tj]
be the n n signature matrix defined by tu -1, G {1, 2,..., n- 1} and tnn 1.
It is now easy to verify that if an n-enzyme linear pathway, with elasticity matrix
E, contains only feedback inhibition loops, then TnPE is sign-nonsingular and is
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+ + 0
0 0 +

FIG. 5

contained in a maximal sign-nonsingular matrix in lower Hessenberg form. [:]

Let us now address the effect of feedback activation or feedforward inhibition on
the sign-nonsingularity of the elasticity matrix of a linear pathway. If an n-enzyme
linear pathway contains a feedback activation loop, its effect can be taken into account
by replacing an appropriate zero in the lower triangular region of the elasticity matrix
En with a plus. Thus, if a linear pathway has a feedback activation loop involving the
metabolite Xk and the enzyme El (with k >/), then its signed digraph S contains the
positive cycle Hn(k --/)(/, k), where Hn(k -- l) refers to the path in Un. Accordingly,
it follows from Theorem A that if a linear pathway possesses feedback activation, its
elasticity matrix cannot be sign-nonsingular. Similarly, if a linear pathway possesses
feedforward inhibition involving a metabolite Xk and the enzyme El (with k < 1),
then its signed digraph contains the positive cycle n(k --*/)(/, k). As a consequence,
Theorem A implies that its elasticity matrix cannot be sign-nonsingular.

If a linear pathway contains both feedback inhibition and feedforward activation
loops, then the sign-nonsingularity of the elasticity matrix depends on the relative po-
sitions of these loops. In a four-enzyme pathway there are five possible configurations
in which a feedback inhibition loop and a feedforward activation loop can be present.
These are: (a) the feedback loop lies completely inside the feedforward loop, (b) the
feedforward loop lies completely inside the feedback loop, (c) the same metabolite in-
hibits one enzyme and activates a different enzyme, (d) the feedback and feedforward
loops overlap each other in an overhanging fashion with the enzyme being inhibited
lying downstream from the activating metabolite, and (e) the two loops overlap each
other in an overhanging fashion but the enzyme undergoing feedback inhibition is
located upstream from the activating metabolite. It can be shown that of these five
possibilities, the first four lead to a sign-nonsingular elasticity matrix, whereas the
last configuration does not have a sign-nonsingular elasticity matrix. To put this in
perspective, consider the following pathway.

E E E
(E) XI I

X2 X[3 , X4 P.

Figure 5 shows the sign pattern of the elasticity matrix of this pathway and the
associated signed digraph.

In this digraph, notice that the cycle (1, 3, 2, 1) is positive. As a result, by Theo-
rem A, the elasticity matrix of this pathway cannot be sign-nonsingular.

More generally, consider an n-enzyme linear pathway that contains a pair of
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FIG. 6

overhanging loops with the following characteristics:
(i) the metabolite Xk inhibits the enzyme Ei;

(ii) the metabolite Xj activates the enzyme Et;
(iii) l<_i<j<k_<l_<n.

In other words, the enzyme Ei that undergoes feedback inhibition lies upstream of the
activating metabolite Xj. Such a pathway is said to contain a singular pair of loops.
For example, pathway (E) contains a singular pair of loops, with 1, j 2, k 3.
If a linear metabolic pathway contains a singular pair of loops, then its elasticity
matrix cannot be sign-nonsingular. To see this, consider the n-enzyme linear pathway
described above. Let n be the signed digraph of the elasticity matrix of this pathway.
If 1, then n contains the positive cycle /Tn(1 --+ i)(i,k)n(k -- 1)(1,j)(j, 1),
provided k 1; see Fig. 6. The positive cycles for 1 and/or k are also evident
from this figure.

The following theorem describes the connection between the presence of feedback
activation, feedforward inhibition, or a singular pair of loops in a linear metabolic
pathway, and the sign-nonsingularity of the elasticity matrix.

THEOREM 3.2. The elasticity matrix of a linear pathway is not sign-nonsingular
if and only if the pathway contains (a) a feedback activation loop, (b) a feedforward
inhibition loop, or (c) a singular pair of loops.

The sufficiency of the theorem has been established in the preceding paragraphs.
Before we can prove the necessary part of Theorem 3.2, we need a few definitions and
results.

Let S (D, a) (N, E; a) be a strong signed digraph on n vertices. Suppose S
has a vertex with indegree one, with an arc (j, i) directed from vertex j to vertex i.
Suppose further that the following conditions apply: (a) if h is another vertex with
(i,h) e E and (j,h) e E, then a(j,h) a(j,i)a(i,h), and (b) if (i,j) e E, then
a(i, j) -a(j, i). Under these conditions, we can use the following rules to eliminate
the vertex i from S and create a strong digraph S’ on n- 1 vertices: S’ (D’, a’)
(N/{i},E’;a’).

Rule (i). If (k, l) e E and k, I. i, then (k, l) e E’ with a’(k, l) a(k, l).
Rule (ii). If (i,/) e E with/ i, then (j,/) e E’ with a’(j, 1) a(i, 1)a(j,i).
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Elimination of the vertex using Rule (ii) may be referred to as contracting the arc
(j, i), which is incident on the vertex i. Similar procedures were used earlier [6] to
eliminate vertices from a digraph, for the purpose of simplifying the calculation of
the control coefficients. It is well known (see [10]) that S’ has the negative cycle
property if and only if S has the negative cycle property. Similarly, suppose that the
vertex i has outdegree one, with the arc (i, j) E E. Furthermore, suppose that the
following conditions hold: (a) if h is another vertex with (h, i) e E and (h,j) e E,
then a(h,j) a(h, i)a(i,j); and (b), if (j,i) e E, then a(j,i) -a(i,j). We may
now create a new signed digraph S on n- 1 vertices, by using Rule (i) and the
Rule (iii).

Rule (iii). If (/,i) e E with i, then (1,j) e E’ with a’(1,j) a(1, i)a(i,j). It
follows that S has the negative cycle property if and only if S does.

We use these operations in the context of signed digraphs that are associated
with linear metabolic pathways. Consider an n-enzyme linear pathway with possible
feedback and feedforward loops. In the following development, we refer to this pathway
as L. The signed digraph of the elasticity matrix of such a pathway is denoted by S.
We utilize the following mappings, whenever appropriate, to map S onto a signed
digraph on (n- 1) vertices that contains n-1 as a subdigraph.

Type 1. An arc of the form (k,k+l) for some 1 _< k _< n- 1 is contracted,
according to Rules (i) and (ii), with every vertex k + 2 _< j _< n being relabeled j 1.

Type 2. The arc (n, 1) is contracted according to Rules (i) and (iii).
Type 3. The arc (1, 2) is contracted according to Rules (i) and (iii), with every

vertex 2 _< j _< n being relabeled j 1.
We will call these mappings contraction mappings of digraphs. If S contains a

vertex i of indegree or outdegree one, but cannot be eliminated by a contraction
mapping of digraphs, then L must contain (a) feedback activation or (b) feedforward
inhibition. To see this, suppose that the vertex n has outdegree one, but cannot be
eliminated by a Type 2 contraction mapping. Then the metabolite Xn must activate
an enzyme located upstream from it in the pathway. If the vertex 1 has outdegree
one, but cannot be eliminated by a Type 3 contraction mapping, then the metabolite
X2 must inhibit an enzyme located downstream from it. Now suppose that the vertex
k + 1 has indegree one, for some k with 1 _< k <_ n- 1, and it cannot be eliminated
by a Type 1 contraction mapping. If the vertex k + 1 cannot be eliminated because
(k + 1, k) E E and (k + 1, k) is positive, then the enzyme Ek+l is inhibited by the
metabolite Xk. If there is some vertex h k, k + 1 such that (k, h) E, (k + 1, h) E,
and a(k, h) a(k + 1, h), then one of the two enzymes Ek and Ek+ must undergo
(a) feedback activation or (b) feedforward inhibition.

We now extend the idea of contraction mapping of digraphs to transform an n-
enzyme linear pathway into a linear pathway with (n- 1) enzymes. Suppose that we
may contract to produce a signed digraph S which contains n-1 as a subdigraph.
Clearly, S corresponds to a linear pathway L with (n- 1) enzymes, and possibly
containing feedforward and feedback loops. We have

contraction mapping
LES SL.

We will call such a mapping a contraction mapping of pathways, and identify it
as Type 1, Type 2, or Type 3 according to the type of contraction mapping used to
map S to S. We have the following result.

LEMMA 3.3. Suppose that L is a linear pathway with n enzymes, and that L is
a linear pathway with (n- 1) enzymes. Furthermore, suppose that L is obtained from
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L by a contraction mapping. The pathway L contains (a) a feedback activation loop,
(b) a feed.forward inhibition loop, or (c) a singular pair of loops only if L does.

Proof. We prove the result by explicitly describing how the topology of L is
obtained from the topology of L, given the type of contraction mapping employed. If
the mapping is of Type 2, we may obtain L directly from L by deleting Xn, En and
all the feedback loops involving Xn. Therefore, if L contains (a) a feedback activation
loop, (b) a feedforward inhibition loop, or (c) a singular pair of loops, then so must L.
If the mapping is of Type 3, we may obtain L from L by deleting X1, El, and all the
feedforward loops involving X, and then renumbering all the remaining enzymes and
metabolites with their indices reduced by one. Therefore, if L contains (a) a feedback
activation loop, (b) a feedforward inhibition loop, or (c) a singular pair of loops, so
must L. Now suppose that the contraction mapping is of Type 1. In this case, we

may obtain L from L as follows" identify the metabolites Xk and Xk+l, delete the
enzyme Ek and replace all loops containing Ek with a loop containing Ek+l and the
same metabolite, and renumber all the remaining enzymes and metabolites that are
downstream of Xk. Thus, L’ contains (a) a feedback activation loop, (b) a feedforward
inhibition loop, or (c) a singular pair of loops only if L does. V1

We need one more result that concerns signed digraphs with the negative cycle
property. It appears in [10], although it is expressed there in terms of sign-nonsingular
matrices.

THEOREM B. Suppose that S (N, E; a) is a strong signed digraph on n vertices,
S possesses the negative cycle property, and there exists E N with id(i) n-1. Then
there exists j N with id(j) 1.

We may now proceed to the proof of our main result.

Proof of Theorem 3.2. The result is easily verified for linear pathways with a small
number of enzymes by constructing the associated signed digraphs. Now suppose
that Theorem 3.2 is not true in general. In particular, let M be a shortest linear
pathway, with m enzymes, for which Theorem 3.2 does not hold. We will denote the
elasticity matrix of M by E and its signed digraph by S. Note that S cannot have
the negative cycle property. Suppose S contains a vertex with indegree or outdegree
one. If we cannot perform a contraction mapping, then M must contain a feedback
activation loop or a feedforward inhibition loop. On the other hand if we are able to
perform a contraction mapping, we may reduce the pathway M to a linear pathway M
containing (m- 1) enzymes. The elasticity matrix of M cannot be sign-nonsingular.
Furthermore, our choice of m as minimal implies that M must contain (a) a feedback
activation loop, (b) a feedforward inhibition loop, or (c) a singular pair of loops. Thus,
according to Lemma 3.3, M itself must contain (a) a feedback activation loop, (b) a
feedforward inhibition loop, or (c) a singular pair of loops. In other words, Theorem
3.2 must apply for the pathway M. We may therefore conclude that every vertex of
must have indegree and outdegree at least two. As a consequence of this, it can be

shown that (1, m) E in S. For if we had (1,m) e E, we must have (m, j) e E for
some j with 2 <_ j <_ m- 1, since od(m) _> 2. However, this implies that L contains
a singular pair of loops, contrary to our choice of L as a counterexample. Now let
k be the least index such that (1, k) E; we must have 2 _< k _< m- 1. Obviously,
the subdigraph of that is induced by {1, 2,... ,k} is strongly connected. Theorem
A and our choice of m as minimal imply that this induced digraph has the negative
cycle property, since it is the signed digraph associated with the linear pathway, say,
Lrr which is formed from L by deleting every enzyme and metabolite downstream
from the enzyme Ek. Therefore, if L’r contains (a) a feedback activation loop, (b)
a feedforward inhibition loop, or (c) a singular pair of loops, so does L. However,
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Theorem B implies that for some pair of indices and j, with > k > j, (l, j) E E.
This in turn implies that L contains a singular pair of loops, so that L cannot be a
counterexample, and Theorem 3.2 is proved. [:]

4. Sign-determined and sign-indeterminate control coeificients. Con-
sider an n-enzyme linear metabolic pathway which has a sign-nonsingular elasticity
matrix. We show that if the pathway has neither feedback nor feedforward regulation,
then the signs of all the control coefficients can be determined unambiguously. If
the pathway contains feedback inhibition and/or feedforward activation loops, then
certain control coefficients will be sign-indeterminate. The enzymes and metabolites
whose control coefficients are sign-indeterminate can be identified directly from the
topology of the metabolic pathway.

To begin our discussion, we introduce some concepts from Lady and Maybee [11].
Let A [aij] be an irreducible n n sign-nonsingular matrix. The entry aij 0 is
called an essential zero of A if any matrix obtained by setting aij 0 is not sign-
nonsingular, irrespective of the sign of aij. We have the following results from [11].

THEOREM C. Let A be an irreducible n n sign-nonsingular matrix with aii<
O, 1, 2,..., n. Furthermore, suppose that A has associated signed digraph S(A) and
that A-1 [j]. Then

(i) cii < 0, 1,2,...,n.
(ii) /f aiy 0, sign Oji- sign aij, and

(iii) /f aij O, then the sign of cyi is unambiguously determined if and only if
every path p(i -+ j) in S(A) has the same sign, say, (-1)’5. In this case, sign ayi

(--1)’5+
THEOREM D. Let A satisfy the conditions of Theorem C. Then the entry aj 0

is an essential zero of A if and only if there exist paths pl(i --* j) and p2(i -- j) in

S(A) with opposite signs.
COROLLARY 4.1. Suppose A satisfies the conditions of Theorem C. Then the

entry aj is sign-indeterminate if and only if aij is an essential zero.

We now apply these results to determine the signs of the control coefficients
of linear metabolic pathways. First we consider an n-enzyme pathway with neither
feedback nor feedforward regulation. The sign-pattern elasticity matrix, the ssociated
signed digraph, and the control matrix for this pathway are given by E, S, and Z,
respectively (see 2). Using Theorem C, the signs of the various control coefficients can
be ascertained as follows. Since all the diagonal entries in /n are negative, it follows
from part (i) of Theorem C that the diagonal entries of the control matrix Z are also
negative. Furthermore, by part (ii) of Theorem C, we find that (a) the first column
of Z must have all negative entries, and (b) the entries in the first superdiagonal of
2 must be positive. To determine the signs of the remaining entrie in 2, we now
consider the zero entries below the first subdiagonal of En. Note that if > j + 1,
then every path p(i -- j) in n is negative, since it must pass through the vertex
1. Therefore, according to part (iii) of Theorem C, all the entries above the first

sup^erdiagonal in Z are positive. Finally we consider the entries in the upper triangle
of E other than those in the first row. For i < j with i > 1, it is easy to see that
n(i -- j) is the only path in n from vertex to vertex j. Since this path is positive,
we conclude that every entry in the lower triangle of 2 is negative. Collectively, all
the entries on and below the main diagonal of Z are negative, whereas the entries
above the main diagonal of 2 are positive. In other words, for an unregulated linear
pathway, the signs of all the control coefficients are unambiguously determined.

Next we examine an n-enzyme linear pathway with possible feedback inhibition
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and feedforward activation loops, and which has a sign-nonsingular elasticity matrix.
For such a pathway, the control coefficients which are sign-indeterminate can be identi-
fied with the aid of Corollary 4.1; they correspond to the essential zeros of the elasticity
matrix. The remaining control coefficients have the same fixed signs as those in the
unregulated pathway. This follows from part (iii) of Theorem C and the fact that in
the digraph Sn, there exists a path Hn(i -- j) from vertex to vertex j.

Theorem 3.2 tells us exactly which zero entries in an elasticity matrix are essential
zeros. An essential zero corresponds to a feedback or a feedforward loop whose addition
would create a singular pair of loops in the metabolic pathway. It follows that if a linear
pathway has a feedback inhibition loop, then the concentration control coefficients of
the enzymes that lie downstream from the feedback loop, with respect to each of the
metabolites located inside the loop, are sign-indeterminate. On the other hand, if a
linear pathway contains a feedforward loop, then the concentration control coefficients
of the enzymes located upstream of the loop, with respect to each of the metabolites
that are located inside the loop, are sign-indeterminate.

We illustrate these results with a few examples. Consider first the four-enzyme
unregulated pathway (B). All the control coefficients of this pathway have their signs
unambiguously determined. They are presented below in a matrix form.

J X2 X3 X4
E1 T 4- 4-
E2 4- T
Ea +

For clarity of interpretation we have written the variables J, X2, X3, and X4
horizontally above this matrix and the enzymes E1 E4 vertically on the left side.
As an example, the (2, 3) entry in this matrix denotes the sign of C2X3, which is the
concentration control coefficient of the enzyme E2 with respect to the metabolite X3.
Note that the entries in the first column represent the signs of -C/J, 1, 2, 3, 4,
where C/J is the flux control coefficient of the enzyme Ei. Clearly, the flux control
coefficients of all the enzymes are positive.

For the pathway (C), the signs of the various control coefficients are given by the
following matrix.

J X2 X3 X4
E1 4- T 4-
E2 + +
E +

Note that the control coefficients of this pathway have the same signs as those
of the unregulated pathway (B) except for C4X3, which is sign-indeterminate. This is
because the enzyme E4 lies downstream from the feedback loop in the pathway, and
the metabolite X3 is located inside the loop.

Using our results, the signs of the control coefficients of the enzymes in pathway
(D) are found to be as shown in the following matrix.

J X2 X3 X4
El / *
E2 4-
E3
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Observe that in this pathway the signs of the control coefficients are the same as
those in the pathway (B) except for C1X3 which is sign-indeterminate.

Finally, we examine the control coefficients of a linear pathway containing both
feedback and feedforward loops. In particular, consider pathway (F), which has a
sign-nonsingular elasticity matrix.

El E2 E4
(F) X . X2 Xa X4 P.

!
All the control coefficients of this pathway except CaX2 CaX3 and C1xa have fixed

signs; these fixed signs are the same as those in pathway (B). In a matrix form the
result is

J X2 Xa X4
E1 + * +
E + +
E3
E4 * *

5. Concluding remarks. We have analyzed the sign pattern of the control
coefficients of the enzymes in linear metabolic pathways. It is shown that the elas-
ticity matrices of the following linear pathways are sign-nonsingular: (a) a linear
pathway with neither feedback nor feedforward regulation and (b) a linear pathway
with only feedback inhibition or feedforward activation loops. If a linear pathway
contains feedback activation or feedforward inhibition, its elasticity matrix cannot be
sign-nonsingular. When a linear pathway contains a feedback inhibition loop and a
feedforward activation loop, then it has a sign-nonsingular elasticity matrix except
when the two regulatory loops are located in an overhanging fashion and the enzyme
undergoing feedback inhibition lies upstream of the activating metabolite.

For a linear pathway with neither feedback nor feedforward regulation, we have
shown that the signs of all the control coefficients are unambiguously determined. If a
linear pathway contains a feedback inhibition loop, then all the control coefficients are
sign-determined except for the concentration control coefficients of the enzymes which
are located downstream of the feedback loop, with respect to each of the metabolites
which are inside the loop. On the other hand, if a linear pathway has a feedforward
activation loop, the concentration control coefficients of the enzymes lying upstream
of the feedforward loop with respect to each of the metabolites located inside the loop
are sign-indeterminate; the remaining control coefficients are sign-determined. Finally,
if a linear pathway has a feedback inhibition loop and a feedforward activation loop,
the concentration control coefficients that are sign-indeterminate can be identified by
examining the feedback inhibition loop and the feedforward activation loop separately.
The situation for a linear pathway with multiple feedback inhibition and feedforward
activation loops can be analyzed in a similar fashion.
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Abstract. In this paper, we investigate the convergence theory of generalized Lanczos methods
for solving the eigenproblems of large unsymmetric matrices. Bounds for the distances between
normalized eigenvectors and the Krylov subspace ]Cm(Vl,A) spanned by vl,AVl,... ,Am-iv1 are

established, and a priori theoretical error bounds for eigenelements are presented when matrices
are defective. Using them we show that the methods will still favor the outer part eigenvalues and
the associated eigenvectors of A usually though they may converge quite slowly in the case of A
being defective. Meanwhile, we analyze the relationships between the speed of convergence and the
spectrum of A. However, a detailed analysis exposes that the approximate eigenvectors, Ritz vectors,
obtained by generalized Lanczos methods for any unsymmetric matrix cannot be guaranteed to
converge in theory even if approximate eigenvalues, Ritz values, do. Therefore, generalized Lanczos
algorithms including Arnoldi’s algorithm and IOMs with correction are provided with necessary
theoretical background.

Key words, generalized Lanczos methods, Arnoldi’s method, IOMs, orthogonal projection,
orthonormal basis, defective, nonderogatory, Chebyshev polynomial, derivative
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1. Introduction. In practice one often wants to compute a few, say r, eigenval-
ues with largest (smallest) real parts and possibly the corresponding eigenvectors of
large unsymmetric matrices, e.g., [21], [12]. For this kind of problem, one of the most
useful techniques is Arnoldi’s method [1] developed by Saad [17], where he defines one
class of generalized Lanczos methods. They are orthogonal projection methods on a
Krylov subspace, and reduce to Arnoldi’s method when the basis of Krylov subspace
is taken to be orthonormal [17], [19]. It is necessary to note that orthogonal projection
methods have no restriction to choices of the basis of Krylov subspace, instead they
only require that residuals of approximate eigenelements, called Ritz elements of the
matrix A in the K’ylov subspace, be 0rthogonal to this subspace other than requir-
ing the basis of Krylov subspace to be orthonormal; see [17], [19]. Therefore, from
the definition of generalized Lanczos methods, it can be seen that different choices of
the basis of Krylov subspace will give rise to different generalized Lanczos algorithms
[17], and Arnoldi’s method is only a special representative most often used in prac-
tice when the basis of Krylov subspace is taken to be orthonormal. Another typical
kind of method, incomplete orthogonalization methods (IOMs) with correction pro-
posed by Saad [17], is also among generalized Lanczos methods since the approximate
eigenelements obtained by them are just Ritz elements of the matrix A in the Krylov
subspace and their residuals are orthogonal to this subspace. Obviously, the basis of
Krylov subspace generated by IOMs with correction is not orthonormal usually.

The idea for generalized Lanczos methods is the following: Given an initial vector
Vl, we realize an orthogonal projection process onto the Krylov subspace ]Cm(vl, A)
spanned by vl,AVl,...,Am-lvl, where Vl is the initial vector, m _< N [17] and
N is the order of A. Let rm be the orthogonal projector on ]Cm(Vl, A). We then
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compute the eigenelements )i(m) (m) of the restriction of the linear operator 7rmA
to ]m(Vl, A), and then take them as approximations to some eigenelements A, of
A. Here A(m), (m) are referred to as Ritz elements of A in m(vl,A). In practice,
Arnoldi’s method is the simplest algorithm that achieves generalized Lanczos methods
and generates an orthonormal basis of ]m(Vl, A). The matrix representation of the
restriction of the linear operator mA to ]m(Vl, A) is an upper Hessenberg matrix in
this basis. In contrast, IOMs with correction generate a nonorthonormal basis and,
in such a basis, the matrix representation of the restriction of rmA to ]Cm(V, A) is
a banded upper Hessenberg matrix except for the last column being full. For more
details, see [17].

Practical computations have shown that the methods usually favor the outer
part eigenvalues and the associated eigenvectors of A as m increases, e.g., [6], [9],
[14]-[17], [20], [21], [23]. However, the convergence theory of the methods is still
incomplete. Saad [17] made a convergence analysis of the methods for the case that
all eigenvalues of A are real simple, and he established bounds for the distances
between normalized eigenvectors and ]m(v, A). His results show that these distances
will usually converge to zero first for the eigenvectors associated with outer part
eigenvalues. In a later paper [19], Saad extended the convergence theory to the case
where complex eigenvalues are present, and he gave such bounds for the most right
outer one eigenelement , when the matrix A is diagonalizable. In his Master’s
thesis [7], the author further analyzed the convergence theory of generalized Lanczos
methods, and established bounds for such distances for more than one eigenelement
when A is diagonalizable and complex eigenvalues are present. It is shown that
these distances will usually converge to zero first for the eigenvectors corresponding
to eigenvalues with largest (smallest) real parts. In the literature, however, there
have been no results concerning the implications of these distances on the behaviors
of eigenvectors, which are very important in understanding how generalized Lanczos
methods converge. Concerning eigenvalues, Saad [19] gave an error bound for them,
where he assumes that the matrices derived by Arnoldi’s method are diagonalizable.
But they can be defective even if A is diagonalizable, which will be seen later. Thus,
a further analysis is obviously necessary.

Since A is unsymmetric, it can be defective, which can indeed arise in applica-
tions; see, e.g., [3]. For this kind of matrices, how do the methods converge? This
paper investigates this difficult problem. In the context, we establish bounds for the
distances between normalized eigenvectors and m(v, A), and present a priori the-
oretical error bounds for eigenelements. The results show that generalized Lanczos
methods still favor the outer part eigenvalues and usually the associated eigenvectors
of A, though they may converge relatively slowly in the case of A being defective.
However, a detailed analysis exposes that the approximate eigenvectors, Ritz vectors,
obtained by generalized Lanczos methods cannot be guaranteed to converge in theory
for any unsymmetric A even if approximate eigenvalues, Ritz values, do. This can
happen when the approximate eigenproblems derived by generalized Lanczos methods
are too ill conditioned. Therefore, our theory can provide necessary background for
all generalized Lanczos methods, e.g., Arnoldi’s method and IOMs with correction.

The paper is organized as follows: In 2 we review preliminaries; in 3 we analyze
the convergence of generalized Lanczos methods in detail and prove our results; finally,
in 4 we conclude the paper and point out the extension and applicability of our results
as well as future work.
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2. Preliminaries. Assume A to be an N N real defective and nonderogatory
matrix. Let A have M distinct eigenvalues labeled in the decreasing order of their
real parts

(1) Re(A1) _> Re(A2) >_... >_ Re(AM),

where the multiplicities of Ai are di, i 1,2,... ,M (If A has the eigenvalues with
the same real parts, but different imaginary parts, we first label those with the larger
imaginary parts; for a complex pair of eigenvalues, we first label the one with positive
real part). We will mainly be concerned with a few, say r, eigenvalues with largest
(smallest) real parts and possibly the associated eigenvectors.

We denote by CN the complex space of dimension N and by O(u, ]Cm(Vl, A)) the
acute angle between a nonzero vector u and the Krylov subspace ]m(Vl,A), defined
by

O(u, Era(v1, A)) arcsin

where rm is the orthogonal projector on ](:a(Vl, A). In the whole context we denote
by superscript H the conjugate transpose of a matrix or vector.

According to the assumptions, the Jordan form of A has nontrivial Jordan blocks.
Since A is nonderogatory, there exists a nonsingular matrix S for which A SJS-1,
where

Let Qm denote the set of all polynomials of degree not exceeding m. Then for
any Pme Qm, we have Pm(A) Spin (J)S-1, where

Pro(J)

1,2,...,M.

3. Convergence analysis. Now let us study the convergence theory of general-
ized Lanczos methods. First, it is necessary to remind the reader that the theory to be
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developed in this paper will, in fact, work for this whole class of methods, e.g., IOMs
with correction, not only for Arnoldi’s method; namely, we have no restriction to
choices of the basis of Km (Vl, A) except for Theorem 3.7 which can be easily modified
for a nonorthonormal basis. Second, we point out that the same theory in this section
applies as well to the left outer part eigenvalues and the associated eigenvectors of A
with essentially the same results once A is replaced by -A. The section is divided
into two parts. In 3.1 we establish bounds for the distances I[(I- rm)ll, and using
them in 3.2 we derive a priori theoretical error bounds for eigenelements and expose
some important features of generalized Lanczos methods.

3.1. Inequalities on ]l(I-)11. First, we need the following useful theorem,
which is proved in [17], [19].

THEOREM 3.1. Let 7m 117rmA(I 7rm)ll, and ), q an eigenelement of A. Then

(3)
It(Am-

II(A, 

where Am 7r,ATrm.
Note that 7m < ]JAil, so the coefficients of the right-hand sides of (3) are of the

same orders as II(I- 7rm)qall.
Assume the normalized vectors vzj,j 1,2,...,dz to be a chain of principal

vectors of A associated with )l, where vii q’s are the corresponding normalized
eigenvectors, 1,2,...,M. Let S (S1,S2,...,SM) and S, (Vl,V2,...,Vzd,),

1, 2,..., M. Then the initial vector Vl can be expressed as

(4)
d dt

Vl Oil gi + E OijVij + EE OlljVlj.
j=2 li j=l

Define b (,1, c,2, (ldl)H, 1, 2, M, and b (0, ci2, aid,)H, and let
b(i) (bill ,...,bill_i,bH bill b)H

Having the above notation, we can prove the following proposition.
PROPOSITION a.2. et S (S,S,...,Sg) nd the initial vector v s bove,

d,-1 p(j) (Ai 1/2and define a(p) (j=0 )12 Then

(6)

where J is the one replacing the first row of Ji with zero elements,

with S (0, vi2,..., Vid,), and Po E Qm-1 is the optimal polynomial achieving the

minimum in m).
Proof. It follows from the definition that

II(Z- sinO( ,,ICm(Vl,A)) rain II -
uEMm(vl,A)
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Due to u E ]Cm(vl,A), there exists a polynomial q E Qm-1 such that

u q(A)vl.

In terms of (4), we obtain

u q(A) (ili " Z (ijVij "ZZCljVlj
j--2 li j=

k =0 = k=0

Now let S() (S,...,Si_,S,Si+,...,SM) and J(i) be the one replacing the
ith Jordan block Ji of A by J. Then" noticing that the first row of q(J) is zero for
any q Qm-, we can get from the above relation

Thus we have

j--0

V’d*- q(J)(i)12) 1/2 S(i)q(J(i))b()=o I.
-d-I

i=o q(J)(Ai)aij+l (-,=o Iq()(Ai)12)
di-1 q(j)(i) 12) 1/2 gives a(p) 1.Hence taking p(z) q(z)/(-j=o -.

Because

i=o q() (Ai)iJ+
m(Vl, A),

and p Qm- such that a(p) 1 is arbitrary, we have

I1(I rm)il] min
IIS(i)P(J(i) b(i) III]u-i]] _< rain

-d-I

For the numerator in the right-hand side of the above relation, we can derive

mx{llp(J)ll IIp(J)ll}.
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Combining the above relations, we can get

minII(- ,,)oII _< v,a- .,o) .{llp(g)ll, llp(S)ll}
I=0 .o ()+ I:-,,()=
p6Qm_l,a(p)=l ji

which completes the proof.
Remark 1. If A has only simple eigenvalues, then all dj 1, Sj qaj, j

1, 2,... ,N. We thus have from a(po)--I po(Ai)]- 1 and a(p)--I P(Ai)I-- 1

min max p(A)
pEQm- ,p()i)-

So this proposition completely reduces to Proposition 2.1 in [17].
Remark 2. In view of the definition, since a(po) 1, we have for the denominator

in

1/2

\i=

1/2

It follows from this and (7) that

max(llll IIIII).
jyi

So, it can be seen that if the. initial vector Vl is nearly deficient in the directions
of qai, vi2,..., Vide, then i is very large. However, if at least one component of
vl in these directions is not small and the principal vectors matrix S not very ill
conditioned, we can then expect that

]ISII} < max{v, v/di" 1} and -=1 c is not large under such as-
sumptions. Therefore, the problem of estimating the right-hand side of (6) reduces
to that of estimating em). Note that it is impossible to give an upper bound for fi.

Remark 3. For brevity, we used max,(llll, llSll} instead of the correct but
somewhat lengthy max{llSll, maxji IIS

Now let us estimate em). From Proposition 3.2 and the previous preliminaries,
we want to find a polynomial p E Qm-1 that satisfies a(p) 1, such that its kth
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derivatives p(k)(Aj), k < dj,j i, and p(k)()i), k < di 1, are as small as possible on
the spectrum of A.

Before proceeding, we need some lemmas.
LEMMA 3.3. Let Tin(z) be the first kind Chebyshev polynomial of degree m in the

complex plane [13]. Then the following hold.
1. If z E [-1, 1] and 0 <_ j <_ m, then

m2(m2 1)... (m2 -(j 1)2) m2JC(m,j)(9) [T (z) I<_1 T (1) I= 1.3.5-.. (2j 1)
where for

j >_ 1, C(m,j)--
(1 2m---) (1 m--) (1 (j_1)2

m2
1.3.5... (2j 1)

and C(m, O) 1.

2. If z =l=l and 0 <_ j <_ m, and for Re(z) >_ 0, Bm(z,j) is defined by

(o) T2)() , (z + /Z )
(z2-1)

Bm(z,j),

then Bm(z,j) is uniformly bounded in m, and is of orderO(z) if z [-1, 1]. If z > 1

is fixed and 0 <_ j <_ m, T(mj) (z) is increasing in j.
3. Assume E(O, 1, a) to be an ellipse with the center at the origin, the loci at

=l=l and the main semiaxis a. Then for 0 <_ j <_ m

max T)(z i= mj
(a + v/a2 1)msm(a,j).()

(o,,) (a- )Proof. Part 1. See Rivlin [13, p. 33].
Part 2. In terms of one of the definitions of Tin(z), we have for Re(z) _> 0

1
Tin(z)- [(z + V/z2- 1)m + (z- V/z2- 1)m]

1
(z + V/2 1)mQm(z),(.)

where Qm(z) 1 + (z +)-2m (If Re(z) < 0, Tin(z) 1/2(z- V/z2 1)mQm(z),
where Qm(z) 1 + (z- z2v/L--1)-2m).

Therefore, we can obtain

lim Qm(z)-I forz[-1,1],

IQ(z) l<: or z e [-, ].
It is clear that both (z + x/2 1)m and Qm(z) are analytic in the complex plane
excluding the points 1 though Tin(z) is analytic in the whole complex plane.

Now we can get from (12)

T:() ( +z ) ( + )
ffz

Q(z) + Q2(z)

(+z 1) 1 l(z)+ (z 1)(z)=m Z1
(z + 1)

=n,,
(z2 1) B(z, 1).
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Obviously, from the above analysis, for z [-1, 1]. we can see that Bin(z, O)
iQm(z) contains the term (z + v/z2 :i)-2m and is of order O(1) It follows that2
Bin(z, 1) also contains this factor. Therefore, Bin(z, 1) is uniformly bounded in m,
and Bin(z, 1) O(z)O(1)+ O(z2)O(z-1) O(z) for z [-1, 1]. So the assertion
holds for j 1.

Now suppose for k j that the assertion is valid and Bin(z, j) contains the term
(z / v/z2 i)-2m. We then get by induction

T+l) (z) --mJ (m(z-l- v/z2 -1)m(v/z2 -l)2:i-l 2j(z T
2 1)2J

1)mz(z2 -1)J-1) Bm(z,j)

-binj
z + x/z2 -1) Sm’ z j
(z- 1)

:mJ_bl(Z+X/z2-l)m((z2 1)j+l
1 )V/z2 1B,(z, j)- 2Jzs,(z,j) + --(z2 1)B:(z,y)

m m

mj+ (z + V’z2- 1)mBm(z,j + 1).
(z: )+

Since Bm(z,j) contains the term (z+ x/Z2 " 1)-2m, it is easily seen that Bm(z,j + 1)
is uniformly bounded in m, and for z [-1, 1],

Bm(z,j + 1) O(z)O(z./) + O(z)O(z./) + O(z2)O(z./-)

According to a result of [13, p. 51],

(13) 0 < j <
l--O

where Alj

_
0, 0

_
j

_
m, we can get

m-./

T(mJ+l)(z) T(mJ)(z) E Alj(T’(z) T(z)), 1 <_ j + 1 <_ .
l--O

It is then known that the left-hand side of the last relation is nonnegative since it is
easy to show that T’(z) T(z) > 0 for z > 1. So, the assertion is proved.

Part 3. Assume OE to be the boundary of E(0, 1, a). Then, by the maximum
modulus principle and (13), we can get

max
zeE(O,l,a)

T2)(z)I= T2)(z)l
z60E

max
z6OE

/=0

Since At./ >_ 0 and (z), 0 _< <_ m- j, achieves the maximum at the point a

[13], it follows immediately that

max
z6E(O,l,a)

T2 T2 (a)

(a + x/a2 1)mBm(a,j
(a2- 1)-/

Thus, assertion (11) holds.
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Remark. By a continuity argument, if z lies in a neighborhood of one, then for
fixed j we have, by comparing Parts 1 and 2 of Lemma 3.3,

(14)
Bm(z,j)
(z2- 1)-

O(mj) as m increases.

It implies that the left-hand side of the above relation cannot be uniformly bounded
in m in the ellipse E(0, 1, a).

Having this lemma, we can establish the following result.
LEMMA 3.4. Let

pro(z) qk(z)T,-k(z),

where qk(z) is some fixed polynomial of degree k, and Tm-k(Z) is the first kind Cheby-
shev polynomial of’degree m- k in the complex plane. Then we have the following
statement.

1. /fz[-1,1] andOK_j<_m-k,

(5) z,j),

where Cl(m,z,j) is uniformly bounded in m for fixed z,j and of order O(zk).
2. Assume E(0, 1, a) to be the ellipse described before. Then for 0 <_ j <_ m k

(16) max
zEE(O,l,a)

Tm_k(a)C2(m,a,j),

where C2(m,a,j) is uniformly bounded in m for fixed j and of order O(ak).
Proof. Part 1. Since all roots of Tm-k(z) are in [--1, 1], for 1 <_ j <_ m- k- 1

the roots of Tn_k(z lie in [-1, 1] by the Rolle rule. Also, noticing that Tin_k(m-k) (z)
is a constant thus for z [-1, 1] re(J),_k(Z) # 0 if 0 _< j _< m- k. Therefore, by the
binomial expansion of derivatives, for 0 <_ j <_ m- k, we can get

T() (z)m-kk

From Part 2 of Lemma 3.3, for 0 <_ n <_ j,

(m k)n Bm-k(z, n)
(m k)

(z= 1)- B,_(z, j)

i

Noticing that q(kd-n)(z) O(zk-(d-n)) for z [-1, 1], therefore, by the definition
C1 (m, z, j) is uniformly bounded in m for fixed z, j and of order O(zk) for z [-1, 1].
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Part 2. According to the maximum modulus principle, we get

max p)(z) max
zeE(O,l,a) zeE(O,l,a)

(j a.(j-n) (n)

n----0

En--Okn]lkmax max
ze(O,,a) maxzeE(O,,a) ](i),m_k(z) ze(o,,a)

-C2(m,a,j) max ](J) I.
zeE(O,l,a)

()

From Part 3 of Lemma 3.3, for z E E(0, 1, a) and 0 _< n <_ j we have

maxzeE(O,l,a)
q’(j)

< maxzE(O,l,a) IT(mn)
maXzEE(O,l,a)

(J)

1 Bm-k(a,n)
(m- k)j-n (a2 1)j-n

Bm-k(a, j)
1 O(a2(J_n))O(an_J)
1

(m- k)J-nO(hi-n)"

Thus, C2(m, a, j) is uniformly bounded in m.
It follows from this and

max
zeE(O,l,a)

q(kj-n) (Z) l= O(ak-(j-n))

that C2(m, a, j) is uniformly bounded in m for fixed j and of order O(ak). D
Now let us estimate em).
Assume Ai-1 Ai if Ai is complex, and Re(Ai) > Re(Ai+l) _> _> Re(A/). From

the above assumptions, there is an ellipse Ei(c, e, a) with real center c, foci c+ e, c-e,
major semiaxis a to contain the set {Ai+l,... ,AM} but {A1,... ,Ai}. Furthermore,
due to the conjugation of the eigenvalues as A is real, Ei(c, e, a) can be symmetric
with respect to the real axis, that is, a, e must be either real or purely imaginary.
Let us call these ellipses first kind and second kind ellipses, respectively, and write
E(c, e, a) simply as E.

We will consider two cases, respectively.
Case 1. Ai is simple. In this case di 1 and a(p) =1P(Ai) 1.
THEOREM 3.5. Assume Ai to be simple and Ei Ei(c,e,a) as described above.

Let
i-1

i-- Z ale,di maxdj, dj, a b a2 1 T a + V/a2 1 7i (Ai c)/e.
j=l

Then

where Cl i8 a function uniformly bounded in m and of order O(ai’ ), and Tin, (z) is the
first kind Chebyshev polynomial of degree m m 1.
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Proof. Write

z 1
z 1

Jj(z) ".. "..
z

dim(Jj(z)) d,j 1,2,... ,M.

Let Qm-1 be the set of polynomials of the form p(z) qe(z)r(z), where

if = 1,

if i- 1,

and r(z) is a polynomial of degree m and satisfies the condition r(,k) 1. It is clear
that p e Qm-1, a(p) --I p(Ai) I-- 1 and p(J) 0 for j < i. It then follows from
Proposition 3.2 that

em) < min max ]]p(Jj)l] < min max IIp(J(z))ll.
pErn-1 zEEi,j>i

For the above minimax problem, we do not know how to find the optimal polynomial
explicitly. Thus we seek an approximate optimal one. For the following minimax
problem:

min max r(z) I,
rQm zE

it is proved in [4] that the scaled and transformed Chebyshev polynomial

(18) r(z) Tm (z c
is often optimal though it is not always the case; if it is not optimal, it is still a very
good approximate one. So we choose

(z) q, (z)Tm, ( z c
/T., (,).

Therefore, we have by [5, p. 541]

em) _< max II(J(z))ll <
zEi,j>i

j>i O<_r<_dj-l,zEi

max
zEEi,j>i

()(z)
II (J(z))I II < max ll max (Jy(z)) II

j>i zEi

,-1 (r)r!(Z)< di o<r<max,zeE,
Since the transform z’ (z- c)/e maps Ei into the ellipse E(0, 1, a) and by Part 2

of Lemma 3.3 m (a) is increasing in r for 0 < r < mi, we can obtain from Part 2 of
Lemma 3.4 by manipulation

where cl max0<r<j_1 e - c(m, , r) is uniformly bounded in m and of order

O(a) because of Part 2 of Lemma 3.4, which is just (17).
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Remark 1. Without loss of generality, assume that the real part of "i is nonneg-
ative, and let -i I’ + V@ 1 I. Then, from (17) and ae(A) > ae(,+l) >_... >_
Re(AM), we can see that em) converges to zero as m increases because

Tm/ITm,(7) < 2(r/r)"’
converges to zero as m tends to infinity. How rapidly the methods converge depends
strongly on m’-Ib-+Bm(a, i 1) and Tm’/ITm(7)l, which asymptotically
depends on the following factors:

(19) (Ai c) -- V/(Ji 12)2 e2
if a and e real,

a+ x/a -e

( ) + V/( ) +l
(0) 2i if and purelya imaginary.

at//ll-I1
We refer to ,. as the crucial factors of convergence associated with first and
second kind ellipses, respectively. Note that in view of Lemma 3.3 and (14)

is of order

mi’- O(a-’+

if is not close to one and of order

o(..-1)
if c is near one.

Remark 2. For the first kind ellipse, the convergence is likely to be better if the
eigenvalues are close to the real line since Nli will be larger in this case; if the ellipse
Ei has nearly a circular shape, the convergence is likely to be slower since gli is small.
For the second kind ellipse, the convergence is likely to be slower if the eigenvalues
are almost purely imaginary since 2i will be smaller at this moment.

Remark 3. l(I- m)ll will usually converge to zero first for the eigenvectors
sociated with eigenvalues with largest real parts. However, the presence of nonlinear
elementary divisors may decree the speed of convergence considerably.

Case 2. Ai is multiple:
THEOREM 3.6. Let di, i’, ,, T be in Theorem 3.5 and T = + -- 1 I.

Then

{ J-d()m 1 O(1)}_(m) < max ic2m (d- 1)mi(21) c

s # od 0(@-) na on d # od 0()
isolated from one, and m m i 1.

Proof. Let Jj(z) be in the proof of Theorem 3.5, and m- the set of polynomiMs
of the form

((a,)(,))()(z) ()(z)/
k k=0
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where

] 1-I_11 (z- Aj)d if/ 1,
1 ifi- 1,

and r(z) is a polynomial of mi. Obviously a(p) 1 and p(Jj) 0 for j < i. Therefore,
from Proposition 3.2 and [5, p. 541], we can get

e(m) < min .>a{llp(Jj
< min m (p(gj(z))ll, ]p(J)}
Pm- zEi,j>i

< rain max

(d,- 1)max
p(k)(z)

max max
k] 0<k<d-2

Since it is impossible to find the polynomial attaining the minimum in the above
relation, we can only find a good approximate one.

Take

e
\ k-O

1/2

It is then clear that a(p) 1.

Since (z- c)/e e E(O, 1, c) and -m () is increasing in k for 0 _< k <_ mi, by
Lemma 3.4 we can get (21) by complicated calculations, where

c2 (di- 1)!
(a2 1)-&+lBm(a,i- 1) maXo<r<&_ e - C2(m,a,r)

1(9/- 1)-d+Bm(i, di- 1)e-d+lC(m, 9/i, di- 1)

It follows from (14) and Part 2 of Lemma 3.3 as well as Lemma 3.4 that c2 is of order

if a is very near one and of order of O(1) if a is well isolated from one. B
Remark 1. It is easy to see from the remarks following Theorem 3.5 that, if di 1,

assertion (21) essentially reduces to (17).
Remark 2. We see from (21) that if m is large, then em) may be of order

(di- 1)--10(1). Thus, the right-hand side of (21) will eventually converge to zero
geometrically.

As pointed out previously, if A is an N x N diagonalizable matrix, then Propo-
sition 3.2 reduces to Proposition 2.1 [17]. Saad [19] gives such an example:

Assume m N 1, the eigenvalues Ak ei2(k-1)=/N Then em) +/-
m"

It can be seen from this example that em) converges to zero geometrically. Thus,
our estimates can be realistic.
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3.2. A priori theoretical error bounds for eigenelements. Previously, we
have established inequalities on II(I- rrm)qaill, which mean that there exists a vec-
tor, i.e., rrmqai, in )m(Vl,A) to approximate qai as m increases. We now study the
implications of these inequalities on the behaviors of eigenelements, which are very
important in understanding how generalized Lanczos methods converge.

Define the matrix Vm (Vl, v2,..., Vm), and assume that its columns constitute
a basis of Km(vl, A). Concerning error bounds for eigenvalues, for simplicity, assume

Vm to be orthonormal. Let us set VmHqai m) and define Hm VmHAVm Then

noticing that ]1 -:(m) ~(m)
yi II IIVmyi II 1[Trmqaill, the first inequality of (3) translates itself

into

Remark. Note that

II( ),II tanO(qoi,lCm(Vl,A)),

and Hm is just the matrix representation of Am in the basis {vi} of lCm(Vl, A) and
equal to the upper Hessenberg matrix generated by Arnoldi’s method starting with

Vl.
With (22), we can establish the following result.
THEOREM 3.7. Let Sn1HmSm j(m) be the Jordan form ofHm and cond(Sm)

I]SmllllSnll. Assume 11(I-Trm)qOil[ to be small enough. Then there exists an eigenvalue

Am) of Hm with the index li such that we have

(23) Am)- A, I< 2(%ncond(Sm))/’’ (]](/- rm)’[[ /’’

:I1.11

Proof. We need only consider the case that Am) is not an eigenvalue of A. Let
~(m) rm)(Hm Ai)Yi Then obviously IIr’)ll _< "Ymll(I- -),ll. By the definition

of rm), we have

II’,r.ll u II II(H- X)--(),- II
iiS(j() i)-1-1.m,() II
IISllllSXllll(() A)-Xllllr)ll

om [2], the above relation means that there exists a) with the index li such that

X)-
+I) , I.-

< cod(S) ll(-

which shows that (23) holds.
om the analysis of 3.1, (23) shows that ) Ai m increes. However,

note that if li i, then the approximate eigenproblem

HmYi Ai Yi
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is ill conditioned. In this case, though Am) --. Ai as m increases in theory if cond(Sm)
is uniformly bounded in m, in numerical computations, it is very difficult for us to
determine Am).

Theorem 3.7 can be simplified when some li 1, as described below.
THEOREM 3.8. Assume that some li 1 and the associated II(I- rrm)Oill are

small enough. Let Pi(m) be the spectral projectors associated with Am). Then

(25)

Proof. In terms of the first inequality of (3), it can be easily shown from [24, p.
69] and [5, p. 344] that (25) holds, rl

Remark. Equation (25)indicates that Am) --. Ai as m increases if only IIPm) II is
uniformly bounded in m.

We now give error bounds for eigenvectors. First, we need a lemma.
LEMMA 3.9. Let Xl,X2,...,Xk be k vectors and ol,OZ2,...,Ok k scalars, and

define the matrix X (xl,x2,... ,xk). Then

(e6) II-x +- +... + 11
1

infD diag. cond(XD) l<j<k

where D’s are k k nonsingular diagonal matrices.

Proof. Let c (c,a2,...,ak)H and e (1,1,...,1)H. Then for any k x k
nonsingular diagonal matrix D with the diagonal entries 5i, 1, 2,..., k, we have

IIx + +... + xkll aHxHx
(D-i)H(XD)H(XD)(D-)
2 (XD)D-a

 112a2min(XD) /
i--1

> 2 (XD)min Icly 1
O’min

l<_j<_k
i----1 i

where rmin(XD is the smallest singular value of XD. On the other hand, similarly,
we have

IIx + x. +... + 11 HxHx (D-e)H(xD)H(XD)(D-e)
<_ ex(XD)IID-lell

i=1

where O’max(XD) is the largest singular value of XD.
Combining the above results, we can get

k 2 k2 (ZD)min<j<_k I(j 12 i=1 I’i a2max(XD)O/HXHZo > ffmin

x(XD) 11=l]=i r,

1
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> a2min(XD)minl<j<k ]a I2eHxHxe
a2max(XD)

min<j<_klaj [2
cond2(XD) IlXl + +... + xll.

Since D is any nonsingular diagonal matrix, it follows that (26) holds.
Remark. If the columns ofX are orthogonM (not orthonormal), infD diag. cond(XD)

1.
THEOREM 3.10. Assume that Am is diagonalizable and has s distinct eigenvalues

Am) in lm(Vl, A). Let p}m) denote the spectral projectors associated with A"), and

di,m minj# Ai Am) and m llTrmA(I- 7rm)]l, and define the matrix

Then

(27)

I1( infD diag. cnd(Om)D)(1 + IIP() II)m)di,m
II(I- 7rm)Till.

Let P’)IIIP’)II ’). Then

(28)

sin0(99,qom)) <_ (1 + infD diag. cnd(m)D)(1 + IIP’(,’)II)"m)d,m
sin O(, lm(v, A)).

Proof. We first prove the inequality

infD diag. cnd(4)m)D)(1 + [[P{m)[[)"7m
[[(i_I1(. P’))II <

d,.

Let A"), A(’),..., Am) be the distinct eigenvlues of the linear operator
in Em(v,A), and p}m),j 1,2,... ,s the sociated spectral projectors. Then it is
well known that

pm)pm) SijpJm),

j=l

where 5ij is the Kronecker delta. Hence

j=l
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Premultiplying the two hand sides of the above relation by I- P(’), we get

(i- P.(,m))(rmA- )qI)r., E(A")

From Lemma 3.9, we have

II(I- pm))(rmA- A,I)rmo,I >_
infD diag. cnd((I)")D) Ej, ’

On the other hand, in terms of Theorem 3.1

From (29), we obtain

Therefore,

To get result (27), let us decompose

(I- p(im)), (I- r.)qoi + (rm

Hence

infD diag. cnd(O’)D)(1 + IIP(’) 11)7
I1( P[))v, < I1( )vll + d,,

( ")

( infD diag. cnd(Om)D)(l + llP)ll)m)1 + d,,
II(I-

which is just (27).
Let P})/ll)ll m). TKen from the above relation, we have

sinO(w,w )=minllw-v [[W- W[[=[[(I-

( inf diag. cnd()D) (1 + "P}I ")7 )1 + di,
sinO(i,(m,A)).
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Thus, assertion (28) is proved.
According to the results of 3.1 and (27), (28), it is clear that m) --. i as m

increases once both infD diag. cond((I)m)D) and IIP(m)ll are uniformly bounded in

m. Moreover, if Am) is ill conditioned, then m) may approximate i quite slowly.
However, we cannot guarantee in theory that infD diag. cond((I)m)D) is uniformly

bounded in m, even assuming that IIPm) is uniformly bounded in m. Therefore, the
right-hand sides of (27) and (28) may not converge to zero unless [[(I- 71"m)i[[ 0,
which implies that qom) may not converge to i even if Am) Ai as m increases.

By observing the results of 3.1 and 3.2, we get the following conclusions. First,
in the case of A being defective, generalized Lanczos methods will still favor the outer
part eigenvalues and the associated eigenvectors of A usually. Second, they may
converge slowly even if [[(I- rm)il], i.e., sinO(i,lCm(v,A)), tends to zero rapidly.
Third, Ritz vectors cannot be guaranteed to converge in theory even if Ritz values
do. We should note that this is a case for any unsymmetric A no matter whether
its eigenproblem is well conditioned or not. However, this possible nonconvergence
of Ritz vectors cannot happen to a symmetric A because then both [[P(’)[[- 1 and

infD diag. cnd((I)re)D) 1.

In fact, there can occur such a phenomenon: Even if the eigenproblem

(30) A ),qo

is ill conditioned, we may get a well-conditioned approximate eigenproblem (24); on
the other hand, we may get an ill-conditioned approximate eigenproblem (24) though
(30) is well conditioned.

Example. Take

0 1 0 vl 1
1 0 1 0

Then the computed V2 and H2 using Arnoldi’s method [17] are

V2- 1 0 H2= 1 1
0 0

A has three simple eigenvalues 0, 1, and 2, and not defective, and its eigenproblem
is well conditioned. But H2 is defective, ill conditioned, and has an eigenvalue 1 with
multiplicity 2 corresponding to the eigenspace of dimension 1.

4. Conclusion. We have established a convergence theory of generalized Lanc-
zos methods for solving large unsymmetric eigenproblems when matrices are defec-
tive and nonderogatory. So now the methods can be used to compute the outer part
eigenvalues and the associated eigenvectors of any nonderogatory matrix in theory.
However, our analysis has exposed that the approximate eigenvectors, Ritz vectors,
obtained by generalized Lanczos methods cannot be guaranteed to converge in the-
ory even if approximate eigenvalues, Ritz values, do. Having looked at Theorem 2.1
[19], we find that many of the results in this paper work for the biorthogonalization
Lanczos method without any essential modification.
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Concerning numerical aspects, however, there are still many problems to be stud-
ied further. At present, the development of generalized Lanczos algorithms is only in
an initial stage, and the existing algorithms are only the Arnoldi algorithm and its
variants with accelerations as well as IOMs with correction. There should exist other
potential efficient algorithms among generalized Lanczos methods to be developed
and pursued. For example, how to develop those algorithms, which belong to gen-
eralized Lanczos methods but have nonorthogonal basis, is interesting and possibly
promising. Another very important issue is how to seek new strategies in order to
ensure the convergence of approximate eigenvectors in theory when Ritz values do.
The author has recently found a new strategy that can guarantee the convergence
of refined approximate eigenvectors if Ritz values do. Numerical experiments there
show that the refined iterative algorithms based on Arnoldi’s process are considerably
more efficient than their counterparts, i.e., the iterative Arnoldi algorithm and the
Arnoldi-Chebyshev algorithm. For details, refer to [10], [11].

Finally, we point out that the tools used in the paper could be exploited to develop
a convergence theory of generalized Lanczos methods for a defective and derogatory
matrix. Besides, Lemma 3.3 can be used to make a convergence analysis of a large
class of Krylov subspace-type methods for the solution of large unsymmetric linear
systems, e.g., [18], I22], when the matrix is defective. In [8], convergence results were
obtained for them.

Note added in proof on 3.2. Essentially, all the theorems in this section hold
for general projection methods rather than only generalized Lanczos methods since
Theorem 3.1 holds for a general subspace [19] and we do not necessarily limit ourselves
to the Krylov subspace Kin(v1, A) in all the proofs.

Acknowledgments. This paper is part of [11]. The author thanks Professor
Ludwig Elsner for reading the manuscript with great care and many helpful discus-
sions, and he is very indebted to the anonymous referees and the editor, Dr. Anne
Greenbaum, for many valuable suggestions and comments that enabled him to con-
siderably improve the presentation of this paper.
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Abstract. We describe an algorithm for complex discrete least squares approximation, which
turns out to be very efficient when function values are prescribed in points on the real axis or on
the unit circle. In the case of polynomial approximation, this reduces to algorithms proposed by
Rutishauser, Gragg, Harrod, Reichel, Ammar, and others. The underlying reason for efficiency is
the existence of a recurrence relation for orthogonal polynomials, which are used to represent the
solution. We show how these ideas can be generalized to least squares approximation problems of a
more general nature.

Key words, orthogonal vector polynomials, discrete least squares
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1. Introduction. Let (Zk}km=o be a set of complex nodes and (w}’=o a set of
positive weights (let us assume that wk > 0).

We shall first solve the problem of finding the least squares polynomial approxi-
mant in the space with positive semidefinite inner product

m

k=O

Note that this is a positive definite inner product for the space of vectors (f (z0),...,
f(zm)) representing the function values at the given nodes. The polynomial
of degree n _< m which minimizes

IIf-Pll, with Ilvll (v,v)l/2

(note that this is a seminorm) can be found as follows. Find a basis {0,..., n}
for ]?n, which is orthonormal with respect to (., .). The solution p is the generalized
Fourier expansion of f with respect to this basis, truncated after the term of degree
n. An algorithm that solves the problem will compute implicitly or explicitly the
orthonormal basis and the Fourier coefficients. As we see in the following sections,
we can reduce the complexity of such an algorithm by an order of magnitude when a
"short recurrence" exists for the orthogonal polynomials. We consider the case where
all the zi are on the real line, in which case a three-term recurrence relation exists,
and the case where all the zi are on the complex unit circle, in which case a Szeg5
type recurrence relation exists.

The above-mentioned discrete least squares problem is closely related to many
other problems in numerical analysis. For example, consider the quadrature formula

fa

b m

k--0
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where w(x) is a positive weight for the real interval [a, b]. We get a Gaussian quadra-
ture formula, exact for all polynomials of degree 2m-t- 1 by a special choice of the nodes
and weights. The nodes Zk are the zeros of the (m + 1)st orthogonal polynomial with

respect to (f, g) f: f(x)g(x)w(x)dx. These are also the eigenvalues of the truncated
2Jacobi matrix which is associated with this orthogonal system. The weights wi are

proportional to q20 where qi0 is the first component of the corresponding eigenvector.
Another link can be made with inverse spectral problems. These come in sev-

eral forms. One variant is precisely the inverse of the previous quadrature problem:
find the Jacobi matrix, when its eigenvalues and the first entries of the normalized
eigenvectors are given.

We shall call the computation of the quadrature formula or the eigenvalue de-
composition of the Jacobi matrix direct problems, while the inverse spectral problem,
and the least squares problem will be called inverse problems.

For a survey of inverse spectral problems, we refer to Boley and Golub [5]. One
of the methods mentioned there is the Rutishauser-Gragg-Harrod algorithm. This
algorithm can be traced back to Rutishauser [14] and was adapted by Gragg-Harrod
[11] with a technique of Kahan-Pal-Walker for chasing a nonzero element in the
matrix.

For a discrete least squares interpretation of these algorithms we refer to Reichel
[12]. When the zi are not on the real line, but on the unit circle, similar ideas lead
to algorithms discussed by Ammar and He [4] and Ammar, Gragg, and Reichel [2]
for the inverse eigenvalue problem and to Reichel, Ammar, and Gragg [13] for a least
squares interpretation.

We first survey the general theory in the context of discrete least squares ap-
proximation where the zk are arbitrary complex numbers in 2, 3, and 4. In 5, we
explain how the complexity can be reduced with an order of magnitude when short
recurrences exist.

The next step (6) is to generalize these results to the problem of minimizing

m

(2) min IwOkPO(Zk) +’." + wakpa(zk)l2,
k=O

where the {wok,..., w,k}=o are given complex numbers and the polynomials pi of
degree at most di, i 0,..., c must be found, with the constraint that at least one
of them is monic of strict degree.

When a 1, this generalization is related with rational approximation, in con-
trast with the previously described problem, which is related to polynomial approx-
imation. We refer to the generalized problem as the matrix case, while the simpler
polynomial case is eferred to as the scalar case.

For the matrix case, we may distinguish between two levels of complication. When
all the degrees di are equal, it turns out (7) that the solution method can be described
in terms of square matrix orthogonal polynomials of size a/ 1, and the previous theory
of scalar orthogonal polynomials is readily generalized.

When not all the degrees di are equal, we are in the most general case that we
consider here (8). The solution can now be described in terms of vector orthogonal
polynomials, which allows the scalar orthogonal polynomials of the first case and the
matrix orthogonal polynomials of the second case to combine, both of which show up
during the solution of the problem.

The breakdown of the algorithm will only occur in the case of exact interpolation.
This is discussed in 9.
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To avoid an unduly complicated notation, we mainly restrict ourselves in this
paper to the case a 1, but the generalization to general a >_ 1 should be obvious.

2. Polynomial least squares approximation. Discrete least squares approx-
imation by polynomials is a classical problem in numerical analysis where orthogonal
polynomials play a central role.

Given an inner product (., "/defined on Pm Pro, the polynomial p E Pn of degree
at most n _< m, which minimizes the error

is given by

n

P E pkak, ak (j’, ,)

when the (k} form an orthonormal set of polynomials:

The inner product we consider here is of the discrete form (1) where the zi are distinct
complex numbers.

Note that when m n, the least squares solution is the interpolating polynomial,
so that interpolation can be seen as a special case.

To illustrate where the orthogonal polynomials show up in this context, we start
with an arbitrary polynomial basis (eke, Ck E IPk --]Pk-1. Setting

n

C,
k=O

the least squares problem can be formulated as finding the weighted least squares
solution of the system of linear equations

n

k=O

i O,...,m,

which is the same as the least squares solution of

WnA WF,

where W diag(w0,..., win) and

,= A=
f(-,)r)o(Zm) .)n(Zrn)

Note that when Ck(z) zk, the power’ basis, then n is a rectangular Vandermonde
matrix.

The normal equations for this system are

(H w,)A tpH W2F.
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When the Ck are chosen to be the orthonormal polynomials k, then HnW2n In+l
and the previous system gives the solution An HnW2F immediately.

When the let squares problem is solved by QR factorization, i.e., when Q is an
m x m unitary matrix such that QHWn [RT oT]T is upper triangular, we must
solve the triangular system given by the first n + 1 rows of

0 A X

where X is related to the residual vector r by

[ 0X ] =QHr’ r=WA-WF.
Note that the least squares error is ]Z]] ]]r]]. Again, when the Ck are replaced by
the orthonormal polynomials , we get the trivial system (m n)

0

Note ghat a unitary matrix Q is always relaged go ghe orthonormal polynomials by

Q w,
where

vo(zo) v (zo) 1
since

QHQ (Hw2( ImT1"
3. The Hessenberg matrix. From the previous discussion, it follows that the

central problem is to construct the orthonormal basis (k}. In general, the polynomial
zcpc_(z) can be expressed as a linear combination of the polynomials 0,...,
leading to a relation of the form

+... +  o vo(z), k= 1,...,m+l.

We can express the previous relations as

(3) Tz[o(z),..., m(z)] [o(z),..., m(z)]H + em+m+(Z)rlm+,m+,

where H is an upper Hessenberg matrix

?01 ?Om ?0 m+
rl rlm rl,m+

?mm ?m,m-I

and eT [0 0 0 1]m-bl
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Note that a discrete inner product of the proposed form will cause a breakdown
in the generation of the polynomials at stage m + 1. Indeed, we should identify a
function with the (m + 1)-vector of its function values in z, k 0,... ,m. Thus
when we say the "polynomial p," we actually mean the vector (p(zo),...,p(Zm)).
Thus our "function space" is a space of (m + 1)-vectors, which is inherently (m + 1)-
dimensional, and thus the (m + 1)st orthogonal polynomial will be orthogonal to the
whole space, hence it must be zero. Thus, if k are these orthogonal polynomials,
then [m+l(Z0),..., m+l(Zm)]T will be the zero vector. This is equivalent to saying
that ,+1 is proportional to (z- zo)... (z- Zm).

Even when we use terms as "functions" and "polynomials," the problem consid-
ered is in fact a vectorial problem, which can be best formulated in terms of matrices,
which we do below.

Setting (I) (I)m as before, we rewrite the relation (3) as

Z( (H

with Z diag(z0,..., Zm).
Multiplying with the diagonal matrix W and using WZ ZW, we are led to

H (W()HZ(W() QHZQ,

which means that the diagonal matrix Z and the Hessenberg matrix H are unitarily
similar.

The constant polynomial 0 is normalized when it is equal to %-0 with 700 given
by

QHw1 [v/oo, 0,..., O]T,
where wl [wo,..., w]T. Indeed, using Q W(I) and supposing I1 oll- 1, we see
that all the entries in QHwi are zero by orthogonality, except for the first one, which
is 1/o.

This condition is not sufficient to characterize Q completely. We can fix it uniquely
by making the k have positive leading coefficients. This will be obtained when all

2the T]kk, k O, 1,..., m are positive. Since we assume that all the weights w are
positive, the T]kk are nonzero and therefore this normalization can always be realized.

We thus obtained a one-to-one relation between the data {zi, wi}n, the unitary
matrix Q and the elements v/ij, i 0,..., m, j 0,..., m + 1 of an extended (with
/o0) Hessenberg matrix. This also fixes the orthonormal polynomials.

Since Z and H are unitarily similar, they have the same spectrum and the con-
struction of H from Z by unitary similarity transformations is in fact an inverse
spectral problem: given the spectrum Z and the first components of the eigenvectors,
find the set of orthonormal eigenvectors (the columns of QH), such that QHZQ is the
eigenvalue decomposition of some upper Hessenberg matrix with the normalization
described above.

In the direct problem, one computes the eigenvalues {z}n and the eigenvectors
Q from the Hessenberg matrix, e.g., with the QR algorithm. For the inverse problem,
the Hessenberg matrix is reconstructed from the spectral data by an algorithm that
could be called an inverse QR algorithm. This is the Rutishauser-Gragg-Harrod al-
gorithm for the case of the real line [11], [12] and the unitary inverse QR algorithm
described in [2] for the case of the unit circle. For the least squares problem, we
add the function values f(zk) and when these are properly transformed by the simi-
larity transformations of the inverse QR algorithm, this will result in the generalized
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Fourier coefficients of the approximant and some information about the corresponding
residual. Indeed, the solution of the approximation problem is given by

Note that the normal equations are never explicitly formed.
The whole scheme can be collected in one table giving the relations

Q’[w0 II z][ A"
r]oo
0

?Om ?O,m+
l:m

Tram

with w0 WF and W1 --[W0,..., Wra]T as before. The approximation error is
For further reference we refer to the matrix of the right-hand side as the extended
Hessenberg matrix.

4. Updating. Suppose that An was computed by the last scheme for some data
set {zi, fi, wi}n. We then end up with a scheme of the following form (n 3, m 5)"

x
x
X

x
x
x

X X X X X

X X X X X

X X X X X

X X X X

X X
x x

A new data triple (Zm+:, fm.+.l, Wrn--l) can be added, for example, in the top line. The
three crosses in the top line of the left scheme below represent Wm+lfm+l, Wm+ and
Zm+, respectively. The other crosses correspond to the ones we had in the previous
scheme.

x

x
x
x
x

X X X X X

X X X X X

X X X X X

X X X X

X X X

X X

X X

X

X

X

X

x
x

X X X X X X X

X X X X X X X

X X X X X X

X X X X X

X X

X X

X X

This left scheme must be transformed by unitary similarity transformations into the
right scheme, which has the same form as the original one but with one extra row
and one extra column. This result is obtained by eliminating the (2,2) element by an

elementary rotation/reflection in the plane of the first two rows. The corresponding
transformation on the columns will influence columns 3 and 4 and will introduce a
nonzero element at position (3,3), which should not be there. This is eliminated by a

rotation/reflection in the plane of rows 2 and 3, etc. We call this procedure chasing
the elements down the diagonal. In the first column of the result, we find above the
horizontal line the updated coefficients An. When we do not change n, it is sufficient
to perform only the operations that influence these coefficients. Thus we could have
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stopped after we obtained the form

X X x x
x x x
x x
x
x
x
x

x x x x x
x x x x x
x x x x x
x x x x x

x x x x
x x x x

x x

This can be done with O(n2) operations per new data point. In the special case of
data on the real line or on the unit circle, this reduces to O(n) operations as we see
in the next section.

5. Recurrence relations. The algorithm described above simplifies consider-
ably when the orthogonal polynomials satisfy a particular recurrence relation. A
classical situation occurs when the z E , i 0, 1,..., m. Since also the weights w
are real, the Q and H matrix will be real, which means that we can drop the com-
plex conjugation from our notation. However, in view of the generalization to follow,
where we have complex numbers instead of the wi, we keep for the moment the bar,
although it has no effect, being applied to real numbers. Thus we observe that for
zi E R, the Hessenberg matrix H satisfies

HH (QHZQ)H QHZQ H.

This means that H is Hermitian and therefore tridiagonal. The matrix H reduces to
the classical Jacobi matrix

a0

al

containing the coefficients of the three term recurrence relation

#-1 O, Z#k(Z) bkk-(Z) / akCPk(Z) -t- bk+Pk+(Z), k O, 1,..., m 1.

A similar situation occurs when the zi are purely imaginary, in which case the matrix
H is skew Hermitian. We do not discuss this case separately.

The algorithm we described before now needs to perform rotations (or reflections)
on vectors of length 3 or 4, which reduces the complexity of the algorithm by an order.
This is the basis of the autishauser-Gragg-Harrod algorithm [14], [11]. See also [5],

In this context, it was observed only lately [9], [10], [2], [13], [3] that the situation
where the zi " (the unit circle) also leads to a simplification. It follows from

HHH QHzHzQ QHQ Im+l
that H is then a unitary Hessenberg matrix. The related orthogonal polynomials
are orthogonal with respect to a discrete measure supported on the unit circle. The
three-term recurrence relation is replaced by a recurrence of Szegb-type



870 A. BULTHEEL AND M. VAN BAREL

with

(z) zk(1/) e k and a 1 I > 0,

where the "1k are the so-called reflection coefficients or Schur parameters. Just like in
the case of a tridiagonal matrix, the Hessenberg matrix is built up from the recurrence
coefficients ’1k, ak. However, the connection is much more complicated. For example,
for m 3, H has the form

-’11 -0"1"1)’2 -r10"2’13 -(:r16263"14

ffl -’112 -1ff23 -1

The Schur parameters can be recovered from the Hessenberg matrix by

aj=jj, j=l,...,m, 700=1/0=a0,

j 1,...,m+1.

The complexity reduction in the algorithm is obtained from the important observation
that any unitary Hessenberg matrix H can be written as a product of elementary
unitary factors

with

H G1G2...GmGm+I

and

Gk ik_l @ [ --Tk ak ]a
Im-k, k= 1, m

G’ diag(1, 1 -’1m+1)m+l

This result can be found, e.g., in [9], [2].
Now an elementary similarity transformation on rows/columns k and k + 1 of H,

represented in this factored form, will only affect the factors Gk and part of the factors
Gk-1 and Gk+l. Again, these operations require computations on short vectors of
length 3, making the algorithm very efficient again. For the details consult [9], [2],
[13]. For example, the interpolation problem (n m) is solved in O(m2) operations
instead of O(m3).

6. Vector approximants. The previous situation of polynomial approximation
can be generalized as follows.

m find polynomials pk E Id, k 0,... ,Given {zi; fo, fa; wo, w}=o,
such that

Izo’foPo(z’) /... / wo,,f,,p,(z,)l
i=0

is minimized. Now it does not really matter whether the wi are positive or not, since
the products wjifi will now play the role of the weights and the fji are arbitrary



DISCRETE LEAST SQUARES 871

complex numbers. Thus, to simplify the notation, we could as well write wji instead
of wjifji since these numbers will always appear as products. Thus the problem is to
minimize

m

+’" +
i----0

Setting d-- (do,... ,da), Pd --[]do,...,]do,]T,

Wi "--[WOi,...,gai], p(Z) [Po(Z),... ,pa(z)]T e d,

we can write this as

m

minE IwiP(Zi)12’ P Fd.
i--o

Of course, this problem has the trivial solution p 0, unless we require at least one
of the pi(z) to be of strict degree di, e.g., by making it monic. This, or any other
normalization condition could be imposed for that matter.

In this paper we require that p is monic of degree da, and rephrase this as

To explain the general idea, we restrict ourselves to c 1, the case of a general
c being a straightforward generalization, which would only increase the notational
burden. Thus we consider the problem

m

minE IwoPo(Z) + wp(z)l, Po Fdo,P F.
i=0

Note that when w0i wi > 0, wli -wifi, and pl =_ 1 E F0M, (i.e., d 0), then we
get the polynomial approximation problem discussed before.

When we set w0i wifoi and wi -wifi with wi > 0, the problem becomes

m
2minEwi IfoiPo(zi) IiPl (zi)l 2,

i=o

which is a linearized version of the rational least squares problem of determining the
rational approximant Po/P for the data fi/foi, or equivalently the rational approx-
imant P/po for the data foi/fi. Note that in the linearized form, it is as easy to
prescribe pole information (f0 0) as it is to fix a finite function value (f0 : 0).

The solution of the general case is partly parallel to the polynomial case dx 0
discussed before, and partly parallel to another simple case, namely, do dl n,
which we discuss first in 7. In the subsequent 8, we consider the general case where
do d.

7. Equal degrees. We consider the case a 1, do d n. This means that
d is here equal to I2n.

7.1. The optimization problem. We must find

m

mine IwP(z)lU’ Po , p Mn
i=0
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where w, [w0 wx] and p(z) [p0(z) pl (z)]T e I2n1
in [15], [17]. We propose a solution of the form

k=O

where

This problem was considered

(z)e C k 0,1,.. n.k-l ak E

Proposing p(z) to be of this form assumes that the leading coefficients of the block
polynomials k are nonsingular. Otherwise this would not represent all possible cou-
ples of polynomials (Po,P) I2n. We call this the regular case and assume for the
moment that we are in this comfortable situation. In the singular case, a breakdown
may occur during the algorithm, and we shall deal with that separately.

Note that the singular case did not show up in the previous scalar polynomial
case, unless at the very end when n m + 1, since the weights were assumed to be
positive. We see below that in this block polynomial situation, the weights are not
positive and could even be singular.

When we denote

the optimization problem is to find the least squares solution of the homogeneous
linear system

W(nAn 0

with the constraint that p should be monic of degree n.
For simplicity reasons, suppose that m + 1 2(m + 1) is even. If it were not,

we would have to make a modification in our formulations for the index m. The
algorithm however, does not depend on m being odd or even, as we shall see later.

By making the block polynomials k orthogonal so that

m

(4) Ek(z)HwHwt(Z) 5kI2, k, O, 1,..., m’,
i--O

we can construct a unitary matrix Q C(m+l)x(m+l) by setting

Q W(I),

where (I) (I)m, is a (2m + 2) (m + 1) matrix, so that Q is a square matrix of size
m+l.

We also assume that the number of data points m + 1 is at least equal to the
number of unknowns 2n / 1 (recall that one coefficient is fixed by the monic normal-
ization).
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The unitarity of the matrix Q means that

QHQ (HwHw( Im-t.-1

and the optimization problem reduces’to

m

minEP(zi)HwHwip(zi) min(AC’)H(HwHw’(ACm’)
i-0

min(ACm )H (ACre,)

minE aZak
k=O

m

min E(Jalk[2 + la2k12),
k=O

ak [alk a2k]T

with the constraint that p(z) E ]P2nI; thus an+l am, 0, and pl E IPnM. Since
the leading term of p is only influenced by nan, we are free to choose ao,..., an-,
so that we can set them equal to zero, to minimize the error. Thus it remains to find

min(lanl2 +

such that

a2n p (z) ]nM

To monitor the degree of pl, we require that the polynomials k have an upper
triangular leading coefficient

Ok ’Tk ] Zk
0 +""

with ak, flk > 0. Note that this is always possible in the regular case. The condition
p FnM then sets a2n 1/n and aln is arbitrary, hence to be set equal to zero if
we want to minimize the error.

As a conclusion, we have solved the approximation problem by computing the
nth block polynomial n, orthonormal in the sense of (4), and with leading coefficient
upper triangular. The solution is

p (z) (Pn (z)
a2n

a2n 1//n.

7.2. The algorithm. As in the scalar polynomial case, expressing zpk(z) in
terms of 0,..., k+ for z {z0,... ,Zm} leads to the matrix relation

Z(I) (H,

where as before (I) (I)m,, Z diag(z0,... ,zm), Z Z (R) I2 diag(z012,... ,ZmI2),
and H is a block upper Hessenberg matrix with 2 2 blocks. If the leading coefficient
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of 99k is upper triangular, then the subdiagonal blocks of H are upper triangular. The
computational scheme is compressed in the formula

0o ?’]0m’ 0,m’+l
Tllm’ Tll,m’+l

m’m’

where w [wTo,..., WTm]T and where all ii are 2 x 2 blocks and the viii are upper
triangular with positive diagonal elements. Thus

990 7o; z99k-i (z) 990(Z)70k +’’"-t- 99k(Z)Ttk, k 1, m’.

The updating after adding the data (Zm+l, Wm+l), where Wm+l (w0,/--l, Wl,/-l),
makes the transformation with unitary similarity transformations from the left to the
right scheme below. The three crosses in the top row of the left scheme represent the
new data.

x x x x x x x x x x x x
X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X

x x x x x x x x x x x x
X X X X X X X X X X

X X X X X X X X

X X X X X X

The successive elementary transformations eliminate the crosses on the subdiagonal,
chasing them down the matrix. This example also illustrates what happens at the
end when m is an even number: the polynomial 99m’ E I2m, instead of 99m’ I2m, 2.
Again, when finishing this updating after 99n has been computed, it will require only
O(n2) operations per data point introduced. In the special case of data on the real
line or the unit circle, this reduces to O(n) operations. For the details, we refer to
[], [i].

By the same arguments as in the scalar case, it is still true that H is Hermitian,
hence block tridiagonal, when all the zi are real. Taking into account that the sub-
diagonal blocks are upper triangular, we obtain in this case that H is pentadiagonal
and the extended Hessenberg matrix has the form

Bo Ao

with the 2 2 blocks B upper triangular and the A Hermitian. This leads to the
following block three-term recurrence

990 B z99k(z) 99k-lB + 99k(z)Ak + 99k+l(z)B+l, 0 <_ k < m’

This case was considered in [15].
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Similarly, the case where all zi lie on the unit circle 21", leads to a 2 x 2 block gen-
eralization of the corresponding polynomial case. For example, the extended unitary
block Hessenberg matrix takes the form (m’ 3)

(To -172 -1273
-F172 -F1]273 F123
a2 -1-’273 123

0"3 F3

7i, O’i, ’]i, Fi ( C2x2.

The matrices

Uk__ [ --Tk k ]ak Fk

are unitary: uHut I4. Note that by allowing some asymmetry in the U} we do not
m’need a -74 in the last column as we had in the scalar case. We have for k 1,

the block Szeg5 recurrence relations

+
+

which start with 0 a-1.
The block Hessenberg matrix can again be factored as

H G1G2... Gin,

with

Gk I2(k-) @ Uk Im-2k-, k 1,..., m’.

The proof of this can be found in [17]. This makes it possible to perform the elemen-
tary unitary similarity transformations of the updating procedure only on vectors of
maximal length 5, very much like in the case of real points zi. Thus also here, the
complexity of the algorithm reduces to O(m2) for interpolation. More details can
be found in [17]. For the case of the real line, the algorithm was also discussed in
Ill, solving an open problem in [5, p. 615]. The previous procedure now solves the
problem also for the case of the unit circle.

7.3. Summary. The casec- 1, do dl n and also the case c >_ 1, do-
d do n for that matter, generalizes the polynomial approximation problem
by constructing orthonormal polynomials } which are ( / 1) x (( / 1) polynomial
matrices and these are generated by a block three-term recurrence relation when all
z E ]R and by a block Szeg5 recurrence relation when all z

The computational algorithm is basically the same, since it reduces the extended
matrix

[wlZ] e C(’+’)(+’+)

by a sequence of elementary unitary similarity transformations to an upper trapezoidal
matrix

Q ] -[H01HI
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with H block upper Hessenberg with (a / 1) ( / 1) blocks and

H0 Q’w 0,..., 0]

where 700 E C(a+l) (a+1) is upper triangular with positive diagonal elements, as well
as all the subdiago.nal blocks of H. FQr n m’, where ( + 1)(m’ + 1) 1 m + 1
(which implies that am, is of size (c + 1)) we solve an interpolation problem. It
requires O(m2) operations when zi E R or ’, instead of O(m3) when the z are
arbitrary in C.

8. Arbitrary degrees. In this section we consider the case 1 with do dl.
For more details we refer to [16].

8.1. The problem. We suppose without loss of generality that do 5 and
dl n + 5, n, 5 >_ 0. We must find once more

m

min IwiP(Zi)l 2, Po 17, P ’+

with wi--[w0i wi] and [p0(z) p (z)]T e d, d-- (do, d).
The polynomial approximation problem is recovered by setting 5 0. The case

do dl 5 is recovered by setting n 0.
The simplest approach to the general problem is by starting with the algorithm.

In the subsequent subsections, we propose a computational scheme involving uni-
tary similarity transformations, next we give an interpretation in terms of orthogonal
polynomials and finally we solve the approximation problem.

8.2. The algorithm. Comparing the cases 5 0 and n 0, we see that the
algorithm applies a sequence of elementary unitary similarity transformations on .an
extended matrix

[wlZ1, W--[W,...,WTm]T, Z-’diag(zo,...,Zm)

to bring it in the form of an extended (block) upper Hessenberg

QH[w[Z] [ I2 ] [Ho[H]Q

When n 0, the transformations were aimed at chasing down the elements of [w[Z]
below the main diagonal, making [H0]H] upper triangular. Therefore H turned out
to be block upper Hessenberg.

When 0, the transformations had much the same objective, but now, there
was no attempt to eliminate elements from the first column of w, only elements from
the second column were pushed to the SE part of the matrix. The matrix then turned
out to be upper Hessenberg in a scalar sense.

The general case can be treated by an algorithm that combines both of these
objectives. We start as in the polynomial case (n 0), chasing only elements from
the second column of w. However, once we reach row n + 1, we start eliminating
elements in the first column, too.
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Applying this procedure shows that the extended Hessenberg [H0[H] has the form

x
x
x
x
x

X

0 n m
x -x x x x
X X X X X

X X X X

X X X

X X

x x
x

x x X X

x x x x
X x X x
x x x x
x x x x
x x x x
x x x x
x x x

x X

x

x x

x x
x x

x

x x x x
x x x

x x
X

x
X

x
x
x

in the first row)

x x x x x x x x x
X X X X X X

X X X X X X

X X X X X X

X X X X X X

xX X X x x
X X X X X X

X X X X X

X X X X

X X X

the element (R) is chased down the diagonal by elementary unitary similarity trans-
formations operating on two successive rows/columns until we reach the following
scheme (where (R) 0 and (R) and e are the last elements introduced which are in
general nonzero)

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

e x x x x x x x
) x x x x x x x

(R) x x x x x x
X X X X X

X X X X

X X X

Now the element (R) in row n + 1 is eliminated by a rotation/reflection in the plane
of this row and the previous one. The corresponding transformation on the columns

x
x
x
x
X

x
x
X

x
X

X X X

This means that the NW part of H, of size (n / 1) x (n + 1), will be scalar upper
Hessenberg as in the case n 0, while the SE part of size (m n + 2) x (m n + 2)
has the block upper Hessenberg form of the case 5 0.

The updating procedure works as follows. Starting with (the new data are found
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will introduce a nonzero element at position (R). Then (R) and (R) are chased down the
diagonal in the usual way until we reach the final situation

X X X X X X X

X X X X X X

X X X X X

X X X X

X X X

X X

X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X

X X X X

X X X

8.3. Orthogonal vector polynomials. The unitary matrix Q involved in the
previous transformation was for the case 5 0 of the form Q Wm, where W was
a scalar diagonal matrix of the weights and (I)m was the matrix with/j-element given
by oj(zi), with oj the jth orthonormal polynomial.

When n 0, then Q Wm,, where W is the block diagonal with blocks being
the 2 1 "weights" wi and (I)m, is the block matrix with 2 2 blocks, where the
/j-block is given by oj(zi), with oj the jth block orthonormal polynomial.

For the general case, we have a mixture of both. For the NW part of the H
matrix, we have the scalar situation and for the SE part we have the block situation.

To unify both situations, we turn to vector polynomials rk of size 2 1. For the
block part, we see a block polynomial o as a collection of two columns and set

o(z) [r_l(Z)lr.(z)].

For the scalar part, we embed the scalar polynomial o in a vector polynomial rj by
setting

In both ces, the orthogonality of the translates into the orthogonality relation

i=O

for the vector polynomials k. Let us apply this to the situation of the previous
algorithm. For simplicity, we suppose that all zi . For zi , the situation is
similar.

For column number j 0, 1,..., n- 1, we are in the situation of scalar orthogonal
polynomials: Qj wij(z) wirj(zi). Setting

x b0 a0 b

bl al "
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we have for j 0,..., n- 2, the three-term recurrence relation

z(j(z) Oj-1 (z)bj + gj(z)aj + j+l (z)bj+l,

By embedding, this becomes

z(z) _() +(z) + +(),+, 0 [0 o1r.
Thus, setting

H [(zo)r,..., .(z)Vlr,
we have for the columns Qj of Q the equality

Qj WIIj j 0,1,...,n- 1.

For the trailing part of Q, i.e., for columns (n + 2j 1, n + 2j), j 0,1,..., we are in
the block polynomial case. The block polynomials j(z) group two vector polynomials

v() [+=-x(z)l-+()],

which correspond to two columns of Q, namely,

qi [Q+9.-llQ=+2i].

Observe that we have the following relation between Qj and the block orthogonal
polynomials

Q2i,n+2j-1Qij wioj(zi) Q2i+l,n+2j-1
Q2i,n+2j ]Q2i+l,n/2j

where this time wi [Woi wli]. As above, denote the vector of function values for
by Hi. The block column of function values for is denoted by . Then clearly

Qj W4j,

Denoting in the extended Hessenberg matrix

x b0

[H01HI 0 A0

we have the block recurrence

zj(z) j_(z)B + y(z)Ay + j+l(Z)Bj+l, j =0,1,

The missing link between the scalar and the block part is the initial condition for this
block recurrence. This is related to columns n- 2, n- 1 and n of Q. Because columns
n- 2 and n- 1 are generated by the scalar recurrence, we know that these columns
are Qj WHj, j n- 2, n- 1, where the Hj are related to the embedded scalar
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polynomials. A problem appears in column Qn where the three-term recurrence of
the leading (scalar) part migrates to the block three-term recurrence of the trailing
(block) part, i.e., from a three-term to a five-term scalar recurrence. We look at this
column in greater detail. Because

"do Woo

0

0 WOm

Q,HWE, E

we have

Qodo +’" + Q,d, WE;

thus

1
(WE [Q01 IQn-1]A-I) [do, d,-]TAn_ ..,

1
(WE W[nol Ir,_] *A_I)

d

(E-[nol in- ]A*=W _)

W(E P_), P,_ [Hoi... IH,- A*
d.

x] -x"

Setting Qn WHn, Hn [Trn(zo)T,... ,Trn(zm)T]T, we find that

111],(z)= p,_(z)

where

Pn- (Z) oo(z)do +"" + on-i (z)dn-

is the polynomial least squares approximant of degree n- 1 for the data (zi, wi),
i=O,...,m.

8.4. Solution of the general problem. Now we are ready to solve the general
problem. We start with the degree structure of the polynomials 7rj(z). Suppose the
jth column of Q is Qj, which we write as

Q WH, I [,(0)r,...,.(z)r]r

with W diag(w0,..., win) and 7rj(z) [j(z) Cj(z)]T. Then it follows from the
previous analysis ttiat the Cj are the sdalar orthogonal polynomials j, and hence the
degree of Cj(z) is j, for j 0, 1,... ,n- 1. Moreover, the are zero for the same
indices (their degree is -oc). For j n, we just found that Cn is 1/dn, thus of.degree
0 and Cn is of degree at most n- 1, since the latter is proportional to the polynomial
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least squares approximant of that degree. With the block recurrence relation, we now
easily find that the degree structure of the block polynomials

Cn+2j n+j--1 n+j--1

for j 1, 2,..., while oo has degree structure- 0 ]n-1 n-1

It can be checked that in the regular case, that is when all the subdiagonal ele-
ments b0,..., bn-1 as well as dn are nonzero and when also all the subdiagonal blocks
B1,...,B are regular (upper triangular), then the degrees of Ck Ok are precisely k
for k 0, 1,..., n- 1 and in the block polynomials oj, the entries Cn+2j and Cn+2j-1
have the precise degrees that are indicated, i.e., j and n +j- 1, respectively. Thus, if
we propose a solution to our approximation problem of the form (suppose m _> n+2)

n+2+l

j=0

then p(z) [po(z) p(z)]T will automatically satisfy the degree restrictions do <_ 5
and d _< n / 5. We must find

min(Ann H HwH n’ n + 26 + 1,

where

A [ao,...,an,]T and Fin, [H01...lIIn’].

Since WFIn, form the first n / 1 columns of the unitary matrix Q, this reduces to

min(A, )H (A,l],) min laj 12.
j=0

If we require as before that Pl(Z) is monic of degree n .+ 5, then an, 1/n, where
is the leading coefficient in Cj. The remaining aj are arbitrary. Hence, to minimize
the error, we should make them all zero. Thus our solution is given by

9. The singular case. Let us start by considering the singular case for do
d n. We then generate a singular subdiagonM block ?Tkk of the Hessenberg matrix.
The algorithm performing the unitary similarity transformations will not be harmed
by this situation. However, the sequence of block orthogonal polynomials will break
down. From the relation

+... +
it follows that if Tkk is singular, then this cannot be solved for ok(z). In the regular
case, all the rjj are regular and then the leading coefficient of ok is r... Tk-k1. Thus,
if all the rjj are regular upper triangular, then also the leading coefficient of ok will
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be regular upper triangular. As we said in the Introduction, the singular situation will
always occur, even in the scalar polynomial case with positive weights, but only at
the very end where k m/ 1. That is exactly the stage where we reach the situation
where the least squares solution becomes the solution of an interpolation problem. We
show below that this is precisely what also happens when some premature breakdown
occurs.

Suppose that the scalar entries of the extended block Hessenberg matrix are
[H01H] [h],=0, (We use h to distinguish them from the block entries U.)
Suppose that the element is the first element on its diagonal that becomes zero
and thus produces some singular subdiagonal block in H. Then it is no problem to
construct the successive scalar columns of the matrix until the recurrence
relation hits the zero entry h. If we denote for O, I,..., I, the jth column
of as II, then we know from what we have seen, that II represents the vector of
function values at the nodes zo,..., Zm of some vector polynomial rj(z) E p2xl. The
problem in the singular case is that rk(z) cannot be solved from

because hkk O. However, from

noln ]=[*0 Iz] [
it follows that

0]
wo Qohoo; w Qoho + Qhll

WII (wl WHoho)
(w Qoho)
-Qh -0.

This means that we get an exact approximation since wir (zi) 0, i 0,..., m.
For the general case hkk 0, k >_ 2, we have that

ZQk-2 Qoho Qt;-h-, Qkht; O.

Since Qj WHj for j 0,..., k 1, we also have

0 ZWHk_2 WHohok WIIk-lhk-l,k

() (Zn- noo n-l-l,),

Then

and for k > 2

ZQk-2 Qohok +’" + Qkhk,

where Qi, j 0,1,... denotes the jth column of Q. We shall discuss the case hkk 0
separately for k 0, k 1 and k _> 2 separately.

If h00 0, then w0 0. This is a very unlikely situation because then there is
only a trivial solution (p0, p) (1, 0) which fits exactly.

Next consider hl --0; then define ;r as

r= [0 ]-rhl’l
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where Z- Z (R) 12. Define the polynomial

r(z) zrc_2(z) "fo(z)ho

then, WH W[’f(zo)T,..., r(Zm)T]T will be zero since it is equal to the expression
(6), which is zero. This means that

wi’fk(zi) 0, i 0,...,m.

The latter relations just tell us that this "f is an exact solution of the approximation
problem, i.e., it interpolates.

In the general situation where do dl, we must distinguish between the scalar
and the block part. For the scalar part we can now also have a breakdown in the
sequence of orthogonal polynomials since the weights are not positive anymore, but
arbitrary complex numbers.

Using the notation

hoo hol ho,n+

hnn hn,n+l

for the NW part of the extended Hessenberg matrix, the situation is as sketched
above: whenever some hkk is zero, we will have an interpolating polynomial solution.
It then holds that

r(z) z’f_ (z) "fo(z)hot: r_(z)h_,k

and because wn W[rT(zo),.. ,T
,’fk (Zm)]T is zero, we get

w’f(z) 0, 0,...,m,

identifying r(z) as a (polynomial) interpolant.
For the SE part, i.e., for the block polynomial part, a zero on the subsubdiagonal

(i.e., when we get a singular subdiagonal block in the Hessenberg matrix), will imply
interpolation as we explained above for the block case.

The remaining problem is the case where the bottom element in the first column
of the transformed extended Hessenberg matrix becomes zero. That is the element
that has been previously denoted by dn. Indeed, if this is zero, then our derivation,
which gave (5)

"fin(Z) Pn--l(Z)
does not hold anymore. But again, here we will have interpolation, i.e., a least squares
error equal to zero. It follows from the derivation in the previous section that when
dn O,

Thus

W(E-P_)=dnQ,=O.

wi 0 7rk(z4)dk wi O,
k=O

pn-(Zi)
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where pn-l(z) k=on-1 k(z)a. This is the same as

Woi WliPn-1 (Zi) O, 0,..., m,

which means that (1,pn-(z))/d’ with d’ 0 to normalize pn-(z) as a monic poly-
nomial fits the data exactly.

10. Conclusion. We have shown that the inverse QR algorithm for solving dis-
crete polynomial approximation problems for knots on the real line or on the unit
circle can be generalized to more general approximation problems of the form (2).

In the previous section, we only considered the problem of updating, i.e., how to
adapt the approximant when one knot is added to the set of data. There also exists
a possibility to consider downdating, i.e., when one knot is removed from the set of
interpolation points. For the polynomial approximation problem, this was discussed
in [6] for real data and in [3] for data on the unit circle. The procedure can be
based on a direct QR algorithm which will "diagonalize" the Hessenberg matrix in
one row and column (e.g., the last one). This means that the only nonzero element
in the last row and the last column of the transformed Hessenberg matrix is Zm on
the diagonal. The unitary similarity transformations on the rest of the extended
Hessenberg matrix brings out the corresponding weight in its first columns and the
leading m m part gives the solution for the downdated problem. Of course, just
as the updating procedure can be generalized, the downdating procedure can also be
adapted to our general situation. A combination of downdating and updating provides
a tool for least squares approximation with a sliding window, i.e., where a window
slides over the data, letting new data enter and simultaneously forgetting about the
oldest data.

The inverse QR algorithm that we described in the previous sections is, in princi-
ple, applicable in the situation of arbitrary complex data. However its complexity can
be reduced by an order of magnitude if the knots are real or located on the unit circle.
The secret of this complexity reduction is the exploitation of a recurrence relation for
the corresponding orthogonal polynomials and the parametrization of the Hessenberg
matrix involved in terms of the recurrence coefficients.

The polynomial discrete least squares approximation problem discussed in the
papers where the algorithm was first conceived gave rise to the construction of a
sequence of polynomials orthogonal with respect to a discrete inner product. In the
more general problem, these generalize to orthogonal block polynomials when all the
degrees of the approximating polynomials are equal, or, in the more general case of
arbitrary degrees, both scalar and block orthogonal polynomials appear that can be
uniformly treated as vector orthogonal polynomials.

The algorithm has been reported to have excellent numerical stability properties
[11], [12] and is preferred over the so-called Stieltjes procedure [12]. See also [7],
[8]. Moreover it is well suited for implementation in a pipeline fashion on a parallel
architecture [17], [15].
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ON A MATRIX GENERALIZATION OF AFFINE-SCALING VECTOR
FIELDS*

LEONID FAYBUSOVICHt

Abstract. We construct a generalization of affine-scaling vector fields for matrix linear pro-
gramming problems. We discuss various properties of these vector fields and suggest a generalization
of a path-following algorithm that is due to C.Gonzaga [SIAM Rev., 34 (1992), pp. 493-513].

Key words, linear programming, interior point methods, matrix problems

1. Introduction. Affine-scaling vector fields and the related geometric picture
play a prominent role in the development of interior-point methods for solving var-
ious optimization problems [2]. For example, in so-called path-following algorithms
the idea is to construct a finite-step approximation to the trajectory of this vector
field. In this way the best known theoretical complexity estimates for polynomial-
time algorithms were obtained. See, e.g., [11] and references therein. Affine-scaling
vector fields arise naturally in connection with logarithmic barrier functions [2]. They
possess an important property of being invariant under scaling transformations.

In the present paper we consider the problem of maximization of a linear function
on a convex set determined by linear matrix inequalities:

(1.1) Tr(CK) max,

(1.2) Tr(AK) b, i 1,..., m,

(1.3) K E S(n), K >_ O.

Here C,A,i 1,...,m are symmetric matrices; Tr(A) stands for the trace of a
matrix A and K >_ 0 means (x, Kx} xTKx >_ 0 for any x e R’; S(n) is the set of
symmetric real n by n matrices; bi R, 1,... m. The optimization problem

(1.4) f(K) Tr(CK) + ln(det K) --* max,

Tr(AiK) bi, i 1,..., m,

(1.6) K S(n), K >_ O,

where > 0 is a scalar parameter, enables us to introduce a barrier function In det K
and to choose a matrix generalization of affine-scaling vector fields. Namely, if K()
is a solution to (1.4)-(1.6), then it turns out that g() as a function of satisfies
a system of differential equations that we call the generalized affine-scaling vector
fields. The emerging geometric picture includes a Riemannian metric determined by
the Hessian of the barrier function In det K and a group of linear isometries playing the
role of scaling transformations for the matrix case. We have chosen a path-following
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Department of Mathematics, University of Notre Dame, Mail Distribution Center, Notre Dame,
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algorithm that is due to Gonzaga [11] to illustrate the main point of this paper: the
analogy between the scalar and the matrix case goes as far as the choice of the step
size and resulting complexity estimates. The reader is invited to generalize major
constructions and results of [11] for the matrix case using the technique developed in
the present paper. A more challenging project is to construct the polynomial-time,
path-following algorithms for the case of the entropy-type barrier function [8], [9]. The
main problem here is that the corresponding group of isometries acts nonlinearly.

It should be pointed out that a different approach to the construction of path-
following algorithms for (1.1)-(1.3) was suggested in [13].

The problem (1.1)-(1.3) has numerous applications in control theory [5]. The
primal-dual and pdtential reduction algorithms for this problem were considered in
[4], [1], and [13]. For a review of noninterior-point methods for solving (1.1)-(1.3),
see [10].

2. Generalized affine-scaling vector fields. We start with some elementary
properties of the function " K - In det K.

LEMMA 2.1. Let K, E S(n), K be positive definite and O. Then

Tr(K-IK-I) > O.

Proof. Indeed,

Tr(K-IK-I) Tr(K1/2(K-IK-I)K-1/)

Tr([K-1/2K-1/2]2) >_ O. Moreover, the equality holds if and only if K-1/2CK-1/2
0or=0.

PROPOSITION 2.2. The function is strictly concave on the convex set of positive
definite symmetric matrices.

Proof. Indeed,

(2.1) D(K)() Tr(K-I),

D2(K)(, 7) -Tr(K-IK-lr/),, rl S(n),K > 0. Here we use notations D(K),D2(K) for the first and second
Frechet derivatives of the function at a point K. The result follows from Lemma
2.1.

Suppose that the convex set P determined by constraints (1.2), (1.3) is compact.
Let T span(A1,..., Am) (the set of all linear combinations of matrices A1,..., A,)
and T+/- { S(n): Tr(A) 0,i 1,...,m}. It is clear that S(n) T T+/-.
Let r S(n) --, T+/- be the projection of S(n) onto T+/- along T. Consider the map

: int(P) -- T+/-

(2.3) (K) r(K-1).

Here int(P) is the set of positive definite matrices in P. We denote
P \ Jut(P) by OP. Observe that (K) r(V(K)) (see (2.1).)
LEMMA 2.3. Suppose that K is a positive definite symmetric matrix and A, Am

are linearly independent symmetric matrices. Then the m by m matrix

(2.4) r(K) (Tr(AiKAjK))
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is positive definite.
Proof. It is sufficient to verify that TF(K) > 0 for any nonzero E Rm.

However, TF(K) TrO?glg), ? 1A1 + + mAm. The result follows by
Lemma 2.1.

THEOREM 2.4. Suppose that the convex set P determined by (1.2), (1.3) is com-
pact, int(P) and A1,... ,Am are linearly independent. Then the map !3 is a
diffeomorphism of int(P) onto T+/-.

Proof. Given C E T+/-, consider the following extremal problem:

(2.5) fl (K) Tr(CK) + ln(det K) --* max, K e P.

Since ln(det K) --* -oe when K --, OP, P is compact and f is strictly concave, (2.5)
has a unique solution g(c) e int(P) for any C e T+/-. It is clear that Vfl (g(c)) T.
Hence C + g(c)-1 e T or r(C) -r(g(C)-l). This means that !3 is surjective.
If (gl) (K2) -C, then both gl and K2 are solutions to (2.5). We conclude
that K1 K2 because such a solution" is unique. Hence, !3 is injective. It remains to
prove that !k-1 is smooth. We have for S(n),K int(P):

(2.6) D(K)

Suppose that Tr(Ai) 0, i= 1,..., m, and D!k(K) 0. This yields

m

K-IK-1 #iA
i=1

for some real i and consequently

m

ITr(AsKAK) O, s 1,..., m.
i--1

Hence by Lemma 2.3 #i 0, s 1,..., m. In other words, De(K) is an injective
and hence bijective map from T+/- to T+/-. Thus -1 is smooth by the implicit function
theorem.

REMARK 2.5. The map is a generalization of a version of the Legendre
transform considered in [2].

Let S+(n) be the set of positive definite symmetric matrices. It is clear that
S+(n) is an open subset in S(n). Consider a aiemannian metric g on S+ (n) defined
as follows:

g(K; , l) Tr(K-IK-Iv])

Here K e S+(n),,l e S(n). Consider the map GL(n,R) x S+(n) - S+(n)
(S, K) ---, SKST. In this way we define a transitive action of GL(n, R) on S+(n).

PROPOSITION 2.6. The group GL(n, R) acts on S+(n) by isometrics.

Proof. It is sufficient to verify that

(2.8) g(SKST; SST, STIST) g(K; , ?)

for any S e GL(n, R), K S+ (n), ,/ S(n). But

Tr((SKST)-ssT(SKST)-(ssT)) Tr(K-K-),
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which is equivalent to (2.8).
REMARK 2.7. The action described above will play the role of scaling transfor-

mations for the matrix case.
It is clear that Ant(P) is a submanifold of S+(n) and hence a Riemannian sub-

manifold. Suppose that f is a smooth function on Ant(P). Our next goal is to describe
the gradient Vgf of f relative to the metric g.

PROPOSITION 2.8. Let A1,... ,Am be linearly independent. Then

(2.9)
m

Vgf(K) KVf(K) E#(K, f)A))K,
i=1

K e Ant(P). Here Df(K) Tr(Vf(K)); , Vf(K) e S(n) and

r(K)
#m(K, f) Tr(AmKVf(K)K)

where r(K) is defined in (2.4).
Proof. It is sufficient to verify that Tr(AiVgf(K)) O, 1,..., m, and that

g(g; Vgf(g), ) Tr(Vf(g)) for any e T+/-. We have

m

Tr(AVaf(K)) Tr(AKVf(K)K) #jTr(AKAK) 0

by (2.10). Furthermore,

m

g(K; Vaf(K), ) Tr((Vf(K) E #iAi)) Tr(Vf(K)),
i--1

since Tr(Ai)
COROLLARY 2.9. Let f(g) Tr(KC), C E S(n). Then

(2.11) D(K)Vaf(K) -r(C).

In other words, all vector fields Vafarising from linear functions f correspond to
constant vector fields under the diffeomorphism of Ant(P) onto T+/-.

Proof. It follows from (2.6), (2.9), and that r(Ai)= 0, i= 1,..., m. cl

COROLLARY 2.10. It holds that

(2.12) D()(K)Vaf(K) -r(C) (K).

Proof. The proof is exactly the same as in the previous corollary. One should use
the fact that Vf(K) fC + K-1.

REMARK 2.11. Observe that, if C, Ai, 1,...,m, are diagonal matrices, the
vector field (2.9) has an invariant manifold consisting of positive definite diagonal
matrices in P. The restriction of (2.9) to this manifold coincides with the standard
affine-scaling vector field [2].

COROLLARY 2.12. Let f(K) Tr(CK), C S(n). Then (2.9) has no stationary
points in Ant(P), provided r(C) O.

Proof. This immediately follows by (2.11).
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Set

(2.13) Vc(K) Vgf(K),

provided f(K) Tr(CK).
COFtOLLARY 2.13. For any C, C’ vector fields Vc, VC, pairwise commute. In

other words, the Lie bracket [Vc, Vc, O.
Proof. Since two constant vector fields pairwise commute, hence this follows from

(2.11).
Suppose that P(K)- (see (2.4)) can be smoothly extended to OP. It is possible

then using (2.10) to extend smoothly the vector fields Vgf to P. Suppose that this is
the case. For any vector subspace M E Rn denote by P(M) the set {K e P M C
KerK}.

PROPOSITION 2.14. The set P(M) is an invariant submanifold for
Proof. If gx 0, then by (2.9) Vc(K)z 0. Hence K(0) e P(M) implies

K(t) e P(M) for any t.
EXAMPLE 2.15. Consider the following linear programming problem:

Tr(KC) --. max, Tr(K)= 1, K >_ 0.

In this case r(K) Tr(K). Hence

Vc(K) KCK- Tr(KCK) K2"
Tr(K2)

It is clear that the maximal value of the cost function coincides with the maximal
eigenvalue of C. Our results will show that the maximal eigenvalue of C can be
obtained by a finite-step procedure with any given accuracy. For realistic eigenvalue
algorithms using interior-point technique, see [14], [3], [12].

PROPOSITION 2.16. Under the assumptions of Theorem (2.4) suppose that K(fl)
is a solution to the problem (1.4)-(1.6). Then

(2.14) dK(3) Vc(K(fl)),
d3

lim K(fl) Ko, --* O,where Ko is a solution to the problem In det K ---, max, K P.
REMARK 2.17. K0 is a natural analogue of the analytic center of a polyhedron

Proof. Since K(fl) e int(P), we should have: (C + g(fl)-l/fl) e T or

(2.15) r(C) -r(K(fl)-l)

Multiplying by/3 and then differentiating yields

Comparing this with (2.11), (2.13), we arrive at (2.14). El
PROPOSITION 2.18. Let K* be a solution to the problem (1.1)-(1.3). Then

Tr(CK(fl)) <_ Tr(CK*) <_ Tr(CK(fl)) + n/ft.
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In particular, lim Tr(CK()) Tr(CK*),
Proof. By (2.15), we have

m

(2.16) C- EwiAi-
K()-I

for some real wi. For any K E P we have

m

Tr(CK) EwTr(AK)- Tr(K()-K)

m Tr(K(I)_K m

Ewbi <- E wib.
i--1 i--1

Hence Tr(CK*) <_ Em= wb. On the other hand, by (2.16),

m

Tr(CK()) Ewb
Tr(K(/)K()-I)

or Eim=l wib Tr(CK()) + n/. D
The best way to understand Proposition 2.18 is to consider the dual of the problem

(1.1)-(1.3) (for a detailed relationship between the primal and the dual problem see

m

(2.17) Eb’ - min,
i--1

m

(2.18) EA + Z C, Z _< 0.
i--1

PROPOSITION 2.19. IlK satisfies (1.2), (1.3) and (Z,l,... ,m) satisfies (2.18),
then

m

(2.19) A(Z, K) Eb, Tr(CK) -Tr(ZK) >_ O.
i--1

Proof. Indeed, A(Z, K)= Tr((Eim__l vA-C)K) =-Tr(ZK) -Tr(K1/2ZK1/2)
>_ 0, since Z

_
0. D

COROLLARY 2.20. Suppose that K* is a solution to (1.1)-(1.3). Under assump-
tions of Proposition 2.19 we have

Tr(CK*) <_ Tr(CK) + A(Z, K).

Proposition 2.18 simply means that Z K(fl)-i satisfies (2.18) with an appro-
priate choice of i.
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3. Gonzaga’s path-following algorithm. Proposition 2.18 shows that the tra-
jectory of the generalized affine-scaling vector field that starts at the analytic center
(the central trajectory), converges to the optimal solution of the problem (1.1)-(1.3)
(at least in the value of the cost function). Suppose we know that a point K0 E int(P)
near the analytic center. Since any point on the central trajectory is the solution to
the corresponding problem (1.4)-(1.6), it is natural to try to move along the gradients
of functions (1.4). One should try to choose a step size in such a way that the current
iteration would remain close enough to the central trajectory. This is the main idea
of short-step path-following algorithms. Each time the gradient is cMculated relative
to the metric g introduced earlier (Newton-Raphson’s method). We denote the cor-
responding vector field by W. The most remarkable part of Gonzaga’s algorithm and
many other path-following algorithms is the chosen measure of proximity of a point
K E int(P) to the point K(/) on the central trajectory--the length of the gradient
W(K) in the metric g.

Since W(K) 0 if and only if g g(/) (see Proposition 3.1 below), this choice
of proximity certainly makes some sense. But the ultimate justification for this choice
is due .to concrete calculations (see below).

Consider the vector fields Wz(C, A)(K),/ > 0, defined as follows:

Wz(C,A)(K) Vgfz(K),

see (1.4), (2.9). Let K e int(P) and 3(t) be the integral curve of the vector field (3.1)
such that /(0) K.

PROPOSITION 3.1. The only stationary point ofW in int(P) is K(). For any
K int(P), the corresponding solution /(t) is defined for all t R and has the
following property:

(3.2) 7(t) K(/), t +oo.

Moreover,

(3.3) (t) -l(e-t((K) + Tr(C)) Tr(C)).

Proof. Since by (2.15) (K(/))=-r(C), (3.2) follows by (3.3). To prove (3.3)
set (t) (7(t)). We have by (2.12)

(t) D(/(t))W(/(t)) -Tr(C) (t).

Hence, (3.3) follows. B
The next two propositions are very simple but important for the construction of

the path-following algorithm.
PROPOSITION 3.2. Let S GL(n, R), K int(P). Then

(3.4) W(C, A)(SKST) SW(, fi)(K)ST,

where STCS, i STAiS
Proof. This immediately follows by (2.4),(2.9),(2.10).
PROPOSITION 3.3. It holds that

W(C, A)(E) r(C + E)



GENERALIZED AFFINE-SCALING VECTOR FIELDS 893

(3.5) argmin IIXIIF X C / E- #iA for some (#l,...,#m) e Rm
i--1

Here E is the n by n identity matrix and IIXIIF Tr(XXT)1/2.
Proof. Indeed, the expression for W(C, A)(E) follows from the fact that

g(E;, ?) Tr() and standard properties of orthogonal projections onto vector
subspaces.

Given E S(n), define

(3.6) lK() g(K; , ()1/2.

COROLLARY 3.4. It holds that

(3.7) 1K(Wz(C, A)(K)) min I1 + E-Z#iilIF (#I"’" #,,) e RTM

i--1

K1/2CK1/2, fli K1/2AiK/2.
Proof. By (3.4) with S K/2 we have

W(C, A)(K) K/2W(, A)(E)K/2 .
Thus

IK(W(C, A)(Kj)2 g(KI/2EKI/2; , ) g(E; W(, t)(E), WZ(,)(E)).

Here we used (2.8). The result now follows by (3.5).
It is convenient to introduce the notation

6(K; ) 1K(W(C, A)(K)).

The next proposition is well known.
PROPOSITION 3.5. Let A be an n by n matrix and x,... ,Xn be an orthonormal

basis in Rn. Then

n

Proof. Let O be an orthogonal matrix such that x Oe, i 1,... n, where
el,... ,en is the standard basis in Rn. We have (x,Ax)- (e,O-AOe). Hence,

n

(x,Axl Tr(O-AO) Tr(A).
i--1

COROLLARY 3.6. Let x e Rn, [Ixll 1 and K be a nonnegative definite
symmetric matrix. Then

(3.9) <x, Kx> <_ Tr(K).

Proof. There exist an orthonormal basis x,... ,xn in Rn such that x x. The
result follows by Proposition 3.5. [3
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PROPOSITION 3.7. Suppose that K e S+(n),X E S(n) are such that

g(K; X K, X K) <_ 1,

(see (2.7)). Then X > O. If g(K; X- K,X K) < 1, then X e S+(n).
Proof. Suppose that X satisfies (3.10) but is not nonnegative definite. Then there

exists > O, x Rn, x # 0 such that Xx -x. One can choose x in such a way that
Ilgl/2xll 1. According to (2.7), g(g;x K,X K) Tr(K-I(X- K)K-I(X
g)) Tr([K-I(x- g)]2) Tr(K1/2(K-I(x- K))2K-1/2) Wr(y2), where Y
K-1/2(X- K)K-1/2. Let y K1/2x. By Proposition 3.5 we have: {Yy, Yy}
{y, y2y} <_ Tr(y2). On the other hand, {Yy, Yy} {K-1/2(X K)x, K-1/2(X
g)x} {K-1/2(-- g)x,g-1/2(-A- g)x} 2{x,K-lx} + {y,y} + 2A{x,x}
1 + A2{x,K-lx} + 2AIIxll 2 > 1, a contradiction. Hence Z is nonnegative definite. The
same reasoning shows that g(K; X K, X K) < 1 implies X S+(n). D

Let g e int(P). Suppose that 5(K,) < 1 (see (3.8)). Then by Proposition 3.7

K1 K + W(C, A)(K) e int(P).

PROPOSITION 3.8. If 5(K; ) < 1, then

(3.11)

Proof. Consider, first, the case where K E. We have

5(K, Z)

for some ui E R. By (3.7)

5(K1; ) min /(: + E-
i=1

tiC + E- uiAi
i=1

(#l...ltm) eRm N O+E-Eui
i----1

.C1/2 m uiAi Using1/2CK/2 ti g]/2Ai-.lHere C K Now
this to substitute for Yi=l uiAi in the previous inequality, we obtain

(K1;) <_ [[/3’+E+K-K1-/3’-KllIF II(K--E)211F < IIK1-EII 2(K;)-
In general, by Proposition 3.2,

where

K1 K + W(C, A)(K) K1/2(E + WZ(, fi)(E))K1/2,

K1/2CK1/2 ft. K1/2AK1/2.

Set E + W((, .)(E) =/1. We have by Proposition 2.6,

5(K1;/) lgl (W(C, A)(K1)) 1R, (W(C, A)(K1)).

Since we have already proved our statement for K E,
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Using again Proposition 2.6 and Proposition 3.2, we obtain

IIWB(O, fii)(E)iiF IK(K1/2W(O, fiI)(E)K/2)
lg(WB(C, A)(K)) 8(K; 1).

PROPOSITION 3.9. Let K e int(P) be such that 8(K;/3) <_ 1. If WB(K)
K(13C + g- h)g, h E span(A,..., Am), then Z C- A/Z is a feasible solution
to the dual problem (2.17), (2.18) with the duality gap A(Z, K) such that

(3.12) A(Z,K) <_ n + 5(K;/)v

Proof. Since 5(K;/) < 1, K- Wz(K) e P by Proposition 3.7. Hence, K-
K(C + K-I- A)K > 0 or A-/3C > 0. Consequently, Z < 0. Since Z + h//3
C,A span(A1,... ,Am), it is clear that Z satisfies (2.18).

Now by (2.19)

A(Z, K) -Tr((C A/f)K)
Tr([/C- h + g-1]g- E) n- Tr(K-1/2W(K)K-1/2)

n + vz-d[Tr(K-/eWz(K)K-Wa(K)K-/2)]/2<

n + 5(K;
Z

Here we used that ITr(X)t < [Tr(E)]I/2[Tr(X2)] 1/2. D
THEOREM 3.10. Let Ko int(P), 0 > 0 be such that 5(K0; f0) < 0.5. Set

i+1 ,i(1 + p,), p,

K+ K + Wa,+(K),

Then 5(Ki,/i+l) < 0.7 and given e > 0

for

Tr(CK*) Tr(CK) < e

i-0,1

(3.13) i > ln(2n/eo)
ln(# + 1)

Here K* is an optimal solution to the problem (1.1)-(1.3).
Proof. Suppose that K e int(P), 5(K; 3) < 0.5. By (3.7)

5(K;/) II#(ZC: + E)IIF,

where (7 K1/2CK1/2, i K1/2AiK1/2, and #" S(n) --, span(il,...,-/]m)-L is the
orthogonal projection. Hence,

(3.14) ZlI’(0)IIF --< 5(K; ) + IIEIIF < 0.5 + v _< 1.byrd.



896 LEONID FAYBUSOVICH

If ’ (1 / #)]3, then

5(K; ’) _< 11(3( -b E)IIF -b ll()llf < o.5 + x,5/,
where we used (3.14). If # 0.1/v/-, we conclude that ti(K,f’) _< 0.65 < 0.7. In
particular, by Proposition 3.8 5(g q-W,(K);’) <_ i2(g,/) < (0.7)2 < 0.5. Finally,
by Proposition 3.9

Tr(CK*) Tr(CK) <_ n + < 2n.
This completes the proof of the theorem since for 3i (1 + #)if0 and i satisfying
(3.13), we obviously have

Theorem 3.10 leads in a standard way to polynomial complexity estimates [11].
4. Concluding remarks. In this paper we introduced and studied generalized

affine-scaling vector fields. We showed how to use these vector fields for the con-
struction of a polynomial-time path-following algorithm for solving the semidefinite
linear programming problem. We mention here that the generalization of Dikin’s
algorithm [6] is pretty straightforward. In this respect see also [7]. In general, it
seems that a substantial part of the geometric structure underlying the interior-point
algorithms can be carried over to the matrix case. The reader should be warned,
however, that the boundary behavior of the trajectories is much more complicated
in the matrix case. We hope to address this question later on. It is worthwhile to
consider large-step path-following algorithms for the problem considered. Since the
complexity of performing primal and dual iterations may be drastically different, the
large-step path-following algorithms may be the right way to go for various classes of
optimization problems described by linear matrix inequalities.

Acknowledgments. I would like to express my gratitude to R. Polyak and A.
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TWO-DIMENSIONAL MINIMAL CUBATURE FORMULAS AND
MATRIX EQUATIONS*

HANS JOACHIM SCHMIDt
Abstract. For strictly positive, linear, and centrally symmetric functionals in two dimensions

the existence of cubature formulas attaining the known lower bounds is equivalent to the solvability
of certain matrix equations under some constraints. Any solution generates a real ideal the common
roots of which are the nodes of the cubature formula. These results are applied to construct an
infinite number of minimal positive cubature formulas of an arbitrary degree of exactness for one
special, but classical, integral.

Key words, minimal cubature formulas, matrix equation, real ideal

AMS subject classification. 65D32

1. Introductibn. The linear space of continuous functions in two variables de-
fined on C If2 is denoted by C(/). We consider functionals of the form

I C(gl) -- I y I(/) fa f(x, y)d#(x, y), I(1) 1,

where # is a positive measure and is a closed region such that I is strictly positive
and centrally symmetric. Hence the following properties of I hold:

(linearity) I(Aifl + A2f2) AlI(fl) + A2I(f2), A1, A2 E R, fi, f2 E ((),
(strict positivity) I(f) > 0, whenever f >_ 0 on gl, 0 f E C(gl),
(central symmetry) I(xiyj 0, if + j odd, i, j E No.
We want to approximate I(f) by a convex combination of point-evaluations of f such
that the approximation is exact for all f E m where

Xm- xym-Im span {1, x, y, ., xm, y,. ym}.

Note that dim Im (m+l)(m+2)/2. More precisely, we have the following definition.
DEFINITION 1.1. The functional

N

K(f) K(m, N)(f) E Cif(xi, yi), Ci > O, (xi, yi) E gl,
i=1

is called cubature formula of degree m, if
(i) I(f) g(m, g)(f) for all f e ]m,
(ii) I(f*) g(m,g)(f*) for at least one f* e ]m+l.

The points (xi,yi) are called nodes, N is the number of nodes, and m the degree of
exactness. In order to specify m and N we write K(m, N).

DEFINITION 1.2. Let m e N be arbitrary but fixed. A cubature formula K(m, N)
is minimal, if the number of nodes N is minimal. Minimal formulas will be denoted
by K(m, ,).

Received by the editors July 22, 1993; accepted for publication (in revised form) by M. Gutknecht
June 3, 1994.

Mathematisches Institut, Universitit Erlangen-Niirnberg, Bismarckstrasse 1.5, D-91054 Erlan-
gen, Germany (schmid@mi. un+/--erlangen, de).
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We denote by P [x, y] the ring of polynomials in two variables with real
coefficients. We disregard C() in order to treat the problem by considering a strictly
positive, linear, and centrally symmetric functional on P,

(1) I IP() --, 1 P -o I(P) / P(x, y)d#(x, y).

This functional will be approximated by

N

K(m, N) m --o P K(m, N)(P) CiP(xi, yi),
i=1

such that I and K(m, N) coincide on m. If in this setting # is a positive Radon
measure, then, in fact, all strictly positive linear functionals on C(fl) are represented
by (1) (see [3]). It is of theoretical and practical importance that g(m,N) is strictly
positive on m, i.e., Ci > 0 and (xi, yi) E ft.

DEFINITION 1.3. A cubature .formula K(m,N) is called interpolatory, if N
_

dim m and if there are linearly independent polynomials U1, U2,..., UN m 8ch
that

(3) det

Due to Tschakalov’s Theorem [32] there exist formulas K(m,N) with N <_
dim Fm. If such a formula is not interpolatory, by applying Steinitz’s Austauschsatz
an interpolatory cubature formula K(m, N’) can be constructed such that N < N
(see [4]). Since we are interested in minimizing the number of nodes, it is appropriate
to study such formulas.

If K(m, N) is interpolatory we can determine a basis of ]l:Pm of the form

UI, U2,..., UN, Q, Q2,..., Qt, t dim m N.

For i 1, 2,..., t the linear system

(4)
u(,u) V(x,u) v(,u) a Q(,u)
v(.,2) u2(,) u(,2) 2 Q(?,2)

U$ (xN, YN) U2(XN, YN) UN(XN, YN) aN Qi(XN, YN)

can be solved such hat

N

Qi(xj, yj) -alUl(xj, yj),
l--1

j- 1,2,...,N

holds. Hence there are t dim m N linearly independent polynomials

N

Ri Qi aiUi, i 1,2,...,t
i=1
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vanishing at the nodes. Thus we have constructed a basis U1, U2, UN, R1, R2, R
of ]l)m where all Ri vanish at the nodes of the formula, while the Ui do not vanish at
all nodes. The Ri characterize the formula. If they are known, the polynomials Ui
can be constructed and the linear system

UN(Xl,Yl) UN(X2,Y2)

UI(XN, YN) C1 I(U1)
U2(xN, YN) C2 I(U2)

can be solved to determine the Ci. Due to the degree of exactness, each R satisfies
I(RQ) 0 whenever RQ E I,.

DEFINITION 1.4. A polynomial R ]m i8 called m-orthogonal (with respect to
I), if I(RQ) 0 whenever RQ

There are several books dealing extensively, but from different points of view, with
cubature problems; see, e.g., [5], [9], [16], [30], [31]. In numerous papers cubature
problems are studied. Some problems related to the approach presented here are
attacked by completely different methods in [23]. For an overview we refer to these
sources.

We follow the approach taken in [27]. The results will be enlarged and presented
in a strict matrix notation. This makes the problem more transparent and allows a
better understanding of the nonlinearity involved in the determination of cubature
formulas.

2. Some special matrices. To treat cubature formulas in a compact matrix
notation, several special matrices and their elementary properties are needed.

All matrices and vectors are real if not declared otherwise. Matrices are denoted
by capital Latin or Greek letters. Indices are used in the following way: Ak is a
k + 1 x k + 1 or k k + 1 matrix. Vectors are denoted by small Latin letters, indices
are used as above: Vk is in Rk+l.

The following matrices will be used quite often in the sequel,

Fk Ek-1 Lk Ek-1 Nkxk+l
0 0

where Ek-1 Rkk is the identity. We have chosen the letter F (L) since cancellation
of the first (last) row of A Rk+l can be expressed by FkA (LkA), similarly,
cancellation of the first (last) column of A by AF (ALk).

Furthermore, we need the matrices

0 0 0 1 0 1 0 0
0 0 1 0 -1 0 0 0

gk-1 Tk-1 E kk,
0 1 0 0 0 0 0 1
1 0 0 0 0 0 --1 0

and the diagonal matrix

Dk diag (1, 2, 2, 2, 2, 1} k+lk+l
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(s)
(7)
(s)
(9)
(10)
(ii)

LEMMA 2.1. The following properties are evident.

F Ft L Li
FL+ LF+,
Z[Fk FLk Tk.and FkL[ LkF T:_i,

JJ=E,
LkJk Jk- Fk
JTJ -T.
Dk LkLk + FFk.

The matrices F}, Lk can be used to characterize Hankel matrices.
LEMMA 2.2. Let A E Rkt, k,k + 1, k + 2 be given. Then A is a Hankel

matrix if and only if

(12) Fk_IAL_ Lk_iAF*_ 1.

If A kk--bl iS a Hankel matrix, then

(13) LkAk AkLk, FAk AkF.
3. Orthogonal polynomials. In this section properties of orthogonal polyno-

mials are discussed. An extensive treatment of this topic in n dimensions is given
by M. A. Kowalski [11],[12]. The way of treating the recursion formulas in two di-
mensions has been proposed by G. Renner [22]; we put this into a strict matrix form.
For further progress in multidimensional recursion formulas for strictly positive linear
functionals, see Y. Xu [34].

Let us denote by

pk pk(x,y x-iyi + Qi, Qi Fk-1, i O, 1,...,k,

the set of orthogonal polynomials of degree k, normalized to a highest monomial term
such that I(pkQ) O, i O, 1,..., k, for all Q Pk-1. Let

k 1, 2,

The orthogonality relation can be stated as

I(pkp) O, i O, 1,. ,k 1.

We will denote by I the linear space spanned by Pok, pk1,..., Pk" Introducing M
M I(PkPj), i, j 0, 1,..., k, k 1, 2..., for the moment matrix we obtain

Mk I(pkptk) M Ml

Mko M

E R+ixk+i Mo I

Since I is strictly positive, Mk is positive definite, in particular Mik/ > 0,
0, 1,...,k. The matrices Mo, M1,... and their inverses play a central role in the
sequel and we assume that they are known for the functional I under consideration.
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Since I is centrally symmetric an orthogonal polynomial of degree k is even (odd),
if k is even (odd); i.e., its monomial terms are even (odd). This implies that the
polynomials xP, yP are odd (even) and (2k- 1)-orthogonal. Hence we can write

i =0,1, kFk+lpk+ YPk BkPk-,Lk+Pk+ xpk AkPk-,

where Ak, Bk E kk+l must be chosen such that the desired orthogonality relations
hold. By multiplying this equation by Pk+l and by applying the functional I we
obtain the relations

Lk+Mk+ I(xpkp+), F+Mk+ I(yPkPk+)

and

Mk+Lt+ I(xpk+ptk), Mk+F+ I(ypk+ptk).

Multiplying the equation by Pk-lt and applying I again, gives

II(xpkPi-1) AtkMk-, (YPkPk-) BtkMk-

Hence, A MkLtkM[_, B MFM[_I.
THEOREM 3.1. The orthogonal polynomials with respect to I satisfy the following

recursion formula. Starting with po 1, p (x, y)t we get for k 2, 3,

(14) L+ipk+ xpk MkLtkM[_pk_, Fk+lPk+l YPk MkFM[I_lPk-1

Using (14) we can compute I(xypkpt) in two different ways. From this we obtain

F Fk+Mk+l k+l -Mk(LtkM[-Fk FMIc-Lk)Mk(15) Lk+IMk+l k+

The matrix

(6) M Lk+Mk+F+ Fk+Mk+IL+
is fundamental for cubature problems. J. Radon [18] introduced it to study the
existence of cubature formulas of degree 5 with seven nodes. I. P. Mysovskikh (see
[16]) solved Radon’s problem by considering an associated similar matrix. H.M.
MSller [14] discovered that the rank of M_I is involved in the lower bound for
formulas of degree 2k- 1 and derived an improved lower bound (Theorem 4.2). We
will see in the sequel that this matrix appears in the matrix equations characteri.zing
cubature formulas as well. In the following we prefer writing a polynomial P E Fk as

k

akPk.
i--O

If the recursion formula for Pk will be applied, P will be rewritten as

P btk (FFk + LtkLk)pk btkDkPk, bk D;ak.
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4. Lower bounds. For strictly positive linear functionals we obtain the follow-
ing theorem.

THEOREM 4.1. A formula K(m, N) satisfies N >_ dim [m/2].
Proof. Assuming N’ < dim ll[m/2] we can find a polynomial Q E I[m/2] van-

ishing at the nodes (xi, yi), 1,2,...,N’. Since Q2 E F.m we obtain I(Q2)
K(m,N’)(Q2) -0 in contradiction to the strict positivity.

Necessary and sufficient conditions for functionals such that this bound will be
attained have been studied for odd m by J. Radon [18] and I. P. Mysovskikh [17]. In
particular, if the bound will be attained, then the polynomial vector Pk vanishes at
the nodes of the formula. For m even, the following necessary condition holds.

COROLLARY 4.1. If the bound in Theorem 4.1 is attained by K(2k- 2,*), then
there is a matrix 0 7 Ft ]kk+l such that the polynomials in

rk --Pk + FkPk-1 (Ik)k+l.

vanish at all nodes of the formula.
Proof. If K(2k- 2, N), N dim Fk-1 exists then no polynomial in

vanishes at the nodes of the formula due to Theorem 4.1. Denoting a basis of
by U,U2,...,UN, we can determine, by use of (4), t dim I72k-2- N linearly
independent polynomials in 2k-2 vanishing at all nodes. In particular, we can find a
polynomial vector Pk + FkPk-, F kk-kl, such that all polynomial entries vanish
at the nodes of the formula.

This and Mysovskikh’s characterization allows the construction of a big class
of functionals such that the lower bound of Theorem 4.1 will be attained for an
arbitrary degree of exactness (see [29]). However, these functionals admitting a direct
generalization of Gaussian quadrature, are neither classical nor centrally symmetric.

For the functionals in question and m small, the bound will be attained for m
even, while it is too pessimistic for m odd. So the lower bounds for centrally symmetric
functionals differ in the odd and even case. An improved lower bound for m 2k- 1
has been given by H. M. Mbller [14]. We will derive this bound below. For linearly
independent polynomials Q It/k, i 1, 2,..., s, we consider

span {Q, xQ, yQ i 1, 2,..., s}.

Obviously dim 14; _< s + k + 2. The exact dimension can be determined, if all linear
dependencies of the form

c,Q a,xQ biyQk, hi, hi, c, e I.
i--1 i’-i

are known. To get a lower bound for dim l/Y, Mbller investigated equations of the
form

x(Fkpk)tak y(Lkpk)tbk- PtkCk, ak-,bk- e IRk IRk+Ck

Since the pk are even (odd) if k is even (odd), the polynomials on the left-hand side
are odd (even), while the polynomial on the right-hand side is even (odd). So we can
assume c to be equal to 0, and the equation reduces to

tLt bxPkFak- YPk k k-.
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Multiplying this by P+I and p_l, respectively, and applying the functional I, we
obtain

and

I(xpk+p)Fak- I(yp:+p)Lbk_,
Mk+iLk+Fak-1 Mk+F+Lbk_,

LLkFk+l k+lFak-1 bk-1,

FkL+Lk+IFa_ b:_,

ak-1 bk-1

I(xpk-lp)Fak- I(ypk-pk)Lak-1,
LkMkFa_ FkMkLkak-.

Thus the number of linear dependencies in the given basis of W can be estimated by
the number of linearly independent solutions of

(LkikF Fkiki)ak_ M_a_ O.

Note that M_ is skew. To determine the rank of M_I, we follow G. Renner [22].
If there is an ak- E , ak- O, such that M_ak_ 0 then by (15)

(17) L F_li2Lk_)Mk_ak_ O.k-lM[2Fk-1
Setting bk- Mk- ak-, we find

M[2F-b- c-2 O, M[2L-lbk-_ dk-2 O.

The latter equation holds since, due to (17), the equation M[2F_tb_ 0 implies

M[2ik_bk_ 0; i.e., bk_ 0. Thus, (17) implies i_ck-2 F_idk-2; i.e.,

Hence, we obtain

(18) Fk-bk- Mk-2Ck-2 Mk-2F_2bk-3

and

(19) Lk-bk- Mk-2dk-2 Mk-L_2bk-3.

Since Lk-2Fk-bk- F-2L-bk-,

F(L-2Mk-2 k-2 Fk-2Mk-2L-2)bk-3 O,

so M;_ab_a 0. nora (18) and (19) we get

F_F__ F_U_F__, LI_L__ Li_i-Li_-,

hence

n_i_a_ (F_M_2F_2 + L i_il )bk-1 -3.
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For any linearly independent solution ak-1, there will be a linearly independent solu-
tion bk-3. Hence Renner’s inductive argument shows that it is sufficient to study

rank M rank (LIMF FM1LI) 0

and

rank M rank (LMIF FMIL) rank (LF1 FL1 T) 2.

We have thus proved the following lemma.
LEMMA 4.1.

rank M_ rank (LMF Fiik) { kk,- 1, if k is odd,
if k is even.

THEOREM 4.2 ([14]). A formula of type K(2k- 1, N) satisfies N >_ dim k-1 4-
[k/2]. If this bound is attained for odd k, then ak_ (Fk + Lk)Pk belongs to the ideal
associated with the cubature formula, where ak- is determined by M_ak_ O.

Proof. By Theorem 4.1 we know that no polynomial from k- vanishes at
all nodes of the formula. If, in addition, no polynomial in vanishes at all nodes,
then N _> dim k+ > dim k + [.k/2]. Let us denote by Qk a maximal linearly
independent set of polynomials in Fk vanishing at all nodes. Hence all polynomials

x kin W span {Q, Qi, yQ} vanish at the nodes of the formula. As we have shown
above, there might be only one linear dependency, if k is odd; thus we .get from

(20) 3s- (k- 2[k/2]) _< dim W _< s + k + 2,

s _< k- [k/2] + 1. "So there are k + i k + [k/2]- 1 [k/2] linearly independent
polynomials in k that do not vanish at all nodes. If k is odd there is an ak-1 such that

M_la_ O. As we have seen, the polynomials a_lFkpk and ak_iLkpk belong to
the ideal. []

COROLLARY 4.2. If the bound in Theorem 4.2 is attained by K(2k- 1,,), then
there are polynomials xQ, yQk, which vanish at all nodes of the formula, forming a

set of k + 2 linearly independent polynomials of degree k + 1. This set can be assumed
to be of the form

Pk+ + Fpk-, F E ]kxk-t-2.

Furthermore, if k is odd, two polynomials of degree k vanishing at all nodes are known.

Proof. If the bound in Theorem 4.2 is attained there are s k 4-1 [k/2] linearly
independent polynomials Qi, 1, 2,..., s in k vanishing at the nodes. Thus the
estimate in (20) holds. Hence xQi, yQi, i 1, 2,..., s form k4-2 linearly independent
polynomials of degree k 4-1 vanishing at the nodes. By the (2k- 1)-orthogonality, we
can transform these polynomials to pk+ + Fpk-, F kxk-t-2, with suitably chosen
F. If k is odd, there are k 4- 3 polynomials xQi, y’Qi, hence there is a linear dependency
of the form xQ yQ. Thus Q,Q vanish at the nodes as well, so, two polynomials
of degree k vanishing at the nodes are known.

The corollaries of this section motivate the following
DEFINITION 4.1. A set of polynomials is called fundamental of degree i when-

ever + 1 linearly independent polynomials of the form xi-Jyj + Sj, Sj ii_, j
O, 1,..., i, belong to span .

COROLLARY 4.3. If K(2k- 2,,) attains the bound in Theorem 4.1 there exists a

fundamental system of degree k vanishing at the nodes of the formula.
If K(2k-1, ,) attains the bound in Theorem 4.2 there exists a fundamental system

of degree k + 1 vanishing at the nodes of the formula.
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5. Cubature formulas and real ideals. In this section we briefly discuss the
connection between cubature formulas and ideals. Ideas in algebraic geometry in
connection with cubature formulas were introduced by J. Radon [18] and refined
in several papers of I. P. Mysovkikh (see [16]). H. M. MSller [13] presented an
approach to construct cubature formulas that was completely based on polynomial
ideals. His ideas can be applied by restricting the interest to real ideals which turn
out to characterize interpolatory cubature formulas [27]. We will summarize the main
results of the theory.

A set j( of polynomials in is called an ideal if RiQi / R2Q2 E 4 whenever
Qi, Q2 E A, Ri,R2 E I. The polynomials Qi, Q2,..., Qs form a basis of Jt if each
Q E A can be written as

Q RiQi, Ri .
Ideals generated by Qi, Q2,..., Qs are denoted by (Qi, Q2,..., Qs), the zero-ideal by
(0). For a given polynomial vector rn E (nn)n+l, we use (rn) for the ideal generated
by the polynomial entries.

Let var (A) be the real zero-set of an ideal,

var (A) { (x, y) e ]R2 Q(x, y) 0 for all Q

If Af c_ R2 is a set of points, we denote by jt(Af) the ideal of all polynomials vanishing
at Af; i.e.,

{Q Q(x, o (x, At).

DEFINITION 5.1. Let K(m, N) be.given, where Af denotes the set of nodes. Then
,4K 4(Af) is the ideal associated to g(m, N).

We have proved the following in 1.
LEMMA 5.1. Let K(m, N) be an interpolatory cubature formula with a set of nodes

Af, then there are s dim Im N linearly independent polynomials R1, R2,..., Rs
of degree <_ m which belong to

Introducing real ideals, it can be shown that the polynomials R1, R2,..., R gen-
erate the ideal Jt(Af).

An ideal .4 is called real if all polynomials vanishing at vat (jr) belong to ,4, i.e.,
A(v r A.

THEOREM 5.1. An ideal
i- 1,2,...,M

M

ZR .4 implies Ri .A, 1, 2,..., M.
i--1

For proofs and further details see [7], [8], [24], [25]. We will generalize a theorem
of I. P. Mysovskikh [17]; see [27].

THEOREM 5.2. Let R,R2,...,Rt be linearly independent polynomials in Fk
which are fundamental of degree k, which span the linear space T, and which generate
the ideal ,4. Let l be an arbitrary but fixed complement ofT in ]k. Then

[var (,4)[

_
dim Ik t dim
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Furthermore, if T4 ,4 F Pk, then A is real if and only if Ivar (,4)1 dim ]Pk t.
Based on Theorems 5.1 and 5.2 the following characterization can be obtained;

see [27].
THEOaEM 5.3. Let rs-1

m+l, and m-orthogonal. Let ,4 (s-), n span (r_l} and letlg be an arbitrary
but fixed complement of T in

Then the following conditions are equivalent.
(i) ,4 is an ideal associated with a cubature formula g(m, Y), N- dim ]Pm+l-

s dim .
(ii) ,4 F/ (0) and for all 0 V E bl the condition I(V2- R*) > 0 holds,

whenever R* .4 can be chosen such that U2 R* Pm.
If these conditions are satisfied, then fit is real.

Simple cases will be obtained, if the fundamentality of the polynomial set is as
low as possible. This will occur if minimal or near minimal formulas will be studied.
This will be the content of the next two sections. The following lemma, see [27], will
turn out to be very useful in order to apply Theorem 5.3.

LEMMA 5.2. Let

rk Pk + k (Pk)k+ k (Pk-)+

be a fundamental system of degree k generating the ideal Jt (rk). If

XFkrk yLkrk e span {r},
then every Q (rk) fq Pk of the form Q qkrk, qk (p)k+, n > 1, can be
transformed to Q lr, e (]Pn-1)k+l

6. Formulas of even degree. Here we study the question of whether minimal
formulas of type K(2k 2, dim ]Pk-1) exist or not. Due to Corollary 4.1, the nodes
of such formulas are the common real zeros of

(21) rk Pk + FkM[_Pk- e (IPk)k+l, Fk e kk+.

The following theorem can be proved applying Theorem 5.3. It goes back to [15] and
[26]. Further studies of even degree formulas have been made by G. G. Rasputin; cf.

THEOREM 6.1. A cubature .formula for I of type K(2k 2, dim Pk_) exists if
and only if there is a Fk kk+ such that for rk of the form (21) the equation

(22) yLkrk xFkrk Ckrk, C

holds. If this equation is satisfied, then JtK (r).
Proof. =. If K(2k 2, dim ]Pk-) exists, we can assume a fundamental system

of the form (21). If (22) does not hold we can find a nontrivial polynomial in ]P_
vanishing at the nodes of the formula. This is in contradiction to Theorem 5.3.

=. If rk of the form (21) is given satisfying (22) every Q Pk q (r) can be
written as

Q-- atkrk, ak -due to Lemma 5.2. Hence (rk)A k-i (0) and Theorem 5.3, (ii) is satisfied for
JIK (r). Note that the second condition holds since every U2_. The theorem follows from Theorem 5.3.
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Applying the recursion formula we can rewrite (22) in a more constructive matrix
equation.

This can be written as

CkPk + CFtkM[_lPk-1 (LkFk+I -FkLk+l)Pk+l
+(LkFtM[_IF FrtkM[l_lL)p

L z-

F}L_)Mk_2P_2.

Due to (6) the factor of Pk+ vanishes. By multiplying the remaining equation by
p,p_,p_, respectively, and pplying the functional I, we obtain

(23) Ck LFtM[_F FFML,
(24) CkFtk LkMkF FkMkL

F L(25) o LFF F _.
From (25) it follows by (12) that F E ]R+lk is a Hankel matrix. Applying (13) and
(15) we obtain from (24) and (25)

M*/I%-C} rk(LtkM[_lFk FM[ILk -FkM[ k,V,k

c ri
Thus

M* a/r- F-M’k_1 FkM[ k,v, k

COROLLARY 6.1. A cubature formula for I of type K(2k- 2, dim Ik-1) exists if
and only if there is a Hankel matrix F E ]1k+lxk such that the matrix equation

(26) M* FM[MM[IFtk-l--

holds. If this equation is satisfied, then .4K (rtk) where rk is of the form (21).
7. Formulas of degree 2k- 1 and of type ’k+l. In this section we study

formulas K(2k- 1, N). By Corollaries 4.2 and 4.3 such formulas attaining the bound
in Theorem 4.2 belong to a real ideal Jig containing a fundamental set of degree k/ 1.

DEFINITION 7.1. A .formula K(2k 1, N) is called of type J:k+l if the ideal 4K
associated with the formula contains a fundamental set of degree k + 1.

Hence minimal formulas attaining Mhller’s bound are of type 9vk+l. If a for-
mula K(2k- 1, N) of type 9rk+l exists, then due to the (2k- 1)-orthogonality the
polynomials in

)+:, F R+rk+l --Pk+l + FM[llPk-1 (Fk+
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with a suitable chosen F belong to 4K. Hence the polynomials in

YLk+lrk+l- xFk+lrk+l --SkPk e (IPk)k+l, Sk E if(k+lx}+l

belong to ,AK as well. Applying the recursion formula we obtain

SkPk Lk+l(yP+ + FM[_lypk-1) Fk+(xpk+l + rM[_,xp-)
Lk+l(Fk+2Pk+2 + Mk+l

F+L+IFM-_I(Fp + M_ k_lM[_2)Pk_2
-F}+I (Lk+2Pk+2 + Mk+ILk+IM[lpk)
-Fk+FM[_(Lp / M_L M-1

-I k-2)Pk-2
-1Lk+M}+IF+IMk P} / Lk+IFM[_IFkpk

--Fk+lMk+lLk+lM[pk F}+IFM[_ILkp
+L+IFF_ - FLM_.p_: F+ _M_.p_:.

The (2k- 1)-orthogonality implies

Lk+IFF_ Fk+IFLtk_I"

Thus by (12), F E ]x+2 is a Hankel matrix which is written as

(27)
’)’k ’kT1 2k-2 /2k-

’)’k+l k-t-2 /2k- 1 2k

Let us define

Then

(29) Fk+lF FkF, Lk+IF FkLi
holds, and applying (13), (15), and (16), we can write

Spk (Lk+IMk+IF Fk+lMk+lLtk+l)M[Pkk+l

+F(LM[_IF FM[_ILk)pk
* - MM ,_MM p rM[ *

(M

Hence we can assume

(30) rk+l Pk+l q- FMIlPk-I
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where F is a Hanket matrix, which can be computed from Fk. Furthermore, we have
constructed some polynomials of degree k belonging to Jig.

The following theorem characterizes all polynomials of degree k in Jig. It was
given by G. Renner [21] for product integrals. We present it in our more general
setup.

THEOREM 7.1. Let K(2k- 1, N) be an interpolatory cubature formula of type
k+l, let rk+ be the fundamental set of degree k + 1, given by (30), and let 4g be
the associated ideal. Then the following conditions are equivalent.

(i) akPk E
(ii) xapk, yakpk e span {r+},
(iii) (Mk Fk)ak O, where Fk is of the form (28) and satisfies (29).

xakPk yatkpkProof. (i) = (ii). If akPk 4K then 4K, hence

xakPk aknk+rk+, YakPk akFk+rk+
are in 4K. Applying the recursion formula, we see that these polynomials are in

I?k-1. By Theorem 5.3 4K VI k-1 (0) must be satisfied. Hence these polynomials
must vanish; i.e.,

akFk+(31) xakPk akLk+rk+, YakPk rk+

(ii) (iii). Multiplying (31) by Pk- and applying the functional I we obtain

ak(MkLtk L+r) 0, ak(MkF Fk+F) 0.

In view of (29) this can be written as

a*k(Mk r)L O, a(Mk Fk)F O.

Thus

(M Fk)a O.

(iii) =v (i). Applying the recursion formula we see that

Hence all matrix entries are polynomials in I2k_ Let P akPk ]k be given. We
can write P as P btDkpk, where bk D-la,. Hence

p2 bkDkpkpkDkbk

Subtracting

R* b r L r F+)Dkbk e l?2k N AK(Lkpk + Fp +--1 k-t-1 kl
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we obtain p2 R* E P2k-. Applying the functional I, we get

btkDkMkDkbk btk(LtkI(pk_l-t L r’rk+l) +1 + FI(B-I +I)F+I)Db.
Since

I(Pk-irtk+lL+I) VL+ Lr, I(pk- lrk+lt F+ rt tF+i Fr,

we obtain

I(P2 R*) btkDMkDb bDFDb a(M r)a.

So, if (Mk r)a o, then I(P2 R*) 0. Since Jig generates a K(2k 1, N)-
formula we find I(P2 R*) g(2k- 1, N)(P2 R*) 0. Thus p2 vanishes at the
zero-set of AK; by Theorem 5.3 this ideal is real; finally, p2 and P are in

THEOREM 7.2. An interpolatory cubature formula K(2k- 1, N) of type ’k+l
with N dim Fk-1 + s exists if and only if there is a Hankel matrix Fk ]k+lk+l
such that

(i) (Ma Fk)M-1 . --1MkMk (M-Fk)=O,
(ii) rank (Mk Fk) s

_
[k/2], and,

(iii) Mk Fk is positive semidefinite.
If these conditions hold, then AK (rk+l, (Cpk)t) is the real ideal generating K(2k-
1, N), where rk+l Pk+l + FM[_lPk; F and Fa are connected by (29), and C
Rk+l-k+l is of rank k + 1 s, and (Mk Fk)C O.

Proof. =v: Let K(2k- 1, N), N dim llk_l + s of type $’k+1 be given. Then
there is a Hankel matrix F Ik+2k of the form (28) such that by using (29) the
fundamental system in AK can be written as (30). Applying Theorem 7.1 for the
polynomials

we obtain

Spk (Mk Fa)MglM*M-1-k k ’l)k ,AK

0 (Mk F)((M F)M[M;M[)t;
i.e., condition (i).

Since there are k + 1 s linearly independent polynomials in Jig n k, we obtain
condition (ii). By the proof of Theorem 4.2 there are at most k / 1 [k/2] linearly
independent polynomials in 4K n F-I hence s >_ [k/2].

Combining the last part of the proof of Theorem 7.1 and Theorem 5.3(ii), we
obtain for all P atkPk k

ark (Mk Fk)ak >_ O,

i.e., Mk Fk is positive semidefinite.
=" Let rk+ Pk+ + FM[_lPk-1. By condition (ii) there is a matrix C E

Rk+l-k+l of rank k + 1 s such that (M Fk)C O. Considering the polynomial
vectors

ql xCpk CLk+ rk+ q2 yCp CFk+ rk+

we find by applying (14) and (29)

ql C(MkLtk L+r) -M+p_ C(M r)L -Mk-lPk-
q2 C(ikF Fk+lF)M[lPk_l C(ik Fk)FM[iPk-1.
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Since C(Mk Fk) 0, it follows that ql q2 0, hence xCpk, yCpk . (rk+l)k+1-8.
For A (r+l, (Cpk)t) we verify the conditions of Theorem 5.3. By (i) we obtain

(Mk Fk)M[IMM[(Mk Fk) (Mk Fk)S O.

There is a matrix T E Rk++l-8 such that Sk TC. We know that yLk+lrk+
xFk+rk+ Skpk, hence yLk+rk+ xFk+rk+ span ((CPk)}.

Any Q ,4 gl lPk can be written as

r (]Pnl k-l-sQ jtk_sCpk t. Vk. k--I Uk-8 Vk--I

Since xCpk, yCpk e (r+l)+-s we find k_sCpk e (r+), where -s is the poly-
nomial u_8 without the constant term. Thus

Applying Lemma 5.2 we finally obtain Q ck_sCpk, c_ lt+l-s. Thus .4 N
IPk-1 (0). If we denote by/ the linear space spanned by IPk-1 and by the s
linearly independent polynomials U, U2,..., U8 E iP which do not belong to ,4 we
get ,4 N/g (0).

If U llk_ then I(U2) > 0. Let U ap H be given, i.e., (M F)ak O.
Choosing R* such that U2 R* E ]P2k+l we obtain by the postive semidefiniteness

I(U2 R*) ak(Mk r)a > 0.

Equality will be attained if and only if (M Fk)ak O. Thus we get I(U2 R*) > 0
tbr all U /g and can apply Theorem 5.3 to complete the proof.

COROLLARY 7.1. Any formula K(2k- 1, N) of type Jk+ satisfies

dim ]Pk- + [k/2] <_ N <_ dim ]Pk- + [k/2] + 1.

Proof. Since (M Fk)pk are polynomials that do not belong to the ideal
and since the polynomials in (Mk Fk)M[M*M--k belong to JtK, we get

rank (Mk Fk) -t- rank (Mk F)M- MM-
_

k -t- 1.

Considering Lemma 4.1, we obtain

rank (Mk Fk) 1

_
rank (Mk Fk)M[ MM[

for even k, while

rank (Mk Fk

_
rank (Mk Fk M[ MM[

holds for odd k. Thus s _< rank (Mk Fk) _< [k/2] + 1. []

8. Applications. We have characterized the existence of minimal cubature for-
mulas attaining the known lower bounds by the solvability of certain matrix equations
under some constraints. However, to obtain formulas, one must solve these equations;
to improve the lower bound, one must show that no real solutions exist or the con-
straints are violated; both are hard.

Some progress has been made, nevertheless. For integrals over the circle with
weight function (1- x2 -y2), > -1, G. Godzina [10] proved for k 5 that the
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matrix equation of Theorem 7.2 has no solution for the a in question. This implies
that the lower bound of Theorem 4.2 is not sharp for these integrals. Further results
in this direction have been found by using a completely different approach (see [33]
and [2]).

In the following we will apply our approach for a special classical integral with
a moment matrix which is a multiple of the identity. So both matrix equations take
their simplest form and can be solved.

This integral is a special two-dimensional, centrally symmetric product-integral
generated by the integral 1 defined on R[x], the ring of real polynomials,

In" IR[x]--. ]R" Tr -, ln(Tr) 7r(t) w(t)dt,

where

r(. + ) ).w(t) F(a + 1)F(a + 1)22n+1 (1-
ce > -1,

such that ln(1) 1. The orthogonal polynomials with respect to In are the ultra-
spherical polynomials. They will be denoted by 7r 7ri, i 0, 1, The 7ris are
normalized such that their leading coefficient is 1. The following recursion formula
holds:

7to(t) 1, Try(t) t, 7ri+ (t) tTr.i(t) ATri_l (t), 1, 2,...,

where

1 i(e + i)
2a+3’ A=Ai= (2a+2i+l)(2a+2i-1)’

i=2,3,

The moments are of the form

The product form of In is centrally symmetric,

In" 2
_ . p In(P)= P(x, y)w(x)w(y)dxdy, a > -1.

1 -1

The orthogonal polynomials with respect to In can be written as

- (,_) ,.generating the moments M In(PP) In (r2)In 2 6
We can apply Theorem 3.1, where the Mks are diagonal matrices of the form

Note that for a2 1/4 we obtain the moment matrices

(32) Mk 1/2(1/4)k-Dk if a =--1/2, Mk (1/4):Ek if a 1/2.
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8.1. Minimal formulas of even degree for 11/2. For 11/2, (26) is of a very
simple form since Mk (1/4)kEk and M (1/4)k+lTk. Choosing a suitable factor
for lk, Corollary 6.1 can be restated as follows.

Any Hankel matrix Ik E ]kxk+l solving

(33) Tk-1 rTr
corresponds to a minimal cubature formula of type K(2k- 2, dim Fk-1) for I1/2. The
associated ideal (r) is generated by

r p + 1/2Fp_l.

Inserting relation (7), (33) can be written as

nkF FkLtk Fk(LkFk FL)F.
Using (12), this is equivalent to

LkF FkLk FFFLLkFkFkFk

Lk(Ek rlr )F rlr )Li.
Due to Lemma 2.2 this means that a Hankel matrix lk solves (33) if and only if
Ek- FtkFk is a Hankel matrix. Some special solutions of (33) can be computed
directly, [’k +Jk-lFk and Fk Jk-lLk. The corresponding cubature formulas
(with all nodes inside the domain of integration) are due to [15]. For k >_ 6 all solutions
can be derived in a closed form.

LEMMA 8.1 ([28]). For k >_ 6 all minimal formulas of type K(2k 2, dim Ik-1)
are generated by the real ideal (rk), where

rk --p -t- 1/2Fp_I,

and where Fk is equal to k and Jk- kJk, respectively,

/o 0./o 0.2/o 0.-1.yo 1/a

k:
0./0 0.2")’0 0.3")’0 1/0. 0

ak-’yo 1/0. 0 0 0

1 0.2

,’),0 a+ 0a].

8.2. Minimal formulas of odd degree for I1/2. Since M (1/4)kEk and

M (1/4)k+Tk the matrix equation for g(2k- 1, *) is reduced to a simple form as
well by choosing a suitable factor for Ik in order to replace Mk Fk by Ek [’k. If k
is odd, then by Theorem 4.2 two polynomials are known that belong to the associated
ideal jig. If a_ (1, 0, 1,..., 0, 1) we find Tk-la- O, hence the polynomial

(34) ak_l (Lk + Fk)Pk (1, 1,..., 1)pk

belongs to -4K. Thus for odd k we find, due to Theorem 7.2, the necessary condition

0.
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These linear conditions on the entries of Fk are easy to handle. They induce

(35)

and

k-1

i--O

Matrices of type (35) are called (-1)-circulant. They have been studied extensively
by P. J. Davis in [6]; we follow this book.

Let us introduce the Fourier matrix Gk E Ck+lxk+l and its conjugate transpose

Furthermore, we need the orthogonal matrix

0 1 0 0 0
0 0 1 0 0

II= el++

0 0 0 0 1
1 0 0 0 0

LEMMA 8.2 ([6]). Let Ak ]k+lxk+l be given. The following conditions are
equivalent:

(i) Ak is (--1)-circulant,
(ii) HkAk AkHt,
(iii) Ak GJkIIkAkGk, where Ak diag {A0, A1,..., Ak}.
LEMMA 8.3 ([6]). Let Ak GJkHkAkGk be given. Then
(i) the eigenvalues of Ak are identical to those of

gklIkAk

Ao 0 0 0
0 0 0 Ak
0 0 ,’k- 0

0 A1 0 0

(ii) (JkHkA)2 diag {Ag, AkA,Ak_A2,...
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If k is even, let us assume that I’k is (-1)-circulant, too. So we do not derive all
formulas in this case. To apply Theorem 7.2 to find formulas with dim ]Pk-1 - [k/2]
nodes, we need

rank (Ek Fk) [k/2].

This means that Fk must have the eigenvalue 1 of multiplicity k + 1 [k/2]. Due to
Lemma 8.3 the eigenvalues of JkHkAk are of the form

,ko, +V/,+l-i,i, i 1,2,..., [k/2],

and, if k is odd, in addition ,[k/2]+1. If 1 is an eigenvalue of multiplicity k + 1 [k/2],
2then A Ak+-A 1, 1,2,...,[k/2], and, ’[k/2]+ 1, if k is odd. With

respect to Lemma 8.3 it follows that (JkIIkAk)2 Ek. This implies

rr GIjHAkGGIjHAGk GEG E.

Thus the rank condition on Ek [’k implies that Fk is an orthogonal matrix. Hence
the eigenvalues of Ek-F are 0 or 2. From this we conclude that the matrix Ek- Fk
is positive semidefinite. The matrix equation

(E r)T(E r) 0

can be written as

(Ek Pk)(Hk H + Wk)(Ek Fk) 0,

where

0 0 0 1
0 0 0 0

W= el+1+

0 0 0 0
-1 0 0 0

This can be simplified to

(37) (E F)W(E r) 0,

since for an orthogonal and (-1)-circulant matrix Fk we have

(E r)(II H)(E F}) 0.

Hence, for I./2, Theorem 7.2 can be specialized to the following lemma.
LEMMA 8.4. A minimal cubature formula of degree 2k- 1, k odd, exists if and

only if there is an orthogonal (-1)-circulant matrix Fk e Nk+xk+l satisfying (36),
and

(i) (E r)W(E r) 0,
(ii) rank (E- Fk)= [k/2].

If k is even, a minimal cubature formula of degree 2k- 1 exists, if there is an orthogonal
(-1)-circulant matrix Fk e Nk+xk+ satisfying conditions (i) and (ii). The nodes of
the .formulas are in both cases the common zeros of the polynomials in

(Ek + rk)pk.
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The special representation of the polynomial vector follows from the fact that
(Ek- Fk)(Ek + Fk) 0 and from Theorem 7.1. The polynomial entries of the
polynomial vector are not linearly independent. Equation (37) is of the form

which can be written as

7 (1 0)(1 "k-),
7k’j --j-l(1 70), j 1,2,... ,k 1,

7i/j /i+l"rj-1, i 0, 1,..., k 2, j 1, 2,..., k 1,

"/i"/k --q’i+l(1 q’k-1), 0, 1,...,k- 2.

The solutions are discussed in three cases.
Case 1. Setting /0 1 we find q’k 0 and i /, 1, 2,..., k 1. The only

solution that generates an orthogonal matrix will be obtained for

O’0 1, -i 0, i 1,2,...,k.

The solutions I’k JkIIk and HkJk, respectively, satisfy (36) and condition (ii). The
corresponding minimal formulas are due to [27], where it has been overseen that these
solutions hold for even k, too.

Case 2. Setting "0 0, we find two solutions generating an orthogonal matrix.
The first, Fk HkJk has been discussed in Case 1, the second Fk Jk satisfies (36),
while (ii) holds for even k only. The corresponding minimal formula has been derived
in [15].

Case 3. If 0 "r0 1, we obtain a class of solutions. They are of the form

where a # 0 is a free parameter such that

(38) (/0 1) /a ak’o a

holds. If a 1, we .obtain

q’ q’0, 0, 1,... k 1, /k "/o 1.

Hence (38) is satisfied and /0 is a free parameter that will be determined to satisfy
condition (ii) and (36). From condition (ii) it follows that /0 2/(k + 1), (36) is
satisfied for k even and odd. The corresponding minimal formulas are due to [1].

For a -1, (38) is satisfied only for odd k. We obtain

/ (-1)q,o, i 0, 1,..., k 1, 7k 1 q’0,

where "Y0 is a free parameter. For a2 # 1 we obtain

/i ai/o, i O, 1,... ,k- 1, / ("/o- 1)/a,
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and (38). We have to determine the rank of Ek Fk,

(39)

3’0 1 a3’o ak-13’0 ak3’0 O"

a3’0 a23’0 1 ak3’o a 3’0

o’k-13’0 ak3’0 q o’k-33’0 1 ak-23’0
ak3’o a 3’0 a-23’o a-13’o 1

Note that from (38) it follows that

3’0 ak+13’0 + a2 1.

Subtracting the (k-i)th row multiplied by a from the (k-i+ 1)th row, i 1, 2,..., k,
we get for k odd

( 3’0 1 a3’o as3’o as+13"0 ak-13"o ak3’o a
a --1 0 0 --a --1
0 a 0 0 --1 0

0 0 --1 --a 0 0

0 --a 0 0 1 0
--a 1 0 0 a 1

and for k even

( 3"o-1 o’3"0 as
3"0 ak-i3"o a’3"o-a ’a --1 0 --o" --1

0 o" 0 --1 0

0 0 -1-a 0 0

0 -a 0 -1 0
\ -a 1 0 a 1 ,

In both cases we put s [k/2]. Obviously, the last [k/2] rows are linearly dependent.
Erasing them we get for k odd

(4o)
3"0 1 o’3"0 o’S-13"o o’S3"o as+3"o as+23’o ak-13"O ak3"O a ’a --1 0 0 0 0 --a 1

0 a 0 0 0 0 1 0

0 0 --1 0 0 --a 0 0
0 0 a --1 --a 1 0 0
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and for k even

0"o -1 a0"o as-10"0 as0"o as+10"0 ak-10"0 ak0,o a
a --1 0 0 0 --a 1
0 a 0 0 0 1 0

0 0 -1 0 -a 0 0
0 0 a -1 -a 1 0 0

If k is odd and a -1, the rank of (39) will be [k/2] if and only if 0’0 ([k/21 + 1) -1.
This can be computed from (40). If a2 = 1 we let

(2i_ 1 1
0’0 ai (a2 1) a-i’ 1, 2,..., s,

then

A a-(-o 1) ao a,

-Ai + aA{+z a0’o, -aA + A+z ak-i0,o, i 1, 2,..., s 1.

If k is odd, we obtain further

-As aS0’o, -aAs as+Z0o,

while for k even we get

-(a + i) ao.
Thus we have proved that the rank of (39) is [k/2] in this general case, too. We
summarize our application in the following theorem.

THEOREM 8.1. All minimal cubature formula of degree 2k- 1, k odd, for I1/2
are generated by a real ideal

((E + r)),

where Fk is a (--1)-circulant orthogonal matrix of the form

(41) r

0’0 a0,o a-10,o ak0,o a

a0,o a20’o (rkg’o a 9’0

(k- 10’0 ak9’0 a ak-39’0 6k-2
0’0

O’k0,0 O" 0’0 0"k-20’0
or of the form

(42) JFJ,

where

o e/(k + 1), o i
2 1

or ’To ak+ 1’
a2 1, a E R.
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THEOREM 8.2. There are minimal formulas of degree 2k- 1, k even, for 11/2
generated by the real ideal

+

where Fk is a (--1)-circulant orthogonal matrix of the form (41) or (42) and

o 2/(k + 1), a 1,
2_ 1

or 70 ak+l_l a 1, aE]R.

Not all formulas (k even) can be determined by assuming a (-1)-circulant matrix
In [1] a minimal formula of degree 2k- 1, k even, has been derived, where the

Hankel matrix

3’0 0 3’0 3’0 0 3’o- 1
0 70 0 0 ’7o-1 0

4
Fk---- 3’0-- k+2’

0 3’o-1 0 0 3’0 0
3’0- i 0 3’0 ..." 3’0 0 3’0

solves the matrix equation of Theorem 7.2 under the necessary constraints.
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DISTURBANCE DECOUPLING WITH POLE PLACEMENT FOR
STRUCTURED SYSTEMS: A GRAPH-THEORETIC APPROACH*

JACOB VAN DER WOUDEt AND KAZUO MUROTA$

Abstract. Structured systems are linear systems of which each of the coefficients in the matrices
is either fixed to zero or an independent free parameter. In this paper the well-known disturbance
decoupling problem with pole placement for such systems is studied and necessary and sufficient
conditions for the generic solvability of the problem are derived. Generic solvability here means
solvability in almost all cases. The conditions will be stated in terms of weighted matchings in a
bipartite graph that easily can be associated with a structured system. The advantage of this is that
the conditions then can be verified by means of well-known and efficient combinatorial algorithms.

Key words, disturbance decoupling, pole placement, structured system, bipartite graphs, Dul-
mage-Mendelsohn decomposition, maximum matching
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1. introduction. In this paper we study so-called structured linear systems.
These are linear systems with matrices of which we know which entries are fixed to
zero, and which entries have some, possibly unknown, value. Hence, we can think of
a structured system as being given by the zero-nonzero structure of its matrices. This
zero-nonzero structure can be nicely represented by means of graphs. In this paper
we formulate a general version of the well-known disturbance decoupling problem
with pole placement, in which we may use linear state and disturbance feedback. We
consider this problem for structured systems, and develop graph-theoretic conditions
that are necessary and sufficient for the so-called generic solvability of the problem.
As we will indicate, conditions for the more common version of the problem, in which
only linear state feedback may be used, follow easily by a straightforward modification
of our reasoning.

The study for structured systems has a long history and may be considered to
have been started with [0]. In this reference and in [7], [22] the controllability for
structured systems is investigated. The input-output decoupling problem for struc-
tured systems is studied in [11] (see also [3]). In [23]-[25] the finite and infinite zeros
of structured systems are discussed. Disturbance decoupling problems for structured
systems are discussed in [4] and [3], and amost disturbance decoupling problems
for such systems are treated in [32]. The latter problems can be formulated in terms
of the rank of the transfer matrix of a structured system, which is discussed in [19].
Since we do not try to give a comprehensive list of references in which the relation
between certain system theoretic questions and structured systems is discussed, we
conclude by referring to two textbooks, [1] and [20], on structured systems.

The starting point in all previous references are linear systems with system ma-
trices of which we know which entries are fixed to zero, and which entries have an
arbitrary, often unknown, value. This latter type of entries therefore is considered as
independent free parameters. A natural consequence of this point of view is that the
structure of the systems can be represented by means of graphs, either signal-flow-
type directed graphs or bipartite graphs. When linear systems are described in the
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lands (w+/-taj-,@dui;infh. tudelft .nl).

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan.

922



STRUCTURAL DISTURBANCE DECOUPLING WITH POLE PLACEMENT 923

standard form, it is most natural to adopt the directed-graph representation, whereas
the bipartite-graph representation is more appropriate for systems in descriptor form.

In [13], linear descriptor systems are treated where it is known in advance which
entries in the matrices are fixed to zero, and which are not (more or less as before).
However, the nonzero entries are further divided into entries that can be seen as fixed
constants, and entries that can be seen as independent free parameters (as above).
For example, the ones in a general matrix in companion form can be seen as fixed
constants, whereas the remaining nonzero entries can be seen as free parameters. As
explained in [13], this more detailed structure of systems can be described by the so-
called mixed matrices and their combinatorial structure can be represented by means
of a combination of bipartite graphs and linear matroids.

In this paper we do not adopt the above detailed structure, but we only assume
to know which of the entries in the system matrices are fixed to zero and which can
be seen as free parameters. However, we do consider structured systems in descriptor
form, rather than in standard form. The reason for this is that descriptor forms
are more appropriate to represent the structural or generic aspects of linear systems,
than standard forms. For instance, the class of structured systems in descriptor form
includes the class of structured systems in standard form, and if a system in descriptor
form can be transformed into a system in standard form, then this transformation in
general will destroy the structure present in the system. Motivated by this, we consider
here structured systems in descriptor form that are represented by bipartite graphs.
We use these graphs to derive conditions for the generic solvability of our version
of the above-mentioned decoupling problem. We stress however that for structured
systems, which are described in standard form and represented by directed graphs,
similar conditions can be found by translating the obtained conditions, although such
translation may be cumbersome. We also remark here that for systems with the
detailed structure as in [13], a decoupling problem as above can be formulated and
solvability conditions can be obtained by an appropriate modification of our reasoning.

The outline of this paper is as follows. In 2 we present some basic facts on
our version of the disturbance decoupling problem with pole placement. We bring
solvability of the problem in relation with certain matrix equations being solvable
over the ring of polynomial matrices as well as over the ring of the proper rational
matrices. In 3 we derive Some algebraic necessary and sufficient conditions for these
two types of solvability. Given these conditions we state in 4 necessary and sufficient
conditions for the solvability of our version of the disturbance decoupling problem with
pole placement. Also in 4 we introduce structured systems and we formulate what
must be understood by the generic solvability of the problem. As indicated, conditions
for the solvability of the more common formulation of the problem can be obtained
easily by a straightforward modification. The reason for studying cur version of the
problem (and not the more common one) is that our version (more) naturally fits
into the algebraic framework to relate its solvability to certain matrix equations being
solvable over the two rings (in fact, principal ideal domains) mentioned before. In.5
we indicate how a structured system can be represented by means of a bipartite graph
with two different arc weights, and we introduce the notion of weighted matching.
Using these concepts we derive necessary and sufficient conditions for the generic
solvability of our version of the disturbance decoupling problem with pole placement
in 6. In 7 we illustrate how the results of this paper can be used to investigate the
generic solvability of the problem, as well as of the more common version. Moreover,
in the last example we consider a structured system in descriptor form, represented
by a bipartite gralh, that can not be (easily) described as a structured system in
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standard form, represented by a directed graph. We conclude this paper with 8
giving some remarks. The Appendix contains some proofs.

2. Problem formulation. We consider the system

E(t) Ax(t) + Bu(t) + Qd(t),(1) z(t)=Hx(t),

with x(t) Jtn the state, u(t) IRm the control, d(t) :t the disturbance, and
z(t) IRp the output (to be controlled). Throughout this paper we assume that the
matrix E is real, square (i.e., n x n) ar/d invertible. The matrices A, B, Q, and H are
real with suitable dimensions.

In this paper we study the following version of the well-known disturbance de-
coupling problem with pole placement (el. [29], [30]).

Let p(s) be an arbitrary nth order monic polynomial with real coeffi-
cients. Find, if possible, a control law u(t) Fx(t) + Rd(t) such that
H(sE- (A + BF))-I(Q + BR) 0 and det(sE- (n + BF)) p(s).

We abbreviate the problem as DDPPP. It is clear that the controllability of
system (1) is necessary for the solvability of DDPPP’. We recall that (1) is controllable
if and only if the matrix [A-sE, B] has full row rank for all complex s (el. [8]). Many
more characterizations of controllability exist. In the context of this paper we prefer
the next algebraic characterization that easily follows from the one given above (see
also [21]).

The system (1) is controllable if and only if the greatest common
divisor of all the nth order minors of the matrix pencil [A- sE, B]
is identically equal to 1.

To recall some geometric solvability conditions for DDPPP we assume for the
moment that E I (the n n identity matrix). Then the next result is well-known
(cf.[291,[301).

THEOREM 2.1. DDPPP’ is solvable for system (1) with E I if and only if the
system (1) is controllable and ImQ c_ 7* (KerH) + Im B.

In Theorem 2.1 the subspace T*(KerH) denotes the largest controllability sub-
space in KerH (cf.[30]). It is easy to show that

(2) 7* (KerH) + Im B 7g(KerH) (*(KerH) + Im B),

where 7g(KerH) denotes the largest almost controllability subspace of KerH and
*(KerH) the largest controlled invariant subspace in KerH (cf. [26], [28], [30]). To
emphasize that the above subspaces are computed using A, B, and H, we occasionally
denote these subspaces as 7g* (KerH; A, B), 7(KerH; A, B), and V* (KerH; A, B).
We note that geometric conditions as above can also be derived in case of a general
invertible matrix E. Indeed, then we have the following result.

COPOLLAPY 2.2. DDPPP’ is solvable for system (1) with E invertible if and
only if the system (1) is controllable and ImQ c_ ETg*(KerH;E-A,E-B) + ImB.

Before going on we introduce some notation. We write/R[s] for the set of polyno-
miMs with real coefficients and IRp(S) for the set of proper rational functions with real
coefficients. Then l[s] denotes the set of polynomial vectors with a components and

$(s) denotes the set of proper rational vectors with a components. Furthermore,
lRb[s] will denote the set of polynomial matrices with a rows and b columns and

axb/R (s) the set of proper rational matrices with a rows and b columns.
For a general invertible matrix E the following characterizations can easily be

deduced from the results in [9], [26], and [28].
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PROPOSITION 2.3.
1. The subspace ET(KerH;E-1A, E-1B) equals the set of all xo e jn for

which there are polynomial vectors f(s) e g:tn[s] and w(s) e :tm[s] such that xo
(sE- A)f(s) Bw(s) and Hf(s) 0 identically in s.

2. The subspace EZ*(KerH;E-1A, E-1B)+ImB equals the set of all Xo E :tn

for which there are proper rational vectors f(s) e Kt(s) and w(s) e :t(s) such that
xo (sE- A)f(s) Bw(s) and Hf(s) 0 identically in s.

Next we denote

H 0

The eharacteriations in Proposition 2.3 now imply ghe following.
COROLLARY 2.4.

1. Im Q c ET(KerH; E-1A, E-1B) if and only if there is a polynomial matrix

X(s) e :t(n+m)a[s] such that M(s)X(s)= N(s).
2. ImQ c_ E*(KerH;E-IA, E-B) + ImB if and only if there is a proper

rational matrix X(s) lR(’+m)a(s) such that M(s)X(s) N(s)
Combining the results of Corollaries 2.2 nd 2.4 through the subspace equality

(2) we obtain the following result.
COROLLARY 2.5. Let system (1) be controllable. Then DDPPP is solvable if

a polynomial solution.
Using Corollary 2.5 we can reformulate the problem of the solvability of DDPPW

as problem concerning a certain matrix equation being solvable over the set of
polynomiM matrices as well as over the set of proper rational matrices. In the next
section we present necessary and sufficient conditions for this to be the case.

3. Matrix equations. In this section we summarize some standard results on
the solvability of mtrix equations. We consider the equation

(4) U(s)X(s) V(s),

in X(s) with given polynomial matrices U(s) e :tab[s] and V(s) e g:aC[s]. We say
bcthat (4) is solvable over [s] if there exists a polynomial matrix X(s) e Is] that

satisfies (4). In the same spirit we say that (4) is solvable over p(S) if there exists
bxca proper rational matrix X(s) e p (s) that satisfies (4).

3.1. Polynomial matrices. We" call a square polynomial matrix unimodular
if the matrix has an inverse that is also a polynomial matrix. As is well known, a
polynomial matrix is unimodular if and only if its determinant is a nonzero constant.

For a polynomial matrix T(s) with rank r (as a polynomial or rational matrix)
we denote

Ar(T(s)) the degree of the greatest common divisor of all rth order minors of T(s).

A polynomial matrix T(s) with rank r can be factorized as. follows (the so-called
Smith normal form)(el. [6], [18], [21]):

T(s) =P(s)[diag(al(s),...,ar(s)) 0]o o
where P(s) and Q(s) are unimodular polynomial matrices of suitable dimensions
and a(s),..., av(s) [s] are monic polynomials such that ai(s) divides ai+(s),
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1 < i < r. Note that Ar(T(s)) Eir__l deg(ci(s)), where deg(a(s)) denotes the
degree of a polynomial a(s).

3.2. Proper rational matrices. We say that a square proper rational matrix
is biproper (or bicausal) if the matrix has an inverse that is a proper rational matrix.
It is easy to see that a square proper rational matrix is biproper if and only if the
value at infinity of its determinant is finite and nonzero.

If T(s) is a rational matrix with rank r we denote

Ar(T(s)) maximum of the degrees of all rth order minors of T(s),

where the degree of a rational function f(s) p(s)/q(s) with p(s) and q(s) polyno-
mials, is defined as deg (p(s)) deg (q(s)).

A rational matrix T(s) with rank r can be factorized as follows (cf. [5], [18])"

T(s) P(s) [ diag(snl "’’’snr) 0]’o o

where P(s) and Q(s) are biproper matrices of suitable dimensions and ul,..., ur are
integers such that ui+ <_ hi, 1 <_ < r. It follows that Ar(T(s)) ,ir__ hi.

3.3. Solvability conditions. We can now state the following fact (see also
[18],[27]). The proof of the theorem can be found in the Appendix.

THEOREM 3.1. For the matrix equation (4) the following statements hold.
1. The equation (4) is solvable over/R[s] if and only if rank U(s) rank [U(s),

V(s)]-" r, and hr(V(s)) At(IV(s), Y(s)]).
2. The equation (4) is solvable over :tp(S) if and only/frank V(s) rank [U(s),

Y(s)]-: r, and Ar(U(s))---- Ar([U(s), V(s)]).
In the next section we use Theorem 3.1 to develop necessary and sufficient con-

ditions for the solvability of DDPPP.
4. Solvability conditions for DDPPP. In this section we return to system

(1). This system is controllable if and only if the greatest common divisor of all
the nth order minors of [A- HE, B] is identically equal to 1. By the results of 3 the
latter is equivalent to rank [A-HE, B] n (as a rational matrix) and hn([A-HE, B])

0. The first statement is always true by the regularity of E, whereas the second
statement means that the n polynomials in the Smith normal form are all identically
equal to 1.

4.1. Numerically specified systems. The next result is an immediate conse-
quence of the previous remarks.

THEOREM 4.1. Consider the system (1) with E invertible and M(s), N(s) as
in (3). Assume that the system is controllable (here equivalent to An([A- sE, B])

0). Then DDPP)’ is solvable if and only if rankM(s) rank[M(s),N(s)] =: r,
Ar(M(s)) A([M(s), N(s)]), Ar(M(s)) A([M(s), N(s)]).

A similar result can also be obtained for the next more common version of the
disturbance decoupling problem with pole placement.

Let p(s) be an arbitrary nth order monic polynomial with real co-
efficients. Find, if possible, a control law u(t) Fx(t) such that
H(sE (A + BF))-IQ 0 and det(sE (A + BF)) p(s).

In [30] the problem is studied in the case that E I; see also [29]. Following [29]
we abbreviate the above problem as DDPPP. In the spirit of 2 we now can prove the
following result (compare with Corollary 2.5).
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COROLLARY 4.’2. Let system (1) becontrollable. Then DDPPP is solvable if and
only if the equation M(s)X(s) N(s) has a strictly proper rational solution as well
as a polynomial solution.

As in [17] we can now make the observation that there is a strictly proper rational
matrix X(s) such that M(s)X(s) N(s) if and only if there is a proper rational
matrix )(s) such that M(s)X(s) sg(s). Hence, with Theorem 3.1, the following
theorem is immediate.

THEOREM 4.3. Under conditions of Theorem 4.1 the following holds. DDPPP
is solvable if and only if rankM(s) rank[M(s),N(s)] -: r, hr(M(s)) Ar([M(s),
N(s)]), A(M(s)) Ar([M(s), sN(s)]).

Note in Theorems 4.1 and 4.3, matrices M(s), [M(s),N(s)], and [M(s), sN(s)]
are matrix pencils. For instance,

N(s)]= [ A- sE B[M(s)
[ H 0 0 H 0 0

-s
0 0 0

Therefore, we are able to check the solvability of DDPPP’ through Theorem 4.1
if we are able to compute the rank r of a general matrix pencil T(s) together with
the values of the indices Ar(T(s)) and A(T(s)). Similar remarks can be made with
respect to checking the solvability of DDPPP through Theorem 4.3. However, as
the latter will be technically more involved and does not yield any further significant
contribution, we concentrate below mainly on the solvability of (a structural version

of) DDPPP’.
4.2. Structured systems. In the remainder of this paper we assume that the

system is structured. This means that we assume that we regard the nonzero entries
in the system matrices as independent parameters. If the number of these parameters
is W then all the systems having the same fixed zero entries can be parametrized by
a vector/k E w. The parameter also parametrizes the matrices E, A, B, Q, H,
and the pencils M(s), N(s), [M(s),N(s)]. We therefore occasionally denote
BA, QA, HA, and MA(s), NA(s) where

NA(s)]= [ AA-sEA BA
L HA 0

We say that system (1) is generically controllable if the system is controllable for
almost all E w. Here "almost all" is to be understood as "for all except for those
in some proper algebraic variety in Kiw’’ (cf. [30]). A proper algebraic variety is a set
of zero Lebesgue measure. Hence, system (1) is generically controllable if the greatest
common divisor of all the nth order minors of [AA sEA, BA] is identically equal to
1 for "almost all" w.

Suppose that we have a structured system that is generically controllable. Then
inspired by Theorem 4.1 we say that the present version of the disturbance decoupling
problem with pole placement, i.e., DDPPW, is generically solvable precisely when
rankMA(s) rank[MA(s),NA(s)] =: r, hr(MA(s))= A([M(s),NA(s)]), Ar(M(s))

Ar([MA(s),NA(s)] for "almost all /k e w. Hence, DDPPP’ for a structured
system is generically solvable if the prgblem can be solved for almost all values of its
nonzero coefficients. Also now we are able to check the generic solvability of DDPPW
for the structured system if we have methods for the determination of the generic
rank r of a general structured matrix pencil T(s) together with the generic values
of Ar(T(s) and Ar(T(s)). In the next section we discuss methods for doing these
computations.
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5. Combinatorial aspects. In this section we consider a matrix pencil T(s)
which is structured in the sense that the entries in the two coefficient matrices are
either fixed to zero or independent parameters. We are concerned with combinatorial
characterizations of the generic values of the rank r and Ar(T(s)) and
introduced above. We associate with T(s) bipartite graph and express the above
generic values in terms of (weighted) matchings in the bipartite graph. Though the
results to be described below are special cases of the more general results of [14]
(where also fixed nonzero entries in the coefficient matrices are considered), we afford
a self-contained simplified argument for the readers’ convenience.

5.1. Graphs and matchings. We consider a matrix pencil T(s) E k[s] of
which we only know the structure, namely the powers of s appearing in each nonzero
entry of T(s). More specifically, a nonzero entry of T(s) is of the form s / 1, 5s, or
with c, , 5, and /independent parameters.
With T(s) :tk[s] above we associate a bipartite graph, denoted as G

(P, /,4), that consists of the sets Y and 42 of vertices and the set jt of arcs di-
rected from 142 to V. Hence we have {1, 2,..., k}, V {1, 2,..., l} and
{ (j, i)lTij(s 0}. Here (j, i) denotes the arc from vertex j V to vertex i 2 and
Tij(s) 0 indicates that the (i,j) entry of T(s) is not identically equal to zero. An
example of a bipartite graph together with the concepts introduced below is given in

7.
In the following we need weights on the arcs of G. These weights are given by

two weight functions +, - A --- {0, 1} defined as follows: +(j, i) denotes the
exponent of the highest power of s and -(j, i) the exponent of the smallest power of
s in the nonzero entryT(s). To be more specific, for (j, i) e 4 we define +(j, i)
1, -(j, i) 0 for T(s) of the form as +/; +(j, i) -(j, i) 1 for T(s) of the
form 5s; +(j,i) -(j,i) 0 for Tj(s) of the form .

If an arc a ,4 is directed from vertex j E 142 to vertex i )2, the vertex j 142
is called the initial vertex of a and the vertex i the terminal vertex. A matching
in the graph G (, 4, 4) is a subset A/ of Jt consisting of arcs that pairwise have
no vertices in common. Hence, the number of arcs in A/, called the order of the
matching A/, equals the number of initial vertices of the arcs in A/i and also the
number of terminal vertices of the arcs in 4. A matching of maximum order will be
simply referred to as a maximum matching. With respect to the arc weight functions

+ and -, we define the +-weight of a matching to be the sum of the +-weights of
its arcs and similarly for the C--weight of a matching.

5.2. Generic rank and generic value of Ar(T(s)). We say that the generic
rank of T(s) equals r (or generic-rank T(s) r) if the rank of T(s) as a polynomial
matrix in s equals r for almost all values of the coefficients present in T(s), where
"almost all" is to be understood as before. Let generic-rank T(s) r. In a similar
way we can define the generic values of hr(T(s)) and Ar(T(s)) as the values that
these indices have for almost all values of the coefficients present in T(s).

We are now in the position to state the following results connecting the above-
introduced generic values with certain characteristics of the bipartite graph represent-
ing the structure of T(s). Proofs of the straightforward results below can be found,
for example, in [13].

PROPOSITION 5.1. The generic rank of T(s) equals the order of a maximum
matching in G.

PROPOSITION 5.2. Assume that T(s) is square and is generically invertible. The
largest power of s in det T(s) has an exponent generically equal to the maximum +-
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weight of a maximum matching in G and the smallest power of s in det T(s) has an
exponent generically equal to the minimum --weight of a maximum matching in G.

It follows from Proposition 5.1 that r equals the order of a maximum matching
in G. Recalling the definition of Ar(T(s)) from 3 and applying Proposition 5.2 to
square submatrices we immediately obtain the following.

THEOREM 5.3. The value of Ar(T(s)) is generically equal to the maximum +-
weight of a maximum matching in G.

This theorem enables us to compute the generic value of Ar(T(s)) using G.
The generic value of Ar (T(s)) will be considered in the next subsection by means of

the Dulmage-Mendelsohn-decomposition (DM-decomposition) of the bipartite graph
G.

5.3. Generic value of A(T(s)). To derive a combinatorial expression for the
generic value of Ar(T(s)) we first need to introduce a canonical decomposition of the
bipartite graph G (13,142, Jr) into three interconnected bipartite subgraphs. This is

(an aggregation of) the DM-decomposition (cf. [2], [12], [13]).
In the DM-decomposition the vertex sets 1 and 142 are decomposed as l V0

tA 1, tA o and 1/Y W0 tA W, t l/Yo with li C lj q) and 1/Vi C 1/Yj ( for all
i,j 0, ,, c with = j. The arc set J[ is decomposed as jI JI00 tJ Jr0, tJ
tA ,4,, tA ,4,o tJ ,4oo. Here the set ,4ij contains all arcs in ft. from vertices in
to vertices in 12, i,j O, ,, c with _< j, where we define an ordering 0 < < c
among the indices of the components. Furthermore, we have in general I101 <
II.l- 1142, I, and > Iwol. (We ignore here some special cases such as the case
of 114201 0 in which both 120 and 1420 disappear together with the arc sets Jl00, Jl0,,
and A0oo.) The DM-decomposition has the following properties where it should be
noted that an empty subset of Jt is eligible as a matching.

(i) If lYV0[ > 0 the subgraph Go (V0,1420, A00) contains a maximum matching
of order I201 and for every vertex w E YV0 there is a maximum matching not containing
w. The subgraph Go is sometimes referred to as the horizontal tail or the minimal
inconsistent part.

(ii) If Io1 > 0 the subgraph Goo (lo, YYo,,4o) contains a maximum
matching of order [l/Vo] and for every vertex v E Vo there is a maximum matching
not containing v. The subgraph Go is sometimes referred to as the vertical tail or
the maximal inconsistent part.

(iii) If [,1 ]l/V,] > 0 the subgraph G, (V,, l/V,, Jr**) contains at least
one maximum matching of order ]V,]. The subgraph G, is often referred to as the
consistent part.

This decomposition is a rough version of the DM-decomposition. The full DM-
decomposition is more refined, but this refinement is not relevant for the present
theoretical development. The refinement may be profitable in the actual computa-
tions. In [13] an algorithm for computing the (refined) DM-decomposition is described
together with the proofs of the above properties.

Recall that the graph G is constructed starting from the matrix pencil T(s). The
above-introduced DM-decomposition for G implies that T(s) after some suitable row

and/or column permutations can be depicted in a block triangular form as in Fig. 1.
The submatrix Tpw (s)in Fig. 1 has dimension Ii[ x [I/Vj[ and consists of the

elements of T(s) with row index in li and column index in I/Vj, i,j 0, ,, c, i _< j.
The zeros denote zero matrices of suitable dimensions. To treat the most general case
we asSume in the sequel that IV0[ > 0, [Y,[ [l/V,] > 0, [l/Vow[ > 0. Other cases,
possibly with empty components, can be dealt with in an analogous manner.
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Wo W, W

T,owo() T,ow.() T,ow ()

T,w()

FIG. 1. DM-decomposition ofT(s).

Using Proposition 5.1 and the properties of the DM-decomposition described
above it follows that generic-rank Tvowo(S) --IV0] (full row rank), generic-rank
Tv,w, (s) --IV, I- IW, (invertible), and generic-rank Tvowo(s) IWI (full col-
umn rank). Hence, the generic rank r of T(s) is expressed as r r0 + r, + ro with
ro -IVol, r, -Iv, I--IW, I, r --IWl.

Now, referring to the above decomposition of T(s), let the index sets 2 C_ ]2 and
3" c_ w be such that IZl Irl r nd T(s) is generically invertible submatrix
of T(s). Then 2" Yo U V. U 2- and fl ,70 t2 W. U W for some index sets fro
c_ Wo and Z C_ V with [Jol- ro nd I1-- r. Hence,

Tvoo ()
Tzj() 0

0

Tvow. () Tvow ()
Tv.w. (s) Tv.w (s) )0 Tzw (s)

with square matrices on the diagonal. This shows that the determinant of a generi-
cally invertible rth order submatrix of T(s) equals the product of det TvoJo (s), det
Tv,w, (s), and det Tzwo (s) for appropriate index sets ,70 C_ V0 andZ C_ V with

I01 r0 and 1271 r. Therefore, the greatest common divisor of all rth order
minors of T(s) generically equals

where gcd stands for the greatest common divisor in i[s], 1/Y, {if0 C_ V0
lif0[ r0} and V {Z _C ]2o [[Z roo}.
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To compute the above-mentioned greatest common divisors we need the following
result, stated as Proposition 14.5 in [13]. Since the result is of crucial importance for
the development in this paper, we have provided an elementary proof in the Appendix.
In this proof the property of the horizontal tail is used that for any vertex w in ]420
there is a maximum matching of order I)ol not containing w. By Proposition 5.1 this
means that the removal of a single column from TvoVo (s) does not give a drop in the
generic-rank.

PROPOSITION 5.4. Generically the greatest common divisor of all the roth order
minors of Tvovo (s) is a monomial in s.

The degree of the greatest common divisor of all the r0th order minors, which is
a monomial by Proposition 5.4 above, equals the exponent of the smallest power of s
contained in the minors. By Proposition 5.2 the generic value of this degree can be
determined by computing in the associated bipartite graph the minimum C--weight
that a maximum matching can have. Hence, the greatest common divisors of all the
r0th order minors of TyoVo (s) can be computed by way of matchings in Go as follows
(see Theorem 3.1 of [14]).

PROPOSITION 5.5. The greatest common divisor of all the roth order minors of
Tyoo(S is generically a monomial o’f degree equal to the minimum --weight of a
maximum matching in Go.

It is obvious that similar results can be obtained by dual arguments forTv(s)
using the bipartite subgraph G. These dual results are omitted here.

We can now indicate how the generic value of hr(T(s)) can be computed using the
graph G. Therefore, observe that hr(T(s)) equals the degree of the greatest common
divisor of all the rth order minors of T(s). Hence, hr(T(s)) is the sum of the degree
of the greatest common divisor of all the r0th order minors of TyoVo (s), the degree
of det Tv.v. (s) and the degree of the greatest common divisor of all the rth order
minors of Tyov (s). In stating the following result we assume that T(s) has the
above decomposition and that G is already in the DM-decomposition form, i.e., G
can be seen as three interconnected bipartite subgraphs Go ()0,)/V0,400), G.
(),, ]d;,, Jr**), and Go (Vow, ]/V,4o) with the properties mentioned before.
Then the following holds.

THEOREM 5.6. The generic value of Ar(T(s)) is equal to the sum of the minimum
--weight of a maximum matching in Go, the maximum +-weight of a maximum
matching in G,, and the minimum --weight of a maximum matching in G.

The above theorem enables us to compute the generic value of Ar(T(s)) using the
DM-decomposition of the graph G.

REMARK 5.7. If the DM-decomposition is available, the generic value of Ar(T(s))
can be obtained in a manner that generally will be more efficient than the direct
application of Theorem 5.3. Namely, we utilize the following fact: The value of
Ar(T(s)) is generically equal to the sum of the maximum +-weight of a maximum
matching in Go, the maximum .+-weight of a maximum matching in G,, and the
maximum +-weight of a maximum matching in G.

6. Main results. In this section we use the results in the previous sections to
derive necessary and sufficient conditions for the generic solvability of our version
of the disturbance decoupling problem with pole placement and describe a graph
theoretic procedure for checking the conditions.

We assume that we are given a structured system as in (1) and consider the
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bipartite graph G constructed from the matrix pencil

[M(s),N(s)]= [ A-sE B Q ]H 010
In G we can distinguish a bipartite subgraph G corresponding to the pencil M(s).
Moreover, we can distinguish in G the bipartite subgraphs Ga and Gb. The subgraph
Ga corresponds to the "pencil" E (or sE) and the subgraph Gb to the pencil [A-
sE, B].

With Ga we can. check whether or not the matrix E is generically invertible,
which is the case if and only if the graph Ga contains a matching of order n. If E is
generically invertible then we can use the graph Gb to check whether or not system
(1) is generically controllable. For this the DM-decomposition of the graph Gb may
be used (cf. [13]). If the system (1) is generically controllable we proceed as follows.

GENERIC INDICES OF M(8). First, we find a maximum matching in G and we
denote its order by r. Then by Proposition 5.1 the pencil M(s) has generic rank r.
Using the obtained maximum matching we now can compute the DM-decomposition
for the bipartite graph G. Let it consist of the components (bipartite subgraphs) Go,
G,, and G as explained in 5. Next we compute the sum of the minimum c--weight
of a maximum matching in Go, the maximum +-weight of a maximum matching in
G,, and the minimum c--weight of a maximum matching in G (see Theorem 5.6).
We denote the obtained number by A. Finally, in the full graph G we compute the
maximum +-weight of a maximum matching and denote the obtained maximum by
A (see Theorem 5.3 or Remark 5.7).

GENERIC INDICES OF [M(8), N(8)]. Subsequently, we consider the full bipartite
graph G and consider the above matching in G as a matching in G, possibly not being
maximum. Using this matching as a starting point we can find a maximum matching
in G’ and we denote its order by r’. By Proposition 5.1 the pencil [M(s),N(s)] has
generic rank r. Now if r < r we can stop because our version of the disturbance
decoupling problem with pole placement will not be generically solvable (see 4.2). If
r r we continue with computing the DM-decomposition for G. Let it consist of
the components G0, G,, and G. Now in G, as before, we compute the sum of the
minimum c--weight of a maximum matching in G0, the maximum +-weight of a
maximum matching in G,, and the minimum c--weight of a maximum matching in

Go. We denote the obtained number by A. Finally, in G we compute the maximum
+-weight of a maximum matching and denote the obtained maximum by A. We
again refer to Theorems 5.3 and 5.6 and Remark 5.7.

Then we have the following graph-theoretic characterization for the generic solv-
ability of DDPPP.

THEOREM 6.1. Assume that system (1) is generically controllable. DDPPP’ for
system (1) is generically solvable if and only if r r, A A’, and

We stress that we concentrated only on the solvability of the problem and that
we were not concerned in doing this in an .efficient way. Hence, it may be possible
that the computations described above can be done much more efficiently.

7. Illustrative examples. In this section we illustrate the results of this paper.
EXAMPLE 7.1. We consider the structured system of type (1) given by the next

matrices.

E= A2 0 0 A= 0 A5 0 B= A7 0 Q= Ao
0 0 )3 0 0 A6 0 .8



STRUCTURAL DISTURBANCE DECOUPLING WITH POLE PLACEMENT 933

o 0].
First, observe that E is generically invertible. Next, note that the system is generically
controllable and that DDPPP’ is generically solvable. Indeed, premultiplying A, B,
and Q by the inverse of E we obtain-- E-1A 0 0 #2 E-1B 0 0

0 0 #3 0 #5

O, E-IQ #7
#s

0 0],

#5 #6 #7 #8 #9
,ks #2--,ka - #4with #1 2 1 #3 Aa A2 Aa A2 A 3

A2. The pair (, )is clearly controllable for almost all A. rthermore, consider
the feedback matrices

Then

-a 0 0 ].+/F= 0 0 #2
0 -)- -7 [o])+Z}R=

from which it easily follows that H(sE-(A+BF))-1 (Q-t-BR) H(sI-(+F))-1

(( +/}R) 0 and det (sE (A + BE)) -AA2A3 (s + a) (s2 + -ys +/), for almost
all A. Clearly, the system is generically disturbance decoupled and by suitably chosen
values for a,/3, and "7 the poles of the closed loop system can be placed anywhere in
the complex plane. Hence, DDPPP’ is generically solvable.

We now show that the generic solvability of DDPPP’ can also be established by
means of the graph-theoretic methods in this paper. Therefore, we recall that

and, consequently,

[M(s),N(s)]

0 As A4 0 0 A9
A28 A5 0 A7 0 AIO
0 0 A38 -F- A6 0 A8 All

A12 0 0 0 0 0

Using this matrix pencil the following bipartite graph G’ with 142’ {1, 2, 3, 4, 5, 6}
and l)’ {1, 2, 3, 4} can easily be constructed as in Fig. 2 (see also 5).

In the bipartite graph in Fig. 2 as well as in the bipartite graphs in the remainder
of this paper the direction of the arcs is not depicted for reasons of clarity. It should
however be kept in mind that in all bipartite (sub)graphs the arcs are directed from
(a subset of) W’ (or V) to (a subset of) Y’ (or
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}/V 1 2 3 4 5 6

1 2 3 4

FIG. 2. Bipartite graph of Example 7.1.

W 1 2 3 4 5

1 2 3 4

FIG. 3. Bipartite subgraph of Example 7.1.

It follows from [M(s), N(s)] that the arc weights in G’ are given as in the matrices

1 0 0 1 0 0
1 0 0 0 __= 1 0 0 0

1 0 0 0 0 0
0 0

Here the dot (.) indicates that the entry in [M(s),N(s)] is a fixed zero and does
not give rise to an arc in the graph. The remaining values in @+ correspond to the
exponents of the highest power in s of the associated entries in [M(s), N(s)]. Likewise
for @- and the lowest powers in s.

The graph G’ represents the matrix pencil [M(s), N(s)]. The graph G represent-
ing only the matrix M(s) can be obtained simply from the above graph by deleting
the initial vertex 6 in W and all arcs starting from this vertex. The graph G with W

{1, 2, 3, 4, 5} and ]2 V’ can be depicted as in Fig. 3.
To illustrate the methods of this paper we follow the steps explained in 6. More-

over, to focus on our main results we assume that we already know that the matrix
E is generically invertible and that the system is generically controllable. If required,
these facts can be easily verified by the graph-theoretic methods in [13].

We note that the set {(1, 4), (2, 1), (3,3), (4,2)} is a matching of order 4 in G
as well as in G’. Since the set of terminal edges of G and G’, i.e., and V’, both
consist of four vertices, the above matching is also a maximum matching in both
graphs. By Proposition 5.1 we therefore know that generic-rank M(s) r 4 and
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G0

Wo 2 3 4 5 W, 1

G," Goo" nonexisting

1 2 3Vo ];, 4

FIG. 4. DM-decomposition of bipartite subgraph of Example 7.1.

the generic-rank [M(s),N(s)] r’ 4. Furthermore, we note that the +-weight of
the above matching equals 0 / 1 + 1 + 0 2 and the C--weight 0 + 1 + 0 + 0 1.
This simply follows from the weight matrices 9+ and 9- by adding the values on the
places (4, 1), (1, 2), (3, 3), and (2, 4).

Using the above matching we can also compute the DM-decomposition of both
G and G. For details on this computation we refer to [13]. It turns out that, in
terms of 5, the DM-decomposition of G results in a partitioning of W and V with

W0 {2,3,4,5}, W, {1}, Wo q} and 1)0 {1,2,3}, 1), {4}, l)o . This
implies that the DM-decomposition of G is made up of a horizontal tail G0 and a
consistent part G,, but not of a vertical tail Go. The DM-decomposition of G can
be associated with row and column permutations of M(s) that result in the following
block triangular matrix:

A 0 A 0
0 Aas + )6 0 As 0

0 0 0 0 ,12

(Note that in fact only the first column of M(s) is put as last.) In terms of the
bipartite subgraphs Go, G,, and G We have a situation as in Fig. 4.

We recall the property of Go that for every initial vertex w in l/V0 there is a
maximum order (- 3rd order) matching in the graph Go that does not contain w.
This property is fundamental in Propositions 5.4 and 5.5. (See also the Appendix.)

The weights associated to Go and G, are given by the matrices.

%+= 0. 0 0. 0
1 0 0 0

The graph G does not exist and therefore no arc weights need to be specified.
We note that there is only one (maximum) matching in G, and that it has +-
weight 0 and C--weight 0. In Go there are several maximum matchings. A simple
inspection shows that the maximum +-weight of a maximum matching in Go equals
2 (consider the matching {(2, 1) (3,3) (4,2)}) and the minimum C--weight of a
maximum matching is 0 (take the matching {(3, 1), (4, 2), (5, 3)}). By the results of
5 it now follows that the generic value of Ar(M(s)) is 0 (= A) and the generic value
of Ar(M(s)) is 2 (= A) where r 4.
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Starting from the previous matching the DM-decomposition of the full bipartite
graph G’ can be found. It turns out that this DM-decomposition implies that the
matrix [M(s),N(s)] can be rearranged as follows

0 As+A 0 As A 0

0 0 0 0 0

(Also now the first column is put as last.) In a similar fashion as above we can now
show that the generic value of Ar,([M(s),N(s)]) is 0 (- A’) and the generic value of
Ar,([i(s),N(s)]) is 2 (= A) with r’= 4.

By Theorem 6.1 it now follows that DDPPP’ is generically solvable.
EXAMPLE 7.2. In the present example we study the system of Example 7.1 again.

However, now we are interested in the generic solvability of DDPPP as formulated in

4. In the spirit of that section we define the DDPPP to be generically solvable pre-
cisely when rank/(s) rank[M(s), N(s)] =: r, Ar(M(s)) At(IMp(s), N(s)]),
Ar(M(s)) Ar([M(s),sN(s)]) for almost all A e 12. Hence, DDPPP for a
structured system is generically solvable if the problem can be solved for almost all
values of its nonzero coefficients.

Using the geometric techniques of [30] with ,/, (, and/:/as in Example 7.1 it
follows from HQ #69 1012/)2 that DDPPP for the system under consideration
is generically unsolvable (--not generically solvable).

The latter conclusion can also be obtained with the graph-theoretic methods of
this paper. In applying these methods we may use the decompositions of Example
7.1 since the zero-nonzero structure of the pencils [M(s),N(s)] and [M(s),sg(s)]
are identical. The only difference in the graphs associated to [M(s),N(s)] and
[M(s),sN(s)] is the arc weights. The weights for the arcs of the graph associated
to [M(s),sN(s)] follow from

[M(s),sN(s)]

0 As A4 0 0 Aos
Aes A 0 A 0 Aos
0 0 A38 -[- A6 0 A8 Al18
A12 0 0 0 0 0

and are given by

1 0 1 1 0 1
1 0 0 1 _= 1 0. 0 1

1 0 1 ’. 0. 0 1
0 0

We note that when using the decompositions of the graphs of Example 7.1 the
above weights for the graph G coincide with the weights given by + and -. The
results of example 7.1 therefore yield that the generic-rank M(s) r 4, the generic
value of Ar(M(s)) is 0, and the generic value of Ar(M(s)) is 2. Moreover, since it
does not depend on the arc weights we also have that the generic-rank [M(s), sN(s)]

r 4. However, using the weights given by + and -, it follows that the generic
value of hr,([M(s), sN(s)]) is 0 and the generic value of Ar,([M(s), sN(s)]) is 3 with
r’ --4.
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Comparing the obtained generic values we can conclude by the graph-theoretical
methods of this paper that DDPPP is generically unsolvable for this system.

EXAMPLE 7.3. As a final example we consider the structured system given by
the matrices

E= 0 A3 0 A= 0 0 0 B= A9 Ao Q=
A4 0 0 0 A A7 0 A A3

A6 0 0

We note that E is generically invertible and that the system is generically controllable.
Indeed, premultiplying A, B, and Q by the inverse of E we obtain

E-iA 0 0 0 .=E-iB= #6 #7 Q=E-Q-
0 3 #4 0 8 #10

II 12 0 ]/ 13 0 0

14 0 0

A6
#2 ,3 4 )4 )3 )3with # 4 4 24 2 24’ 5 6 7

AiAii AiAi3 AI4 12 AI5, 13 AI6,
and 14 AlT. By a straightforward calculation we can prove that the pair (, ) is
controllable generically in the original parameters A{, i I, 2,..., 17. rthermore,
from A, , , and it follows that generically Ker Im {0}, Ker + Im

3, and Im Q Im B (or Im I ). Using the method o[ [39] we can
eily prove that genericMly V* (KerH; A, B) Ker H and *(KerH; A, B) {0}.
By Corollary 2.2 it therefore follows that DDPPP’ is generically unsolvable (= not
generically solvable). However, DDPPP’ without the pole placement is genericMly
solvable. Following [29] the latter problem is abbreviated DDP’. Using the well-
known results of [0] (see also[2]) t .followseasily that DDP’ is indeed generically
solvable since Im Q V* (KerH; A, B) + Im B for almost all A. By the results of 2
and 3 the latter subspace inclusion holds for an arbitrary A if and only if rank MA (s)

rank [M(s), N(s)] r, and A(M(s)) A([M(s), N(s)]).
Therefore, it is clear that the previous conclusion on the generic solvability of

DDP and the generic unsolvability of DDPPP can be drawn again by studying the
bipartite graphs associated to M(s) and [M(s), N(s)] (see also [17], [31]). Recall that

As before we denote the bipartite graph associated to M(s) by G with VV
{1,2,3,4,5} and {1, 2, 3, 4, 5, 6}. This graph can be depicted as in Fig. 5.
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G:

142 1 2 3 4 5

1 2 3 4 5 6

FIG. 5. Bipartite subgraph of Example 7.3.

It is easy to see that a maximum matching in G has order 5. The DM-decomposi-
tion of G results in a partioning of 142 and V with 1420 q}, kV. {2, 3, 4, 5}, )/Voo { 1 },
and )20 , ]), { 1, 2, 3, 4}, l;oo {5, 6}. This means that the DM-decomposition
is made of a consistent part G. and a vertical tail Goo, but not of a horizontal tail
Go (see 5). The DM-decomposition of G can be associated with row and column
permutations for M(s) that result in the following block triangular matrix

0 A2s + A5 0 As
A3s 0 A9 Ao
A A 0 A
A 0 0 0

0 0 0 0
0 0 0 0

18

48

Using this matrix the weights of the arcs in the consistent part G, and the vertical tail

G are immediate. With these weights it easily follows that the maximum +-weight
of a maximum (-4th order) matching in G, equals 1 and the minimum --weight
of such a maximum matching equals 0. For the vertical tail both the maximum +-
weight and the minimum --weight of a maximum (-- 1st order) matching are equal
to 0.

Hence, by the results of 5 we can conclude that the generic-rank M(s) r 5,
the generic value of Ar(M(s)) is 1 (- A) and the generic value of Ar(/(s)) is 1 (--

Next we consider the pencil

[M(s),N(s)]

0 A38 0 A9 AIO 0

A4 A 0 0 0 0
A16 0 0 0 0 0
A17 0 0 0 0 0

We denote the bipartite graph associated to [M(s),N(s)] by G’ with W’
{1,2,3,4,5,6} and 12’ {1,2, 3, 4, 5, 6}. This graph can be depicted as in Fig. 6.

Also here it follows easily that a maximum matching in G’ has order 5. The DM-
decomposition of G’ results in a partioning of 142’ and )’ with 142’0 {3, 4, 5, 6}, VV’.
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e

)/Y’ 1 2 3 4 5 6

V’ 1 2 3 4 5 6

FIG. 6. Bipartite graph of Example 7.3.

{2} )/Y’ . {4}, ])’ {5, 6}. This means thatoo {1}, and ])’0 {1,2,3}
the DM-decomposition of G’ is made up of a horizontal tail G’0, a consistent part
and a vertical tail G’o. Note the difference in the DM-decompositions of G and G’.
The DM-decomposition of G’, can be associated with row and column permutations
of [M(s), N(s)] that yield the following block triangular matrix

s+ 0 As A: 0 s
0 0 0 as 0

0 0 0 0 A15 A14

o o o o o
0 0 0 0 0 A17

Using the above matrix the weights of the arcs in the horizontal tail G’0, the consistent
part G., and the vertical tail G’ can be obtained directly. With these weights it

easily follows that the maximum +-weight of a maximum (--3rd order) matching in

G0 equals 1 and the minimum --weight of such a maximum matching equals 0. For
the consistent part G. both the maximum +-weight and the minimum --weight
of a maximum (--lst order) matching are equal to 0. The same holds true for the
vertical tail

By the results of 5 we can conclude that the generic-rank [M(s),N(s)] r’
5, the generic value of h,([M(s),N(s)]) is 0 (-- A’) and the generic value of

Ar,([M(s),N(s)]) is 1 (= A’).
Since r we can conclude by Theorem 6.1 that DDPPW is

generically unsolvable. However, because of the first two equalities DDW is generically
solvable (cf. [17], [31]).

8. Remarks and conclusions. In this paper we have studied a general version
of the well-known disturbance decoupling problem for regular descriptor systems of
which only the zero-nonzero structure of the system matrices is known. We represent
this zero-nonzero structure by means of bipartite graphs. For the development of
results, the so-called DM-decomposition for bipartite graphs is used.

The main results of this paper are necessary and sufficient conditions for the
generic solvability of our version of the disturbance decoupling problem. Conditions
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for the generic solvability of the more common version of the disturbance decoupling
problem can be easily obtained in a similar fashion.

We want to stress that the results in this paper only deal with solvability issues.
Hence, using the obtained conditions we can only say something on the existence of a
feedback solving DDPPP. No statements are given on how the feedback matrices F
and R look or how they can be computed. A similar situation occurs when studying
the disturbance decoupling without any pole placement requirement. For an attempt
to compute the feedback matrices for the disturbance decoupling problem using the
structure of the system as much as possible, we refer to [33].

The developments in this paper are largely based on fundamental results in [13],
especially on Proposition 14.5. Basically, this proposition is a special case of the
results in [14] in which the Smith normal form for structured polynomial matrices is
developed. See also [15] and [16].

By using the results of [14] the arguments of this paper can also be extended
(as in [13] and [17]) forsystems of which the nonzero elements are divided into fixed
constants and free parameters. Then structured matrices (in the present case) are
replaced by mixed matrices, bipartite graphs by independent matchings (involving bi-
partite graphs and linear matroids), and the DM-decomposition by the Combinatorial
Canonical form (CCF) of layered mixed matrices.

Appendix. Proof of Theorem 3.1. Statements 1 and 2 can each be proved much
in a similar way. Therefore, we only prove here statement 1. A proof of statement 2
can also be found in [27].

(Only if part) Denote

Q(s)= I I0 -x(s)]i
wih I the identity matrix of suitable dimensions. Since X(s) is a polynomial matrix
and the determinant of Q(s) is one, Q(s) is a unimodular polynomial matrix. Note
that rank U(s) rank [U(s), 0] rank [U(s), V(s)]Q(s) rank [U(s), V(s)]. Let r
rank U(s). Then Ar(U(s)) Ar([U(s), 0]) Ar([U(s), V(s)]Q(s)) A([U(s), V(s)]).

(If part) To prove that (4) is solvable over [s] we may assume without loss of
generality that

0 0 1/2(s)

with polynomial matrices Vl(s) e c[s], V2(s) e (b-)C[s], and monic poly-
nomials a(s),...,ar(s) such that ai(s) divides ai+(s), 1 <_ i < r. Because rank
Y(s) rank [U(s), V(s)] r it follows that V2(s) 0. We write Vl(S) (vii(s)),
l<_i<_r,l<_j<_c.

Let us fix i and j (1 _< i _< r, 1 _< j _< c) and consider the r x r sub-
matrix of [U(s), V(s)] made up of the rows 1 to r, and the jth column of V(s)
and the first r columns of U(s) excepting the ith. This matrix has a determinant
equal to :kvij(s)I]kiak(s). Another nonzero rth order minor of [U(s), V(s)] is

r1-Ik= a(s), which corresponds to the r x r submatrix with the first r rows and
columns of U(s). The greatest common divisor of the above two rth order minors is
gcd

Since Ar([U(s), V(s)]) is the degree of the greatest common divisor of all the rth
order minors of [U(s), V(s)], it follows that Ar([U(s), V(s)])

_
ki deg ak(S) + deg
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(gcd(ai(s), vii(s))) <_ -]=1 degck(s) Ar(U(s)). However, we have Ar([U(s), V(s)])
Ar(U(s)) by the assumption. Therefore, deg (gad(hi(s), vij(s))) deg c(s), or in

other words, he(s) divides vy(s).
Hence, we can write v(s) i(s) Xj(s) with Zj(s) e/R[s], 1 <_ i <_ r, 1 <_ j <_ c.

For i, j with r < i <_ b, 1 _< j _< c, we let Xj(s) be an arbitrary polynomial. X(s) is

a polynomial matrix in bC[s] satisfying (4) with V(s) and V(s) as in (5). [:l

Proof of Proposition 5.4. An alternative proof of Proposition 5.4 is given here. In
view of the characterization of the horizontal tail mentioned before Proposition 5.4,
it suffices to prove the following statement.

PROPOSITION A.1. Let T(s) q -t- s be a k l matrix pencil (with k < l)
such that the entries in the coefficient matrices and {3 are either fixed to zero or
independent parameters. If any k (l- 1) submatrix of T(s) has generic rank k,
then generically the greatest common divisor of all the kth order minors of T(s) is a
monomial in s.

Proof. Let and denote the vectors of the nonzero entries of and , respec-
tively. Then a kth order minor, say f(s), of T(s) may be regarded also as a polynomial
in s, , and 0, i.e., f(s) f(s, , ) E [s, , ], where denotes the (field of) rational
numbers.

Let us denote by gl (s, , 0) the gcd of all the kth order minors when considered in

(, 0)Is] (- set of polynomials in s with rational functions in (, ) as the coefficients),
and by g2(s, , ) the gad of those minors when considered in [s, , ].

First we observe that g (s, , 0) h(, O)g2(s, , 0) for some h, which is a rational
function in (, 0) with rational numbers as the coefficients. Hence it remains to show
that g2(s, , ) is a monomial in s.

Second, we claim that g2(s, , 0) is free from the parameters and 0. To prove
this, suppose to the contrary that g2(s, , 9) contains a parameter, say for concrete-
ness, among and . By the assumption, the submatrix of T(s) that is obtained by
deleting that column which contains has generic rank k, and hence there exists a
nonzero kth order minor f(s, , ) of T(s) that does not contain i. This contradicts
the fact that f has a factor g2 which does contain . Thus we have shown that
g2 e [s].

Finally, we claim that g2(8) is a monomial with a rational number as the co-
efficient. To prove this, take a nonzero kth order minor f(s,,0) of T(s). Then
f(s, , O) g2(s)f (s, , 0) for some f (s, , 0) e[s, , 0]. We may regard this rela-
tion as an identity in (s)[, ]. In particular we regard f as a polynomial in (, )
with coefficients being rational functions in s. Using the defining expansion of a minor
and from the structure of T(s), we see that the coefficient of each term (= product
of the elements of and 0) appearing in f must be a monomial in s and cannot be
a general polynomial. Hence g2(8) cannot be a general polynomial but must be a
monomial in s. [:l
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Abstract. Solvability of the nonlinear EMS (estimate, maximize, smooth) equations in the
nonnegative quadrant is established by the use of the Brouwer fixed point theorem and a priori
estimates from Perron-Frobenius theory. Existence of solutions and of an a priori estimate are Iso
proven for a generalization of the EMS equations. The a priori estimates illustrate the quantification
shortcomings of the EMS algorithm and should be carefully considered both before applying the
algorithm and in the choice of smoothing.

Key words. EMS solutions, Perron-Frobenius theory, a priori estimates, fixed points, EMS
algorithm, EM algorithm, nonnegative linear systems, nonnegative matrices, maximum likelihood
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1. Introduction. The need to solve nonnegative linear systems (which are
sometimes large, sparse and inconsistent) of the form Pt0 n*, where P E ]RBD

and n* E ]D are both nonnegative, is a recurring one in physical applications [25].
Moreover, any algorithm that naturally guarantees a nonnegative (physical) solution
or approximate solution of such systems, without having to take special measures to
ensure nonnegativity, has an automatic appeal to the practitioner. The EM (estimate,
maximize) algorithm in the particular form

(1) (’+) On) n Pbd b 1, B; n O, 1, 2,b rb(P) E:l PfdO()
where rb(P) is the bth row sum of P, is one such algorithm which has been transported
to many applications [3], [7], [24], [25] from within its encompassing framework of
maximum likelihood estimation. Within this framework, EM gives a much wider
methodology [4], however, the form (1) arises from the application of this methodology
to the additive Poisson regression problem encountered in emission tomography [11],
[22], [26], [23]. In fact, the EM algorithm’s use in other disciplines [15], [19] predates
this application by some ten years and EM is an instance of the interior method for
nonlinear programming described even earlier in [5].

Although EM is easy to use and enjoys global convergence to a nonnegative maxi-
mum likelihood solution of the underlying linear system [26], [25], [3], this convergence
is slow, noisy and, in the underdetermined case (B > D), lacks stability [14]. Even
starting from a smooth initial iterate, EM typically produces a very "speckled" ap-
proximation when run too near to convergence [26]. As one means of overcoming these
drawbacks, the EMS(estimate, maximize, and smooth) algorithm was proposed [23],
[18] and entails the ad hoc introduction of a nonnegative smoothing step into (1);

S (n) D
D(nT1) 8 n Pd(2) b Z Sb r(P) (pto(n))d’

b 1,... ,B; n O, 1,2,...,
=1
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where S E ][BxB is the smoothing matrix, with the broad aim of producing smoothed
versions of maximum likelihood approximate solutions.

There is a real danger that, like its parent EM, EMS may be transported to other
applications, or even worse, be incorporated in a piece of diagnostic medical equipment,
simply because the resulting reconstructions appeal to the practitioner without regard
for a proper mathematical assessment. It is the job of the applied mathematician to
provide this assessment and so determine an algorithm’s usefulness for applications.
The work in [13], [14] is aimed precisely at providing a mathematical analysis by
which to evaluate the merits of using EMS to obtain approximate nonnegative linear
system solutions (EMS solutions) and has highlighted major difficulties in choosing
an appropriate class of S which provides stability and accuracy (good quantification).
In particular, this work has demonstrated important differences between the classes of
reducible and irreducible nonnegative smoothing with respect to uniqueness, stability,
and quantification (see 5).

Two major luestions surrounding EMS are those of, first, convergence, and sec-
ond, the nature of the convergence point. The convergence has been proven, for certain
types of S, in [10], hence this paper concentrates on the second question of charac-
terizing the approximating properties of EMS solutions. This is explored by using a
crude roughness measure to prove existence results for the EMS equations which are
the fixed point equations associated with (2). The method of proof is topological and
is based on Brouwer’s fixed point theorem [2]. This topological method was first used
to give an alternative proof of the main results in the Perron-Frobenius theory [17]
in the first 1935 edition of [1]. Restricting, as is done here, the class of smoothing
matrices in EMS to be nonnegative, it is perhaps not surprising that the Aleksandrov-
Hopf method can also be used with success in the nonlinear context of EMS. However,
the special structure of the nonlinearity in EMS allows the full exploitation of the
Aleksandrov-Hopf method. Furthermore, the same estimation techniques, which are
used in the Perron-Frobenius theory, can be applied a priori to EMS solutions, thus
producing uniform a priori estimates of the roughness neasure which are essential
to some of the proofs of existence by the Aleksandrov-Hopf method. These a priori
estimates illustrate precise mathematically proven results that demonstrate the EMS
algorithm’s limited ability to reconstruct nonuniform quantities of physical interest
and hence, give limitations on its usefulness in applications. Therefore, from an ap-
plied point of view, it is the a priori estimates, used only as a tool for some of the
existence proofs, that are important in characterizing the approximating properties of
EMS solutions. In addition, the precise form of the estimates permit an identification
of those properties of the smoothing matrix that are detrimental to quantification.
Moreover, these estimates assume even more relevance given that the EMS solutions,
whose existence is proven below, are usually unique (see 5). A subtheme of the pa-
per is that EMS provides a good example of an application where a linear theory
(Perron-Frobenius), when combined with an appropriate topological tool (Brouwer),
can provide a useful explicit analysis of a nonlinear problem.

Note. In this paper, a priori refers to the use of EMS solutions before they are
proven to exist and is not to be confused with the Bayesian notion o a prior distri-
bution which also arises in connection with the EM methodology [9].

Because of the fundamental relationship of the EMS algorithm to Perron-Froben-
ius theory, some basic notation and facts about nonnegative matrices are summarized
in 2.1. The EMS map and equations are defined in 2.2 where the fixed point for-
mulation is also given and the roughness measure is defined. Two existence results
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(Theorems 1 and 2) are given in 3. Both of these are proven by using the Aleksandrov-
Hopf method, with Theorem 2 making use of an a priori estimate. A generalization of
the EMS equations and map, to which the existence results of 3 are easily extended,
is considered in 4. The first existence result for the generalized EMS equations (The-
orem 3) is proved by the same methods of 3, but the second (Theorem 4) provides an
interesting interplay of linear and nonlinear theory and is analogous to the fixed point
argument first applied by Schauder [20], [21], [8] for quasilinear elliptic partial differ-
ential equations. Like the linear elliptic theory and associated Schauder estimates, it
is the linear Perron-Frobenius theory that both identifies a suitable nonlinear con-
tinuous mapping whose fixed points are generalized EMS solutions, and provides the
necessary uniform a priori estimate. A special case of Theorem 4 produces an a priori
estimate for EMS solutions. A brief summary of the implications of the a priori esti-
mates for the limitations of EMS, together with comments on uniqueness and stability,
constitutes 5 although [13], [14] should be consulted for a more complete story.

2. Perron-Frobenius theory and EMS.

2.1. Perron-Frobenius theory. A matrix A E ]Rmxn is called nonnegative
(resp. positive) if all its elements satisfy aij >_ 0 (resp. aij > 0). This is written as
A >_ 0 (resp. A > 0). A nonnegative matrix A is row stochastic if ri(A) 1, for all
i, where ri(A) denotes the ith row sum of A. A square matrix A ]Rnxn, n >_ 2, is
called irreducible if there is no permutation matrix H for which

IAH, (Al10 A12A22 ) where AI and A22 are square.

In applications, the distinction between irreducible and reducible S in (2) often cor-
responds to the difference between using spatial smoothing (i.e., Sb is nonzero for all
/ in some spatial neighbourhood of b) and nonspatial (i.e., diagonal) smoothing. The
basic results of Perron-Frobenius theory [17] assert that every (nonzero) nonnegative
square matrix A possesses a nonnegative eigenvector w corresponding to the eigen-
value which equals its (positive) spectral radius p(A); i.e., Am p(A)x. Moreover, if
A 0 is irreducible, then m > 0, p(A) is a simple eigenvalue of A, and up to scalr
multiples, is the only nonnegtive eigenvector of A. In this ce, p(A) is called the
maximal eigenvalue and the maximal eigenvector of A. It is a standard result [17,
p. 49] that for ny nonnegative square irreducible natrix A with positive trace, there
exists a positive integer such that A > 0. For such a matrix, let #(A) denote the
smallest such integer . As in the Perron-obenius theory, the following elementary
inequality [17, p. 26], a proof of which can be found, in [16, p. 79] or [13], proves to be
useful.

LEMMA 1. If ql, q2,... qn are positive real numbers, then

min P < p + P2 + Pn < max P
qi q +q2 +"" + qn

for any real numbers p,p2,... Pn. Moreover, equality holds on either side of this
inequality if and only if all the ratios pi/qi are equal.

2.2. The EMS map algorithm and equations. Let K {0 RB ]0 0}
denote the nonnegative cone in RB and let {0 K Bb=lOb 1} be a
hyperplane cross section through K. It is obvious that fl is convex and compact. For
0 e K{0}, the EMS map s is defined by

(3) Jzs(O) SF(O)O,
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where S e ]RBB is a nonnegative smoothing matrix and F(O) diag(F1 (O),...., FB(O))
with

D ,
ndPbd b---1,...,B, and bd--Pbd/rb(P).(4) Fb(O) (prO)d,

d--’-i

In (4), P 6 ]BxD and n* 6 ][:D are both nonnegative and it is assumed that n* is
nonzero. In the cases of interest below, either P >_ 0 has no row or column of zeros and
0 E Jut(K), the interior of K, or P > 0, and hence Pt0 in (4) has no zero components.
The EMS algorithm is defined by the nonlinear iteration

(5) 0(n+l) ’s(O(’0) SF(O(n))o(n), n O, 1, 2,...

which, for suitable 0() > 0, aims to discover a nonnegative fixed point of ’s, or
equivalently, a solution of the EMS equations

(6) 0---- SF(O)O.

Nonnegative solutions of (6) are called EMS solutions and are by definition the non-
negative fixed points of 9s. When applying the EMS algorithm through the iteration
(5) to the "solution" of a nonnegative linear system

(7) P0 n*,

the P and n* appearing in (4) are precisely those given in (7), while S must be
appropriately chosen. It is only for very special S that it is possible to recover a
solution of (7) from EMS [12], [14], 5.1, and so usually, the EMS solutions are not
solutions of (7). If the iteration (5) converges to an EMS solution 08, then this
convergence point represents a smoothed approximate solution of (7), which may exist
irrespective of whether or not (7) has any nonnegative solutions.

For the purposes of obtaining a priori estimates, it will be useful to define the
roughness measure

(8) -(0) max- for 0 E int(K),
b,b Ob

and the associated convex and compact set fM {0 e int(f) -(0) _< M}, for a fixed
M, 1 < M < x. It is convenient to extend - to +c for nonzero./9 K with zero
components. Clearly, - is a measure of nonuniformity and gives information on the
range of ratios of values present in such a way that near-zero components are highly
weighted. It is also convenient to define the normalized EMS map by

(9) :r(o) .rs(o)/:(o),

where f(O) ’b=I(SF(O)O)b.B If S cI, c > 0, then (5) reduces, for c 1, to
the EM iteration of Shepp-Vardi from emission tomography [11], [22], [26] (see (1)).
For other c, this iteration, also known as the Lucy-Richardson iteration [15], [19], has
found applications in diverse image recovery disciplines [24].

Remark 1. Observe that F(O) in (4) is homogeneous of degree -1; i.e., F(AO)
A-F(O) for all A 0, and, therefore, that ’s is homogeneous of degree zero.

Remark 2 If for some do n* 0 in (4) then F(O) and hence Jzs(O) are inde-do
pendent of the d’oth column of P. Hence, only the submatrix of P consisting of those
columns d for which n > 0 features in ’s. Consequently, only positive data problems
need be considered.
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Remark 3. If a nonnegative solution t?S of (6) exists, and the matrix SF() is
nonnegative and irreducible, then the Perron-Frobenius theory (2.1) automatically
implies that s > 0 and p(SF(S)) 1, since is the maximal eigenvector of the
irreducible matrix SF(ts) corresponding to the maximal eigenvalue 1 [12]. If S is
nonnegative and irreducible, the product SF(s) will inherit these same properties
whenever Fb(s) > 0 for all b.

3. Two existence results. The use of topological methods (based on Brouw-
er’s fixed point theorem [2]) for the proof of fundamental results in Perron-Frobenius
theory goes back to the first 1935 edition of [1, 12.3, p. 480]. For a survey and
generalizations of this method, see [6]. Although the theme here is that this fixed point
method easily adapts to the current application to produce nonnegative EMS solutions,
other approaches are possible [10], [12]. A direct application of the Aleksandrov-Hopf
method produces a quite general existence result for the EMS equations defined in
(6).

THEOREM 1. Assume that S > 0 has no column of zeros, P > 0 and n* > O.
Then :s has a fixed point Os E K.

Proof. Consider the normalized EMS map - as a map from to itself. Since
P > 0 and n* > 0, Fb(O) > O, b 1,..., B, for every E and so S and SF(O) have
the same pattern of nonzero entries. Because S, and therefore SF(O), has no column
of zeros, then for every e , (SF(O)t?)b > 0 for some b, and hence, f(O) > a > 0
for some constant a, thus making 9() continuous on g/. By the normalization in

(9), 9 l l, and since is compact and convex, " has a fixed point 0
by Brouwer’s fixed point theorem. Consequently, from (9), 0 9s(O0)/f(O0), or
equivalently, SF(Oo)Oo- foo where fo f(Oo) ’b(SF(Oo)t?O)b. Now employing
Remark 1 gives that SF(foOo)o o and multiplying both sides of this equation by
f0 shows that s f00 is a nonnegative fixed point of ’s. ]

Remark 4. Notice that if S diag(al,... aB), with ab > 0 for all b, in Theorem
1, then there always exists at least B EMS solutions of form (0,..., 0, 8b, 0,..., 0),
where 8b ab -d T*d, for each b. The special case S I, c > 0, which includes the
EM algorithm, falls into this category.

In the case that P and n* are derived from a linear system of the form (7),
Theorem 1 establishes the solvability of the EMS equations when the EMS algorithm
is applied to positive linear systems. Thus, for suitable S, the EMS equations can have
nonnegative solutions even if the linear system does not. Although the conditions on
S are quite weak, the requirement that P > 0 is rather strong. With the help of
a uniform a priori estimate, the same method of proof of Theorem 1 produces an
existence result where this situation is reversed; namely, P need only be nonnegative
provided S is positive.

THEOREM 2. Assume that S > O, P > 0 has no row or column of zeros and
n* > O. Then s has a fixed point s > O, which satisfies

(z0) <
b,b’, Sb’

All nonnegative fixed points ofs are positive and satisfy (10).
Proof. Consider again the normalized EMS map " on 12M, where M, 1 <_ M <

c, shall for the moment remain unspecified. For 0 g/M, the assumptions on P and
n* imply that Fb(O) > O, b 1,..., B and therefore SF(O) > 0. Hence, f(O) > 0 for
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all 0 E ’M. For E ’M, an estimate of /($’(0)) can be obtained from

<

where the last inequality comes from Lemma 1 and the fact that all terms of the sums
in the quotient are positive. Hence, -(’(0))

_
maxb,b,,(Sbz/Sb,), and therefore,

taking M to be the right-hand side of (10) shows that " FtM -. tU. Since "is clearly continuous and M is compact and convex, Brouwer’s fixed point theorem
again gives the existence of a fixed point 0 tu, which, in the same manner as in the
proof of Theorem 1, gives a fixed point 0s foOo of ’s, where f0 b(SF(Oo)Oo)b
Because 7(0s) 9/(0o), 0s satisfies the bound in (10). ]

In terms of the performance of the EMS algorithm, the estimate (10) shows that
the use of strong (spatial) positive smoothing restricts the obtainable nonuniformity
and so 08 cannot well approximate possibly interesting solutions of (7) whose /exceeds
the right-hand side of (10). Moreover, the bound in (10) is independent of P and n*
illustrating that the severity of this phenomenon is completely determined by S.

4. A generalized EMS map. By abstracting the essential properties of F(0),
which were used in the proof of the above results, it is possible to extend the existence
results to more general maps of the type (3) For instance, let G" K --, ][BxB be a
given nonnegative matrix-valued function and consider the generalized EMS map

(ii) Gs(O) SG(O)O for 0 e K\{0}.

Nonnegative fixed points of Gs will be called generalized EMS solutions. The Aleksan-
drov-Hopf method gives immediate generalizations of Theorems 1 and 2.

THEOREM 3. (a) Assume that S >_ 0 has no column of zeros and G" K\{0} --]B B satisfies+
(i) G(O) is continuous on
(ii) Gbb(O)
(iii) G(AO) A-iG(O) for all . 0 and e g\{0}.

Then 8 has a fixed point K.
(b) Assume that S > O, G is diagonal and satisfies

(i) G(O) is continuous on int(),
(ii) Gbb() > 0 on int(),
(iii) G(AO) )-lG(O) for all 0 and e int(K).

Then Gs has a fixed point Os > 0 which satisfies the estimate (10). All nonnegative
fixed points of are positive and satisfy (10).

Proof. The proof of these results proceeds in exactly the same manner as those
of Theorems 1 (for part (a)) and 2 (for part (b)) and rely on the fact that, under the
given conditions, SG() has at least as many positive entries as S in at least the same
index positions.

Once again, the fact that the solutions Os of Theorem 3(b) satisfy (10) indicates
that, for positive smoothing S, all generalized EMS solutions are restricted in their
approximating abilities by this estimate. This shows that generalized EMS algorithms
based on (11), with positive S, can be inappropriate if S is not suitably designed.

A more concrete generalization of the EMS map (3) is obtained by supposing that
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G is diagonal; i.e., G diag(G1 (0),..., GB(0)), where the Gb take the special form

D n*
(12) Gb(O)= Z dqbd b= l,... B,

d= (PO)d’

with n* > 0, Q >_ 0 having no row of zeros, and P >_ 0 having no column of zeros.
This G satisfies (i)-(iii) of Theorem 3(b), and if P > 0, it satisfies (i)-(iii) of Theorem
3(a), but for irreducible S in (11), much more is true than the conclusions of Theorem
3.

The relevance of irreducibility of S to the stability and quantification properties
of the EMS algorithm (5) has been examined in [13], [14]. The primary outcome
of this work is that although irreducibility has the disadvantage of reducing quan-
tification (as illustrated below), but the advantage of introducing some stability, the
reduction in quantification can be controlled by a careful choice of S [13]. Therefore,
irreducibility is a desirable property that ensures stability of the iteration (5) and con-
tributes to the well-posedness of the EMS equations (6) [14]. It is therefore important
to consider this class of smoothing in the context of existence results and estimates
of -/. The next theorem, has, like Theorem 2, the advantage of producing during the
course of its proof, a uniform estimate of /(8s) for all generalized EMS solutions 88.
The proof constructs what is essentially a uniform a priori bound for 0s and is moti-
vated by the use of the infinite dimensional version of Brouwer’s theorem; namely, the
Schauder fixed point theorem [20], as it was originally applied, in conjunction with
Schauder’s a priori estimates, to obtain existence of solutions for quasilinear elliptic
partial differential equations [21], [8, Chap. 11].

THEOREM 4. Assume that S

_
0 is irreducible with positive trace, Q > O, P

_
0

has no column of zeros, and n* > O. Then the generalized EMS map Gs of (11), with
G given by (12), has a fixed point > O, which satisfies

(13) (0S) < (maxS (max qb---d -1
\b,b’,B S ] \b,b’,d qb’d ,/

where # #(S). All nonnegative fixed points of are positive and satisfy (13).
Proof. Fix e M, for some as yet unspecified M, 1

_
M < oe, and consider

the nonnegative matrix SG(). Under the assumptions on P, Q and n*, Gb() > 0
for b 1,... B, and hence, SG() which has the same zero pattern as S, is also an
irreducible matrix with positive trace. Moreover, (SG())" > 0 where # #(S). From
the Perron-Frobenius theory, SG() has a unique positive eigenvector E int()
corresponding to the eigenvalue equal to its finite spectral radius p(); i.e., SG()
p(). Denote by :P the nonlinear map which defines this correspondence; i.e., 7()
0 is by definition the map -. . To estimate -(), the consequential relation
(SG())" p"()O leads to the quotient

in which all terms in the numerator and denominator sums are positive. The elemen-
tary estimates

(nRll Gb())"-1SG/() <_ (SG())’b (%a,x eb())/z-1SV()
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now follow easily [13] and, hence,

(14) (0) < (max C(g)

Applying Lemma 1 to the first factor in this estimate gives

ab() ’dD=l n*dqbd/(Pt)d < max
q,d

ab’() D /(pt)d d qb’d’Ed--1 rt*dqb’d

and hence maxb,b,(Gb/Gb,) <_ maXb,b,,d(qbd/qb,d). This estimate, together with Lemma
1 applied to the second factor in (14), gives the final uniform estimate

(5)
#-1

Setting M to be the right-hand side of (15) then shows that P ’M "-* ’]M. Since the
entries of :P() depend continuously on those of SG(), which in turn depend
continuously on , the mapping 7) is continuous. By Brouwer’s fixed point theorem,
7) has a fixed point 0o e ’M; that is, 00 satisfies SG(Oo)Oo p(Oo)Oo. Using again
Remark 1, applied to G, to write this as SG(poOo)poOo poOo, where P0 p(Oo),
then shows that 0s poOo is a positive fixed point of Gs which satisfies the estimate
(13) since V(0s) ’(0o).

Remark 5. Note that the main use of the assumption Q > 0 is to obtain a uniform
estimate of the ratio Cb/Cb, from Lemma 1. Uniform a priori estimates of the type
represented by (13) were first obtained in [13] during the course of a quantification
study for the EMS algorithm. Note that the estimate (13) is again independent of P
and n*.

Remark 6. The generalization of the EMS map (3) to that of (11) and (12) allows
the necessary conditions on P to be considerably relaxed, only requiring that P be
nonnegative (cf. Theorem 1). A generalized EMS algorithm based on (11) and (12)
may therefore provide an alternative for the solution of nonnegative linear systems of
the type (7).

The special case Q =/5 (the matrix with entries bd) in Theorem 4 gives an
existence result, together with an a priori estimate for all fixed points, for the original
EMS map 5s. However, the requirement for the positivity of Q is now transferred to
P.

COROLLARY 1. Assume that S > 0 is irreducible with positive trace, P > O, and
n* > O. Then J:8 has a fixed point > 0 which satisfies

(16) (os) < (maxS (max
where # #(S). All nonnegative fixed points of jz8 are positive and satisfy (16).

Remark 7. Corollary 1 provides a companion result to Theorem 1 with the a
priori estimate (16) now applying to the EMS solution. For Q P in Theorem 4, two
applications of Lemma 1 to the first factor on the right-hand side in (14) produces the
alternative (but weaker) estimate

(max



EMS SOLUTIONS AND A PRIORI ESTIMATES 951

for 0s in Corollary 1.
Note that, although the restrictive estimates (13) and (16) now hold for nonneg-

ative irreducible (spatial) smoothing, the bounds in them now consist of two factors
(cf. (10)). In the case of (13), the second factor is determined by Q, and #, which is a
measure of the sparsity of S. (Typically, for spatial local averaging smoothing, is of
the order of the dimension of S, B in this paper.) By using a suitable Q and S, the size
of this estimate can be controlled independently of the linear system matrix P. On
the other hand, for the usual EMS algorithm (5), Q P and so the ability to control
the right-hand side of the estimate in (16) is limited to only the choice of S. In either
case, S should be chosen so as to maximize the size of the upper bounds. The added
flexibility afforded in controlling the size of the right-hand side of (13) through Q, and
the fact that Theorem 4 applies to the practical case in which S >_ 0 is irreducible
and P _> 0 may both have many zeros, gives some support to using a generalized
EMS algorithm based on (11) and (12) for the solution of (7) instead of (5). Other
work [13] indicates that estimates similar to (16) apply for the EMS algorithm (5) for
certain specially structured problems in which the assumption P > 0 can be relaxed
toP>0.

5. Summary. Here we make a few remarks to place the above results in context
and summarize their relevance to an assessment of the EMS algorithm. As already
mentioned, the analysis of Theorem 4 provides a rare example of where a linear theory
(Perron-Frobenius) gives a useful result for a fully nonlinear problem (EMS), and not
the linearization of that problem, but the focus here is on the consequences of the a
priori estimates. In particular, the following remarks highlight a dichotomy between
irreducible (spatial) and reducible (nonspatial) smoothing where we use the loose
association already mentioned in 2.1.

5.1. Exact solutions. If_> 0 is a solution of (7) withn* > 0 and S_> 0
is chosen so that the eigencondition S holds, then, as is easily seen from (6),
Os is an EMS solution [12]. Since this would require that the solution be known
beforehand, it is not practical to choose S on this basis, however, it illustrates that
EMS can in theory obtain exact solutions of (7). In general though, EMS solutions
are not solutions of (7). The same eigencondition implies that exact solutions can be
recovered from the generalized EMS algorithm based on (11) and (12) provided Q is
row stochastic.

5.2. Quantification. From Remark 3, 08 > 0 whenever S is irreducible (spa-
tial). This implies that for irreducible smoothing, no EMS solution can well approxi-
mate a desired vector 0 with zero components--a type of vector that often occurs in
practice. In fact, the estimates (10), (13), and (16) demonstrate the inability of EMS
to .well approximate any desired vector 0 for which /(0) exceeds the right-hand sides
of these estimates. The assumptions for these estimates deserve comment. Namely,

(i) for (10)" S > 0 and P > 0;
(ii) for (13): S _> 0 is irreducible and has positive trace, P _> 0 and Q > 0;
(iii) for (16)" S >_ 0 is irreducible and has positive trace and P > 0.

For (i), if the (spatial) smoothing is positive, it alone determines the upper bound for
/(08) irrespective of the underlying system matrix P. In the case of the generalized
EMS algorithm in (ii), the more practical conditions on S and P appear, but then Q
features in the estimate in (13). Finally, for (iii), which applies to the EMS algorithm
(5), the estimate (16) holds for the restricted class of problems for which P > 0. Note
however, that the existence of the upper bound for /(08) derived for this restricted
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class of problems cannot be eliminated by considering the wider class of problems for
which P >_ 0 only. Indeed, estimates of the type (16) do hold for certain problems
within the latter class [14]. The usefulness of the explicit forms of the bounds in (10),
(13), and (16) derives from now being able, for a given P, to choose S (and Q) so that
they are maximized and thereby restrict (8) as little as possible.

5.3. Uniqtieness. When combined with the results of [10], the fact that 08 > 0
whenever S is irreducible, implies that an EMS solution is unique. Hence, in Theorems
2 and 4 and Corollary 1, the estimates (10), (13), and (16) respectively, characterize the
unique EMS solution. Furthermore, in the more general case where S >_ 0 is irreducible
(with positive trace) and P >_ 0, the estimates in [14] would also characterize the
unique EMS solution.

5.4. Stability. It was shown in [14] that irreducibility of S is sufficient for min-
imal stability (see [14] for a definition) and the elimination of extraneous structural
solutions which are a cause of nonuniqueness when using a reducible S. Hence, from
the point of view of (5) being a numerically stable iteration, irreducibility is a desirable
property.

5.5. Synopsis. For irreducible S, one gains stability, uniqueness, and improved
convergence but loses some quantifying ability (08 > 0). EMS solutions almost never
coincide with those of the underlying linear system. The considerations in 5.1 and
5.2 above may enable the design of a suitable irreducible S. The reader is urged to
consult [10] and [12]-[14] for a full evaluation of EMS, but the short message is to
exercise diligent caution in its use.

Acknowledgments. The author would like to express sincere thanks to Bob
Anderssen for reading a draft of the paper, to Shane Latham for a reminder about the
Schauder theory, and to Mario Bertero for a pointer to the papers [15] and [19]. The
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presentation.
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ACCURATE COMPUTATION OF THE FUNDAMENTAL MATRIX
OF A MARKOV CHAIN *

DANIEL P. HEYMAN

Abstract. Associated with every stochastic matrix is another matrix called the fundamental
matrix. The fundamental matrix can be used to obtain mean first-passage-times and other interesting
operating characteristics. The fundamental matrix is defined as a matrix inverse, and computing it
from the definition can be fraught with numerical errors. We establish a new representation of the
fundamental matrix where matrix inversion is replaced by multiplying and then adding a pair of
matrices. The representation requires the solution of a system of linear equations, and we show that
that can be done via back and forward substitution from numbers that have already been calculated
when the GTH algorithm is used to compute the steady-state probabilities. An algorithm based on

this representation is given. The time complexity of the faster implementation is 75% of the time

complexity of using Gaussian elimination.

Key words. Gaussian elimination, direct methods, first-passage-times

AMS subject classifications. 60J10, 65F15, 65G05

1. Introduction. The purpose of this paper is to present a numerically stable
method of computing the fundamental matrix of a Markov chain. The method is
based on a new representation of the fundamental matrix that does not involve an
explicit inverse, and on exploiting the UL factorization implicit in the GTH algorithm
for obtaining the stationary distribution.

Let P be a regular (i.e., irreducible and aperiodic with no transient states) finite
stochastic matrix, r’ be its unique stationary (row) vector, e be a column vector of
ones with the same length as 7r’, and W ed. The matrix

(1) Z=(I-P+W)-1

exists and is called the fundamental matrix of a Markov chain with transition matrix
P (see Kemeny and Snell (1960) [11]). An alternative to the fundamental matrix is
the group inverse described in Meyer (1975) [13]. Let A# denote the group inverse;
then Z A# + W. Our method also applies to computing A#.

The fundamental matrix has several important applications that are described by
Kemeny and Snell. One is to compute the matrix of mean first-passage-times, M say,
from the formula

(2) M (I- Z + EZdg)n,

where Zdg is the diagonal matrix with elements Zii and D is the diagonal matrix with
elements 1/Tci, and E is the matrix of all ones. Another use depends on the following
interpretation of the elements of Z. Let vij(n) be the expected number of visits to
state j, starting in state i, after n transitions; by convention, vii(0) 1 for all i.
Renewal theory establishes that vij(n)/n --. 7cj Theorem 4.3.4 in Kemeny and Snell
[11] states that

(3) lim v(n) nTc z 7c a.n--oo

* Received by the editors November 23, 1993; accepted for publication (in revised form) by C.
Meyer, July 5, 1994.
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This "bias term" is important in comparing Markov chains with rewards and in Markov
decision processes; see, e.g., Heyman and Sobel (1984) [6, 4-6].

Accurate computation of the inverse in (1) can be difficult. Heyman and Reeves
(1989) [8] give two examples where straightforward matrix inversion leads to very
inaccurate computation of the mean first-passage-times. They provide an algorithm
for obtaining the matrix of mean first-passage-times that avoids an explicit calculation
of Z, but their method has time complexity O(n4), where n is the order of P. When Z is
at hand, the time complexity to compute M from Z is O(n2), so accurate computation
of Z in time O(n3) is much faster than the method of Heyman and Reeves. The method
proposed in this paper takes O(n3) multiplications and the same number of additions
including the work to compute (which is O(n3/3). This is the same work that would
be done if (1) were inverted by Gaussian elimination after was computed. Meyer
shows that A# can be computed with O(n3) additions and multiplications without
first computing . However, applications (e.g., (2) and (3)) typically require .

The representation theorem is given in 2, followed by an explanation in 3 of how
the GTH algorithm provides information that permits the linear system that defines
a matrix used in the representation to be solved by back and forward substitution.
Computational issues are addressed in the penultimate section. Section 5 contains
three numerical examples. Throughout this paper, matrices are denoted by upper
case Roman letters and column vectors by lower case Roman letters. The elements
of matrices are denoted by the same letter in lower case with two subscripts. The
elements of vectors are denoted by the same letter with one subscript.

2. A representation of the fundamental matrix. The existence of the in-
verse in (1) is established in Theorem 4.3.1 in Kemeny and Snell (1960) [11]. More
general inverses are shown to exist in Kemeny (1981) [12] and Hunter (1982) [9] and
(1983) [10]. Our characterization of Z is given by the following theorem.

THEOREM 1. Let P be a regular finite stochastic matrix, 1 be its steady-state
distribution, and W e. Then

(4) Z A_ (I- P + W)-1 W + (I- W)X,

where X is any solution of

(5) (I- P)X I- W.

Proof. A constructive proof that (5) has solutions is given in 3. Observe that
W2 e(r’e)zr’= W and PW (Pe)r’- W. For any matrix X, we have

y A= (I- P + W)[W + (I- W)X]
W + (I- W- P + PW + W- W2)X
W + (I- P)X.

Thus (5) makes Y- I and we are done.
The second term on the right side of (4), (I- W)X, is the group inverse A#,

so it is slightly easier to compute than the fundamental matrix. It will be argued in

4 and demonstrated by an example in 5 that this theorem leads to more accurate
computations than Gaussian elimination. Although the proof of the theorem is easy,
its assertion and computational implications may not be obvious.

Remark 1. When P is regular, it is well known that the rank I- P is one less
than the dimension of P, so if (5) has solutions, one element in each column of X
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can be chosen arbitrarily. The vector x Xe consists of the row sums of X. Post
multiplying both sides of (5) by e yields (I-P)x 0. The only solutions of this system
of equations is for’x to have equal components (see, e.g., Lemma 7-3 in Heyman and
Sobel (1982) [5]). We can obtain a particular solution of (5) by setting some row of X
(the first is convenient) equal to zero. Postmultiplying the outsides of (4) by e makes
manifest the known result that Ze e.

3. Factorization of I-P. Here we show how the GTH algorithm for computing
r produces a UL factorization of I- P. This factorization can be used to solve (5).
The GTH algorithm was introduced in Grassmann, Taksar, and Heyman (1985) [2].
It is a variant of Gaussian elimination that accurately computes the stationary vector
of a regular stochastic matrix. Empirical evidence of its accuracy is given in Heyman
(1987) [7], and analytic evidence in O’Cinneide (1993) [14].

To make this paper self-contained, and to introduce some notation, we display
the GTH algorithm here. The states of the Markov chain are numbered from 1 to n,
and pij is the (i, j)th element of P.

ALGORITHM GTH
1. (State reduction) For k n, n- 1,..., 2, do the following:

k-1

(a) Let Sk Epkj.
j=0

(b) Let Pi -- pi/S, i < k.

(c) Let pj pj + PkPtj, i, j < k.

2. (Back substitution) Initialize TOT 1 and 1 1.
For j 2, 3,..., n do the following:

j-1

(a) Let plj + pkj.
k--2

(b) Let TOT TOT + .
3. (Normalization) Let uj /TOT, j 1, 2,..., n.

The calculations in step 1 overwrite the elements of P, so let P (Pi) be the
contents of the array when the algorithm terminates. Define fiy and giy by

fj-pj fori<j and gy=pi fori>j,

so

where

P--F+G+(I-S),

F--{ fjO ifi<J}ifi>_j G={ gjO ifi_>J}ifi<j and S=diag(Sj),

where S 0. It is shown in Grassmann (1993) [3] that (our fy is aj/Sy,j > 0 in
Grassmann’s notation)

(6) 1- P (F- I)(G- S).
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The first term on the right side of (6) is upper triangular and the second term is lower
triangular, so we have a UL factorization of I- P. The reason we obtain a UL factor-
ization instead of the usual LU factorization is because the GTH algorithm eliminates
the last equation first, while Gaussian elimination eliminates the first equation first.
It is straightforward to show that both U F- I and L G- S have all row sums
equal to zero, and that the top row of L is identically zero.

The UL factorization gives an interpretation of the back substitution step 2(a)
that will be needed subsequently. To solve (I-P) uUL 0, one first solves zL
0. Since the top row of L is zero, e (1, 0, 0,..., 0) is a solution; it corresponds to
setting rl 1 before normalization. Next one solves U z e which yields r
elv-. (Notice that det(U) 1 so U- exists.) Thus Uj is the unnormalized
solution of (I- P) 0 and

--1
Ulj

j 1 2, nn(7) =u,
is the normalized solution.

Remark 2. The UL factorization can be used to solve (5). The first step to solve
UY I- W and the second step is to solve LX Y. Since the top row of L is
identically zero, LX Y has no solution unless the top row of Y is identically zero.
Since

n

k--1

(7) shows that yj 0 for all j.

4. Computing the fundamental matrix. Here we present an algorithm for
computing the fundamental matrix based on Theorem 1. A faster implementation is
given in 4.2; this version makes it easy to present a constructive proof that (5) has
solutions. Partition L as follows:

L1

where w is a 1 n- 1 row vector of zeros and is the first column of L with the top
element discarded.

Remark 3. Grassmann, Taksar, and Heyman show that Sk 0 for k > 1, so L
is nonsingular.

Partition matrices X and Y conformally,

x X and Y
y Y1

and set (x, X) and ]Y (y, Y). The following algorithm, FUND, computes the
fundamental matrix from (4) and (5).

ALGORITHM FUND
0. Use the GTH algorithm to compute r, L, and U.
1. (Solve (5).)

(a) Solve UY I- W by back substitution.

(b) Solve LI 1 by forward substitution.

(c) Let Xlj O, j 1,2,...,n.
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2. (Compute Z from (4)). For j 1,2,..., n do the following:

n

p ,--

k=l

(b) zj 7 + xij -p, ’i 1,2,...,n.

Remarks 2 and 3 show that the equation in step l(b) has a unique solution, and
Remark 1 shows that step l(c) produces a solution of (5). The fact that the top row
of Y must equal zero provides an accuracy check for step l(a). The fact that the row
sums of Z must equal one can provide an accuracy check for step 2(b).

4.1. Operation counts. Now we compare operation counts for computing Z
via FUND and by using Gaussian elimination to compute a matrix inverse. Recall
that a flop is the work required to implement s s + aikbkj, and n is the dimension of
P, and the O function gives the exact order of growth in an asymptotic formula. The
work of Stewart (1973) [16] contains multiplication counts for the classical algorithms
of matrix algebra. Since a flop has one multiplication, our count for flops is identical
to Stewart’s count for multiplications. Matrix addition takes O(n2) flops, and that
will be dominated by other factors.

The GTH algorithm requires O(n3/3) flops to produce r’ and L and U are byprod-
ucts that come for free. Solving a triangular system requires O(n2/2) flops. Solving
(5) involves solving 2n- 1 triangular systems, so that solving (5) by back and forward
substitution would contribute O(n3) to computing Z. The matrix multiplication in

(4) requires O(n2) flops because W has rank one, so computing Z via FUND can
be done with O(4n3/3) flops, excluding the work to compute r. Matrix inversion via
Gaussian elimination requires O(n3) flops, so FUND takes the same work as does
the computation of r followed by matrix inversion of (1). Some speedup in FUND
is possible. Adjacent right sides of the upper triangular systems in (5) are adjacent
columns of I- W, so all but two adjacent elements are the same. The acceleration
given by Heyman and Reeves to exploit this can be used to reduce the computational
burden of step l(a) by a factor of one-fourth at the expense of a significant increase
in memory requirements.

We can save one-third of the work to do step 1 by exploiting the special structure
of I-W. (I am indebted to D. P. O’Leary for her assistance with this.) We can compute
U-1 in n3/6 flops by using back substitution repeatedly. U-1 inherits the property of
being upper triangular with minus ones on the diagonal, and has nonpositive entries
above the diagonal. Matrix multiplication yields (note that u- is the (i, j)th element
of U-1

n

[U-I(I W)]ij tij 7 E tikl’
k--i

which requires just n additions and one multiplication. Thus, the computing cost
to obtain U-I(I W) is inconsequential compared to the cost of obtaining U-1. Step
1 can be replaced by

l(a’). Compute U-1 and L-1 by back and forward substitution, respectively.
l(b’). Set Xlj O, j 1, 2,..., n.

l(c’). Solve LX U-(I- W) by forward substitution.
With this enhancement, FUND requires O(n3) flops, which is three-fourths of the
work required by computing 7r and then inverting (1) by Gaussian elimination.
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4.2. Accuracy assessment. The accuracy of the fundamental matrix com-
puted via FUND is primarily determined by the accuracy of the solutions of (5).
In the next section we present some empirical evidence that accurate solutions are
obtained; here we give some analytic support for the contention that FUND solves (5)
accurately. O’Cinneide (1993) [14] gives an analytic demonstration that the GTH al-
gorithm produces an accurate r’. Corollary 4 in O’Cinneide (1994) [15] shows that the
GTH algorithm produces an accurate UL decomposition of I- P. Since "the solutions

of triangular systems are usually computed to high accuracy" (Stewart (1973), [16, p.
150]) accurate solutions of (5) should be achieved. An error analysis that demonstrates
that (5) is solved accurately has yet to be constructed. When some elements of X are
large, there is the possibility of subtractive cancellation in step 2(b).

There is another way to solve (5) for which the error analysis can be completed;
this method is inspired by O’Cinneide (1994) [15]. Partition I- P and recall the
partition of X:

i_p_(1-pll r ) x_(O 0 )-c I- Q x X

where (p11, Cl) and (p, r) are the first column and first row of P, respectively. Then
(I- Q)- is the fundamental matrix of the absorbing Markov chain whose transition
matrix agrees with P except for the first row, where the absorbing chain has pl 1.
This inverse is known to exist (Kemeny and Snell (1960) [11, Chap. III]), and is of
interest in itself. Simple matrix algebra leads to

Xl (I )-1(I W1) and x -l(I Q)-e,

where W1 is the (n- 1) x (n- 1) southeast corner of W and (2,..., 71-n).
In terms of the unit roundoff error, u say, of the computer, Theorem 2 in O’Cin-

neide (1993) [14] shows that the relative error in the elements of ’ is at most 2n3/3u
when the GTH algorithm is used to compute them. Corollary 3 in O’Cinneide (1994)
[15] shows that the relative error in the elements of (i_ Q)-I is at most 2n3/3u when
the GTH algorithm is used to compute them. For u 10-14 (a conservative choice for
current computers), when n 1,000 these matrices have at least five accurate digits.
The matrices on the rightmost side of (4) are computed accurately, and the errors
from matrix addition and multiplication can be assessed in the usual way; see, e.g.,
Vandergraft (1983), [17, 2.4]. Since there are some subtractions, there is no bound on
the relative errors. The algorithm of computing (I Q)- considered by O’Conneide
requires O(n4) flops, so proceeding in this way will not yield an algorithm that is time-
competitive with FUND. When (I- ()-1 is computed from the UL factorization, X
is given by (lc’) above.

4.3. Individual elements. There are situations where only a few elements of
Z are needed. For example, if a particular mean first-passage-time is wanted, mij (1
j) say, (2) shows that only zjy and zij are needed. (Since m 1/ no further
calculations are needed to compute it.) It is wasteful to compute the entire matrix Z
when only a few elements are needed. Algorithm FUND is easily modified to compute
a given zj; we proceed as follows.

Let ey be the jth unit vector and x be the jth column of X. Writing (4) in scalar
form yields

(9) zij j + xj txj.
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The following algorithm computes any subset of the elements of the jth column of Z.

ALGORITHM FUNDIJ
0. Use the GTH algorithm to compute rP, L, and U.
1. Solve Uy ej -ej by back substitution.
2. Solve Lxj y by forward substitution.
3. Compute zij from (9).

n

p
k=l

(b) For any of interest, zij j + xij p.

The work in steps 1 and 2 each take O(n2/2) flops, and the work in step 3 takes
O(n2) flops, so FUNDIJ requires negligible work (beyond computing r) to obtain any
number of {zij } (with j fixed).

5. Numerical examples. We present three numerical examples. The first can
be done by hand and illustrates the algorithm FUND. The second requires a computer
and demonstrates that FUND can have more accuracy than matrix inversion. The
third shows that using (2) to compute M can produce very inaccurate results even
when Z is computed accurately.

Example 1. This is the Land of Oz example from Kemeny and Snell. The transi-
tion matrix is

_ _
1

P= 0

4 4 2

The GTH algorithm yields S diag (0, 3/4, 1/2), ’ (2/5, 1/5, 2/5), and

/ 11/4 4

4 4 2

The UL factorization is

-1 - - 3 3 0UL 0 -1 1 - a
0 0 -1

4 2

Solving UY I- W by back substitution and then solving LX Y by forward
substitution, setting the top row of X equal to zero, yields

Y= 4 -3 -1 and X= -16 12 4
2 1 -3 -20 0 20

Evaluating Z via (4) yields

86 3 -14)Z= -,, 6 63 6
-14 3 86
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which is the known solution.
Example 2. This is test problem 3 from Harrod and Plemmons (1984) [4]. In

Heyman and Reeves it is shown that this example causes numerical difficulties when
(I- P + W)-1 is computed via ordinary Gaussian elimination. The transition matrix
is

0.9999990 0.0000001 0.0000002 0.0000003 0.0000004
0.4 0.3 0 0 O.3

0.0000005 0 0.9999990 0 0.0000005
0.0000005 0 0 0.9999990 0.0000005
0.0000002 0.0000003 0.0000001 0.0000002 0.9999990

The fundamental matrix was computed in double precision arithmetic via FUND and
by matrix inversion using LINPACK. See, e.g., Coleman and Van Loan (1988) [1] for a
description of LINPACK. Both methods agreed to ten decimal digits (which is all that
were checked), so the following can be taken as the seven-decimal digit exact answer

499291.4 -0.04741659 -26036.96 -196184.9 -277068.5
173204.0 1.474332 -58645.80 -163576 49017.89

-196360.7 -0.1343731 837731.2 -393286.3 -248083.0
-196360.7 -0.1343731 -162268.8 606713.7 248083.0
-261578.2 0.1699747 -102123.9 -120098.0 483801.0

The LINPACK subroutine DGECO gives 1.5 106 as the estimate of the condition
number of the matrix being inverted. When is computed in double precision and
the inverse is computed with single precision LINPACK subroutines, we obtain

Zinv

493850.9 -0.04736168 -23740.84 -194982.2 -275126.9
171866.7 1.473395 -57133.48 -162034.5 47300.76

-195574.3 -0.1320674 825822.5 -387281.9 -242965.2
-195574.3 -0.1320674 -161072.5 599613.1 242965.2
-257444.5 0.1677386 -101656.7 -118103.4 477205.4

We see that Zinv agrees with Z usually for two digits; sometimes three and sometimes
one. This is consistent with a condition number of order 106 and eight-decimal digit
accuracy in single precision.

When and the fundamental matrix calculated via FUND are computed in single
precision, we obtain

Znew

499291.4 -0.04741660 -26036.96 -196184.9 -277068.5
173204.0 1.474332 -58645.80 -163576 49017.91

-196360.7 -0.1343731 837731.1 -393286.3 -248083.0
-196360.7 -0.1343731 -162268.8 606713.7 248083.0
-261578.2 0.1699747 -102123.9 -120098.0 483801.0

All but three elements of Znew are exact; one element is off by 2 and the other two
are off by 1 in the seventh digit (counting from left to right).

Consider now computing the matrix of mean first-passage-times, M. Once Z is
obtained, calculating M requires only matrix addition and subtraction, and multipli-
cation involving a diagonal matrix. These operations can be done in O(n2) flops each,
so they are negligible compared to computing Z. Heyman and Reeves show that when
single precision computation is used, for this example (2) achieves only three-digit ac-
curacy when Z is computed by Gaussian elimination. Slightly more than seven-digit
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accuracy is achieved when Z is computed via FUND, which is what is achieved by the
algorithm given by Heyman and Reeves.

Example 3. The accuracy of M achieved in Example 2 does not always occur.
The following transition matrix is test problem 4 from Harrod and Plemmons.

(.1- .3 .1 .2 .3 0 0 0 O
.2 .1 .1 .2 .4 0 0 0 0 0
.1 .2 .2 .4 .1 0 0 0 0 0
.4 .2 .1 .2 .1 0 0 0 0 0
.6 .3 0 0 .1 0 0 0 0 0
e 0 0 0 0 .1- .2 .2 .4 .1
0 0 0 0 0 .2 .2 .1 .3 .2
0 0 0 0 0 .1 .5 0 .2 .2
0 0 0 0 0 .5 .2 .1 0 .2
0 0 0 0 0 .1 .2 .2 .3 .2

When s 10-7, FUND produces at least seven accurate digits for each element of Z.
However, substituting Z into (2) yields very poor accuracy for those elements of M in
the second and fourth quadrants, and very good accuracy for the others. For example,
there are no accurate digits in m10,9 and eight accurate digits in ml0,. The inaccuracy
is caused by subtractive cancellation. This can be predicted from the structure of the
transition matrix.

This P is nearly completely decomposable (NCD), which means that if P were
written in block partition form, the blocks on the diagonal would have row sums
that are close to one, and the other blocks would have elements that are close to zero.
Here, states { 1, 2, 3, 4, 5} form a cluster, and states {6, 7, 8, 9, 10} form another cluster.
Transitions within a cluster occur frequently, and transitions between clusters occur
with probability less than . For i and j in the same cluster, transitions from i to j
occur at a rate that is commensurate with one; when i and j are in .different clusters,
transitions from to j occur at a rate that is commensurate with . Consequently,
when i and j are in the same cluster, the mean number of transitions from i to j that
occur before the cluster is left is commensurate with 1/.

Recall that vii(n) is the expected number of visits to state j after n transition,
starting in state i. When and j are in the same cluster, vii(n) will be much larger
than .if the initial state were chosen by chance according to ; the argument above
shows that the increase is commensurate with 1/. Thus (3) shows that zij is in the
vicinity of 1/s. The scalar form of (2) is

(10) mij
5j zj + zjj

7f’i

where 5ij is one when j and is zero otherwise. The second and fourth quadrants of
M correspond to states in the same cluster, so (10) shows that these {mj } are subject
to catastrophic subtractive cancellation. When i and j are in different clusters, the
bias in vii(n) is large in magnitude and negative in sign, so (10) shows that the leading
digits will be computed accurately.

The transition matrix in Example 2 is also NCD, but the clusters have only
one state in them, so the subtractive cancellation in (10) is precisely right. This
analysis suggests that (10) will produce accurate results when the matrix is not NCD
because in those Markov chains, the bias terms, and hence zij and zjj, will not be
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extraordinarily large. Finally, we note that if only M is desired, some computational
benefit is achieved by substituting (9) into (10), producing

5ij Xij -- Xjj
mij

7rj

which is (2) with X replacing Z.

Acknowledgments. I thank C. A. O’Cinneide for sending me advance copies of
his papers, and the referees for their helpful comments. D. P. O’Leary made particu-
larly useful comments on early drafts.
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PATTERN PROPERTIES AND SPECTRAL INEQUALITIES
IN MAX ALGEBRA *

R. B. BAPAT, DAVID P. STANFORD:, AND P. VAN DEN DRIESSCHE

Abstract. The max algebra consists of the set of real numbers, along with negative infinity,
equipped with two binary operations, maximization and addition. This algebra is useful in describing
certain conventionally nonlinear systems in a linear fashion. Properties of eigenvalues and eigenvectors
over the max algebra that depend solely on the pattern of finite and infinite entries in the matrix
are studied. Inequalities for the maximal eigenvalue of a matrix over the max algebra, motivated by
those for the Perron root of a nonnegative matrix, are proved.

Key words, max algebra, eigenvalue, eigenvector, circuit mean, Frobenius normal form
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1. Introduction. The algebraic system called "max algebra" has been used
to describe, in a linear fashion, phenomena that are nonlinear in the conventional
algebra. Examples include transportation networks, machine scheduling, and parallel
computation. A system in which one component must wait for results from other
components (a "discrete event dynamic system") can be modeled in max algebra.
See [13, Chap. 1] for a detailed description of such systems. As described there, the
question of regularizing a system, that is, of initiating a system in such a way that all
components begin cycles at the same time, is answered by solving the eigenproblem
in max algebra.

An early exposition of max algebra is the monograph of Cuninghame-Green [13].
Related works are Carr( [7, Chap.a] and Gondran and Minoux [19], that discuss
more general "path algebras" and describe Gaussian and related solutions of linear
systems over path algebras. Currently, work on max algebra systems is progressing in
many directions; see [1], [6], [11], [18], [24]. Over the max algebra, eigenproblems for
irreducible matrices were studied in [13] and for reducible matrices in [8] and [18].

The max algebra consists of the set 15= R U {-cx}, where R is the set of real
numbers, equipped with two binary operations, addition and multiplication, denoted
by ( and (R), respectively. The operations are defined as follows:

a @ b max(a, b), the maximum of a and b

and
a(R)b=a+b.

* Received by the editors July 9, 1993; accepted (in revised form) by R. Cottle July 5, 1994.
The research of these authors was undertaken at the University of Victoria.

Indian Statistical Institute, New Delhi, 110016, India.

:Department of Mathematics, College of William and Mary, Williamsburg, Virginia, 23185.
This research was partially supported by a College of William and Mary Faculty Research Grant.
This author presented some of the results of this article at the Second Symposium on Matrix Analysis
and Applications held on 22--23 October 1993 at Western Michigan University.

Department of Mathematics and Statistics, University of Victoria, Victoria, B.C., V8W 3P4,
Canada. This research was partially supported by Natural Sciences and Engineering Research Council
of Canada grant A-8965 and the University of Victoria Committee on Faculty Research and Travel
(pvdd@smart.math. uvic. ca>.

964



SPECTRAL PROPERTIES IN MAX ALGEBRA 965

Clearly, -c and 0 serve as identity elements for the operations (R) and (R), respec-
tively. We denote x @ (R) Xn by

or by - xi when the range of summation of the index i is clear from the context.
We deal with vectors and matrices over the max algebra. Basic operations on

matrices are defined in the natural way. Thus, if A [aij], B [bij] are m n
matrices over M, then A @ B is the m n matrix with (i, j)-entry aij @ bij. If k E ,
then k (R) A is the matrix [k (R) aj] [k + aij]. If A is m n and B is n p, then A (R) B
is the m p matrix with (i,j)-entry.

n

k--1

It is easily verified that matrix multiplication is associative and that it distributes over
matrix addition.

The transpose of the matrix A is denoted by AT. The n n matrix with each
diagonal entry zero and each off-diagonal entry -cx) is the identity matrix over the
max algebra. If we permute the rows (and/or columns) of the identity matrix, then
we obtain a permutation matrix over the max algebra. If A, B are m n matrices over
M, then A _> B means that aii _> biy for all i, j. Similarly, A > B means that aii > bij
for all i, j. A column or row vector x over M is said to be finite if each component xi
of the vector is finite. A vector is called partly infinite if it has a finite component as
well as an infinite component. A matrix or vector with each component -oc is called
infinite and we denote it by -cx as well; this should not cause any confusion.

The exponential function provides a natural one-to-one map from M onto the
nonnegative reals. Under this correspondence, matrices over max algebra correspond
to nonnegative matrices over the reals, and much of our work is motivated by the
theory of nonnegative matrices. Techniques of proof for max algebra sometimes reflect
those for conventional algebra. In particular, the directed graph of a matrix, which
provides much information in the study of nonnegative matrices, plays an even more
central role in matrices over max algebra; see the definition of (A) below.

Let A be an n n matrix over . We associate a directed graph (digraph)G(A)
with A as follows. The vertices of G(A) are 1, 2,..., n. There is an edge from vertex i
to vertex j, denoted by (i, j), if ai is finite and in that case we say that aij is the weight
of the edge (i, j). We use standard terminology from the theory of digraphs. Thus a
path of length in a digraph is a sequence of edges (il, i2), (i2, i3),..., (it, it+), also
denoted by il --+ i2 --* - it -- it+; here the vertices are not necessarily distinct.
The weight of a path is the sum of the weights of the edges in the path. The average
weight of the path il - i2 -, --. it --* it+l is defined as

aili: - ai2i3 - aizQ+l

A circuit - of length is a closed path i i2 ---+ it i, where il,..., it
are distinct. A circuit of length one is a loop. We denote the set of circuits in G(A),
or in A, by (A). If T E (A) then the average weight of T is called the mean of the
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circuit -, denoted by MA(T). We define the maximal circuit mean of A, denoted by
#(A), as

#(d)= max MA(7")
(A)

if C(A) # , and we set #(A) - otherwise. A circuit T e C(A) is called a critical
circuit if MA(’r) #(A). The set of all critical circuits in A is denoted by (A).
The critical graph of A is a digraph with vertices 1, 2,..., n, defined as follows. For
i,j E {1, 2,..., n}, edge (i, j) is in the critical graph of A if and only if it belongs to
a critical circuit in (A).

A digraph is strongly connected if there exists a path from any vertex to any
other vertex. We say that the matrix A is irreducible if G(A) is strongly connected.
If A is not irreducible then we say that it is reducible. If A is an n n matrix over M
then clearly A is irreducible if and only if [eaiJ] is a nonnegative, irreducible matrix
in the usual sense (see, e.g., [4]). We also remark that A is reducible if and only if
either A is 1 1 containing -x) or there exists a permutation matrix Q1 over the max
algebra such that

Q1 (R) A(R) QT A21 A22
where A and A22 are square matrices of order at least one. For A reducible and not
1 1 containing -c, there exist q >_ 2 and a permutation matrix Q over the max
algebra such that

(1.1) Q(R)A(R)QT

All --(:x

A2 A2 c

Aql Aq2 A q

where each Aii is either square and irreducible or is 1 1 containing -c. This is the
Frobenius normal form of A.

In 2 we give the basic definitions and state results for eigenvalues and eigenvec-
tots of general square matrices over the max algebra. Proofs of these results can be
found in the literature. In applications to discrete event dynamic systems such as ma-
chine scheduling or parallel computing, it may be useful to obtain information about
eigenvalues and eigenvectors given only partial information concerning the entries of
the matrix. In particular, it may be known which components of the system must
wait for input from which other components, while the waiting times are unknown. It
will then be known where the finite entries of the matrix of interest occur, but their
magnitudes will be unknown; that is, only the "pattern" of the matrix will be speci-
fied. In 3 we obtain results concerning eigenvalues and eigenvectors that depend only
on the pattern of the given matrix. In 4 we present new inequalities concerning the
maximal circuit mean of a matrix over the max algebra. Most of these are motivated
by known corresponding inequalities for the spectral radius of a nonnegative matrix.

2. Eigenvalues and eigenvectors. Let A be an n n matrix over , then
E ? is an eigenvalue of A if there exists a vector x : -c such that

A(R)x=A(R)x.

In this case, x is an eigenvector of A corresponding to the eigenvalue A. Furthermore,
we call (A,x) an eigenpair of A. Note that (A,x) is an eigenpair of A if and only if
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x -oc and maxj(aij -F xj) i -F xi, i 1, 2,..., n. For example, if

2 4

then

A@ =4@ 0

thus 4 is an eigenvalue of A. It can be checked that 4 is the only eigenvalue of A. Note
that AT has both 3 and 4 as eigenvalues.

If Q is a permutation matrix over the max algebra and A E M then (A, x) is an
eigenpair of A if and only if (A, Q @ x) is an eigenpair of Q @ A @ QT. In particular,
A and Q @ A @ QT have the same eigenvalues. In view of these observations we often
find it convenient to deal with the Frobenius normal form of A in (1.1) instead of the
matrix A itself. Note that G(A) and G(Q @ A @ QT) are identical except for labeling
of the vertices.

We need the following basic spectral results, which can be found in [1], [8], [10],
[12]-[14], [18]. Detailed proofs are also given in [3]. The first result deals with the
occurrence of-oc as an eigenvalue, the other results deal with tt(A) as an eigenvalue,
with A irreducible in the third result.

THEOREM 2.1. Let A be an n x n matrix over M. Then,
(i) -oc is an eigenvalue of A if and only if A has an infinite column, and
(ii) -oc is the only eigenvalue of A if and only if O(A) dR.
THEOREM 2.2. Let A be an n n matrix over Ii$. Then #(A) is an eigenvalue of

A. Moreover, if (,k, x) is an eigenpair with x finite, then #(A).
THEOREM 2.3. Let A be an n n irreducible matrix over Ii$. Then,
(i) #(A) is the only eigenvalue of A, and every eigenvector of A is finite,
(ii) A has a unique eigenvector (up to scalar multiple over the max algebra) if and

only if the critical graph of A is strongly connected.
Now suppose that A is reducible and is in Frobenius normal form (1.1). For

k 1, 2,..., q, let Vk denote the set of indices of rows in A that intersect the diagonal
block Akk. The sets Vk are called the classes of A. If and are classes, we say
has access to F provided either j or there is a u E V and a v P such that
there is a path from u to v in G(A). Since each Ajj is either irreducible or [-oc], the
relation "has access to" is reflexive and transitive. If lt(Ajj) > tt(A) then we say
that class V dominates class Y. These definitions are used in the following result to
specify the eigenvalues of A, for proofs see [3], [8, Thm. 1], [18, Chap. 4, Coro. 2.2.5].

THEOREM 2.4. Let A be an n n matrix over If/l, which is in Frobenius normal
form (1.1), andlet ) !I$. Then ) is an eigenvalue of A if and only if there is an i
such that #(Aii) ) and no class which dominates has access to

3. Pattern properties in max algebra. In this section we investigate spectral
properties that depend only on the placement of finite and infinite entries in the matrix,
and not on the magnitudes of the finite entries. Such properties are called "pattern
properties" of the matrix.

A (square) pattern is an n x n array P [pj] of symbols chosen from {,,
If A is an n n matrix over Ill, we write A P provided

aij R if pij ,, aj -c if pij

Following [21], a pattern P is said to allow a particular property if there is a matrix
A E P which has the property. P is said to require the property if every matrix A P
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has the property. We determine which patterns allow, and which patterns require,
various spectral properties in the max algebra.

The digraph G(P) of an n n pattern P has vertices {1, 2,..., n}, and an edge
from i to j if and only if pij .. We denote the set of circuits in G(P) by (P). The
concept of reducibility of a square matrix, introduced in 2, extends in an obvious
way to patterns. Pattern P is irreducible if and only if G(P) is strongly connected. It
follows that P is reducible if and only if P is 1 1 containing -cx, or if by an identical
permutation of rows and columns P can be brought to the form

where Pll and P22 are square with order at least one. We will also deal with
the Frobenius normal form of the pattern, defined analogously to that of a matrix;
see (1.1).

We first discuss properties of the eigenvalues of a matrix determined by its pattern.
LEMMA 3.1. Let P be a pattern. The following are equivalent.

(i) P requires a finite eigenvalue.
(ii) P allows a finite eigenvalue.
(iii) C(P) is not empty.
Proof. The proof follows easily from Theorems 2.1 and 2.2. Vl

LEMMA 3.2. Let P be a pattern. The following are equivalent.
(i) P requires-cx) as an eigenvalue.
(ii) P allows-c as an eigenvalue.
(iii) P has an infinite column.
Proof. The proof follows immediately from Theorem 2.1. fl
The following corollary is an immediate consequence of Lemmas 3.1 and 3.2.
COROLLARY 3.3. Let P be a pattern.
(i) P requires that-c be the only eigenvalue if and only if P allows the same

property, and this occurs if and only if {(P) is empty.
(ii) P requires that all eigenvalues be finite if and only if P allows the same

property, and this occurs if and only if P has no infinite column.
THEOREM 3.4. Let P be a pattern.
(i) P requires a unique and finite eigeuvalue if and only if P has no infinite

column and the Frobenius normal form ofP has exactly one irreducible diagonal block.
(ii) P allows a unique and finite eigenvalue if and only ifP has no infinite column.
Proof. (i). We may assume without loss of generality that P is in Frobenius

normal form. Suppose P requires a unique and finite eigenvalue. By Lemma 3.2, P
has no infinite column. If P had a 1 1 diagonal block [-oc] in the lower right corner,
P would have an infinite column. Hence the lower right diagonal block is irreducible.
If P had another irreducible diagonal block, a matrix A E P could be constructed with
the lower right diagonal block having eigenvalue 0 and another irreducible diagonal
block having a positive eigenvalue. It follows from Theorem 2.4 that A would have
two eigenvalues, one 0 and one positive, violating the fact that P requires a unique
eigenvalue.

Now suppose that P has no infinite column and exactly one irreducible block,
which then must be Pqq, the lower right block. Let A E P. By Theorem 2.1, -oc is
not an eigenvalue of A. By Theorem 2.2, A has an eigenvalue which, by Theorem 2.4,
is #(Aii) for some diagonal block Aii in A. Since Aqq is the only irreducible diagonal
block in A, #(Aqq) > --(X) is the only eigenvalue of A.
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(ii) If P allows a unique and finite eigenvalue, then P does not require -oc as an
eigenvalue, so by Lemma 3.2 P has no infinite column. Conversely, if P has no infinite
column, then the matrix A E P which has 0 in all the positions has the unique and
finite eigenvalue 0.

We now turn to pattern properties concerning the eigenvectors of a matrix. We
obtain necessary and sufficient conditions on a pattern that it allow (or require) all (or
some) eigenvectors to be finite (or partly infinite). Some of the results parallel those
concerning partly zero eigenvectors in the conventional algebra presented in [23]. We
remark that in the context of a discrete event dynamical system, the existence of a
finite eigenvector implies that the system can be regularized. Note that the eigenpairs
of the matrix (pattern) with each entry -oc are of the form (-c, x) with x -c.
We exclude that pattern from consideration in the following.

THEOREM 3.5. Let P be a pattern with at least one ,. Then P requires that all
eigenvectors be partly infinite if and only if P has an infinite row.

Proof. First suppose P has no infinite row. Let A E P be obtained by replacing
all ,’s with O’s. Then the vector of all O’s is a finite eigenvector of A corresponding to
the eigenvalue 0. Hence P does not require that all eigenvectors be partly infinite.

Now suppose that row i of P is infinite, but that A P has a finite eigenvector
x corresponding to eigenvalue A. Then entry of A (R) x is -c, so (R) xi is -cx. Since
xi is finite, A -c. Now if ajk is finite, then entry j of A (R) x is finite, whereas entry
j of A (R) x -c. Hence A -cx, so P -c, a contradiction. Therefore if P has
an infinite row, then P requires that all eigenvectors be partly infinite.

COROLLARY 3.6. Let P be a pattern with at least one ,. Then P allows a finite
eigenvector if and only if P has no infinite row.

THEOREM 3.7. Let P be a pattern with at least one ,. The following are equiva-
lent.

(i) P is irreducible.
(ii) P requires that all eigenvectors be finite.

(iii) P allows all eigenvectors to be finite.
Proof. (i) = (ii). If A P then A is irreducible, so by Theorem 2.3, all eigenvec-

tors of A are finite. Therefore (i) =v (ii).
(ii) = (iii) is trivial.
(iii) (i). Suppose that P is reducible, so that without loss of generality we

PII --(:K) Let A [;i A22 P be partitioned as P is. Letmay assume P [P.l P22

x(2) be an eigenvector of A22 corresponding to #(A22), and let x [x-(2] Then
A (R) x #(A22)(R) x, so x is an eigenvector of A which is partly infinite. Hence P does
not allow all eigenvectors to be finite. Therefore (iii) (i).

COROLLARY 3.8. Let P be a pattern with at least one ,. The following are equiv-
alent.

(i) P is reducible.
(ii) P allows a partly infinite eigenvector.
(iii) P requires a partly infinite eigenvector.

Proof. The equivalence of (i) through (iii) in Theorem 3.7 implies the corol-
lary. [:]

THEOREM 3.9. Let P be a pattern with at least one ,. Then P requires a finite
eigenvector if and only if P has no infinite row and the Frobenius normal form of P
has exactly one irreducible diagonal block.

Proof. We may assume without loss of generality that P is in Frobenius normal
form. Suppose P requires a finite eigenvector. By Theorem 3.5, P has no infinite
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row. Therefore the upper left diagonal block Pll in P is irreducible. Suppose there
is a k > 1 such that Pkk is irreducible. We will construct a matrix A E P with all
eigenvectors partly infinite, contradicting the hypothesis on P. To do this, let

UI [P P pqT1]T and U2=

q2 q3

and Pkk is one of the diagonal blocks in U2. Since Pk is

irreducible, Pkk has a circuit. Select a circuit in Pkk and set all its entries equal to
1. Set the other entries in U2 to 0 to create a matrix A2 E U2. Set all entries in
and UI to0to complete A- ]11 -A2 e P with tt(Al) 0 and #(A) #(A2) 1.

Suppose A has a finite eigenvector x [(.)] partitioned to conform to the partition
of A above. Since x is finite, the corresponding eigenvalue must be #(A) by Theorem
2.2. But then A (R) x(1) 1 (R) x(1), which is impossible because the only eigenvalue
of AI is 0. Hence A cannot have a finite eigenvector and the desired contradiction is
reached.

Now suppose P has no infinite row and has exactly one irreducible diagonal block,
which must then be Pll. If P P, that is if P is irreducible, then P requires all
eigenvectors finite and we are through. Otherwise, let q >_ 2 be the number of diagonal
blocks in P. Let A P be partitioned as P is. We construct a finite eigenvector of
A inductively as follows. Since AI is irreducible, All has a finite eigenvector x(1)
corresponding to its eigenvalue #(All). Let x2 A21 (x(1)-(All), and for 2 _< < q,
let Xi-bl [Ai+l,lAi+l,2...Ai+l,i] (R) [Xl)X2 ...Xi]T #(All), a finite member of
It then follows that x [x)x2... xq]T is a finite eigenvector of A corresponding to
#(All), so P requires a finite eigenvector.

COROLLARY 3.10. Let P be a pattern with at least one ,. Then P allows all
eigenvectors to be partly infinite if and only if P has an infinite row or the Frobenius
normal form of P has two irreducible diagonal blocks.

Proof. Upon observing that a pattern with no infinite row must have a Frobe-
nius normal form with the upper left diagonal block irreducible, the corollary follows
immediately from Theorem 3.9.

THEOREM 3.11. Let P be a pattern. Then P allows a unique and finite eigen-
vector if and only if P is irreducible.

Proof. Assume P is irreducible. Let aij 0 whenever pij *. Then A has a
unique and finite eigenvector by Theorem 2.3. Assume P is reducible, then P requires
a partly infinite eigenvector by Corollary 3.8. Thus P does not allow a unique and
finite eigenvector.

THEOREM 3.12. Let P be a pattern. Then P requires a unique and finite eigen-
vector if and only if P is irreducible and the directed graph G G(P) does not contain
two vertex-disjoint circuits.

Proof. Assume P is irreducible and G does not have two vertex-disjoint circuits.
Let A P. Then by Theorem 2.3, A has a unique eigenvalue which is #(A), each
eigenvector of A is finite, and A has a unique eigenvector if and only if the critical
graph of A is strongly connected. Now C is a subgraph of G and is a union of
circuits. Since G does not have two vertex-disjoint circuits, does not have two
vertex-disjoint circuits. If and j are vertices in , then lies on a circuit G and
j lies on a circuit Cj. If j there are paths from to j and from j to i in
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from j to in G. Hence is strongly connected and the eigenvector of A is unique
up to scalar multiples in the max algebra. Therefore P requires a unique and finite
eigenvector.

Now assume P requires a unique and finite eigenvector. If P were reducible, then
by Corollary 3.8 P would allow a partly infinite eigenvector. Hence P is irreducible.
Suppose G has two vertex-disjoint circuits. Then we may select two vertex disjoint
circuits in G and construct a matrix A P which has i in the positions belonging to
either of the two circuits and 0 and -x elsewhere. Then the circuit means are 1 on
each of the two circuits and less than 1 on each other circuit, so the critical graph of
A is the union of the two disjoint circuits and is not strongly connected. Hence the
eigenvector of A is not unique, contradicting the assumption on P. Hence G does not
have two vertex-disjoint circuits.

4. Inequalities. Many of the results in this section are motivated by known
inequalities for the spectral radius (or the Perron root) p(B) of a nonnegative matrix
B. Thus, Lemma 4.1 and Corollary 4.2 are analogs of well-known bounds for the Perron
root; see, for example, [4, p. 28] and [25, p. 31]. Theorem 4.3 is the max algebra
version of a result due to Birkhoff and Varga [5]. The parallels between inequalities
for #(A), where A is a matrix over f and p(B), where B is a nonnegative matrix, are

quite striking and remain to be fully explored. Theorem 4.9 is yet another result in this
direction. Let A be an n n matrix over M and let B be the Hadamard exponential
of A, i.e., bij eaj for all i,j. Then e(A) is the maximal circuit geometric mean of
the nonnegative matrix B. We remark that the maximal circuit geometric mean of a
nonnegative matrix has been considered in the literature; see, e.g., [15], [17], [22].

The following lemma is stated and proved in [18, Chap. 4, Lemmas 1.3.8, 1.3.9].
LEMMA 4.1. Let A be an n n matrix over Ibf and E lYl. Then #(A) >_ ?, if

and only if there exists a vector z -oc such that A (R) z >_ (R) z. Furthermore, if A
is irreducible, then #(A)

_
, if and only if there exists a vector z ? -c such that

A(R)z<_(R)z.
COROLLARY 4.2. Let A be an n n matrix over 115. Then

min max aij

_
#(A)

_
max aij.

j

Proof. Let mini maxj aij and let 0 denote the vector with each component
zero. Then A (R) 0 >_ (R) 0. It follows from Lemma 4.1 that #(A) _> . It is easy to see
that for any a C(A), MA(a) <_ maxi,j aij, and hence #(A)

_
maxi,j aij, giving the

second inequality. [3

Let A be an n n matrix over . By Theorem 2.2, #(A) is an eigenvalue of
A and there is a vector x : -cx such that A (R) x it(A)(R) x. We refer to x as a
right eigenvector of A corresponding to it(A). Since it(A) it(AT), there is a vector
y : -c as a left eigenvector of A corresponding to it(A). We note that (by Theorem
2.3) if A is irreducible, then x and y are finite and it(A) is the only eigenvalue of A.

THEOREM 4.3. Let A be an n n irreducible matrix over . Then the following
assertions hold.

(i) it(A) maxx>_ minu>_(yT (R) A (R) x yT (R) x).
(ii) it(A) minu>_ maxx>_(yT (R) A (R) x yT (R) x).
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Proof. For any finite vectors x, y, we have

yT (R) A (R) x ma.x(aij + Yi + xj

ma.x(aij + xj xi + Yi + xi)

>_ min m.ax(aij + xj xi) T yT (R) x.
3

Therefore,

(4.1) yT (R) A (R) x yT (R) X

_
min m.ax(aij + xy xi).

3

Suppose
minm.ax(aiy + xy xi) m.ax(akj + xy Xk).

Let z be the vector with Zk --Xk, with the remaining components chosen finite and
so that zT (R) x 0 and satisfying

m.ax(ai + zi + xi) _< m.ax(ak + Zk + Xj),
3 2

i 1,2,...,n.

When we set y z, equality holds in (4.1) and hence we have shown that for any
finite x,

min (yT (R) A (R) x yT (R) x)
y>

exists. Thus by (4.1)

min (yT (R) A (R) x yT (R) x) min max(hij + xy xi).
y>--oo 3

Let S [aiy + xj -xi]. Then It(A) It(S) and by Corollary 4.2

min m.ax(aij + xj xi) <_ It(S).
g

Therefore, we conclude that

(4.2) It(A)_> sup min (yT(R)A(R)x_yT(R)x).
x> oo y> cx)

When we set x to be a right eigenvector of A, we see that for any finite y, yT
A (R) x yT (R) X It(A). Thus, (i) follows from (4.2). The proof of (ii) is similar.

We next give an easy inequality, and then characterize the case of equality.
LEMMA 4.4. Let X, Y be n x n matrices over M such that X >_ Y. Then It(X)

Proof. The result is obvious if (Y) , since in that case, It(Y) -cx. So
suppose C(Y) . For any a

It(Y) My(a) <_ Mx(a) <_ It(X)

and the proof is complete.
Observe that Lemma 4.4 shows that if Z is a principal submatrix of X, then
>



SPECTRAL PROPERTIES IN MAX ALGEBRA 973

To discuss the case of equality in Lemma 4.4, we now introduce some notation.
Suppose a is the circuit (il i2 ik); in this notation we assume il to be the least
integer among il, i2,. ik and this convention makes the representation of the circuit
uniquely determined. If X is an n )< n matrix and if a (il i2 ik) E (X),
then we define X(a) as the vector

[Xili2 Xi2i3 Xikil]T.

LEMMA 4.5. Let X, Y be n n matrices over Il$ such that X >_ Y and suppose
#(Y) is finite. Then the following conditions are equivalent.

(i) #(X) #(Y).
(ii) There exists a (X)N _.(Y) such that Ux(a) My(a).
(iii) There exists a (X) such that ix (a) My (a).
(iv)

_
(Y) C (X) and for all a (Y),_X(a) Y(a).

(v) C(Y) C (X) and there exists a C(Y) such that X(a) Y(a).
Proof. First observe that since #(Y) is finite, and X _> Y, #(X) is finite and

C(Y), C(X) are nonempty.
(i) = (ii). Let a C(Y). Then

(4.3) #(Y) My(a) <_ Mx(a) <_ #(X)

and since #(X) #(Y), equality holds throughout in (4.3). It follows that a

(X) q (Y) and Mx(a) My(a).
(iii) => (i). Let a e C(X) such that Mx(a) My(a). Then #(X) Mx(a)

My(a) <_ it(Y) < it(X), and hence it(X)= it(Y).
(i) ==> (iv). Let a e (Y). As in the proof of (i) ==> (ii), equality holds throughout

in (4.3). It follows that a (X) and Mx(a) My(a). Since X> Y, we have
X(a) > Y(a). If X(a) Y(a), then it will follow, after taking the sum of the entries
in X(a), Y(a), that Mx(a) > My(a), which is a contradiction. Thus X(a) Y(a).

It is easy to see that (ii) => (iii), (iv) => (v), and (v) => (i). That completes the
proof.

THEOREM 4.6. Let X1,..., Xm be n n matrices and let X Y.e Xi. Then

(4.4) it(X)

Furthermore, equality holds in (4.4) if and only if one of the following conditions is

satisfied.
(i) it(X)=
(ii) it(X) is finite and there exists a e V(X) and k e {1,2,...,m} such that

Xk(a) >_ Xi(a), 1, 2,..., m.
Proof. If it(X) -oc, then it(Xi) -oc, i 1, 2,..., m and both sides in (4.4)

are -oc. So we assume that it(X) is finite. Since X >_ Xi, i 1, 2,..., m, by Lemma
4.4, we have it(X) _> it(Xi), i= 1, 2,..., m and hence (4.4) holds.

If equality holds in (4.4) then there exists k {1, 2,..., m} such that it(_X)
it(Xk). Thus it(Xk) is finite. By Lemma 4.5 (see (i) := (v)), there exists
such that X(a) Xk(a). It follows that Xk(a) >_ Xi(a), i= 1,2,..., m.

Conversely, if (ii) holds, then X(a) Xk(a). Thus it(Xk) is finite. Set Y
Xa and use implication (iii) (i) of Lemma 4.5 to conclude that equality holds in
(4.a).
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A square matrix D is a diagonal matrix over the max algebra if dij -oc for
all i 7 j. A well-known result due to Cohen [9] (see also [20, p. 364]) asserts that the
Perron root of a nonnegative matrix B is a convex function of the diagonal entries
of B. In this context the next result is somewhat surprising since it says that
considered as a function of the diagonal entries of A, is linear over the max algebra.

THEOREM 4.7. Let X be an n n matrix over ItS and let D1,..., Dm be n n
diagonal matrices over the max algebra. Then

Proof. Let Xj X (R) Dj, j 1, 2,..., m. Then X (R) eDj -eXj. If #(X
eDj) -oc, then (4.5) is true by Theorem 4.6. So let tt(X (R) ’eDj) be finite. If

there exists a e C(X (9 y’eDj) of length more than one, then a e C(X @ Dj) j

1, 2,..., m and (4.5) is proved, in view of (ii) = (i) of Lemma 4.5. So suppose that
every circuit in (X @ -Dj) is of length one, and let a be one such. Clearly, there
exists k e {1,2,...,m} such that Dk(a) >_ Dj(a), and hence Xk(a) > Xi(a),i
1, 2,..., m. Thus (ii), .Theorem 4.6 is satisfied, and (4.5) holds.

Let C # -oc be an n x n matrix over M and

12(C) { (i, j) cij max ckl }
Construct a (0, 1) matrix ( [5i] by setting 5iy 1 if (i, j) e (C) and iy 0
otherwise. Let En=l -tn= t, and for i, j 1, 2,..., n, let

1
n

1
n

Csj.a(C) : t and /j (C) _,
t-1 8--’1

With this notation, we have the following result, which is the max algebra analog of
[2, Thm. 3].

LEMMA 4.8. Let A be an n n matrix over M, with A # -c, let u, v, w, z be
vectors over M with w and z finite, and let C [ai (R) z (R) wj]. Then

VT (R)A(R)u-zT (R)A(R)w >_
n n

.,(C)(v, +
i--1 j=l

Proof. For any i, j, we have

aij (R) vi (R) uj aij (R) zi (R) wj vi zi nt- uj wj.

If (i, j) e ft(C), then aij (R) zi (R) wy zT (R) A (R) w. Apply (4.6) to each (i, j) e ft(C)
and add the resulting equations to get

(4.7) E aij(R)vi(R)uJ--7(zT(R)A(R)w)= E (vi--zi)+
(i,)n(c) (d)a(c) (i,j)ft(C)

Now

(i,j)f(c) i=1 j--1 i=1
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and similarly
n

(i,j)Ea(C) j=l

Since (/,j)ea(c) a/j (R) v (R) uj <_ 7(vT (R) A (R) u) the result follows from (4.7) after
a trivial simplification.

Let B be an n x n nonnegative, irreducible matrix. Then it is known, see [16],
that

fTBg >_ p(B)fTg,

where f and g are right and left Perron eigenvectors of B, respectively. We now obtain
a max algebra analog of this result. In the special case of an irreducible matrix A
with G(A) having a unique critical circuit, a proof based on Lemma 4.8 is contained
in [3]. For the more general result, we give an alternative proof that was suggested by
an anonymous referee.

THEOREM 4.9. Let A be an n x n matrix over ? and let x and y be right and
left eigenvectors, respectively, of A corresponding to the eigenvalue #(A). Let u, v be
n-vectors over tYl such that u (R)

#(A) (R) yT (R) x. In particular, XT (R) A (R) y >_ #(A) (R) yT (R) x.

Proof. The result is trivial if #(A) -oc. Assume then that #(A) is finite, and
so there is a critical circuit in G(A). Let F {i: x/is finite} and let H be the digraph
with vertex set F and edge set E {(i, j): i,j E F and a/j + xj -xi it(A)}. Thus,
from the right eigenequation,

m.ax(a/j + xj) it(A) + xi,

every vertex in H has outdegree at least one in H. Furthermore, for each i E F, there
is a path from to a circuit T/ in H, which must be a critical circuit in G(A). The left
eigenequation gives

aij -nt- y <_ it(A) + yj,

for each (i, j) E. Hence x + y <_ xy -t- yj for each (i, j) E. Thus if T is a circuit
of length IT in H, there is a number k such that xi + y k for all vertices i lying
along the circuit T. Also if F, then xi + yi <_ k <_ maxer k, where F denotes
the set of all circuits in H, thus F C_ I(A). We have

vT (R) A (R) u ma.x(vi + aij + u) m.ax(xi + y ui + aiy + uy)

_> max{ max (x/ + Yi + aij ui + uj }rer

{1 }> max (xi zt- Yi -t- aij u + uj)r -1 (,j)e

{1 }maX.er (xi + yi + ai) .(A) + max k.
(i,j)e

rer

it(A) + max(x/+ yi) it(A) (R) yT (R) x.
iF

The second inequality in the theorem follows by setting v x, u y. rl
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Abstract. Demmel and Veselid showed that, subject to a minor proviso, Jacobi’s method
computes the eigenvalues and eigenvectors of a positive definite matrix more accurately than methods
that first tridiagonalize the matrix. We extend their analysis and thereby:

1. We remove the minor proviso in their results and thus guarantee the accuracy of Jacobi’s
method.

2. We show how to cheaply check, a posteriori, whether tridiagonalizing a particular matrix
has caused a large relative perturbation in the eigenvalues on the matrix. This can be useful when
dealing with graded matrices.

3. We derive hybrid Jacobi algorithms that have the same accuracy of Jacobi’s method but
are faster, at least on a serial computer.

4. We show that if G is an m n matrix and m >> n then Jacobi’s method computes the
singular values almost as quickly as standard methods, but potentially much more accurately.

Key words. Jacobi, symmetric eigenvalue problem, singular value decomposition, graded ma-
trix, error analysis, Hilbert matrix
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1. Introduction. Jacobi’s method computes the eigenvalues and eigenvectors
of a positive definite matrix more accurately than methods based on first tridiago-
nalizing the matrix. Indeed, there is a sense in which Jacobi’s method computes the
eigenvalues and eigenvectors to optimal accuracy. These results were proved again
in [4] and proved again in [14]; some precursors were presented in [1]. We refer to
[4], [17], [15] for a complete survey of the literature. The purpose of this paper is to
strengthen and generalize the results in [4] and to simplify some of the proofs there.
This paper deals with both the one-sided and two-sided Jacobi algorithms. However,
we make only passing reference to threshold criteria and orderings as the results here
are independent of such considerations.

Given a positive definite matrix H, let SH denote the positive diagonal scaling
matrix such that the main diagonal entries of SHHSH are all 1. That is,

(1.1) SH diag(H1/2 Hf2/2 4-1/2

A key idea in [4] was that if H is a positive definite matrix then the relative pertur-
bation of the eigenvalues of H caused by the perturbation 5H is bounded by

(1.2) min(HHqH)

The standard bound is

min(H)
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which is potentially much larger. It was also shown in [4] that the bound (1.2) is
optimal, up to factors of n. The other key idea in [4] is that if a two-sided Jacobi
transformation is applied to H using arithmetic of precision e, then the result is the
same as if a Jacobi transformation were applied in exact arithmetic to H + till where
IISHSHSH]I O(e). Combining this backward error bound with the new perturbation
bound (1.2) shows that one step of Jacobi’s method causes a relative perturbation in
each of the eigenvalues of the order of eAI(SHHSH) at the most. Merely introducing
a relative perturbation of size e in each of the entries of H, as we may do in entering
H into the computer, could cause a similar relative perturbation in its eigenvalues.
Thus Jacobi’s method is "as accurate as we can hope for" subject to the ratio in
(1.5) not being too large. The standard bound on the relative error in the eigenvalues
computed by other methods (tridiagonalization-based methods or Jacobi with the old
stopping criterion) is

which can be as large as Cnea(H), which is potentially much larger. Here cn is a
modestly growing function of n.

We generalize their result to show that a similar bound holds for a wider class
of orthogonal transformations that are applied to two rows and the corresponding
columns. This result shows that if one computes an eigendecomposition of a positive
definite matrix by QR (or some other method based on a preliminary tridiagonaliza-
tion) and refines it by Jacobi, then the resulting decomposition is as accurate as the
Jacobi algorithms in [4] but considerably faster on a serial computer.

The error bounds for Jacobi’s method presented in [4] contain a factor

max I(SHiHiSH),
0<i<M

where H0 H is the n x n positive definite matrix whose eigenvalues we wish to com-
pute and the Hi are the iterates in Jacobi’s method. However, as already mentioned,
the perturbation bounds only contain the factor AI(SHHSH). It is conceivable that
the ratio

max0<i<M ) (SHi HiSHi
AI(SHHSH)

is very large, although in practice this has not been observed. We show that if we
use the one-sided Jacobi method applied to the Cholesky factor of H (as proposed
in [4]), then we can replace the factor max0<i<M AI(SHiHiSHi) by AI(SHoHoSHo)
(Theorem 3.3). That is, the one-sided Jacobi method computes the eigenvalues as
accurately as we can hope, up to factors of n. This is perhaps the most important
result in this paper. The fact that one can replace the factor (1.4) by )n(SHHSH)
has been shown independently by Drma5 [6]. There are situations where one would
use an algorithm that has the factor (1.4) in the bound--such a situation is described
at the beginning of 4--so it is still of interest to study the ratio (1.5).

This factor arises because the error at each step is bounded A (SHi HiSHi)e. Since the sequence
Hi, 0, 1, 2,... converges to a diagonal matrix, it follows that the sequence A (SHi HiSHi ),
0, 1, 2,... converges to 1, but it is possible that it increases before decreasing to 1.
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One of the themes of this paper is that the one-sided algorithm is easier to analyze
and has better error bounds. The one-sided algorithm was preferred in [4] for paral-
lelism and efficiency of data movement, and was used as the basis for a Jacobi method
to accurately compute the eigenvalues of an indefinite symmetric matrix in [16], and
a relative error analysis of the method was presented in [15]. Another theme is the
analysis of algorithms at the matrix level rather than the scalar level. This makes
the proofs much shorter and easier to understand. It also suggests how these results
can be generalized. For example, by essentially the same method we can analyze the
relative errors in the eigenvalues introduced by Householder tridiagonalization of a
positive.definite matrix.

An idea that has not been observed until now is that taking a Cholesky factoriza-
tion, then computing the singular values of the Cholesky factor, by bidiagonalization
for example, and finally squaring them yields the eigenvalues of the original matrix to
higher relative accuracy than computing the eigenvalues of the positive definite ma-
trix directly by tridiagonalization. This approach has been suggested in conjunction
with Jacobi’s method in [4J--there the reason was that if one computes the factor-
ization with complete pivoting then Jacobi’s method tends to converge more rapidly;
accuracy was not the primary consideration.

Let us briefly compare Jacobi’s method with tridiagonalization methods. The rel-
ative error bound for Jacobi’s method will be much better than for tridiagonalization
methods if and only if

a(SHHSH) << a(H).

It is easy to check that a(H) <_ a(SH)2tC(SHHSH). So (1.6) will be true only if (SH)
is large---loosely speaking, if H is graded. It is natural to try to accelerate Jacobi’s
method in the case that H is graded because generally Jacobi’s method is much
slower than tridiagonalization followed by the QR iteration. We discuss this idea in

7. Demmel and Veselid have presented experimental evidence to show that as a(SH)
grows (for fixed n and t(SHHSH)) the number of Jacobi sweeps required decreases [4,
p. 1243], and they present a heuristic explanation for this observation that is valid for
one-sided Jacobi. In [13] is shown that one can compute the eigenvalues of a strongly
graded positive definite matrix to high relative accuracy at a cost that is only slightly
greater than the cost of computing its Cholesky factorization. Thus, in this situation,
one can obtain the accuracy of Jacobi’s method at a cost that is less than that of
tridiagonalizing the matrix.

We now give an outline of the paper and then conclude this section with some
notation. In 2 we present the necessary preliminaries--some error bounds for floating
point computations, some perturbation bounds for scaled matrices, and a review of
the improved stopp.ing criterion for Ja.cobi’s method proposed in [4].

In 3 we analyze one variant of one-sided Jacobi. This is the simpler case where
we apply the transformations on the left and the columns of the matrix are close to
orthogonal. This allows us to avoid the factor (1.4). We also consider the reduction
of rectangular matrices to square in this section.

In 4 we consider the other case, where we apply the orthogonal transformations
and the scaling matrix on the same side, and the closely related two-sided Jacobi
algorithm. We also use the analysis of 4 in 5 to show how one can check at each stage,
while tridiagonalizing a positive definite matrix, whether large relative perturbations
are being introduced in the eigenvalues. This is useful when working with graded
positive definite matrices.
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In 6 we give an application to the computation of the the eigenvalues of the
Hilbert matrix. The main point here is that if one uses one-sided Jacobi applied to the
Cholesky factor of a positive definite matrix, then the relative errors in the computed
eigenvalues are due almost entirely to the errors in computing the Cholesky factor.
This was observed in the numerical results presented [4] and hinted at in [17]--we
give an explanation. The Hilbert matrix provides a dramatic illustration of this fact.

In 7 we present some hybrid algorithms that may be viewed as QR with Jacobi
refinement. These algorithms deliver the accuracy of Jacobi’s method but require
considerably less time on a serial computer (but more time than plain QR). These
new algorithms, though not completely parallelizable, are of interest since Jacobi’s
method is the fastest known way to compute all the eigenvalues of a positive definite
matrix to maximum relative accuracy, even on a serial computer.

Let Mm,n denote the space of m x n matrices and let Mn =- Mn,n. We only
consider real matrices, but our results generalize to complex matrices in the obvious
way since we have bounds of the form (1.7) for complex arithmetic. For a symmetric
matrix U we let I(H) >_ A2(U) >_ >_ An(H)denote its eigenvalues ordered in
decreasing order. For G e Mm,n we let al(G) >_ a2(G) >_... >_ amin{m,n}(G) denote
its ordered singular values, and let G.i denote its ith column i 1,..., n. For matrices
let I1" [[ denote the spectral (or 2-) norm and let I1" IIF denote the Frobenius norm,
i.e.,

IlXll IIXll trace(XTX)
We use a to denote the condition number with respect to the spectral norm, i.e.,

IlXll [[x--ll[
For vectors, I1" ]l denotes the Euclidean norm. We always use IXI to denote the
entry-wise absolute value of a matrix or vector X. For G E Mm,n we define Rc
(Co) to be the positive diagonal matrix such that the rows (columns) of RvG (GCv)
have unit Euclidean length. Given a perturbation 5H of a positive definite matrix
H we refer to SHhHSH as the scaled perturbation, and similarly for perturbations
of matrices when we are considering row or column scalings. Recall that SH
diag(HI/2, H21/2,..., H-ln/2). We use the term elementary orthogonal matrix to
mean a orthogonal matrix that differs from the identity in only two rows and columns.
We use Rij(t) to denote the elementary orthogonal matrix that is the identity except
that

[Rij()]ii [Rij($)]jj --a--(1 -]-2)-1/2
and

[Rq(t)]iy -[Rij(t)]ji s t(1 + t2) -1/2.

Here c and s are the cosine and sine of the rotation angle. Any elementary orthogonal
matrix is either a rotation (like Rij(t)). or the product of a rotation and a signed per-
mutation. Since multiplication by a signed permutation does not cause any rounding
error, for purposes of error analysis, it is sufficient to consider only matrices of the
form Rij(t). We refer to an algorithm that applies a sequence of elementary orthog-
onal matrices as a generalized Jacobi algorithm. In a generalized Jacobi algorithm
it is not necessary that each transformation orthogonalize a pair of columns (in the
one-sided case) or zero a particular element (in the two-sided case).
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We use the model of finite precision arithmetic with precision e that does not
assume the use of a guard digit:

]l(a, b) a, b(1 + el) -.or /
(1.7) fl(a b) a(1 + e2) =t= b(1 + e3) + or

I(V) v( + ),

where leil _< e. Here. fl(.) denotes the computed value. As in [4] the use of a guard
digit does not significantly improve our error bounds. All our results are to first order
in e. In the statements of our results we include the term O(e2) to remind the reader
of this, however, in the proofs we drop second-order terms for convenience.

As observed earlier in this section the relative perturbation in the eigenval-
ues of a positive definite matrix H caused by a perturbation H is bounded by
[[SHHSH[I)-I(SHHSH). However, even though this was proved by Demmel and
Veseli6 in [4] they use the weaker bound

IISHHSHII(SHHSH) IISHHSHIIA(SHHSH)AE (SHHSH).
Because the main diagonal entries of SHHSH are one and it is positive definite, its
norm is at most n, and so the two bounds are the same, up to a factor of n. We use
the stronger bound and so many of our results will appear to be rather different from
those in [4], [15] though in fact they are essentially the same.

2. Preliminaries. In this section we give two error bounds for finite precision
computations, two perturbation bounds from [4], the stopping criteria for Jacobi’s
method proposed in [4], and a bound on the scaled backward error in computing the
Cholesky factorization. This section may be skipped by a reader who is only interested
in the results in the rest of the paper. In the interest of brevity we omit the proofs of
Lemmas 2.1 and 2.3mthey are standard error analysis.

LEMMA 2.1. Let w,x,y E Rm where m > 1. Let e be the precision and let
ei denote a real number of absolute value at most e. Then assuming that the inner
product xTy is computed as

(2.) xr +( / (...)),

then

(2.2) fz(Ty) =Ty + 2(m- )IxlTlYl + O(=).

If IlWll then

(2.3) IlfZ(Y (Ty)) (y (Ty),,,)l <_ 4m=llYll + O(=).

If Q Mm is orthogonal then

(2.4) II/Z(Qy) Qyll <- 2(m 1)m/=eallyll + 0().

For any A, Ml,m and B Mm,n, with m > 1

(2.5) Ifl(AB) AB <_ 2(m 1)elA IBI + O(e2).



982 ROY MATHIAS

The importance of the next result will be apparent from the discussion following
Theorems 4.2 and 4.4. The quantity t t(a, b, c) is such that the 2 2 orthogonal
matrix R12(t) diagonalizes the matrix in (2.6).

LEMMA 2.2. Let

be positive definite and c 7 O. Let

b a
t(a, b, c)

sign()

Then

(2.7) It(, b, e)l max <_ 1.

Proof. Without loss of generality we may assume that a _< b and that >_ 0.
Then _> 0 and hence t ( + V/1 + )-1 is a decreasing function of . Because the
matrix is positive definite it follows that (b-a)/2e _> (b-)/2a-. Substituting
this lower bound on we obtain t(, b, c) <_ X//b. The inequality (2.7) follows from
this bound, cl

For error bounds it may be important that (2.7) hold for the computed value of t
and it is possible that the computed value of t contains a large relative error in the
absence of a guard digit and so, in order that (2.7) still hold for the computed value
of t(a, b, c), we may take the tangent of the rotation angle to be

-min {fl(t(a,b,c)), V V}
Since we often need to compute fl(1 / t2) and fl(v/i + t2), it is worth stating the

error bounds in a lemma.
LEMMA 2.3. Let t E R. Then in finite precision arithmetic with precision e,

and

fl(1 + t2) (1 + t2)(1 +.2el)+ O(e2)

f (4i + + + +

The next two scaled perturbation bounds are very useful results from [4].
THEOREM 2.4. [4, Theorem 2.3] Let H be a positive definite matrix. Let 5H

be such that ]]SHhHSHII < Amin(A). Then

(2.8) IAi(H)- Ai(H / 5H)I < IISHhHSHII
Ai(H) min(SHHSH)"

THEOREM 2.5. [4, Theorem 2.14] Let G Mm,n be of full column rank. Let 6G
be such that [[6GCa[[ < an(GCa). Then

(2.9) ai(G + 6G)I < II6GCBll
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In the Jacobi algorithm we generate a sequence of matrices Hk that converge to
diagonal. We stop when the off-diagonal elements are sufficiently small and then take
the diagonal elements as the eigenvalues. How small is small enough? Suppose that
HM A -t- E where HM is positive definite, A is diagonal, and E has zero diagonal.
Suppose that

ISHMESHM lij -- tol i, j 1,..., n

and that. tol << 1. This implies that IISHMHMSHMII
_

(It- 1) tol and hence that

,n(HMHMSHM) n(I - SHMESHM) >_ 1 (n- 1)tol

and so by Theorem 2.4

l;i(Hu)- Ai(A)I < (n- 1)tol
(HM) 1 (n 1)tol

/ O(tol2) (n 1)tol / O(to12).

The relative error introduced in at least one of the eigenvalues computed using Jacobi’s
method will generally be of the order of I(SHHSH). If one is content to compute
all the eigenvalues of H to this relative accuracy, it would be appropriate to use
the stopping criterion (2.10) with tol eAl(SHHSH),.which may be much larger
than e. In [4] it was proposed that one take tol ce for some constant that was
independent of the matrix H. However, as just argued, tol eikI(SHHSH), which
will generally be larger and so result in earlier termination, will give the same accuracy
for the computed eigenvalues (the eigenvectors may not be orthogonal to full working
precision however). On the other hand, it was shown in [4, Proposition 2.4] that
there is a relative condition number associated with each eigenvalue and that some
eigenvalues may be’more sensitive to sinall componentwise perturbations than others.
It is possible, though it was not shown in [4], that Jacobi’s method with tol ce
will compute each eigenvalue to a relative accuracy that reflects its relative condition
number. To summarize, taking tol eA(SHHSH) is sufficient to compute each
eigenvalue to the relative accuracy one can expect for the most sensitive eigenvalue,
but tol ce may compute each eigenvalue to the relative accuracy that it deserves.

We are not proposing that one set hij to zero based on the stopping criterion
(2.10). If Ihjl <_ tolv/hhj for some pair of indices i,j, but not for all pairs, then
we cannot be sure that ikn(SHHSH) -- 1 as we can when (2.10) holds for all pairs
of indices. Thus in the interest of obtaining maximal accuracy one should not set
off diagonal elements to zero--one should either perform the Jacobi transformation
or, if Ihijl is small, one should not perform the transformation and move to the next
pair of indices leaving hiy unchanged. (One could, if one wished, set hij to zero if
Ihjl <_ v/hh (note e not tol), however, there is no evidence that faster convergence
would result.)

Similarly, if we are applying right-handed Jacobi to compute the singular values
of a matrix G E Mm,n, n <_ m to high relative accuracy, then it would be appropriate
to stop when

(2.11) IG’TG’JI _< tol, i,j- 1,... ,n

for a tolerance tol .. ea"1 (GCG).
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The criterion (2.10) itself is not new, but this justification for it was first presented
in [4]. Until then the generally accepted termination criterion was

IEijl _< tolllHII i,j 1, n.

It is easy to check that this criterion is more easily satisfied than (2.10).
It will be useful to have the following backward error bound for the Cholesky

factorization from [4], [5].
LEMMA 2.6. [5, Lemma 4.14] Let L be the Cholesky factor of the positive definite

matrix H computed by Algorithm 4.3 in [5] (or [4]) in finite precision arithmetic with
precision e. Then LLT H + E where IEijI <_ (n / 5)ev/HiiHjj.

The proof of this lemma is in [5] and is straightforward. Algorithm 4.3 in [5] is
just the gaxpy version of the Cholesky factorization; one can expect a similar result
for the outer product algorithm.

3. The easy case. In this section we consider the case where the scaling matrix
and the orthogonal transformation are applied on different sides.

Note that if Q Mm is orthogonal and G Mm,n then the Euclidean lengths of
the columns of QG are the same as those of G, and hence that

(3.1) an(QGCQa) a(GCQG) a(GCe).

This simple fact makes the analysis of the case where we apply the orthogonal trans-
formations and the scaling matrix on different sides much easier than when they are
applied on the same side. The identity (3.1) is what allows us to avoid the factor
(1.4), since at each step the singular values of the scaled matrix are the same.

THEOREM 3.1. Let Q E Mm be orthogonal and let G Mm,n. Let e be the
arithmetic precision. Then in finite precision arithmetic with precision e

(3.2) II(QG- fl(QG))CvlJ <_ cx/-de,

where c-- 2(m- 1)m/2. If Q is an elementary orthogonal matrix then (3.2) holds
with c 2.21/2

_
3 and ifQ is a Householder reflection (applied as G G-v(Gv)T)

then (3.2) holds with c- 4m.
Proof. The restlts are a straightforward application of Lemma 2.1.
When computing the singular values of a rectangular matrix, in the interests of

computational efficiency, one would like to reduce the matrix to a square matrix with
the same singular values before applying some other method. We now show that this
can be done without losing relative accuracy of the computed singular values.

THEOREM 3.2. Let G Mm,n (m >_ n) have rank n. Let

be the computed upper triangular factor in the QR factorization of G computed by
Householder QR in finite precision arithmetic with precision e. Assume that for each
Householder transformation I- wwT, the computed value of w differs from the true
value in norm by at most ce. Then to first order in e

(3.3) an(C[) an(CCg)

and

<_ (3mE3/2 + 2/cn)al(GCG)e + O(e2).
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We have been intentionally vague in our definition of c in order that the result is not
dependent on the way in which w is computed. If one uses the method outlined in

[18, pp. 153-155] then from [18, p. 155, (39.23)] one can take c-- 1.501.
Proof. The statement (3.3) follows from the discussion just before Theorem 3.1.
Now let us consider (3.4)--first assuming that the Householder vectors w are com-

puted exactly, but applied in finite precision arithmetic. Let (i denote the computed
matrix after the ith column has been reduced to upper triangular form, and let Gi
denote the corresponding exact quantity. Let Ei Gi- Gi. Let Qi be product of the
first i Householder. By Lemma 2.1 the columns of E1C have norms at most 4me. Let
/i2 be the matrix or errors incurred at the second step, that is, 2 fl(Q2)-(2l.
Then by substituting for we have

E2 Q2E +E2.

Note that the first column of/2C is zero and that the norms of the remaining
columns are bounded by 4me. Thus the norm of the first column of E2Cv is at most
4me, while the norms of the remaining columns are at most twice this quantity. The
final error matrix is En. Continuing in this manner we see that the ith column of
EnC has norm at most 4mie. Thus

IIE, C II <_ IIE C IIF -IIE CvlIF <_ <_ 4m v/  /3 <_ 3mn312.
i--i

The bound

o,(c) <_ 3mn3/2a(GCG)e + O(e2)

on singular values follows from this and Theorem 2.5.
The additional term 2v/cn arises due to the inaccuracy in computing w. [l

THEOREM 3.3. Let G 6 Mn. Suppose that a sequence of elementary orthogonal
matrices when applied on the left to G produces GM, after M transformations, and
that GTM satisfies the termination criterion (2.11). Let si be the ordered computed
(not exact), Euclidean row lengths of GM. Then

si G)
o,(G)

<_ 3Mx/-a(GCG)e + n. tol + 2n2e + O(e2).

Proof. Now combine Theorem 3.1 and the bound in Theorem 2.5, noting that
an(GC) an(GC) where G is the result after i transformations. The n. tol
term arises because the columns of GM are not exactly orthogonal and the 2n2e
arises because of possible errors in evaluating the TG.iG.j terms and s terms. D

Note that if we apply general orthogonal transformations rather than elementary
orthogonal matrices, then we have a similar bound except that the factor 3 in (3.5)
is replaced by 2(m- 1)m1/2.

From this result, the previous result, and the discussion between (2.10) and (2.11)
we can see that one can compute the singular values of G Mm,n (m

_
n) to a relative

accuracy of the order of a (GCv)e by the following algorithm.

ALGORITHM 3.4. Given G 6 Mm,n, m >_ n;



986 ROY MATHIAS

1. reduce G to upper triangular form QG 0);
2. obtain a lower bound a on an(RCR);
3. set tol a-le;
4. apply left-handed Jacobi to R.

The idea of setting tol a-le (rather that tol ce) will save at most one sweep
of Jacobi if a(RC) >_ x/ (as will typically be the case). This is not an enormous
saving, but more than compensates for the small cost (O(n2)) of estimating a(RCR).
Note also that since we have an estimate of an(GCa) an(RC), we have an upper
bound on the relative error in the computed singular values. However, because we
are using tol a-e rather than tol cne (where Cn is a modest function of n) in
the stopping criterion, the computed singular vectors will not be orthogonal to full
working precision. If this is a concern then one should take tol Cne and do the
(small amount of) extra work that this entails.

Since it is possible to reduce a rectangular matrix to a smaller square matrix
without causing large relative perturbations in its singular values, we only consider
square matrices hereafter.

Suppose that G E Mm,n with m >> n. The standard .approach to finding the
singular values of G is to first reduce G to an n x n upper triangular matrix with
the same singular values, then bidiagonalize the n n matrix and finally compute
the singular values of the bidiagonal matrix. Most of the computational effort in this
procedure is in the initial QR factorization (since m >> n). Consequently, Algorithm
3.4 is not significantly more expensive than the standard approach in this situation,
but yields the singular values to maximal relative accuracy.

Demmel and Veseli6 [4] obtained a similar result for left-handed Jacobi applied
to n n matrices, except that because they applied the orthogonal transformations
and the scaling matrices on the same side, they had the factor

(3.6) max
O<i<M

in their bounds rather than just a(RvG). Here G are the iterates produced by
the left-handed Jacobi. The quantity in (3.6) is harder to compute exactly than
aI(GCv). However, in practice it was found to be equal to a(RoGo), or not
much larger.

As a corollary to Theorem 3.3, we can obtain an easily computed bound on the
relative error in the eigenvalues of a positive definite matrix computed by one-sided
generalized Jacobi applied to the Cholesky factor of the matrix. In [4] it was observed
that doing Cholesky with complete pivoting tends to accelerate convergence, but
there is no need for pivoting for this result to be valid, nor for the validity of the
corresponding resul in [4].

THEOREM 3.5. Let H M be positive definite and let ] be its computed Cholesky
factor. Assume that after M steps of right-handed generalized Jacobi applied to the
resulting matrix LM satisfies (2.11). Let si be the ordered column lengths of LM,
which we take to be the computed singular values. Then

2 )i(H) [ n2-5n 6Mv/- ])i(H) <- n(SHHSH) + V/,n(HHSH) + 4n2" tol + O(e2).

Proof. It is easy to check that a;I(CL) /AI(SHHSH), at least to first
order in e. The result follows from combining the bound on the backward error in
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the computation of ] (Lem. 2.6) with that resulting from errors in Jacobi’s method
(Thm. 3.3). Note that when one squares a quantity the relative error is doubled.

If AI(SHHSH) is large then the error in the eigenvalues is almost entirely due to
the errors during the Cholesky decomposition. This fact was observed empirically in

[4, 7.4], but no explanation was given. If the matrix H has special structure so that
one can compute its Cholesky factor to higher accuracy than indicated by Lemma 2.6,
then there will be a corresponding increase in the accuracy in the computed singular
values. See 6 where we use the fact that the Hilbert matrix has a closed form
Cholesky factor that can be evaluated very accurately to show that the eigenvalues
can also be computed very accurately.

Since most of the error is caused by the Cholesky factorization, while most of the
work is done in the generalized Jacobi updates, it may make sense to compute the
Cholesky factorization in higher precision. This was suggested in [17, p. 632], but no
theoretical justification was given.

Since O’n(RL V/,n(SHHSH), one can easily estimate ,n(SHHSH), using
a condition estimator based on a few steps of the power method or the Lanczos
algorithm since L is triangular. Thus the bound (3.7) can be evaluated cheaply in
practice--unlike the bounds where one applies the transformations and the scaling on
the same side.

The algorithm outlined in Theorem 3.5 is essentially Algorithm 4.4 in [4]. Our
error bound does not involve a factor of the form

(3.8) max ,VI(SHHiSH)
0<i<M

as all the bounds in [4] do. Thus we have shown that this algorithm computes the
eigenvalues of a positive definite matrix to optimal relative accuracy without the
proviso in [4] that the quantity in (3.8) not be much larger than -(SHHSH).

Combining all these ideas we have the following algorithm that computes the
eigenvalues of a positive definite matrix H to a relative accuracy of the order of

(3.9) eA- SHHSH).

This algorithm has several nice properties. First, it computes the eigenvalues to as
high a relative accuracy as we can hope. Second, it estimates the relative error (3.9) in
the computed eigenvalues at little additional cost. Finally, it may be a little cheaper
than Algorithm 4.4 in [4] because of the choice of stopping criterion. (Algorithm 4.4
in [4] is very similar to Algorithm 3.6 here.)

ALGORITHM 3.6. Given a positive definite matrix H:
1. compute LLT H (Cholesky with complete pivoting);
2. find a lower bound a > 0 on an(SuL);
3. set tol a-2e for the stopping criterion;
4. compute the singular values of L by right-hand Jacobi with stopping criterion

(2.11);
5. square singular values to give eigenvalues of H.

The pivoting in step 1 is not necessary for the accuracy of the algorithm. It is
included to produce faster convergence of the Jacobi process in step 4.

The idea of first taking a Cholesky factorization H LLT can be useful when
trying to compute the eigenvalues of a graded positive definite matrix H to a high
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relative accuracy using bidiagonalization methods. Suppose that we use bidiagonal-
ization followed by the QR iteration to compute the singular values of L, the computed
Cholesky factor of H. The resulting singular values 5i satisfy

I#i ai(L)[ < cne;(L)e , cn V/(H)e,

where cn grows modestly with n. From the backward error bound for the Cholesky
decomposition in Lemma 2.6 and the forward error bound in Theorem 2.4 we have

2IA(H) a (L)I
A(H) <- (n2 + 5n)A(SHHSH)e"

The sum2 of these two bounds can be less than the standard bound in (1.3), i.e.,
(H)e, by a factor of as much as V/to(H). Note also, that if it should hppen that
() V/to(H) <_ A(SHHSH), then this Cholesky/bidiagonalization algorithm will
compute the eigenvlues as accurately as Jacobi’s method, but at considerably less
cost. The statement v/(H) _< A-(SHHSH) may be interpreted as saying that at
most half of the ill conditioning of H is due to the grading of H.

4. The harder case. In this section we consider the case where the orthogonal
transformations are applied on the sme side as the scaling matrix. This makes the
analysis harder and the resulting bound is harder to compute because it involves
factor max0<i<M a(RGG)--and to compute or bound this, one must estimate the
condition number of M matrices not just one. However, as we explain in the next
paragraph, this is the algorithm of choice if one is prepared to make the assumption
that

(4.1) max a(RGGi) al(RGoGo).
0<i<M

There is considerable experimental evidence for this assumption; see [4, 7.4] and [15,
Chap. 5, Table 4]. Mascarenhas has given a family of examples that shows that the
left-hand side of (4.1) can be n/2 times larger than the right-hand side [12]. This is
the worst known growth.

Let G E Mn. Then we may compute the singular values of G by left-handed
Jacobi or right-handed Jacobi. Which should we choose? Suppose that a (RAG) <<
aI(GCa). Then the rows of G are much closer to orthogonality than the columns.
Multiplying G by an orthogonal on the left leaves the angles between the columns of
G unchanged but changes the angles between the rows. Since our goal is to apply
a sequence of orthogonal transformations until either the rows or columns of the
transformed matrix are orthogonal, one would expect that it would be more efficient to
transform the matrix so that the rows are orthogonal rather than the columns. That is,
it is more efficient to use left-handed Jacobi.3 In practice if a(RG) << aI(GCG),
then one observes that left-handed Jacobi does indeed converge more quickly than
right-handed Jacobi, just as one would expect from this argument (we give examples
in the next two paragraphs). However, the error bounds in the previous section are in
terms of aI(GC). Naturally we would like bounds in terms of a(RG), which is
considerably smaller. Such bounds, and the related problem of bounds for two-sided

2 Actually we must take twice the bound on the relative error in 5i as we are squaring it.
3 ,This is a heuristic argument and one can construct counterexamples.
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Jacobi, where we necessarily apply the orthogonal transformation and the scaling
matrix on the same side, are the subjects of this section. The next two paragraphs
present instances where left-handed Jacobi converges more rapidly than right-handed
Jacobi. The reader who is not interested in these details may omit them and go
directly to Lemma 4.1.

We now give a couple of specific instances where G DB with B well condi-
tioned and D diagonal where right-handed Jacobi is much slower than left-handed
Jacobi. The first example is where B is a random 10 10 orthogonal matrix and
D diag(1, 10-1/8, 10-2/8,..., 10-9/3). Using MATLAB (U 2 10-16) and
tol 10-12 (which gives a relatively lax stopping criterion) typically between five
and seven sweeps of right-handed Jacobi are required for convergence. Of course,
since the rows of G are orthogonal, the termination criterion for left-handed Jacobi is
satisfied even before the first sweep.

In the previous example D was not particularly ill conditioned (a(D) 13). In
our next example, which is due to an anonymous referee, we take D very ill conditioned
and rounding errors will cause right-handed Jacobi to be much slower than left-handed
Jacobi. In exact arithmetic both left- and right-handed Jacobi would converge in one
iteration. Let B be a 2 2 reasonably conditioned matrix with all elements about the
same size (say O(1)) and ]b111 > 1512]. Let D diag(dl, d2) where the di are positive
and dl >> d2 (it is necessary that d2/dl > ej, and the larger j is, the slower right-
handed Jacobi is; thus this example requires rather extreme ill conditioning). Since G
is 2 2 each sweep consists of just one Jacobi rotation. Let G1, (2, be the sequence
of matrices generated by right-handed Jacobi applied in finite precision arithmetic
with precision e. One can check that (G1)11 will be approximately dlv/bl + b2
(since dl >> d2 and Ib111 > 15121) aIld that due Co rounding error8 (G1)12 could be as
large as O(edllG121) O(edl). So now, using the fact that dl >> d2 we have

I(G)(G1).21 I(G1)ll(G1)12I I1(C1).111 II(el).2ll

Thus, even though in exact arithmetic the columns of G1 would be orthogonal, the
columns of the computed G1 are far from orthogonal, in fact they are almost parallel!
One can check that in successive iterations we will have (Gk)11 dl v/bl + b2 (un-
changed) and (Gk)12 could be as large as O(ekdl), k-- 2,3, Because the elements
in the second row of Gk are at most O(d2) one can show that the columns of Gk will
not satisfy the stopping criterion (2.11) unless

(4.2) I(Gk)121 _< tol. d2.

We can only be sure of this for

k--- (log(d2/d)+ log(tol))/log(e) =_ kmax-

By making dl/d2 large one can make kmax arbitrarily large. To summarize, if G is
a 2 2 matrix as above then it is possible that, as a result of rounding errors, kmax
sweeps of right-handed Jacobi will be required before the termination criterion (2.11)
is satisfied. If one chooses B randomly then typically after a few tries one obtains a

matrix G for which kmax sweeps are indeed required for convergence. However, for
such a matrix only one sweep of left-handed Jacobi is necessary because the effect of
rounding errors will not be so serious.

We now give a rather general lemma which we then specialize to the case of
multiplication by .an elementary orthogonal matrix.
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LEMMA 4.1. Let G 6 Mm,n and let J Mn be nonsingular.
precision arithmetic with precision e

fl(GJ) (G / AG)J,

where

Then in finite

Proof. From (4.3) and (2.5) it follows that

IAGI I[fl(GJ) Gj]j- I
< GJI
<_ 2(n- 1)elG IJI

So

2(n-

_< 2(n- 1)ex/

We have used that fact that the columns of GCa have unit length for the final in-
equality.

The following bound on the scaled backward error due to multiplication by an
elementary orthogonal matrix is a generalization of [4, Theorem 3.3.3]. There it was
assumed that the elementary orthogonal matrix was chosen to orthogonalize the two
columns that it affects. The added generality does not make the proof of this result
any more complicated. It is useful in that it shows that the high relative accuracy of
Jacobi’s method does not depend on the rotation angle being computed very exactly;
it is sufficient that a not be too large.

THEOREM 4.2. Let G 6 Mm,n, and let B GCG. Let G denote the matrix
obtained by applying the rotation Rij(t) in finite precision arithmetic with precision
by multiplying columns and j of G by the matrix

-t 1

ad then dividin9 them b 1 + t. et

{ G.

Then

(4.6) G (G + AG)Rij(t) +
where the arithmetic on the right-hand side is performed exactly and

(a.7) II/aCll -<(+ e") + O(), II/aC -<a+ O()



FAST ACCURATE JACOBI METHODS 991

Proof. It is sufficient to consider the case where G has only two columns. It is
easily seen that

{JilJ- l- 21sc] 1

where s and c are the sine and cosine of the rotation angle. So

which has norm at most (1 + 2a). Thus, by Lemma 4.1, fl(GJ) (G + E)J, where
IIECall <_ 2v/(1 + 2c). Now, dividing by v/i-t t2, which is itself computed in finite
precision arithmetic, causes a relative error of at most 3e (Lemma 2.3 and (1.7)) in
each component of G1, from which the second bound in (4.7) follows, c

Note that if, as in regular one-sided Jacobi, one choses t to be such. that Rij(t)
orthogonalizes the columns and j, i.e., t t(llG.i]l 2, JIG.ill 2, G*.iG.j), then by Lemma
2.2 (and the ensuing discussion), we have

In view of Theorem 2.5 this says that

(4.8)
o’i(a)

<_ (6v o"  (GCG) -t- 3x/ a l(G Ca,))e -4- O(e2).

This is slightly stronger than the corresponding results in [4], [15]. Actually one can
further strengthen (4.8) by a more careful argument, but our purpose here is just to
show that our results imply results similar to those in [4], [15].

Because we have done computations at the matrix level rather than the scalar
level and have proved some preliminary lemmas, this proof is considerably simpler
than those in [15, Theorem 3.3.3] and [4, Theorem 4.1], even though the result is
more general. Note also that we have avoided the necessity of dividing the proof into
two cases as was done in these other proofs.

There is another minor advantage of this result over those in [4], [15]. When
implementing one-sided Jacobi one needs IIG.II, IIG.jl], and GT.iG.j to compute the
rotation angle. In the interests of computational efficiency one usually does not com-
pute IIG.ill and IIG.jll explicitly, at a cost of O(n) flops, but rather updates them at
each step at a cost of merely O(1). This causes a gradual loss of accuracy in the com-
puted rotation angle which translates into a larger error bound. (The scaled backward
error bound is still O(e) but the constant is larger.) The error in the rotation angle
does not affect our analysis, as we do not require that the rotation orthogonalize two
columns, merely that it have a small corresponding value of a.

The idea of combining forward and backward error bounds has been used to good
effect in [7, Corollary 1]. There it was apparently essential in obtaining a simple proof
of a strong error bound. Here it is not essential; we could have easily converted the
forward error (resulting from the division by v/i + t2) into a backward error at the
cost of a slightly larger error bound.

Now let us consider the scaled backward error for the two-sided transformation.
First, we need an analog of Lemma 4.1 in the two-sided case.
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LEMMA 4.3. Let H E Mn be positive definite. Let J Mn be nonsingular.
Suppose that we compute jTHj in finite precision arithmetic with precision e by

(4.9) (jTHj)j (j.)T(HJ.j.)

for

_
j and by symmetry for i > j. Then fl(jTHj) is symmetric and

(4.10) fl(JTHJ) jT(H + AH)J,

where

(4.11) SHAHSHII <_ 4n(n- 1)ellS IJI IJ-l SHll,
assuming that n > 1.

Proof. The proof is similar to Lemma 4.1. [:3

The next result is a generalization of Theorem 3.3 in [4].
THEOREM 4.4. Let H Mn be positive definite. Given a pair of indices i, j and

a scalar t. Let [-i be the value of R(t)THRj(t) computed by first forming jTHj,
where J x/1 + t2Ri(t), and then dividing the (i,i), (i, j), (j, i), and (j, j) entries
by 1 + t2 and the remaining entries in the ith and jth rows and columns by v/i+ t2.
Assume the computations are done in finite precision arithmetic with precision e. Let

(4.12)

where s and c are the sine and cosine of the rotation angle. Then

(4.13) I:I Ri(t)T(H + 5H)Rij(t) + A[-I,

where

(4.14) IISH(AH)SHII. <_ f(n, c), and IISA/=/Sll _< 3(v/2n- 4 + 2)e

and f(n, a) 8(1 + 2a)2 + 2x/2n 4(1 + 2a).
Proof. Without loss of generality we may assume that (i, j) (1, 2). Let A

SHHSH. Partition H, A, and SH as

HI GT a c A= SH’-H= G H HI= c b A A 0 D

Partition/:/ in the same way as H. Because the results depend only the first and
second rows and columns of H it follows that

AH (SH5G 0

and so

0SHSHSH D25GD1

We will first bound IIDSGDII. As in the proof of Theorem 4.2

ID(SG)DI < 2e(DIGID)(D;IJilJ-ID) < 2eIAI(D[IIJIIJ-11D).
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Because A21 is the off-diagonal block of A, a positive definite matrix with ones on the
diagonal, it follows that the 2n- 4 entries of IA211 are at most one, and hence that

Thus, taking norms and using the definition of we have

IID25GDlll <_ 2ev/2n- 4(1 4- 2c).

So

(4.15) Ill D25GD10 DISG*D2 ) ]I IID25GDll] < 2v/2n 4(14-

Now let us consider 5H. From Lemma 4.3, using the same ideas as in the proof
of Theorem 4.4, we have

]]DSHD]] <_ 4(2- 1)2el]D]JI[J-ID]] <_ 8e(1 + 2a)u.
Adding these two bounds gives the first in equality in (4.14).

By Lemma 2.3 and (1.7), computing x/’l 4- t2 or (1 4- t2) and dividing by it causes
a relative error of at most 3e. One can check that a matrix with entries bounded
by 1 and nonzero entries in the first two rows and columns only has norm at most
2 4- v/2n- 4. The second inequality in (4.14) follows from this.

The proof could have been considerably simplified if we had not taken advantage
of the fact that only two rows and two columns of H are changed by an elementary
orthogonal transformation, since in this case we would not have to partition H or any
of the other matrices in the proof. The cost of this simplification would have been to
increase f(n, c) to

f(n, ) 8n(1 4- 2c)2,

which would increase the error bound by a factor of about -(1 4- 2) for large n
and moderate c.

If/2/is the computed result of applying one Jacobi rotation to H, then, by Lemma
2.2, c < 1. So from Theorem 4.4 and the perturbation bound in Theorem 2.4 we have

]Ai(/:/) ,Xi(.H)] < 75 4- 9x/’2n 4
e.

Ai(H) min(SHHSH)

This bound is slightly stronger than those in [4, Theorem 3.1] and [15, Theorem 3.2.1,
trigonometric case].

Note that the Jacobi step we use in this theorem is not the standard Jacobi step.
Here, even if we are choosing J to annihilate the i, j element we explicitly apply the
matrix J to the 2 2 submatrix in rows and columns i and j and, as a result, the
i, j element may not be exactly zero. The standard algorithm would compute the ii
and jj elements by formulae (and not by matrix multiplication) and set the i, j and
j, entries to 0.4 So, strictly speaking, our analysis does not apply to the standard
two-sided Jacobi algorithm. The analysis in [4] gives a backward error analysis of the
formulae used to compute the ii and jj elements. This is more complicated than the

4 Both algorithms are identical except in the way that they compute the ii, ij, ji, and jj elements.
Both algorithms require essentially the same amount of computation and are about as accurate.
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backward error analysis of matrix multiplication that we used. This is part of the
reason why the proofs in [4] are more complicated than those here.

The idea of not setting the ij and ji elements to zero but explicitly computing
them was suggested in [11]. There the reason was to improve accuracy; here we do it
to simplify the analysis.

Note that in the one-sided case (Theorem 4.2) the highest power of c in the bound
is c, while here it is c2. This will be relevant when general orthogonal transformations
are used and we do not have the bound a < 1.

We will not state the generalizations of all the results in [4], [15] but merely give
one specific example of how they extend to the generalized Jacobi methods.

THEOREM 4.5. Let H Ho be a positive definite matrix and let Hm,m
1,...,M be the sequence of matrices generated by applying elementary orthogonal
similarities. Let am be the value of a, as defined in (4.12), for the ruth transformation.
Then

Ai(H) )i(HM) <e.M. max
f(n,Cm)+3(V’2n-4+2) +O(e2),

O<_m<_M n(SHmHmSHm)

where f(n, a) is defined in Theorem 4.4.
The proof is identical to those in [4], [15]. Note that it is not necessary that HM,

the final matrix, be diagonal or almost diagonak In 5 we apply this result with HM
tridiagonal. If HM is almost ^diagonal in the sense that it satisfies the termination
criterion (2.10), and if we let Ai, i 1,..., n, be the ordered diagonal entries of HM
then

<e.M. max
f(n, am)+3(v/2n-4+2) +n.tol+O(e2).

O_m(_M n(SHmHMSHm)

We have said very little about the accuracy of the computed eigenvectors. That
is because the proofs in [4] when applied to this situation show that generalized two-
sided Jacobi computes the eigenvectors to high normwise accuracy [4, Theorem 3.3],
and even the components of the eigenvectors to high relative accuracy5 [4, Theorem

Note that the proofs in [4] of results on eigenvectors depend only on a bound
on the scaled backward error and not on the fact that the Jacobi transformation
annihilates the ij element. The results in 4 of [4] on one-sided Jacobi also generalize
in the same way to the case where we apply the transformations on one side only and
have a bound on the corresponding a’s.

5. Stability of transformations of positive definite matrices. Lemma 4.3
and Theorem 4.4 shed light on the errors caused by tridiagonalizing a positive definite
matrix. This section is devoted to the accuracy of various tridiagonalization methods.
We could have equally well discussed the bidiagonalization of a general matrix.

The following example was presented in [4, p. 1238]:

1040 1019 1019)(5.1) H 109 102o 109
109 109 1

5 The componentwise bound on the error in the eigenvectors in [4] contains a factor that is possibly
exponential in M, the number of Jacobi rotations required for convergence. See [14] for a proof that
the exponential growth factor in [4] can be replaced by a linear growth factor.
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This is a graded matrix, and so one might hope that tridiagonalization followed by
QR will compute all its eigenvalues to high relative accuracy. However, one can
check that no matter how one permutes the rows and columns of H, the eigenvalues
of H as computed by tridiagonalization followed by QR will contain at least one
negative eigenvalue (at least when one uses a particular version of MATLAB; see [4,
p. 1238]). It was not made clear in [4] whether this inaccuracy is due to the error
incurred in tridiagonalizing the matrix or the inaccuracy of the QR algorithm when
applied to the resulting tridiagonal matrices. In [3] Demmel showed that implicit QR
is inherently inaccurate for some symmetric tridiagonal matrices. However, in this
instance the reason that tridiagonalization followed by QR is inaccurate is that merely
tridiagonalizing H (or any permutation of H) can cause a large relative perturbation
in the eigenvalues. This can be seen from Theorem 4.4. For example, suppose that
we do a rotation in rows and columns 2 and 3 to zero the 3,1 and 1,3 elements. Then
for this rotation [t] 1 and so

a- . max 1--676, --5 109.

The backward error bound in Theorem 4.4 contains the term 8O2 , 4 x 104. (One
might say that the reason for is that h21 is too small in relation to h31 and the
grading of the matrix, i.e., (SHHSH)21 is too small in relation to (SHHSH)31.) Thus
this bound cannot guarantee us any relative accuracy. One can repeat this for every
permutation of the rows and columns of H and check that the right-hand side of the
bound (4.14) is greater than one in every case.6

As noted in [4] this example shows that tridiagonalization followed by the QR
iteration does not necessarily compute the eigenvalues of a graded matrix to high
relative accuracy. There are algorithms that will compute the eigenvalues of a posi-
tive definite tridiagonal matrix T to a relative accuracy of e(STTST)--for example,
bisection or the qd algorithm in [7]. If one has a graded positive definite matrix H
and reduces it to a tridiagonal T by Givens rotations (possibly fast rotations), one
can monitor the possible loss of accuracy by computing the value of a for each of the
transformations applied. If the maximum of these a’s is not large, then the eigenvalues
of T are close to those of H (in the relative sense) and so applying bisection (or some
other method that guarantees high relative accuracy of the computed eigenvalues) to
T will give eigenvalues of H with close to optimal relative accuracy. Here, as always,
we are assuming that minAn(SHHiSH) , An(H), where the Hi are the intermediate
matrices in the computation.

A more accurate, though more expensive, way to compute the eigenvalues of a
graded matrix without using Jacobi’s method is to compute the Cholesky factorization
H LLT and then bidiagonalize L. The reason this is better is that the relative error
is now contains the factor t(L) V/t(H) rather than t(H). See the discussion after
Algorithm 3.6 for further details. Furthermore, one will only get the factor a in the
error bounds rather than a2.

Now let us consider the accuracy of tridiagonalization by Householder transfor-
mations. We will apply Lemma 4.3 with J I- wwT where w is a vector such that

6 Of course, one could do a rotation in rows and columns 1 and 3 to eliminate the 1, 3 and 3, 1
elements, and since this would just be a Jacobi transformation it causes only a small relative change in
the eigenvalues. However, this idea is only available in the 3 x 3 case, and is not the standard method
of tridiagonalization. One can construct a 4 x 4 positive definite matrix such that no permutation
of it can be stably tridiagonalized by three Givens rotations.
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wTw 2. For simplicity of analysis we assume that we form J explicitly and then
apply it as outlined in Lemma 4.3. Of course, in practice we would exploit the special
structure of J to evaluate jTHj in O(n2) flops rather that O(n3) flops; see, e.g., [9,
8.2.1] for details. An analysis of this more efficient tridiagonalization is more com-
plicated but yields essentially the same bound (actually the bound is slightly stronger
in that it has one less factor of n).

It is easy to see that

IJI IJ-ll .<_ I + IwllwlT

and so

Thus if we apply the Householder transformation J to H in finite precision arithmetic
with precision e then

fI(jTHT) jTHj jT(H + AH)J,

where

IISHAHSHII <_ 4n(n- 1)(1 + 411SHwllllSiwll)2e.
This bound can be evaluated easily and cheaply since all we need do is form SHW and

slw and compute their norms.
In view of the 3 x 3 example presented earlier in the section one might expect

that if the entries hi,i, j + 2,..., n are sufficiently small with respect to hi+l,i and
the scaling on the matrix, then eliminating hi,j, j + 2,..., n by Givens rotations
in rows and columns i, j, i j + 2,..., n will preserve the high relative accuracy of
the eigenvalues. This is indeed the case, and it can be seen by checking that in this
case will be small. It is natural to conjecture that in this situation tridiagonalizing
by Householder transformations, in finite precision arithmetic, will not cause a large
relative error in the eigenvalues. This is indeed the case and we now make this precise.

Suppose that H is a positive definite matrix with first column that is "nicely
scaled." That is

(5.3) H dld2 d * SH d
dD3r H3 D{

where H3 6 Jln-2, r nn-2 and I]rll < lal < 1, and furthermore, the main diagonal
of H is decreasingly ordered. One can show that for Householder transformation that
"tridiagonalizes" the first column of H

IISHII IISII <_ 8n2,

and consequently that the scaled backward error caused by applying it in finite preci-
sion arithmetic is O(e). The proof is a rather tedious computation based on the fact
that w v/z/IIz II, where

Z ( 0 )dld2(1 + V/+ IID3rll2/(ad2)2)
diD3r



FAST ACCURATE JACOBI METHODS 997

Of course, in order that the entire tridiagonalization procedure not cause a large
relative error in the eigenvalues of H it is necessary that at the ith stage the i column
of the current H is "nicely scaled." It is not clear how one can guarantee this a priori.
For example, if we take

I0 1 i0-I0 i0-I0

11 1 0 0
i0-I0 0 I0-I0 0
I0-I0 0 0 10-20

then tridiagonalizing the first column of H we have the matrix

10 1 0 0

H(1) 1 1 10-10 10-10

0 10-1 10-1 10-20

0 10-10 10-20 2 10-20

where the figures are correct to nine decimal places. The second column of this matrix
is no longer "nicely scaled" in the sense described above. So one would expect that
after we apply one more Householder transformation to zero the 4, 2 element then the
resulting matrix H(2) will have eigenvalues that will not be close to those of H in the
relative sense if we do the computations in finite precision arithmetic. This is indeed
the case using MATLAB (e -. 2 10-16). We computed/7/(1) and (2), the computed
values of H(1) and H(2). The relative difference between the eigenvalues of H and
/7/(1) was bounded 2 10-15 while relative difference between the smallest eigenvalue
of H and/7/(2) was about 5 x 10-8. One can check that A4(SHHSH) > .5 and so the
eigenvalues of H can be computed to high relative accuracy by Jacobi’s method.

Now consider J U the matrix of eigenvectors. This situation may arise when
we want to compute the eigendecomposition of H(t) for t k, 0, 1, 2,... where
H(t) and are such that U(t), the matrix of eigenvectors of H(t), is approximately
U(t + ). In this case we can compute the eigendecomposition of H(t + ) from that
of U(t)TH(t + )V(t), which is nearly diagonal. Again we need a bound on

From [14] we have

IUjl <_ nl/2(SHHSH)min V -’ V H

The same inequality with 1/2 replaced by 3/2 is given in [1, Prop. 6] or [4, Prop. 2.8].
Since the diagonal entries of SH are H1/2 it follows that

[U <_" al/2(SHHSH)[SHESI[ and

where E is the n n matrix of ones. Substituting these bounds on U and UT we have

IIlJlIJ-lSHll n2a(SHHSH),

which would imply that the scaled backward error in computing UTHU is about
K2(SHHSH)e. and therefore that the relative perturbation in the eigenvalues of the
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computed value of UTHU is bounded by approximately 2(SHHSH)e--possibly too
large to be a useful bound.

One can do better by considering forward error directly. Let A UTHU, the
diagonal matrix of eigenvalues of H. From [14] we have

JU] ,X-I/2(SHHSH)SHEA1/2.

Using this bound for the second inequality and Lemma 2.1 for the first inequality we
have

Ifl(UTHU) UTHUI <_ 4n21U]TIHIIUle
<_ 4n2AI(SHHSH)A1/2E3AI/2e.

So now, since SAASA I has all eigenvalues equal to one, Theorem 2.4 gives

IAi(fl(UTHU)) Ai(H)I IAi(fl(UTHU)) )i(UTHU)I <_ 4n4A-I(SHHSH)e.
Ai(H) Ai(UTHU)

The term n4 may be a worry but the conventional wisdom is that such factors of
n are rarely a problem in practice. Thus, using the matrix of eigenvectors as a
preconditioner does not cause a larger relative error in the eigenvalues than does
merely introducing a relative perturbation of size O(e) in each of the entries of H.
Notice that we have obtained a good bound using a forward error approach in this
instance. However, if we try to use a forward error approach to bound the relative
perturbation in the eigenvalues caused by Jacobi’s method, we would get a factor
)2(H1H1SH1) (H1 is the matrix obtained after one Jacobi rotation) rather that
-I(SHHSH). The reason that this is not a problem here is that H1 UTHU is
approximately diagonal and so when scaled has smallest eigenvalue one, which when
squared is again approximately one. (Whereas, after one Jacobi rotation the resulting
matrix is not nearly diagonal.)

In the case that U is merely an approximation to the matrix of eigenvectors of
H one can expect a similar result and, once one has computed H1 fl(UTHU), one
can determine, a posteriori, a bound on the relative error in the eigenvalues of
The bound is

IA(H1)- A(H)I < 4n2]]SUSH,]I2A-I(SHHISH)e.(5.4)
Ai(H)

Because U is an approximation to the matrix of eigenvalues of H we may expect that

I[SIUSH ][2 is not much larger than n2 and that An(SHH1SHI) is not much smaller
than one. The idea of using approximate eigenvectors was suggested in [16, footnote
8], but no error analysis was given there.

6. The eigenvalues of the Hilbert matrix. The Hilbert matrix of order n,
denoted Hn, is the n x n matrix with i,j entry (i+j-1) -1. It is a well-known example
of an ill-conditioned positive definite matrix. Since Hn is ill conditioned, Householder
tridiagonalization followed by the QR iteration cannot compute the smallest eigen-
values of Hn to much relative accuracy. The main diagonal entries of Hn differ by
a factor of at most n, so it follows that )I(SHnHnSH) >_ n-1)l(Hn) and thus
the bound on the .relative error in the eigenvalues computed by the two-sided Jacobi
method or Cholesky followed by one-sided Jacobi will not be much better than that
for tridiagonal QR. However, there is a closed form for the Cholesky factor of Hn, and
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the entries of this closed form can be evaluated to high relative accuracy. In particular
if we take Ln to be the lower triangular matrix with i, j entry

(6.1) (i+j-1)!(i-j)!

for >_ j, then one can check that LnLTn Hn. This fact, along with a wealth of
other results on the Hilbert matrix, is in [2]. This Cholesky factor is not what one
would get by doing Cholesky with complete pivoting, but nonetheless it is relatively
well conditioned after column scaling, so left-handed Jacobi will compute the singular
values of Ln to high relative accuracy. Right-handed Jacobi will also get them to
high relative accuracy provided that max0<i<M aI(GiRG) is not much larger than
ai(GRG), where G Go Ln.

Let us illustrate this with a numerical example in the case n 12. Numerical
calculation shows that a(Hi2) 2 x 10i6 and ai2(L12CLl.) 2 x 103. We used
MATHEMATICA to compute the eigenvalues of H12 to a relative accuracy of 10-16.
We then ued MATLAB (e 2 x 10-i6) to compute the eigenvalues of H12 by the
tridiagonalization followed by QR. The rounding errors in merely forming H12 will
cause a relative perturbation of order e in the entries of H12 and this can cause
a relative perturbation of order ea(Hi2) 4 in the smallest eigenvalue computed
by tridiagonalization followed by QR. In fact the largest relative error in a computed
eigenvalue of H12 using tridiagonalization and QR was 2 x 10-i. Applying left-handed
Jacobi to the closed form for the Cholesky factor and then squaring the computed
singular values (again on MATLAB) can be expected to give each of the eigenvalues
to a relative accuracy of about A21(L12CLI2) , 10-13. In fact, when we did the
calculation we got each of the eigenvalues to within 7 x 10-15, and four sweeps were
required for convergence. This extra accuracy is due both to the accuracy of one-sided
Jacobi in this situation and the fact that we can evaluate the entries of L12 to high
relative accuracy.

A positive definite Cauchy matrix is a matrix of the form [(ai + (j)-l]in,j=l
where the ci are distinct and positive. There is a similar closed form for the Cholesky
factor of such matrices [8] and so one can compute their eigenvalues to a high relative
accuracy by one-sided Jacobi applied to the Cholesky factor.

7. Hybrid Jacobi methods. The major drawback of Jacobi’s method is that it
is several times more expensive than tridiagonalization followed by QR.7 According to
[9, 8.5.8] two Jacobi sweeps without accumulating the transformations cost about the
same as computing all the eigenvectors and eigenvalues by tridiagonal QR. See Table
1 for a more detailed comparison,s Table 2 in [4] gives the number of sweeps of two-
sided Jacobi and right-handed Jacobi (applied to the Cholesky factor, computed with
complete pivoting, of the positive definite matrix) required for convergence. Right-
handed Jacobi always converged more quickly, and for 50 50 matrices it required

7 In this paper we use QR as the standard of comparison. However, divide-and-conquer has
recently been shown to be stable and faster than QR for computing the eigenvalues and eigenvectors
of a symmetric tridiagonal matrix [10]. So if we compare Jacobi against divide-and-conquer it will
appear to be even slower.

s The flop counts for tridiagonalization and QR are taken from [9, p. 424]. The remaining figures
are easily verified. The reason that one sided Jacobi requires more flops per sweep is that one must
evaluate the inner product of two columns to find the rotation angle to orthogonalize the columns.
One also needs to know the column lengths for this, but these can be computed once at the beginning
and then updated cheaply.
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TABLE 1
Approximate flop counts.

Tridiagonalization and QR
(.entire process)

One-sided Jacobi
(1 sweep)

Two-sided Jacobi
(1 sweep)

One-sided Jacobi
fast rotations

(1 sweep)
Two-sided Jacobi

fast rotations
(1 sweep)

Eigenvalues only

4n3/3

4n3

3n3

3n3

2n3

Eigenvalues and
Eigenvectors

9n3

7n3

6n3

5n3

4n3

between three and six sweeps depending on a(SHHSH) and I’(SH). Two-sided Jacobi
required between about six and seventeen sweeps.9 The disadvantage of right-handed
Jacobi applied to the Cholesky factor is that it does not compute the eigenvectors
to as high accuracy as two-sided Jacobi with accumulation of the transformations.
One can compute the eigenvectors to high relative accuracy by applying left-handed
Jacobi to the Cholesky factor and accumulating the transformations. However, this
is essentially the same as two-sided Jacobi and requires more or less the same number
of sweeps for convergence. Thus, on a serial machine there is a considerable difference
between the time required by Jacobi’s method and methods based on tridiagonaliza-
tion. If one wants the eigenvectors also to high accuracy and so does two sided Jacobi
accumulating the transformations then the difference is greater. This difference grows
as the size of the problems grows. Thus it would be useful to have hybrid algorithms
that are faster than Jacobi, but still have the same high relative accuracy. This is the
subject of this section.

It is not unreasonable to consider Jacobi’s method implemented on a serial ma-
chine since Jacobi’s method is the fastest way we know to compute the eigenvalues of
a dense positive definite matrix to full maximum relative accuracy. The only other
known ways are bisection and inverse iteration applied to the full matrix [4, 5] and
so cost O(n4) to compute all the eigenvalues and eigenvalues to maximal accuracy.

Typically, several Jacobi sweeps are required before Jacobi’s method starts to con-
verge quadratically. We describe two preconditioning strategies that may be expected
to hasten the onset .of quadratic convergence but that do not destroy the high relative
accuracy of Jacobi’s method. There are many other preconditioning ideas that can be
produced by combining the backward error bounds in this paper with the perturba-
tion bounds in [4], [14]. After any of these preconditionings Jacobi’s method should

9 The number of sweeps of two sided Jacobi required to diagonalize a matrix can be greatly
reduced by sorting the main diagonal entries once before starting Jacobi’s method. This has been
observed often. The cost of this sorting is essentially the same as the cost of the sorting associated
with Cholesky with complete pivoting. Demmel and Veselid did not sort the main diagonal prior to
running two sided Jacobi. Had they done so, two sided Jacobi typically would have required at one
or two sweeps more than one sided Jacobi on the Cholesky factor computed with complete pivoting
for the matrices generated by the method outlined in [4, 7].
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converge in one sweep, or, at most, two sweeps. These preconditioning strategies are
based on computing a singular value (or eigenvalue) decomposition of the matrix by
bidiagonalization (or tridiagonalization) and then using QR or some other algorithm
that is specially suited to bidiagonal (or tridiagonal) matrices.

One would like preconditioners that can be applied efficiently in parallel. Un-
fortunately that is not the case with the preconditioners that we present. Thus the
algorithms that we give in this section are useful only in the situation where one is
using a serial computer and wants to compute the eigenvalues to high relative accu-
racy. Nonetheless they do show that one can compute the eigendecomposition of a
positive definite matrix to full accuracy faster than by Jacobi’s method.

Our first preconditioner is for the situation where we want to compute the singular
values of G E Mn to maximal relative accuracy and aI(GC) <_ aI(RG).

ALGORITHM 7.1. Given a matrix G:
1. quickly compute U such that G uvT;

(by bidiagonalization and QR, for example)
2. set Go UTG;
3. apply left-handed Jacobi to Go to compute its singular values &, i 1,..., n.

The matrix U is the product of many orthogonal matrices U. There is no need
to explicitly form the product U in step 1 and then apply it to G inthe next step. We
could apply the U to another copy of G directly and thereby save a little computation.
In Algorithm 7.1 we separated the two steps for clarity.

The matrix U in step i need not be computed very accurately since it is only being
used as a preconditioner--it is however essential that it be close to orthogonal. In
[13] we discuss how one can compute approximate eigenvectors (that are orthogonal)
more quickly than by bidiagonalization.

When applied in serial this algorithm is, in some situations, faster than Jacobi ap-
plied in serial to compute the singular values of G because we need only bidiagonalize
G and then find its singular values accumulating only the transformations applied on
the left and finally do one sweep or, at most, two sweeps of Jacobi. When applied in
serial to compute only the singular values this algorithm does not compare favorably
in terms of efficiency with QR or other bidiagonalization approaches because one must
apply the U in addition to doing one or more Jacobi sweeps. So one would only use
it if one required the singular values to high relative accuracy on a serial computer.

Algorithm 7.1 computes singular values of G to a relative accuracy of ca (GCG)
(for a modest constant c). This can be seen by combining Theorems 3.1 and 3.3. In
Theorem 3.1 we assume that Q is orthogonal, but the U computed in step 1 may have
singular values differing from 1 by Cue, where cn is a modest function of n. This is
not a problem as it causes only a ce relative perturbation in the singular values of
UG.

Algorithm 7.1 can be modified in various ways to compute the eigenvalues of a
positive definite matrix. For example, we have the following algorithm.

ALGORITHM 7.2.
1. (a) Compute H- GGT (Cholesky).

(b) Quickly compute U such that H UAUT.
(by tridiagonalization and QR, for example).

2. Continue with Algorithm 7.1 starting at step 2.

One can check that this algorithm requires about 15-19n3 flops plus the cost of
a Cholesky factorization if we exploit the triangularity of G when applying UT to it.



1002 ROY MATHIAS

The higher figure occurs when two sweeps are required and is less likely than 15n3.
Thus when Cholesky followed by one-sided Jacobi (Algorithm 3.6) requires more than
4-5 iterations our algorithm will be faster. From Table 2 in [4] it can be seen that
Algorithm 3.6 is faster for n _< 16 while for n 50 they are about the same, depending
on the choice of (SH) and t(SHHSH). Thus one may expect that Algorithm 7.2
will be better for larger n.

Algorithm 7.1 does not compute the left singular vectors to componentwise high
accuracy. We know that we can compute the left singular vectors to high component-
wise accuracy by using left-handed Jacobi and accumulating the transformations,
but we would like to do it more quickly than by regular left-handed Jacobi. The
idea is that if one applies Jacobi accumulating transformations, then the resulting
orthogonal matrix gives the eigenvectors/singular vectors to a high componentwise
relative accuracy. (See [4, Theorem 3.4] for a proof.) One can show that the algorithm
below also has this property by using the idea at the end of 6.

ALGORITHM 7.3.
1. Quickly compute U such that G UVT

(by bidiagonalization and QR, for example).
2. SetGI=UTG.
3. Apply left-handed Jacobi to G1 accumulating the transformations in U.

One could use right-handed Jacobi (not accumulating transformations) to com-
pute U in step 1. The resulting algorithm would still be faster than left-handed Jacobi
with accumulation of transformations applied to G, and would be simple to implement
in parallel.

It has been observed that generally the number of sweeps required for the con-
vergence of right-handed Jacobi (for example) decreases with a(GCG), since this is
a measure of how far the columns of G are from orthogonMity. (Of course, one can
construct examples where aI(GCG) is arbitrarily large but Jacobi’s method con-
verges in one sweep.) The algorithms we presented in this section were designed to
accelerate convergence in a rather crude way--by merely computing a singular value
decomposition quickly and possibly inaccurately and then applying it to orthogonM-
ize the columns of the matrix. This is rather inefficient since it is possible to greatly
reduce a(GCv) by just considering a few columns of G or the singular vectors cor-
responding to a few of the smallest singular vectors of GCv. This is the subject of
further research [13].

8. Conclusions. We have shown that Jacobi’s method is guaranteed to compute
the eigenvalues of a positive definite matrix to the maximum possible relative accuracy.
This was shown by using the fact that for the singular value problem if we apply the
orthogonal matrices on one side and the scaling matrix on the other side then the
scaled condition number remains constant. This result also allowed us to show that
a rectangular matrix can be reduced to a square (upper triangular) matrix without
causing large relative errors in the singular values.

We have extended the error analysis of [4], [15] to show that high relative accuracy
of the eigenvalues is maintained provided that we use a transformation algorithm that
only uses orthogonal transformations for which a (as defined in (4.5) or (4.12) as
appropriate) is bounded by a modest constant. For Jacobi transformations a is never
larger than 1 so the results in [4], [15] are a special case of the results in 4. Our
generalization allows one to derive algorithms that when implemented in serial are
faster than Jacobi but more accurate than tridiagonalization-based methods.
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Our error analysis is at the matrix level so it is much simpler than that in [4], [15].
Also, it is easily generalized to give an improved understanding of the relative pertur-
bations caused by tridiagonalizing a positive definite matrix by Givens or Householder
transformations, especially for graded matrices. This technique may well be useful in
studying the scaled backward errors in transforming indefinite matrices to tridiagonal
form and nonsymmetric matrices to upper Hessenberg form.

Finally, we explicitly showed that if one computes the eigenvalues of a positive
definite matrix by computing the singular values of its Cholesky factor then most of
the error is due to the Cholesky factorization, and presented several instances where
this idea is useful.

Acknowledgments. M.-D. Choi alerted me to the closed form for the Cholesky
factor of the HAlbert matrix and Jim Demmel pointed out a serious error in my analysis
of Householder transformations.
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Abstract. It is a straightforward matrix calculation that if A is an eigenvalue of A,x an

associated eigenvector and a the set of positions in which x has nonzero entries, then is also
an eigenvalue of the submatrix of A that lies in the rows and columns indexed by a. A converse

is presented that is the most general possible in terms of the data we use. Several corollaries are

obtained by applying the main result to normal and Hermitian matrices. These corollaries lead to

results concerning the case of equality in the interlacing inequalities for Hermitian matrices, and to
the problem of the relationship among eigenvalue multiplicities in various principal submatrices.
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For a C_ N -_- {1, 2,..., n} and A E Mn(F), denote the principal submatrix
of A lying in the rows and columns indexed by a as A[a] and the complementary
principal submatrix, resulting from the deletion of the rows and columns a, as A(a).
It is a straightforward partitioned matrix calculation that if A is an eigenvalue of A, x
an associated eigenvector, and a the set of positions in which x has entries not equal
to zero, then A is also an eigenvalue of A[a]. Converses to this statement are known
in certain special situations. For example, several people have recently noted that if
A e Mn(C) is nermitian, [a n- 1, and A R is an eigenvalue of both A and
A[a], i.e., a case of equality in the interlacing inequalities, then there is an eigenvector
x (Xl,X2,... ,Xn)T of A associated with ), such that if i a then xi 0. For a
general matrix A Mn(F) and A an eigenvalue of A with geometric multiplicity k,
the rank of A- AI is n- k. Then for lal > n- k the rank of A[a]- hi is at most
n- k and A is also an eigenvalue of A[a]. Moreover, it is implicit in the proof of
Theorem 1.4.9 in [HJ] that there is an eigenvector of A associated with all of whose
components indexed by ac are zero. It is our purpose here to give a converse to the
opening statement that is the most general possible in terms of the data we use. A
variety of statements, including those just mentioned, may then be easily recognized
as special cases.

The general converse, as well as some special cases, will be valid over a general field
F. For x Fn and a C_ N, let x[a] be the subvector of x containing the components
of x indexed by a, and let x(a) be the complementary subvector. For A Mn(F), let
o(A) denote the set of all eigenvalues of A, some of which may lie only in an extension
field of F, and for A E a(A), denote the geometric multiplicity of A in A by g,(A).

The most optimistic converse to the opening statement would be that if A is an
eigenvalue of both A and A[a], then there is an eigenvector x (of A associated with
A) in which all components of x(a) are zero. However, this is not always the case.
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Consider
0 0
0 1

1 0
o o

1 0
0 0

0 1
1 0

and the set ( (1, 2). This matrix has zero as an eigenvalue, as does AIr,I, but any
eigenvector of A associated with zero is of the form [a 0 0 -a IT. The converse
cannot, therefore, be as general as one might hope.

Before stating a converse that is as general as it can be, several definitions are
needed. The main result will be stated in terms of the dimensions of special subspaces,
of the left and right eigenspaces of a general matrix A associated with A, in which the
vectors have support among the components indexed by . These special subspaces
(of the eigenspaces) are defined as follows:

LE(A) (y e FnIyTA- ),yT, y()
RE(A) (x e FnlAx Ax, x() 0}.

Similarly, let LN(A) and RN(A) denote the left and right nullspaces of A and define
the special subspaces (of the nullspaces) LN(A) LE(A) and RN(A) RE(A).
It is clear that the dimensions of all these spaces are permutation similarity invari-
ant, and this fact will be exploited repeatedly without further mention. If x is an
eigenvector of A associated with A, then x is an eigenvector of A- AI associated with
the eigenvalue zero. For this reason, results concerning the special nullspaces underlie
observations concerning the special eigenspaces.

For contrast to the main result, we note some preliminary facts that indicate
circumstances under which both the left and right special subspaces are nonempty. It
is first observed that for general matrices, when the rank deficiency (the rank deficiency
of a matrix A is n- rank (A) go(A)) of a principal submatrix is sufficiently large,
then the dimensions of the left and right nullspaces are positive. Suppose that the
submatrix A[] is such that its rank deficiency is greater than the number of rows
or columns deleted from A to obtain A[]. That is, for Icl n- k, g0(A[]) > k. In
this case, the rank of A[a] is n k g0(A[a]) and the rank of A can be at most 2k
more than the rank of A[a]. But then the rank deficiency of A is at least g0(A[a])- k.
Since this number is positive, A is rank deficient and the left and right nullspaces of
A are both nonempty. The lemma below states that, in fact, the left and right special
nullspaces of A are both nonempty.

LEMMA 0. Let A E Mn(F) and let ( c_ N be such that I1 n- k.
(i) /f g0(A[a]) > k, then dim(nNa(A)), dim(RNa(A)) >_ g0(A[a])- k.
(ii) Let 0 <_ go <_ min{k, lal} be given. Then there is a matrix B such that

g0(B[a]) go and dim(nN,(B)) dim(RN(B)) O.
Proof. We assume, without loss of generality, that a {1, 2,..., n- k}. Then A

has the partitioned form

A___[ All A121A21 A2e

in which All A[a]. In this case, if x is in RN(A) it is of the form x [] in which
c Fn-k. Similarly, any vector yT LN(A) is of the form yT [IT 0] in which

F-.
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Transformation of A by an appropriate equivalence will not affect

go(A), go(A[a]) go(All),

or the form of the nullvectors of A; so, choose S, T E Mn-k(F) nonsingular matrices
such that

0 I A21 A22 0

0 0

I0]= 0 I

X1 X2 A22

in which the upper left zero block of . is go(A)-by-go(Al), [Y1lye. -n12, and

[X1 X2] A21T. Because of the identity block in ., a vector x in RN,(fi) must be
of the form

0

In addition, x must be in the right nullspace of the submatrix X. Conversely, for
every vector in the right nullspace of X, there is a vector of the form indicated above
in RN,(ft) and dim(Rg()) dim(RN(X1)). Moreover, any vector in RN(.)
corresponds to a vector in RN,(A) of the form

T
0

0 0 0

in which 2 T [1] E Fn-k. Therefore,

dim(RN(A)) dim(RN()) dim(RN(X1)).

By similar arguments for the left nullspace

dim(LN(A)) dim(LNa(ft)) dim(LN(Y)).

A second equivalence will zero out X2 and Y2:

(2)

o z o o

0 -X2 I X1 X

o o
o z o

Xl 0 A22

Y o z -Y

A2 0 0 I

Note that this equivalence does not change the form of the nullvectors discussed above
and the dimensional equalities still hold.
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Now, suppose that go(All) > k, as assumed in part (i) of the lemma. Since
and X1 are go (A11 )-by-k and k-by-g0(A11 ), respectively,

dim(LN(Y1)), dim(RN(X1)) >_ go(All)- k.

But, dim(LN(A)) dim(LN(Y1)) and dim(RN(A)) dim(RN(X1)), so that part
(i) of the lemma is verified.

For part (ii) consider the matrix

(3) B [Bll
o o o o
0 In-k-go 0 0

B 1B.2 Igo 0 * 0
0 0 0

in which Bll is (n- k)-by-(n- k) and g0(Bll) g0. For this matrix, 0 _< go _< k, but
there are no nonzero vectors in either LN(B) or RN(B), and part (ii) of the lemma
is also proved. F1

Replacement of A with A- AI in Lemma 0 gives the following.
THEOREM 0. Let A E Mn(F) and let a C_ N be such that [a[ n- k.
(i) If gx(A[a]) > k, then dim(LE(A)), dim(RE(A)) >_ gx(A[a])- k.
(ii) Let 0 <_ g <_ min{k, lal} be given. Then there is a matrix B such that

g(B[a]) g and dim(LE(B)) dim(RE(B)) O.
Statement (i) in Theorem 0 is best possible when left and right eigenspaces are

considered separately. By considering the left and right eigenspaces simultaneously,
one arrives at a general converse to the opening statement. This main result will first
be stated in terms of the special nullspaces.

LEMMA 1. Let A Mn(F); then for a c_ N with [hi n- k,
(i) dim(LN(A)) + dim(RN(A)) >_ go(A) + go(AIR]) k.
(ii) Let g and g such that 0 <_ g <_ n,O <_ g <_ [hi, and [g- g[ <_ k be given.

Then, if g + g k > 0 there is a matrix B such that go(B) g, go(B[a]) g and

dim(LN(B)) + dim(RN(B)) go(B) + go(B[a]) k.

If g + g k <_ O, then there is a matrix B, with the given parameters, such that

dim(LNa(B)) dim(RNa(B)) O.

Proof. Begin the proof of Lemma 1 by performing the equivalences in (1) and (2)
as in the proof of Lemma 0. The matrices Y1 and X1 are of order go(All)-by-k and
k-by-go(All), respectively. By basic linear algebra dim(LN(Y1)) g0(A11) rank(Y1)
and dim(RN(X1)) g0(A11) rank(X1). Addition of these two equations results in

(4) dim(LN(Y1)) + dim(RN(X1))= 2g0(All)- rank (Y1)- rank (Xl).

The equivalence transformations performed on A in the proof of Lemma 0 do not
change the rank of A and, since

0
rank

Xl
Y1 ] > rank (Y1) + rank (Xl),A22 j
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we have

[orank (A)= rank ()= rank (All)+ rank
Xl 222

_> rank (All) %. rank (Y1) + rank (X1).

Combining (5) and (4) results in

(6)
dim(RN(X1)) + dim(LN(Y1)) >_ 2g0(Al)- rank (A)+ rank (AI)

go(A) + go(A) k.

From the discussion in the proof of Lemma 0 dim(LN(A)) dim(LN(Y)) and
dim(RN(A)) dim(RN(X1)) so that

dim(LN(A)) + dim(RN(A)) dim(LN(Y)) + dim(RN(X))
>_ go(A) + 9o(Ax) k,

and part (i) of Lemma 1 is proved.
There are two cases to consider in proving part (ii) of Lemma 1. To begin, consider

the case in which g + ga k <_ O. Note that for this to be the case, g must be less
than or equal to k. For the matrix B in (3), if g go, then go(B) g and the
submatrix B22 is (k g)-by-(k ga). This submatrix can be chosen so that B has
rank deficiency, g, from 0 to k- g. Thus, B has the appropriate parameters, and, as
mentioned in the proof of Lemma 0, B has dim(LN(B)) dim(RN(B)) O.

For the case in which g + g k > 0, consider

0 0

X 0

The submatrices Y1 and X1 can independently be chosen to have rank from zero to
min(ga,k), inclusive, which gives B a rank deficiency, g, from Ig- kl to g + k,
inclusive. Now, note that in (5) if A22 0, then

rank(A) rank (All)%- rank (Ya)+ rank (Xl)

and there is equality in (6). Because B is of this form, the equality holds and
dim(LN(B)) %. dim(RNa(B)) go(B) + go(B) -k, which proves the
lemma. [1

Our main result, the proof of which follows from Lemma 1 by translation, is then:
THEOREM 1. Let A e Mn(F); then for a C_ N with I1 n k
(i) dim(nE(d)) + dim(RE(A)) >_ g(A) + g(A[a]) k.
(ii) Let g and ga such that 0 <_ g <_ n,O <_ ga <_ I(1, and Ig gal <_ k be given.

Then, if g + g k > 0 there is a matrix B such that g(B) g, g(B[a]) g and

dim(LE(B)) + din(RE(B)) g(B) + g(B[a]) k.

If g + 9 k <_ 0, then there exists a matrix B, with the given parameters, such that

dim(LE(B)) dim(RE(B)) O.
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In each of Lemmas 0 and 1 and Theorems 0 and 1, statement (ii) indicates that
statement (i) is best possible. The restrictions regarding a only avoid logical impos-
sibilities and, otherwise, all situations not covered by statenent (i) are covered in
statement (ii).

At this point we make two general observations that are direct consequences of
Theorem 1.

(i) If A E Mn(F) and Icl n- 1, then A E a(A)Na(A[]) if and only if there
is either a left or a right eigenvector of A (associated with A) whose cc

component is zero.
(ii) If A e Mn(F), e a(A) and C_ N with Icl n- k are such that

dim(nE(A)) dim(RE(A)), then each of

dim(LE(A)) dim(RE(A)) > g(A) + g(A[a]) k
2

In this event, if g(A)+ g(A[a]) > k, then both dim(LE(A)) and
dim(RE(A)) are positive.

Note that statement (i) does not follow from Theorem 0 and that statement (i) cannot
be improved, as it may be that there is not both a left special eigenvector and a right
special eigenvector. For example,

1 -1 0]A= -1 1 0
0 -1 1

does not have the property assumed in (ii) for 0 a(A), and go(A) 1 g0(A[{ 1, 2}]).
Thus, as every right null vector of A is a multiple of (1, 1, 1)T, A has no special right
eigenvector associated with 0, while it, of course, has a left such eigenvector, e.g.,
(1, 1, 0), because of statement (i). Similarly, for many values of g(A) and g(A[a]),
the conclusion of (ii) does not follow from Theorem 0, and, for further values, the
estimates that follow from Theorem 0 are weaker. For example, the statement about
Hermitian matrices in the opening paragraph does not follow from Theorem 0.

We may now give several specific corollaries to Theorem 1. First, note that if
A Mn(C) is normal, then, as UAU* D, with U unitary and D diagonal, any left
eigenspace of A is the conjugate transpose of a right eigenspace. Thus, the hypothesis
of (ii) above is satisfied for each A and c. From this observation we can conclude the
following.

COROLLARY 1. Let A Mn(C) be a normal matrix. For a C_____ N with ial n- k

dlm(LE(A)) dim(RE(A)) > g(A) + g(A[a]) k

Of course Hermitian matrices are normal so the following is a special case of Corol-
lary 1.

COROLLARY 2. Let A e Mn(C) be Hermitian. For C_ N with I1 n- k

dim(LE(A)) dim(RE(A)) > g(A) + g(A[a]) k
2

In the opening paragraph we mentioned that if A is Hermitian, A a(A)o(A[a]),
and lal n- 1, then there is an eigenvector x (of A associated with A) in which
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x(c) 0. But then g(A),g(A[a]) _> 1 which results in a positive right-hand side in
Corollary 2. In this case, both the left and the right special eigenspaces are nonempty,
which proves the following corollary.

COROLLARY 3. Let A E Mn(C) be Hermitian, let c c N be such that I1 n-1,
and let i R be an eigenvalue of A. Then, there is an eigenvector x of A associated
with such that x(() 0 if and only if e a(A[c]).
Thus, the general scheme adopted here provides an algebraic proof to the statement
in the opening paragraph.

In the case that A is Hermitian, the interlacing inequalities [HJ, Thm. 4.3.8] hold
and, since any principal submatrix of an Hermitian matrix is Hermitian, Corollary 3
may be applied at each "level" of interlacing. Sequential application of Corollary 3 will
lead to the corollaries below, but first several definitions are needed. For the following
discussion, let A Mn(C) be Hermitian. Suppose A is an eigenvalue of A, then A
is said to have interlacing equality at of breadth k if there are exactly k distinct
index sets al, o2,..., OZk

_
N in which lail n- 1 and A e a(A[ai]), 1, 2,..., k.

If A is such that g(A) 1, then the breadth of interlacing equality at A is just the
number of zero components in an eigenvector (because of Corollary 3). The matrix A
is said to have interlacing equality at A of depth k if/k G a(A[j]) for some index sets
/0, B1,... ,Bk C_ N such that/y+l C lj,j 0,1,... ,k- 1, Iijl n-j,j 0,1,... ,k
and k is a maximum. If, in addition, g(A[/y+l]) _> g(A[y]),j 0, 1,... ,k- 1, then
A is said to have interlacing equality at ) ofrestricted depth k. Here, k is the number
of principal submatrices in the nested sequence for which the geometric multiplicity
of/X is nondecreasing, so that the depth of interlacing equality may be greater than
the restricted depth. The following corollaries relate these concepts.

COROLLARY 4. Let A Mn(C) be Hermitian and be such that g(A) 1. If A
has interlacing equality at ) of breadth k, then A has interlacing equality at A of depth
at least k.

Proof. If A has interlacing equality at A of breadth k, then there are k distinct
principal submatrices d[ai] such that ,k e a(A[a]) and la[ n- 1. In this case,
g(A[ai]) _> 1 and, by assumption, g(A) 1. Thus, by Corollary 3, for each c
there is an eigenvector y of A associated with A, such that y(ai) 0. However, since
g(A) 1, the (right) eigenspace of A associated with A is one dimensional, so that
each of the y’s may be taken to be the same, x. It follows that x(cl N N ak) 0.
By the partitioned calculation mentioned in the opening paragraph /0 N, and

al .-. a, i 1,... ,k, exhibit that A has interlacing equality at A of depth
at least k. [:]

Corollary 4 is stated in the Hermitian case for parallelism to the corollaries that
follow. However, it should be noted that the argument is equally valid in the normal
case (using Corollary 1 in place of Corollary 3 with an obvious generalization of the
definitions), so that Corollary 4 may be generalized by replacing "Hermitian" in the
hypothesis with "normal." On the other hand, Corollary 4 is not valid for general
matrices, as exhibited by the example

1 1 1]1 1 1
0 1 1

in which 0 is an eigenvalue of breadth 2, while its depth is only 1.
The converse to Corollary 4 does not hold. A counterexample is given by the
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matrix
0 0 1

110 0 1 1
1 1 1 1
1 1 1 0

which has interlacing equality at 0 of depth 3 (A({4}), A({3, 4}), A({2, 3, 4})), but
interlacing equality at 0 of breadth only 2 (A({3}),A({4})). However, the geometric
multiplicities of the principal submatrices that yield interlacing equality at 0 of depth
3 are

g0(A({4})) 1,

g0(A({3, 4})) 2,

g0(A({2, 3, 4})) 1.

In fact, the restricted depth of interlacing equality at 0 is only 2 and this is exactly
the breadth of interlacing equality at 0. As indicated in the following corollary, the
breadth of interlacing equality at A must be at least that of the restricted depth.

COROLLARY 5. Let A E Mn(C) be Hermitian and suppose a(A). If A has
interlacing equality at of restricted depth k, then A has interlacing equality at of
breadth at least k.

Proof. If g(A) > 1, the breadth at A is n (see discussion later, if necessary)
and the conclusion is automatically valid. Thus, we suppose g(A) 1. If A has
interlacing equMity at A of restricted depth k, then there is some nested sequence of
k + 1 principal submatrices A[/], such that I/1 n- i, e a(A[/]), i 0, 1,..., k,
and g(A[/i+l]) >_ g),(A[i]),i 0,1,...,k- 1. Assume, without loss of generality,
that the rows and columns of A[/i] are numbered 1 to n- i. Note that n- i is the
index of the row and column deleted from A[/] to obtain A[/i+l]. By Corollary 2

dimtL+1(AIr,l)) dimtRE,+l (AIr,l)) >
g(A[/]) + g(A[i+l]) 1

2
1

> (A[Z])

since g),(A[i]) <_ g(A[/i+l]). Both dimensions must be integral; so, the dimensions
of the special eigenspaces must both be at least g (A[/i]). Then, every (left and right)
eigenvector of A[/] associated with A is in the special (left and right) eigenspace and,
thus, component n of each of these vectors is 0.

Let x be an eigenvector (essentially unique) of A associated with A. Since

g(A) gx(A[0])= 1 and gx(A[l])>_ 1,

by Corollary 3, x(/) 0. By the preceding paragraph, if 1, then every eigenvector
of A[] associated with A, including X[l], has a zero in the n- 1 component. Thus,

0.
Continuing in this manner, for each 0, 1,..., k- 1, x[/] is an eigenvector of

A[] associated with A with a zero in the n- component so that

X(I n/. n... r"l/+1) x(/+:l.) O.

Then, x(k) 0 and for each j k,x({j}) is an eigenvector of A({j}) associated
with A. Thus, aj N- {n + 1- j},j 1,...,k, exhibits that A has interlacing
equality at of breadth at least k. 0



1012 CHARLES It. JOHNSON AND BRENDA K. KROSCHEL

Note that the breadth of interlacing equality can be strictly greater than the
restricted depth of interlacing equality. For example, the matrix

[ ]0 0 1
0 0 0
1 0 0

has interlacing equality at 0 of restricted depth 1, but the breadth of interlacing
equality at 0 is 2.

If the matrix A is such that g(A[a]) _< 1 for every index set c c_ N, and A
has interlacing equality at A of depth k, then A also has interlacing equality at A of
restricted depth k. In this case, by Corollary 5, A has interlacing equality at A of
breadth at least k. Combining Corollaries 4 and 5 then yields the following.

COROLLARY 6. Let A E Mn(C) be Hermitian and suppose for every index set
c C_ N that g(A[]) <_ 1 with g(A) 1. Then, A has interlacing equality at of
breadth k if and only if A has interlacing equality at ) of depth k.

Let A Mn(C) be Hermitian. Due to classical interlacing, when g(A) > 1,
q(A[(]) for any c C_ N such that I1- n- 1. In addition, when g(A) > 1 there is
for each such an eigenvector, z, of A associated with such that z() 0. This
may be seen in an elementary way by noting that, given any two linearly independent
eigenvectors x, y in the eigenspace, there is a linear combination with a zero in any
specified position. Such an A has interlacing equality at of breadth n, but may have
depth at A as little as 1. For example, the matrix

1 1 1]1 1 1
1 1 1

has interlacing equality at 0 of breadth 3, while the depth at 0 is only 1. Thus, the
assumption in Corollaries 4 and 6 that g(A) 1 is necessary.
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Abstract. The following analogue of the converse of the Cauchy Interlacing Theorem is proved:

"I , > _..._1 .if A1,A2 ,An,l,2,...,n-r are 2n--r real numbers satisfying -> >,n’ -_L > > and An} and
2 ,-1" > --p > ’ 1 <_ <_ n-r, and if the sets {A1,A2,...,
{l,2,...,n--r} have the same number of zeros, then there exists an n x n hermitian matrix
H with an r x r nonsingular principal submatrix A such that the spectra of H and H/A (the
Schur complement of H with respect to A) are {A1, A2,..., An} and {1, 2,.-., n--r}, respectively.
Here, the reciprocal of zero is defined to be zero. This result is then used to prove an analogue for
semidefinite matrices.

Key words, eigenvalues, hermitian, inertia, interlacing, principal submatrix, Schur comple-
ment, semidefinite
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1. Introduction. The Cauchy interlacing theorem was first proved in [2] for real
symmetric matrices. The theorem states that the eigenvMues of a hermitian matrix are
interlaced by the eigenvalues of any principal submatrix, i.e., any submatrix obtained
from the original matrix by deleting the same rows and columns; it is usuMly proved
using the Courant-Fischer minimax characterization of the eigenvalues of a hermitian
matrix. The precise statement of the Cauchy interlacing theorem follows.

THEOREM 1. Let H be an n x n hermitian matrix with partitioned form

where A has order r. Order the eigenvalues of H and A so that AI(H) >_ A2(H) >__
)n(H) and I(A)

_
)2(A)_...

_
r(A). Then, i(H) >_ i(A) >_ )+n-r(H),

i 1,2,...,r.
The converse was proved by Fan and Pall [4].
This classical separation theorem was generalized by Kantorovic [6], Wielandt

[10], and Bauer [1] in developing results important to the rates of convergence of
certain iterative methods of solving systems of equations, and also in obtaining error
bounds in the use of direct methods.

In [8], an analogue of the Cauchy interlacing theorem was proven. More specifi-
cally, it was shown that if H is an n x n hermitian matrix and A is an r x r nonsingular
principal submatrix, then the eigenvalues of H+, the Moore-Penrose inverse of H, are
interlaced by the eigenvalues of (H/A)+, i.e., (H+) >_ ((H/A)+) >_ +(H+),
1 _< i _< n- r. Here, H/A denotes the Schur complement of H with respect to A [5],
and. the reciprocal of zero is defined to be zero. In a private communication [9], T. Y.
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Tam proposed the converse of this analogue. That is, given that > >_ >_ x--:,
_k > 1 > > and > > 1 < i < n-r, does there exist an

2 - - --+’
n n hermitian matrix H with an r r nonsingular principal submatrix A such
that the spectra of S and H/A are (1,2,... ,n} and (#1,#2,..., #-r}, respec-
tively? Observe that by the well-known Inertia Theorem [5], the sets
and (#1, #2,..., #n-r} must have the same number of zeros. In this paper, we use a
constructive process to answer Tam’s question in the affirmative.

In [8], it was also shown that ifH is an n n hermitian semidefinite matrix and A is
an r r nonsingular principal submatrix of H, then the eigenvalues of H are interlaced
by the eigenvalues of H/A, i.e., i(U) >_ )i(U/A) >_ i+r(U), i 1, 2,..., n- r. We
show that the converse of this result holds also.

Schur complements of positive definite matrices have been used to provide a priori
estimates for regular solutions of the n-metaharmonic differential equation in [7].

2. Notation. We use the following notation.

(1, ,’2,..., )n--1, n),
# (#, 2,...,-,),
#in (#1,#2,...,#i-1,#i+1,...,#n-1), 1,2,...,n-- 1, and
#ijn (#1,#2,...,#i-1,#i+1,...,#j-1,#+1,...,#,-1), 1 <_ i,j <_ n- 1.
Also, let E](xl,..., xk) denote the jth elementary symmetric function of k vari-

ables, where 1 _< j _< k. Define Eko(Xl,..., xk) 1, k >_ 1 for convenience.
For a complex matrix A, let AT denote the transpose of A, and let A* denote the

conjugate transpose of A. If A is square, let IAI denote the determinant of A, and let
M[il, i2,..., ik] denote the .principal minor of A obtained by selecting the rows and
columns of A indexed by the strictly increasing sequence il, i2,..., ik.

3. Main results. Our main result is the following theorem.
THEOREM 2. Suppose 1, 2, An and #1, #2,..., #n-r are 2n-r real numbers

_
>... > 1 1__. >

__
>... > Here, the reciprocal ofsatisfying >- ’ 1 . -"zero is defined to be zero. Then there exists an n n hermitian matrix H with an

r r nonsingular principal submatrix A such that the spectra of H and H/A are

{1, 2,..., An} and {#1, #2,..., #N-r}, respectively, if and only if the following are
true.

(i) The sets {AI,A2,...,An} and {#1,#2,...,#n-r} have the same number of
zeros, and

> > 1 l<i<n-r.(ii) _, -777+’
In fact, if (i) and (ii) hold, there is a real symmetric matrix H with an r r

nonsingular submatrix A such that the spectra of H and H/A are {A1, A2,..., An}
and {/zl, #2,..., #n-r}, respectively.

The theorem allows us to obtain the following analogous result for semidefinite
matrices.

COROLLARY. Suppose A1, A2,..., An and #1, #2,..., #n-r are 2n-r real numbers
satisfying (a) ,1

_
,2 _’’"

_
An

_
0, 1

_
2 _’’"

_
#n--r

_
0 or (b) 0 _> )1

_
2 >_"" >_ An, 0 >_ #1 >_ #2 >_"" >_ #n-r. Then there exists an n n hermitian

semidefinite matrix H with an r r nonsingular principal submatrix A such that the
spectra ofH and H/A are (1, A2,..., An} and (#1, #2,..., #n-r}, respectively, if and
only if the following are trge.

(i) The sets (1,2,... ,An} and (l,2,...,n-r} have the same number of
zeros, and

(ii) Ai>_#i_>Ai+r, l_<i<_n-r.
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In fact, if (i) and (ii) hold, there is a real symmetric semidefinite matrix H with an
r r nonsingular submatrix A such that the spectra ofH and H/A are {1, 2,..., An}
and {#1, #2,..., ttn-r}, respectively.

To facilitate the proof of both Theorem 2 and the corollary, we first prove several
lemmas.

LEMMA 1. Let A diag(ttl, #2,...,tzk) and C [cl, C2,...,Ck]. Then,

IA + CTCI j -- j c

Proof. Since

CT I CT A 0 I ATCTC

IA + CTC[ -1 C
CT h

h CT
C -1

#1 0 0 cl

0 #k-1 0 Ck-1
0 0 #k Ck
cl ck-1 Ck --1

h CT ]whereD- C -1
If some #j equals zero, say # 0, then expand successively by the ith column of

D and the ith row of the resulting determinant to obtain

IA + CTCI =-IDI ( J
and the theorem holds.

So, assume no #j equals zero. Then, by Schur’s formula [3],

IA + CTCI -IDI -IAI ID/AI ( (-
"= i=1 \l<_j<_k

i=1 ii

which completes the proof.
LEMMA 2. Let

bn-
bl bn-

a
b2bn-1

a

b2_1
iZn-1 + --j-
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where a #n is nonzero. Let Mj denote the sum of jth order principal minors of H.
Then,

Mj E2(#) + E2_-?(.in)b, j 1, 2,..., n 1, and
a

i-1

Mn E,(#) #12... #n-l#n a#1#2...

Proof. We prove the formula for Mn first, because the same argument is used to
prove the formula for the other Mk.

Observe that

1BTBH= BT A+Z
where A diag(#l, #2,. , #n-l) and U [bl, b2,..., bn-1]. We can use the following
well-known identity:

-al BT I BT .][1BTB 0A+S

Therefore, Mn IHI al2... --1.

1BTB 1BTBI 0 A+g E
a 0

For any jth order principal minor containing the first row and column of H, say
M[1, il + 1,..., ij-1 + 1], where 1 _< il < i2 < < ij-1

_
n- 1, we can use the same

argument as for Mn to show that it equals
For any jth order principal minor that does not contain the first row and column

of H, say M[il + 1, i2 + 1,..., ij + 1], where 1 _< il < i2 < < i <_ n- 1, we have

Mill + 1,i2 + 1,...,i + 1]

If we let ci bi/x/, where y is the principal square root of a, k 1,..., j, then
Lemma 1 provides

I a
M[il + 1, i2 q- 1,..., ij + 1] Pit +- pi b?k"

Taking the summation of all jth order principal minors of H, we have

1
Mj E2(,) + E2:?(.in)bi, j 1, 2,..., n- 1.

a

LEMMA 3 Let
E-2(TM

Er-2 (#TM

S--- E-2(#TM)

E-2(2n) E-2(3n) E-2(#(n-1)n)

Ep-2(#2n) Ep-2(#an) E-2(#(n-1)n)

E-2(2n) E-2(3n) E-2((n-1)n)

n--2 n--2 (3nE’_2 (#2n) En_2
n-2



INTERLACING THEOREM 1017

Then,

where S(i;j) denotes the submatrix obtained from S by deleting the ith row and the
jth column.

Proof. To prove the first identity, observe that the determinant on the right is
actually a homogeneous polynomial in the variables #1, #2,..., #n-1. Its total degree
is0+l+2+...+(n-2)=.(n-2.)(n’!) If/i=#j, thenforanyi j, l<i<j<n-12
we see that the ith column and jth column are identical. This implies that
is a factor of the polynomial. There are (nl) (n--’2)(n-1)2 such factors. Hence,
the determinant is a scalar multiple of 1-II<i<j<n-1 (#i #). Since the coefficient of
n--2 n--3 n--4 2

#1 #2 t3 #n_3#n_2 in the determinant is 1, the scalar must be 1. Therefore,
the first identity holds.

To prove the second identity, first note that an argument identical to that for the
first one yields

iyk,jk

H < k <
l<_i<j<_n--1

So assume 1 <_ t < n- 1 and observe that for any j, j - k, 1 <_ j <_ n- 1, we have

and
n- En-3E$ 2 (#jn) Enr-3(#kjn) tk r-1 (#kin), where 1 _< r < n 2.

Start with the last row and proceed upward, using the above observation. Factor
out #k and then subtract the resulting row from the one above it, ending when #k is
factored from the tth row. We obtain

Is(t; k)l

E-2(#ln) E’-2(#(k-1)n) E’-2(#(k+l)n) E’-2((n-1)n)

E_-22(#ln) E’_-22(#.(k-1)n) E’_(#(k+l)n) E’_-22(#(n-1)n)

E-2(ln) E-2(#(k-1)n) E-2(#(+l)n)... E,-2(#(n-)n)

En_2 (#(k- (#(k+l)n) (#(n-En_2 En-2 En_2
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n-l-twhich is equal to #k times

E-2(#ln)... E-2(#(k-1)n) E-2(#(k+l)n E-2(iz(n-1)n)

E-2(#ln) E-2(#(k-1)n) E-2(I.t(k+l)n) E-2(#(n-1)n)

E_-(#ln) Efl_22(#(}-l)n) E22(#(+1)kn) Eff_22(#(n-1)n)

E_-3(#ln) E_-3(#(_l)n) Et_ln-3(,(k/l)kn) E_-3(#(n-1))

En_3n-3(lkn E.n_3n-3 ((k- )kn) En_3n-3(#(k+l)kn En_3n-3 (#(n- 1)kn)

The determinant on the right is again a homogeneous polynomial in the variables #1,

#2,..., #n-1. By a similar argument to that given in the first part, it can be shown
that this determinant equals to

ik,jyk

I-[
l_i<j_n--1

Thus,
iyk,jk

Is( ; k)l
l_i<j_n--1

and the second identity holds.
In the next lemma, we prove the theorem for r 1.
LEMMA 4. Ifl, 2,... )n and #1, #2, #n-1 are 2n-1 real numbers satisfying
> > > >... > > > and if the sets{l,2, ,n} and),-7 u u2

_
Z-,

{#1, #2,..., #n-1} have the same number of zeros, then there exists a real symmetric
matrix

H=B D’

such that its spectrum is {A1, A.,..., An} and the spectrum of its Schur complement
BTB is {#i, #2, #n-i}.H/a D - ...,

Proof. We first prove the lemma for the case where A1, A2,..., An, #1, #2,..., #n-
:"’ #n and letare nonzero and interlacing inequalities are strict. Let a ,...,_

bi, i 1,..., n- 1, be n- 1 unknowns. Furthermore, let

where D A + 1BTB, A diag(#l, #2, n-1) and B [bl, b2, bn-1]. It is

apparent that the Schur complement H/a D- BTB A has spectrum {#1,#2,
.., tin-l}. Therefore, it suffices to find a real solution for the hi, i 1,..., n- 1,

such that the spectrum of H is (A1,A2,... ,An}.
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The characteristic polynomial of H is

An M1An-1 + M2An-2 /... + (-1)n-lMn-1/ + (-1)nMn,

where My is the sum of jth order principal minors of H. From Lemma 2,

1
n--1

My E(it) + EE:2 (itin)b/2, j 1, 2,..., n 1, and
a

i=1

Mn IHI aitit2 it,-.

Assuming that {A, A2,..., An} is the set of roots of the polynomial, we have the
system of equations Mj E(A), 1 <_ j <_ n. The last equation Mn Enn(A) does not
involve b. Actually, it was used to determine a at the beginning of the proof. The
other n- 1 equations give a linear system of n- 1 unknowns

52
x= -! i=1 n-1

a

Rewriting the system in matrix form, we have

E-2(itn) E-2(it2n) E-2(it(n-)n")

in n--2 n--2 1)n)--2 ,it En-2 (it2n) En_2 (it(n--

Xl

X2

X3

Xn--1. I(A) E_I (it)

We use Cramer’s rule to solve the system. By the first identity of Lemma 3,

l<i<j<_n--1

Furthermore, applying the second identity of Lemma 3 and expanding along the kth
column, we have

n-1

zXe (-1)t+ (E? (A) E?(t))lS(t; k)l
t=l

(--1)t+k(Er()t:l Er(it)) [it-l-t l-I
1Si<j<_n-1
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(--1)k kk (--1 (E A)#k E/(#))/zk H (#i- #J)
[.t=0 <_i<j<_n--1

(_i)k
1

(#k %s)- H(#k #.) H
s:l l<_i<j<_n-i

(1)=(--1)/ E H(#k-A) II
l<_i<j<_n--1

12... and E() E(#)In step 4 observe that Enn(A) Enn(/z) (since n ,,..._
1.

Therefore, the system has the unique solution:

Xk
2.b__=
a A"

This implies

a[(-1)k HsL1 (#k )s)]

(-1)a#k[YIL1A][1-ILI( )]

AIA2...AThe last equality follows from the fact that a
vv2...v-

According to the given interlacing inequalities, there are n- k negative factors
in the product in the numerator and n- 2 negative factors in the two products in the
denominator. In all, there are (n- k) + (n- 2) + k 2n- 2 negative factors. Therefore,
the expression is positive and we can find a real solution for b, k 1,..., n- 1.

For the general case, renumber the sequences A (A1, A2,..., An) and # (#1, #2,

#n-r) so that

1 1 1 1 1 1 1 1 1
>> >>... > > ands=

m + 1 <_ j <_ n. By assumption, As # 0 and #i_ # 0 for 1 <_ _< m.
By the first part of the proof, there is a real symmetric matrix

aHI-- B1T D
such that the spectrum of H1 is {A,A2,...,Am} and the spectrum of H1/a- D1
BTB is {#1,#2,...,#m-1}. Now let

H= H1 0 BT D1 0 BT D0 D2 0 0 D2
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where D2 diag(Am+i, Am+2,...,

D1 0 ]0 D2

and B [B10]. The spectrum of H is {A1, A2,..., An} while the spectrum of

BBIH/a 0

is {#l, #2,.. #n-1 } which completes the proof. []

Example. The following example serves to illustrate Lemma 4. Suppose we have
_1>__1_1 _1the interlacing real numbers - . 5 > - > 4 0 >

__I
4--- > =-i > =-2

5 A
__

I i I IRenumber the A’s and ’s so that =1> > - >-- =-4 >
1 0, and -2. Then A 1, 2 4, 3 --1,--1, - a X- - X-

.4.(-1) Also A4=3= 1, A5 =4=0, and1=2, 2 =-4, ands3 =a= 2.(-4) 5"
1

rthermore, M1 E( 2, 2 -4, a )+ 2(b + b) - + 2b + 2b,
M2 E](I 2,2 -4, 3 )+ 2(E(2 -4)b +E( 2)b) -9- 8b +
4b, E(A)= E(A 1,2 4, A3 -1)= 4, and El(A)= -1.

and b 5Solving the system M1 E(A) and M2 E(A), we obtain b
So we can choose b and b2 Then, let2

a B1 ]THI= B AI+B1B1

where A1 diag(2,-4) and B1 [1/2 -2]. Finally, let

H=[HIO D201=
1 1 0 0 02 2 2
1 5 vff5 0 0 02 2 2

1 0 0 02 2
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 -where D2 diag(1,0,-1/2). H is the desired real symmetric matrix such that the

1-4} respectively.-1} and {210,- 5spectra of H and H/a are {4, 1, 1, 0,-5,
Remark. The proof of Lemma 4 is the essence of the the proof of the theorem

since we will show that we can insert r- 1 intermediate sequences from # to A such
that (1) each intermediate sequence is interlaced by the previous one in the manner
of Lemma 4 and (2) the last inserted sequence interlaces A in the manner of Lemma
4.

Constructively, we could then apply Lemma 4 r times in order to obtain the
desired real symmetric matrix H.

Proof of Theorem 2. Suppose H is an n x n hermitian matrix with an r x r nonsin-
gular principal submatrix A such that the spectra of H and H/A are {A1, A2,..., An}
and {#l,#2,.-.,#n-r}, respectively. Then (i) follows from the well-known Inertia
Theorem [5] and (ii) was proved in [8].
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For the converse, suppose (i) and (ii) hold. If r 1, we are done by Lemma
4. Inductively, assume the theorem holds for all positive integers less than r where
2<r<n-1.

Insert an intermediate sequence , (’1, 2,..., %-r+1) as follows. First select

1 such that > ! > max{1 Observe
-71- -,=} Then > > and >

1 1 1"
1 } > max{ } for s 2,3,...,n-r. So for s 2,3,...,n-that min{,- ,, +_

} > > max{ } Then > >r, select % such that min{,,_ ,,+_
and > > 2 < s < n- r Finally, select n-r+l such thatr+s--1 s--1 s s

min{ }> > Then > > and >
In summary, the intermediate sequence satisfies

_
> and > > l<i<n-r+l
Let A0 diag(,..., n-r), h diag(7,..., %-r+1), and A2 diag(A,..., A).

By the induction sumption, there are real symmetric matrices

el-- B1T
B1 ] UTA U1 andAo + BTA-IB1

A2 B2 ] U’A2U2C2 BT A1 - BTA B2

where A1 is nonsingular of order 1, where A2 is nonsingular of order r- 1, B1 is
1 x (n- r), B2 is (r- 1) x (n- r + 1), U1 is orthogonal of order n- r + 1, and U2 is
orthogonal of order n. Note that

I-[o
I-[o
I-[o

VlC1VT -- B2TA B2

U1 UTBT2 CI+UTBAIB2U1 0

A2 B21O ] B2T1 A1 + B2T1A B21U1 B2 BT + BT22A1B21

u1 o

O

B22
B1 +BA1B22

Ao + BT AIB1 + B2A1B22

where B2U1 --[B21
Thus,

B22] is partitioned conformally with

H= O UT O U1

is a real symmetric matrix with an r x r nonsingular principal submatrix

A2A= B2T1 ]A1 + BAlB21
H/A Ao since H/A (H/A2)/(A/A2) (see [3]). Therefore, the spectra of H and
H/A are {A1, A2,..., An} and {ttl, #2,..., ttn-r}, respectively, which completes the
proof. [:l

Proof of Corollary. Let zkl, A2,. , An and #, #2,..., #n-1 be 2n r nonzero real
numbers satisfying (a) or (b) and let a An-+l, 1 _< i _< n, and
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1 <_ i _< n- r. That is, c and/ are the sequences A and #, respectively, in reverse
order. Then 1 > 1 >... > __1 and > >... > Z_

Assume H is a hermitian semidefinite matrix with r x r nonsingular principal sub-
matrix A and the spectra of U and H/A are (A, A2,..., An} and {, 2,..., n-r},
respectively. By the theorem, (i) holds and >_ >_ +, 1 _< _< n- r. The latter
inequality is equivalent to i+ i i, 1 i n- r, which in turn is equivalent
to (ii).

Conversely suppose () and (fi) o1. () mples ,,._ , 1

1 < i < n- r. The latter inequalitiesor equivalently, a + + -+’
> > l<i<n-r.are equivalent to a a+,

Applying the theorem, there is a hermitian (in fact, real symmetric) semidefinite
matrix H with an r x r nonsingular principal submatrix A such that the spectra of H
and H/A are {A1, A2,..., An} and {, 2,..., n-r}, respectively.
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ORDERING GIVENS ROTATIONS FOR
SPARSE QR FACTORIZATION *

M. I. GILLESPIE AND D. D. OLESKY

Abstract. The QR factorization of a large, sparse matrix A is frequently computed using
Givens rotations. The precise order in which the rotations are applied can affect the amount of stor-
age required. We present an ordering for the Givens rotations that, when A has the Hall property,
is optimal with regard to storage for Q (a so-called "tight" ordering) and that preserves sparsity by
restricting fill to those locations in R that are necessarily nonzero. This ordering is of particular inter-
est when A does not have the strong Hall property and is not permuted into block upper trapezoidal
form.

We describe a bipartite graph model of sparse matrix structures and summarize the character-
ization of the structures of the factors Q and R. We define the product of structures of matrices,
determine the product of the structures of a sequence of Givens rotations, and specify a tight ordering
for these transformations.

Key words. QR factorization, sparse matrix, Givens rotation, tight ordering, bipartite graph

AMS subject classifications. 65F25, 65F50, 68R10

1. Introduction. Let A be a real m n matrix, where m _> n. The QR factor-
ization of A is defined either by A QR, where Q is an m n matrix with orthonormal
columns and R is an n n upper triangular matrix, or by A (/, where

( [Q Q:]

is an orthogonal m rn matrix, Q is m n, Q2 is m (m- n), and

is an m n upper trapezoidal matrix with R upper triangular. It is well known that
such a factorization exists for every real matrix A and that if A has full rank, then
the diagonal entries of R may be chosen to be positive, in which case the factorization
A QR is unique.

There are three well-known methods for computing a QR factorization. One
is Gram-Schmidt orthogonalization (usually implemented in the modified Gram-
Schmidt form), the second uses Householder transformations, and the third uses
Givens rotations. For dense matrices the Householder method is more efficient than
the others, and hence is usually the method of choice. However, for sparse matrices
the method of Givens may be more efficient than the other two, particularly if the
rotations are applied in an order that preserves sparsity in the matrix. Finding such
an ordering has been the subject of much research [2], [4], [5], [7], [10], [12], [13].
These papers are primarily concerned with how best to order the Givens rotations
to reduce the total work required by the factorizations for matrices with the strong
Hall property or in block form. In this paper we present an ordering for the Givens

* Received by the editors August 4, 1993; accepted (in revised form) by H. Elman July 7, 1994.

Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada
V8W 3P6. The work of the second author was partially supported by Natural Sciences and Engineer-
ing Research Council of Canada grant A-8214 and the University of Victoria President’s Committee
on Faculty Research and Travel.
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rotations that, when A has the Hall property, is optimal with regard to storage for Q
(a tight ordering) and that preserves sparsity by restricting fill to those locations in R
that are necessarily nonzero.

2. Notation. Since the computation of a QR factorization by Givens rotations

is stable regardless of the order in which the rotations are applied, it is possible to
choose an ordering solely on the basis of efficiency considerations. Thus an ordering
can be determined without knowing the actual values of the nonzero entries of the
matrix. That is, we are only concerned here with the zero/nonzero structure of the
matrix. For an m n matrix A (aij), we define the structure by

struct(A)- {(i,j)laij 0}.

When convenient, we depict struct(A) by an m n array A (aj) such that ay *
if ay =/: 0 and ay 0 if aij 0. The transpose of struct(A) is defined by {(i,j)l(j, i) e
struct(A)}, and we denote it by struct(A)T or AT.

For an m n matrix A and an n p matrix B, we define the product of the
structures of A and B as follows"

struct(A) struct(B) {(i,j)ll <_ i <_ m; 1 <_ j <_ p; and there is some k,

where 1 _< k _< n, such that (i, k) E struct(A)
and (k, j) e struct(B)}.

We depict this by C AB, which is an m x p array with cij * if (i, j)
struct(A) struct(B) and cj 0 otherwise. The array AB is sometimes called the
symbolic product of A and B [11].

The following lemmas follow readily from the definitions, and we state them
without proof.

LEMMA 1. Multiplication of structures is associative.
LEMMA 2. If

C struct(A)struct(B),

then
CT struct B)Tstruct(A)T

LEMMA 3. Let A be an m n matrix and B be an n p matrix. Then

struct(AB) struct(A) struct(B).

As in [11], given an m n matrix A with rank n, we denote by A/(A) the set of
all m n full rank matrices whose structures are identical to struct(A). Let

(1) Q(A)- U
BEJ4(A)

{struct(Q)lB QR}

and

(2) T(A) U {struct(R)lB QR}.
BE(A)

(Note that if B has full column rank, then struct(Q) and struct(R) are uniquely
determined.) The structures Q(A) and T(A) are the smallest possible that can be
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guaranteed to accommodate all the nonzeros of the factors Q and R, respectively, of
any full rank rn x n matrix with structure identical to struct(A).

It is often convenient to model a matrix structure with a bipartite graph [1], [5],
[9], [12]. A bipartite graph corresponding to A struct(A) is defined as H(A)
(R(A), C(A), E(A)), where R(A) is the vertex set {ri ill <_ <_ rn} corresponding
to the rows of the matrix A, C(A) is the vertex set {cj j ll _< j _< n} corresponding
to the columns of the matrix A, and E(A) is the set of edges rcj such that rc E E(A)
if and only if ai O. Note that rici and cri denote the same edge. If aij 0, then
ri and ci are said to be adjacent.

Let k >_ 1 and v E R(A) or C(A),0 _< _< k. A path in H(A) is denoted by
P VOVlV2...va, where k _> 1 and it is understood that Vi-lVi, 1,... k, is an edge
in E(A). P is called a path from v0 to va, or a (v0, va)-path. If P1 is a (u, v)-path and
P2 is a (v, w)-path, then P1P2 represents a (u, w)-path in H(A). If P3 is a (y, z)-path
and if the edge vy exists in E(A), then PIP3 is a (u, z)-path in H(A).

A bipartite graph with IC(A)I _< IR(A)I is said to have the Hall property (with
respect to C(A)) [1] if every subset S of C(A) is adjacent to at least ISI vertices in

R(A). It is said to have the strong Hall property [9] if S is adjacent to more than ISI
vertices in R(A) for all subsets S of C(A) such that

(i) 1 <_ ISI <_ [C(A)[- 1 if IC(A)[- [R(A)I > 1, or

(ii) 1 _< ISI _< IC(A)I if IC(A)I < IR(A)I.
Analogously, a matrix A with rn rows and n columns, m _> n, has the Hall property if
every set of k columns, 1 <_ k <_ n, has nonzeros in at least k rows, and has the strong
Hall property if

(i) m n > 1 and every set of k columns, 1 _< k < n, has nonzeros in more than
k rows, or

(ii) m > n and every set of k columns, 1 _< k _< n, has nonzeros in more than
k rows.

An rn n matrix with m >_ n must have the Hall property if it has full rank,
Hare et al. [9] have characterized the structures Q(A) and T(A) in terms of path

conditions in the bipartite graph. We now summarize a number of concepts that they
introduced and that are of importance here.

Let A be an m n matrix with the Hall property, and let H(A) be the bipartite
graph associated with A.

1. A Hall set of A (or A) is a subset S of C(A) such that the corresponding
columns of A have nonzeros in exactly [S rows of A. It is clear that the union of two
Hall sets of A is itself a Hall set.

2. Sj is the (possibly empty) Hall set of maximum cardinality in A, where A
is the structure of the submatrix formed by the first j columns of A. Define S0 .
If j _< k, then Sy c_ Sk.

3. sj is the subset of R(A) of all vertices adjacent to vertices in Sj, and so .
Note that ifaii =*for l_<i<_n, thenS-sj for l_j_<n-1 (sinceci-i and
ri i). Thus, in this case, ci S if and only if ri sy.

4. For 1 _< j <_ n, the auxiliary bipartite graph Bj(A) (Ry(A), Cj(A), Ey(A))
is the bipartite graph of Aj with the sets sj-1 and Sj_I removed. That is, C(A)
{Ck kll <_ k <_ j, ck S_},R(A) {ri i[1 <_ <_ m, ri 8j--l, and there
exists c Cj(A) such that aiv *}, and there is an edge between ri Rj(A) and
ck Cj (A) if and only if aik *.

The main result of [9] is the following theorem, which characterizes Q(A) in terms
of path conditions in Bj(A), 1 <_ j <_ n.
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?‘1 Cl

r2 C2

?’3 C3

r4 C4

r5

?’6

?’4

r

r6

Cl

c4

H(A) B4(A)
FIG. 1. Bipartite graphs H(A) and B4(A) for Example 1.

THEOREM 4 [9, Thm. 4.7]. Let 1 <_ <_ m and 1 <_ j <_ n. Then (i, j) E Q(A) if
and only if there exists a (cj, ri)-path in Bj (A).

We also use the following result.
THEOREM 5 [9, Whm. 5.1]. Let A, Q(A) and n(A) be as defined above. Then

n(A) is identical to the upper trapezoidal part of (Q(A))TA (i.e., the elements (i,j)
of (Q(A))TA with <_ j).

We end this section with an example to illustrate these concepts.
Example 1. Let . 0 0 0. * 0

0 . . .A-
0 0 0 *

0 0 0
0 0 0 *

The Hall sets Sj of A are

and since all aii- *,

80 81 82 ll, 83 84 {r2, r3}.
The bipartite graphs H(A) and B4(A) are shown in Fig. 1. The structures .Q(A) and
T(A) are given by

* * * 0

* * * 0
0 * * 0

and TC(A)-Q(A)-
0 0 0 *
* * *. 0
0 0 0 *

* * 0
0 * * *
0 0 * *
0 0 0 *

3. Tight orderings and products of rotation matrices. Givens rotations
Gij can be used to compute the QR factorization by applying them sequentially to
eliminate nonzeros from the lower trapezoidal part of A:
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and
Q GT. GT GT.

If ik > jk and the (ik,jk) entry of Gik-ljk-l"’" GiIjA is nonzero, the nonzero en-
tries of a Givens rotation Gikj are chosen so that the (ik,jk) entry of the product
Gj... GIj,A is 0 (see, e.g., [8]). The entry ajjk is called the pivot, and we call
this diagonal pivoting (in contrast to variable pivoting); see, e.g., [2], [10]. If ajj 0,
then the structure of an m m rotation Gij is exactly

(3) Gikj {(ik,jk), (jk,ik)} U {(t’t)lt 1,2,...,m).

Note that there may be more than one order in which the rotations can be applied to
compute the (unique) QR factorization.

A corresponding symbolic QR factorization can be defined. Starting with R0
struct(A), define the sequence of structures

Ra (GijRa-1) {(ik,jk)}, k=l,2,...,r,

where (ik,jk) E Rk-1 with ik > jk, SO that Rr is an upper trapezoidal structure.
Defining

Lemma 3 implies that struct(Q) c_ (. Also, by definition, struct(Q) c_ Q(A). Fur-
thermore, Q(A) c_ Q (since struct(Q) c_ Q for every Q such that B QR and
B E Ad(A)). However, it is not necessarily the case that Q c_ Q(A), as the following
example illustrates.

Example 2. Let

(5) A
* 0 0 0

/0 * * 0
0 * 0
0 0 *

There are two ways in which any matrix A with this structure can be reduced to
triangular form by Givens rotations (using diagonal pivoting). One way is to apply
the rotation G31 before G4, in which case the (4, 3) entry will become nonzero (that
is, there is fill at the (4,3) position) and thus Ga3 must be applied as well. The
resultant factorization is

(6) A GIGIGTa3R,
with

* 0 * *
(1o

0 * *
0 * ,

On the other hand, if G41 is applied before G31, then there is no fill in positions
of A below the main diagonal and the resultant factorization is

~T ~T(7) A Gn1G31R
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so that

Both (6) and (7) determine the unique QR factorization of any full rank matrix
A having the structure in (5) (if the diagonal entries of R are normalized); that is,

Thus, Q(A) c_ (1 and Q(A) c_ (2; however, (1 Q(A)since (3, 4) (2. (Note: By
Theorem 4, Q(A) (2.)

We define an ordering of the Givens rotations for which Q(A) to be a tight
ordering. Algorithm 1 in 4 specifies a tight ordering for any full rank matrix A. In
the terminology of [1], Algorithm 1 is "correct," or, in the terminology of [11], ( is
"tight." For applications in which the factor Q is explicitly required, a tight ordering
minimizes the storage required for the computation.

It follows from Theorem 5 that for a tight ordering, T4(A) is equal to the upper
trapezoidal part of Ilt=r Gij,A. Thus Algorithm 1 determines a tight structure for
R when A is any full rank matrix.

In the next theorem, we determine the product of a sequence of structures (3).
The proofs of Lemmas 6 and 7 follow directly from the definition of the product of
structures.

LEMMA 6. Let i, j, k, and be distinct and let H GijGkl. Then

H {(i,j), (j, i), (k,/), (/, k)} U {(t’t)ll <- t <_ m}.

LEMMA 7. Let i, j, and k be distinct, and let H be any one of the products
GijGik, GjiGki, GjiGik, or GijGki. Then

H- ((i,j),(j,i),(i,k),(k,i),(j,k)} U ((t’t)ll -< t _< m}.

We note that (k, j) H in Lemma 7.
THEOREM 8. Let G YItr=l (i,j,, where G,j, is defined by (3). Then (x, y) E G

if and only if
(a) x--y, or

(b) there exists s such that (is x and js y) or (is y and js x), or

(c) there is an ordered subsequence of the structures

isljs is2Js (iskJsk

with 2 <_ k <_ r and 81 < 82 < 83 < < 8k such that (x i81 or x jsl),
and (y isk or y jsk), and (at least) one of the equalities (is, is,+), (is,
J8,+1), (J, i,+1), (J, J,+i holds for each t 1, 2,..., k 1.

Proof. This follows from Lemmas 6 and 7 and induction on k (for the sufficiency
of (a), (b), and (c)) and induction on r (for the necessity), cl

Theorem 8, which we use to prove the correctness of Algorithm 1, characterizes
the product (4) of structures of a sequence of Givens rotations (since G.T (]y)k3k
Thus, if the ordering of the Givens rotations applied in a QR factorization is a tight
ordering, then the three conditions of Theorem 8 determine the elements of Q(A).
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4. An algorithm for symbolic factorization. In this section we present an

algorithm for determining the structures of the upper triangular factor R and the
factor Q of an m n matrix A that has full rank.

Our strategy is to compute a QR factorization of A by applying Givens rotations
in a specified order that depends upon struct(A). The ordering is restricted to the
case where A has a zero-free diagonal and diagonal pivoting is used. The rows of any
matrix with the Hall property can be reordered so that it has a zero-free diagonal (see
[3], [6]). This reordering does not affect the structure of R and affects the structure of
Q only by reordering its rows. Nonzeros below the diagonal are eliminated column by
column; and, within each column, nonzeros in rows that are not in Sn-1 are eliminated
first, followed by those that are not in 8n--2, then those that are not in 8n--3, and so
on. The order of elimination of nonzeros in rows not in some fixed Sk is arbitrary.
This ordering of the Givens rotations is the main innovation of this paper.

From now on,

(8) R struct(Gikjk) struct(A) {(i,j)li > j}
k--r

and

(Gikjk) {(i,j)lJ >
k--1

where the ordering for the Givens rotations is determined by Algorithm 1. In 5, we
prove that Q Q(A), that is, that the ordering of the Givens rotations in Algorithm
1 is a tight ordering.

ALGORITHM 1. Determine R and Q.
Input. m, n, A, the sets Sl, s2,..., sn-1 (as defined in 2).

(m _> n and A is the structure of an m n matrix with a zero-free diagonal.)
Output. (,
Step 1. Initialize Q {(i, i)11 <_ <_ m}
Step 2. Initialize ,, A
Step 3. Iterate for j 1, 2, 3,..., n- 1. (Elimination on cj)

Initialize: rows *-- {rili > j and (i, j) E ,-}
For k=n- l,n-2,...,j

for each E rows\sk
set Q - Q struct(Gij) (Gij is an m m Givens

rotation that produces a zero entry at the (i, j) position.)

set - struct(Gij)
set rows - rows\{ri}

Step 4. For j n

Initialize: rows - {rili > j and (i,j)
for each i rows

set ( .-- ( struct(Gij)

set ,- - struct(Gij)/i
set rows - rows\{ri}

(Elimination on Cn)
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Step 5. Set - h\{(i,j)li > j}
Set Q - Q\{(i,j)lj > n}

Step 6. Output R and Q
Some notation follows that will be used throughout the rest of this section. For

1 <_ j <_ n, let Aj denote the structure after elimination on cj in Algorithm 1 (that
is, after the jth iteration of Step 3 or Step 4). By "fill" at the (i, k) position we mean

that (i, k) A and for some j >_ 1, (i, k) E j. At any given point in Algorithm 1, we
say that ik * if (i, k) E and ik 0 if (i, k) ,-. (Note that is a dynamic
data structure, so that at different points in Algorithm 1, any hik may be 0 or *.)
Similarly, we say that "ka(J) -, if (i, k) j and ak

() 0 if (i, k) j.
We illustrate the application of this algorithm to the matrix in Example 1. In the

array representation of the evolving structure of A, we use the symbol f to denote fill
and the symbol (R) to denote an eliminated entry. At the first iteration of Step 3,
is applied first since r5 s3 but r2 83. Thus

.000 . fOf, , 0 , (R) , 0
0 . . . 0 . .

--->
0 00 * 0 0 0 *
(R) 0 0 0 (R) 0 0 0
0 0 0 * 0 0 0 *

At the same time,

* 0 0 0 * 0 * * 0 0 * 0
0 * 0 0 0 0 * * 0 0 0 0
0 0 . 0 0 0 0 0 * 0 0 0(--
0 0 0 * 0 0 -- 0 0 0 * 0 0

* 0 0 0 *.0 * * 0 0 * 0
0 0 0 0 0 * 0 0 0 0 0

In the second iteration of Step 3, only G32 is applied so that

* f 0 f
@ * f * * * * 000
0 (R) * * and 0-- 0 * * 0 0 0-- 0 0 0 * 0 0 0 * 0 0
(R) 0 0 0 * . * 0 . 0
0 0 0 * 0 0 0 0 0

No computation occurs during the third it ration of Step 3, and only G64 is applied
at Step 4, so that

. f 0 f
@ * f *

0 * * 0 0 00 (2) * * and Q--+- 0 0 0 * 0 0 0 * 0 *
(R) 0 0 0 * * * 0 * 0
0 0 0 (R) 0 0 0 * 0 *
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Finally, at Step 5, the entries of k denoted by (R) and the last two columns of ( are
deleted, and the resulting structures returned are

* * 0
0 * * *R=
0 0 * *
0 0 0

and Q=

* * * 0

0 * * 0
0 0 0 *
* * * 0
0 0 0 *

5. Proof of correctness for Algorithm 1. In Theorems 20 and 21, respec-
tively, we prove that the structures determined by Algorithm 1 are correct, i.e.,
( Q(A) and 1 7(A). An overview of how this is accomplished follows.

Recall that elements of Q (see (9)) are characterized by Theorem 8. For each
of the three conditions in Theorem 8 that identifies an element (i, j) of (, we show
that (i,j) E Q(A). This is done, respectively, in Lemma 9 (5.1), Corollary 10.2 and
Lemma 13 (5.2), and Lemma 19 (5.3), implying that Q c_ Q(A). However, it follows
from Lemma 3 that Q(A) c_ Q, and thus Q Q(A). Having proven this, it follows
from Theorem 5 that 1 TO(A).

5.1. Condition (a) of Theorem 8. This condition implies that (i, i) E Q for
i 1, 2,..., n. The following result shows that these "diagonal" elements are also in
Q(A).

LEMMA 9. For 1 <_ i <_ n, there is a (ci, ri)-path in Bi(A) and hence (i, i) Q(A).
Proof. This is clear since A has a zero-free diagonal and r s-l. D
5.2. Condition (b) of Theorem 8. The next step in proving that Q c_ Q(A)

is to show that if Gij is applied in Algorithm 1, then (i, j) Q(A) and if _< n, then
(j, i) Q(A). By condition (b) of Theorem 8, these are elements of Q.

The structure Q(A) is characterized in [9] by certain path conditions. In the
following lemma, a path condition is obtained that corresponds to the occurrence of
fill at certain positions (i, j) in/i,. To illustrate our notation, suppose

* 0 0 0 0 0
0 * 0 0 0 0

* * * 0 * 0
0 0 0 * 0 0
0 0 * 0 * 0
0 * 0 * 0 .

Then on applying Algorithm 1, the nonzeros in positions (3, 1) and (6, 2) are elimi-
nated, giving . f fOfO

O.OfOf
(R) . . 0 . 0
0 0 0 . 0 0
0 0 . 0 . 0
0 (R) 0 . 0 .

Next the nonzero in the (3, 2) position is eliminated. In the notation of the following
lemma, a nonzero in column v 2 is eliminated creating fill at the (i, j) position
(where i 3 and j 4), and ri sk- with k 5. The lemma shows that there is a

(ca, r3)-path in B5 (A).
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LEMMA 10. Let 1 <_ v <_ n- 1, v < j <_ n, v < <_ m, and j <_ k <_ n. If ri

_
sk-1

and fill occurs at the (i, j) position during elimination of the nonzero entries of column
v in Algorithm 1, then there is a (cy, r)-path in Bk(A).

Proof. We use induction on v.
Base case. Consider elimination of the nonzero entries (below the diagonal) in

column v-- 1.
If fill occurs at the (i, j) position, then ail * and either
1. aly *, or
2. there exists w such that Gwl is applied before Gil, awl * and awj *.

Now hi1 * implies that Cl Sk-1 and rl Sk-1.
1. If aly *, then cy S-1 and rj s_. Therefore Bk(A) contains the path

riclrlCj since the (i, 1), (1, 1), and (1,j) entries are all nonzero.
2. If there exists w such that Gwl is applied before Gil, awl * and awj *,

then rw sk-1 (by the order of elimination of entries in Algorithm 1), which implies
that cy Sk-1. Thus we have the path riclrwcj in Bk(A).

In either case there is a path in Bk(A) from cj to ri.

Induction hypothesis. Suppose that during elimination on column p, where 1
p _< v, if fill occurs at the (i, j) position, where p < i _< m, p < j _< n, j _< k _< n, and
ri sk-1, then there is a (cy, ri)-path in Bk(A).

Induction step. We consider elimination on column v + 1 and suppose that fill
occurs at the (i, j) position, where v + 1 < i <_ m,v + 1 < j <_ n,j <_ k <_ n, and

ri . 8k-1 For this to happen, we must have a(v)

or, by the induction hypothesis, there is a path in Bk(A) from cv+l to ri. In either
case, Cv+l Sk-1, which implies that rv+l

_
sk-1. We must also have one of the

following two cases.

1 :(v)
.+l,y *, in which case there is a (cj,rv+)-path in Bk(A). Call this path

P and denote by P2 the (c.+, r)-path in Bk(A). The zero-free diagonal of A implies
that the r.+lC+l edge also exists, so that PP2 is a (cy, r)-path in Bk(A).

(v)2. There exists w such that G,+ is applied before Gi,+l,,+ * and

wj
,. Since Gv,v+ is applied before Gi,v+, rw cannot be in sk- (by the order of

elimination of entries in Algorithm 1). Thus, ()
,.+1 * and the induction hypothesis

together imply that there is a (c+l,rw)-path in Bk(A). Similarly, ()y , implies
that Bk(A) contains a (cy, rw)-path. Since Bk(A) also contains the (cv+, ri)-path,
together these paths give a (cy, ri)-path in Bk(A).

COROLLARY 10.1. Let 1

_
j

_
n and j <

_
m, and suppose that Gig is applied

in Algorithm 1. If there exists k, where j

_
k <_ n, such that ri

_
Sk-, then the

(cy, ri)-path exists in Bk(A).
Proof. This is clear when aiy * since the edge ricy exists in Bk(A), and follows

from Lemma 10 otherwise.
COROLLARY 10.2. If Gij is applied in Algorithm 1, then (i, j) e Q(A).
Proof. Apply Corollary 10.1 with k j to obtain a (cy,ri)-path in By(A). It

follows from Theorem 4 that (i, j)
To prove that (j, i) Q(A) also (when i <_ n), we use the following two lemmas.
LEMMA 11. Let j be a fixed index with 2 <_ j

_
n- 1 and let v < j, and suppose

cy Sk for some k such that j

_
k <_ n- 1. Then during elimination on cv using

Algorithm 1, fill in cj below rv is restricted to rows in Sk.

Proof. We use induction on v.
Base case. Considering elimination on column c, we have two cases.
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Case 1. rl E sk. Then cl E Sk and hence only rows in sk are involved in the
elimination at this stage so that fill in cj is necessarily restricted to rows in sk.

Case 2. r sk. Then cj must have azeroinrow 1, since cy Sk, and in all
other rows that are not in sk. Since nonzeros in all rows not in sk are eliminated before
nonzeros in rows in Sk, it follows that [lj 0 until after elimination on rows in sk
begins. At that point, only rows in sk remain to be processed, so that fill in cy below
r is restricted to these rows.

Induction hypothesis. Suppose v < j- 1 and that during elimination of nonzeros
in column w, 1 <_ w _< v, fill below r in cy is restricted to rows in sk.

Induction step. We now consider elimination of nonzeros from column v + 1.
Case 1. rv+l Sk. In this case Cv+l Sk and by the induction hypothesis, c+1

has nonzeros below the diagonal only in rows in sk. Therefore, fill during this stage of
the elimination is restricted to rows in Sk.

Case 2. r+ sk. In this case av+l,y 0 and by the induction hypothesis,
&+,j 0 before elimination on c+1 begins. Furthermore, all nonzeros in cy below
rv are restricted to rows in sk before processing of column c.+1 begins. The order of
elimination guarantees that all the zeros in cy below r are preserved until elimination
of rows in sk begins. At that point, .+l,y may become *, but fill in cy below r.+l
is restricted to rows in sk. Hence, during elimination on Cv+l fill in cy below r.+ is
restricted to rows in sk. D

LEMMA 12. Let 1 <_ j <_ n and i > j. If Giy is applied in Algorithm 1, then
rj

_
81, where l- min{i- 1, n- 1}.
Proof. Suppose ry G st. By Lemma 11, fill in cy below ry is restricted to rows in st.

(j-l)Therefore, since ri st, aiy 0. But then Giy would not be applied in Algorithm
1. Therefore, if Giy is applied, then ry

_
Sl. [J

We now prove the second of the two main results of this subsection.
LEMMA 13. Let 1 <_ j < i <_ n. If Gij is applied in Algorithm 1, then there is a

(ci, rj)-path in By(A) and thus (j, i) e Q(A).
Proof. Since Giy is applied, either aiy * or fill occurs at the (i, j) position during

elimination on columns 1, ...,j 1 (i.e., aij^(J-) *). If aiy *, then rj si_ by
Lemma 12, so that the path ciricyrj exists in Bi(A). In the other case, there exists
a (cy, r)-path in B(A) by Lemma 10, so this path and the rci, rjcj edges imply the
existence of a (ci, rj)-path in Bi(A). Hence, in both cases, (j, i) e Q(A) by Theorem
4. [:]

Corollary 10.2 and Lemma 13 together prove that if Giy is applied in Algorithm
1, then (i,j) Q(A) and if _< n then (j, i) Q(A). Thus entries of Q that occur
because of the second condition in Theorem 8 are also in Q(A).

5.3. Condition (c) of Theorem 8. Before considering entries in Q that exist
because of this condition, we first examine the orderings permitted by Algorithm 1.

DEFINITION 1. A chain of length k >_ 2 that links (iaja and Gibjb is an ordered
subsequence

(10)

of the rotations Gij,..., Gi.y with s < s2 < 83 <’’" 8k such that sl -a, sk --b,
and one of

(i) i ist_l
(ii) i j+,
(iii) j j+,
(iv) j is+i
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holds for each t, 1 <_ t <_ k- 1.
We first show that (iv) is not possible in the ordering for the rotations imposed

by Algorithm 1.
LEMMA 14. Let 1 <_ <_ m, 1 <_ j <_ n, and 1 <_ k <_ n. If Gij and Gjk are both

applied in Algorithm 1, then Gjk must be applied before Gij.
Proof. If Gj is applied, then i > j. If Gjk is applied, then j > k, so that k < j < i.

Since the columns are processed in increasing order, Gk is applied before Gj.
Suppose that (i) holds for a fixed t in (10); that is, (10) contains an adjacent pair

of rotations of the form

If (i) also holds for t + 1, then (10) contains

and we can eliminate Gitjt+ from the chain (10) to get a chain of length k- 1 linking
Gaja and Gbyb. Similarly, if (ii) holds for t + 1, then (10) contains

Gitj Gitjst+ Git+2i
Once again, the rotation Gitjt+ can be eliminated to give a chain of length k- 1
that still links Giaj and Gibjb.

If no rotations can be eliminated from a chain in such a manner, we say that the
chain has minimal length. (We note that any chain of length 2 is necessarily minimal.)
Let us suppose that

Cilia, Gi2j2, Gikjk

is a chain of minimal length that links Giij and Gij, and that the length is 3.
Consideration of all cases as above gives the following result.

LEMMA 15. The only possible sequences of rotations in a chain of minimal length
3, where the ordering for the rotations is determined by Algorithm 1, are the fol-

lowing: (i) followed by (iii), (iii) followed by (i), (iii) followed by (ii), (ii) followed by
(i), and (ii) followed by (ii), where (i), (ii), and (iii) refer to the conditions in DCni-
tion 1.

We now proceed to prove that the appropriate entry of Q(A) is, for every chain
of length 2 that is permitted by Algorithm 1. In Lemmas 16, 17, and 18, we consider
the cases (i), (ii), and (iii), respectively.

LEMMA 16. Let 1 i m, 1 j n and 1 k n. If Gik is applied before Gij
in Algorithm 1, then there is a (cy, rk)-path in Bj(A).

Proof. Clearly > k and > j. Since Gik is applied before Gj, k < j, so that
k < j < i, which implies that r sj_. By Corollary 10.1 there is a (Ck, ri)-path and
Mso a (cy, r)-path in Bj(A). Combining these two paths with the edge rkck gives a

(cy, rk)-path in By(A).
LEMMA 17. Let 1 m, 1 j n, 1 k n, and let min{i, n}. If

Gjk and Gj are both applied in Algorithm 1, then there is an (rk, r)-path in Bt(A).
Furthermore, if 1 n, then there is a (ci, rk)-path in B(A).

Proo om the proof of Lemma 14, k < j < i. Lemm 12 implies that ry st_

nd since Gjk is applied, Corollary 10.1 gives a (Ck, ry)-path in Bt(A). Clearly r
st_, so since Gij is applied, Corollary 10.1 gives a (cj, r)-path in Bt(A). Combining
these with the rkck and cjrj edges gives an (rk, r)-path in Bt(A). rthermore, if

n then this pth nd the rc edge give a (c, rk)-path in Bi(A) Bt(A).
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LEMMA 18. Let 1 <_ j

_
n; 1

_
i,k

_
m, with k; and min(n,k}. If Gij

and Gkj are both applied in Algorithm 1 and if Gij is applied before Gkj, then there
is an (ri, rk)-path in Bz(A). Furthermore, if k <_ n, then there is a (ck,ri)-path in
Bk(A).

Proof. Since

_
k, rk sz-1. Applying Corollary 10.1 to Gkj gives a (cj, rk)-path

in B(A). Since Gij is applied before Gkj, we know that ri s-l, so that applying
Corollary 10.1 to Gy gives a (cy, r)-path in B(A). Combining these paths gives an
(r,rk)-path in B(A). If k _< n, the rkck edge and this path imply that there is a

(ck, ri)-path in Bk(A). D
We are now ready to prove that if there is a chain of rotations as described in

Theorem 8 so that (i, j) E Q, then (i, j) E Q(A) also.
LEMMA 19. Let

(11)

denote a chain of minimal length k >_ 2 of the rotations determined by the application
of Algorithm 1 to a structure A.

(a) If (il i2 or il j2) and (ik-1 jk or jk-1 jk), then there is an
(ryl, rik)-path in Bz(A) where l= min{n, ik}, and if ik <_ n, then (jl, ik) Q(A).

(b) If (il i2 or il j2) and ik-1 ik, then (jl,jk) Q(A).
(c) If jl- j2 and ik-- ik, then (i,jk) Q(A).
(d) If jl j2 and (ik-1 jk or jk-1 jk), then there is an (ril,ri)-path in

BI(A) where l= min{n, ik}, and if ik <_ n, then (il, ik) Q(A).
Proof. The proof is by induction on k.
Base case. Let k 2.
(a) becomes Gily, Gi.il and the path exists by Lemma 17. If i2 _< n, then there

is a (ci=,rj)-path in Bi.(A) also by Lemma 17 and (j,i2) E Q(A) by Theorem 4.
All the other cases (Gii, Gili Gijl, Gily ;Gili, Gi2il) are impossible.

(b) becomes Gily, Gilj: and there is a (cj:, r)-path in By.(A) by Lemma 16.
Hence, (j,j2) Q(A). The other case Giil, Gil is impossible.

(c) becomes Gily, Gij, which never occurs since we do not eliminate the same
nonzero twice.

(d) becomes Gilj, Gi:jl and, by Lemma 18, the (r, r=)-path exists and if i2

_
n,

then (il, i2) Q(A). The other case Gjj, ei2ji iS not possible.
Hence the lemma is true for the case k 2.
Induction hypothesis. Suppose that the lemma is true for all chains of minimal

length

_
k- 1.

Induction step. We consider a chain (11) of minimal length k _> 3. Now

and
chain 2" Gi=j=, Gi_jk_ Gij

are chains of length k- 1, so by the induction hypothesis, the lemma is true for these
two subchains (and all other subchains) of (11).

There are nine cases to consider, one corresponding to each of the possible com-
binations of the equalities listed in the statement of the lemma.

Case 1. If il --i2 and ik-1 --jk, then (11) may be written as

Giljl, Gilj2, Giaj2,. Gik_ljk_l,
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with k- 1 >_ 3 and jl < j2 < ik-1 <_ n, since such a chain is impossible if k 1 2.
Case 2. If i i2 and j_ jk, then (11) may be written as

where k- 1 > 2.
The proofs of Cases 1 and 2 are identical. Chain 2 satisfies case (d) so that by the

induction hypothesis, there is an (ri,, ri)-path in Bt(A) where l= min{n, ik}. This
implies that r st_. Since Gjl is applied, there is a (cj,, rl)-path in Bt(A) by
Corollary 10.1. These two paths combined with the rj cj edge make an (rj, rik)-path
in Bt(A). If ik <_ n, then i and the rc edge also exists in B (A) so that there
is a (c,rj)-path as well. That is, (j,ik) E Q(A).

Case 3. If il j2 and ik_ jk, then (11) may be written as

where k- 1 > 2.
Case 4. If i j2 and jk_ j, then (11) may be written as

with k- 1 _> 3, since such a chain is impossible if k- 1 2.
The proofs of Cases 3 and 4 are identical. Either i2 i3 or i2 j3, so that

chain 2 satisfies case (a) and by the induction hypothesis, there is an (r,, rk)-path
in Bt(A) where min{n, ik}. Since r st_ and since Gjl is applied, there is a

(cj, r )-path in Bt(A) by Corollary 10.1. Combining these paths with the edge rjl cj
gives an (r, r)-path in Bt(A), and if ik <_ n, this path and the rc edge give a

(ci r )-path, so that (jl i Q(A).
Case 5. If i i2 and ik_ ik, then (11) may be written as

with k- 1 _> 3, since such a chain is impossible if k- 1 2. Now chain 2 satisfies case
(c) so that there is a (cj, ri,)-path in Bjk (A). Thus, ri sj_, and since Gij is
applied, Bj (A) contains a (c, ril)-path by Corollary 10.1. Combining these paths
with the rj, cj edge gives a (cj, rj,)-path in Bj (A). Hence, (j, jk) e Q(A).

Case 6. If il j2 and ik_ ik, then (11) may be written as

where k- 1 _> 2. Since either i2 i3 or i2 j3, chain 2 satisfies case (b), and
by the induction hypothesis, there is a (cj, rl)-path in Bjk (A). Thus r sj_,
and since Gij is applied, there exists a (cyl, ri)-path in Bj (A) by Corollary 10.1.
These paths combined with the rj cj edge produce a (c,r )-path in Bj (A). Hence,
(jl, jk Q(A).

Case 7. If jl j2 and ik-1 ik, then (11) may be written as

where k- 1 _> 2. Chain 1 satisfies case (d), so for l-- min{n, ik- }, B(A) contains an
(ri,ri_i)-path. Thus, fix - 81-1, and, consequently, ri sjk_ also (since jk

_
1).
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Either i2 i3 or i2 j3, so that chain 2 satisfies case (b) and hence there is a (cjk, rjl )-
path in Bjk (A) by the induction hypothesis. Since Gily is applied and ri sj-l, by
Corollary 10.1 there exists a (cy, ril )-path in By (n). The latter two paths combined
with the rjlCjl edge give a (cy,rl)-path in Bj(A), and hence (il,jk) E Q(A).

Case 8. If j j2 and ik-1 jk, then (11) may be written as either

(12) Giljl Gi.j Gi3i2, .:. Gik_jk_l Giik_l

where k- 1 _> 2, or

(13) Giljl Gi2j Gi2j3, Gik_ljk_l Gikik_l

where k- 1 > 4. Consider the subchain

Gi3i2, Gik_ljk_l Gikik_l

of (12). If k- 1 2, then this subchain reduces to the single rotation Gi3i.. In this
case, with min{n, i3}, we have ri. st- (by Lemma 12) and clearly ria st-i,

so Corollary 10.1 gives a (c., ri3)-path in Bt(A), which together with the c2ri, edge
gives an (r2,ra)-path in Bt(A). If k- 1 > 2, the subchain is of length at least 2
and satisfies case (a), and thus an (ri., ri)-path exists in Bt(h) by the induction
hypothesis.

Consider now the subchain

of (13), which is of length at least 2 and satisfies case (d). Thus the induction hypoth-
esis implies that there is an (r:, r)-path in

So in every instance, there is an (r., r)-path in Bt(A), which implies ri2
Since Giji is applied before Gi.y, ril 81-1. Corollary 10.1 applied to Giji gives
a (cj,rii)-path in Bt(h), and applying it to Gi2ji gives a (cyi,ri.)-path in Bt(h).
Combining these three paths produces an (r/i ri)-path. Furthermore, if ik <_ n, then
Bt(A) also contains the rikci edge, which gives a (ci,rii)-path, so that (ii,ik)
Q(A).

Case 9. If jl j2 and ja-1 ja, then (11) may be written as either

(14) Gilj Gi2jl Gi2j3 Gi_ljk_l Gikjk-1,

where k- 1 >_ 3, or

(15) Giljl Gi2jl Gi3i2, Gik_lj_ Gikjk-1,

where k-1 _> 4. The subchain Gi.ja,..., Gi_ju_i, Giuj_ of (14) is of length at least 2
and satisfies case (d). By the induction hypothesis, there is an (ri., rk )-path in
where min{ik,n}. Similarly, the subchain Gi3i2,...,Gik_ijk_i,ikjk_i of (15)
satisfies case (a), and the induction hypothesis implies the existence of an (r., rk)-
path in Bt(A). Thus, ri: St-l, and since Giji is applied before Gi.j, fix 81-1.
So Corollary 10.1 applied to GiIj gives a (cj, r)-path in Bt(A), and applying it to
Gi:ji gives a (cji,r.)-path in Bt(A). Combining these paths with the (ri2,r)-path
gives an (ri, r)-path in Bt(A). Furthermore, if ik <_ n, then ik and the rc
edge is in Bik (A), so there is a (ci, ril)-path as well. That is, (i1, ik) Q(A).
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5.4. Main results.
THEOREM 20. Let A be the structure of an m n matrix with the Hall property

and a zero-free diagonal. Then the structure Q in (9) that results from application of
Algorithm 1 to A is identical to the structure Q(A) in (1).

Proof. The elements of ( are characterized by Theorem 8. Let (x, y) e (. Then
y_< n. If x- y, then (x,y) E Q(A) byLemma9. Ifx y and Gxv is one of the
applied rotations, then (x, y) E Q(A) by Corollary 10.2, whereas if Gyx (with x <_ n)
is one of the applied rotations, then (x, y) Q(A) by Lemma 13. Finally, if there is a
chain of rotations

with x is1 or x Jsl and y ik or y jk, so that (x, y) (, then (x, y) Q(A)
by Lemma 19. Given Lemma 14, these exhaust all possibilities in Theorem 8. Thus
Q c_ Q(A).

To show the reverse inclusion, suppose (x, y) Q(A). For any full rank m n
matrix A such that struct(A) A, suppose its QR factorization is computed using a
sequence of Givens transformations

as determined by Algorithm 1. By Lemma 3, struct(Q) c_ Q. Thus Q(A) c_ Q,
completing the proof. D

THEOREM 21. Let A be the structure of an m n matrix with the Hall property
and a zero-free diagonal. Then the structure R in (8) that results from application of
Algorithm 1 to A is identical to the structure T(A) in (2).

Proof. Algorithm 1 computes

k--1

=TA\{(i,j)li>j}.

But since Q- Q(A) by Theorem 20, it follows that R 7(A) by Theorem 5.

6. Conclusions. We have shown that Algorithm 1 determines a tight ordering
for any matrix that has the Hall property and a zero-free diagonal. We have not
considered any particular row or column ordering schemes. However, our algorithm
could be used with any fixed-pivot row ordering scheme (i.e., one that uses only one
pivot in each column) since row interchanges have no substantive effect on Hall sets
(provided a zero-free diagonal is maintained). Algorithm 1 can also be used with any
a priori column ordering scheme, but not with a scheme that reorders columns at each
step, since this changes the Hall sets.

Algorithm 1 can be adapted to perform a numerical QR factorization by re-
placing the structures with numeric matrices and the products of structures with
matrix multiplication. Such a numeric computation A QR is optimal with re-
gard to storage because the ordering is tight; that is, barring accidental cancellation,
struct(Q) Q Q(A) and struct(R) R T(A). If Algorithm 1 is first used to
determine/ and Q, then the entire numerical computation may be performed within



1040 M.I. GILLESPIE AND D. D. OLESKY

the (static) structures and (. If there is no need to compute Q explicitly, it may
be saved in factored form in the lower trapezoidal part of ,., using a single parameter
to characterize each rotation as described in [8].

We can find an upper bound on the time complexity of Algorithm 1 (or an anal-
ogous algorithm for computing a numeric QR factorization) for an m n full rank
matrix. Corollary 10.2 restricts the number of rotations required to the number of
nonzeros below the diagonal in Q(A). The number of operations required for each
rotation is linear in the number of nonzeros in the two rows involved, and this number
is certainly not more than 2n. This gives a bound on the operation count of O(nT(Q)),
where T(Q) is the number of nonzeros in the lower trapezoidal part of Q(A).

For a tight ordering, there is no unnecessary intermediate storage for Q(A) and
7(A); that is, all storage allocated in Algorithm 1 is ultimately required for these
structures. However, the amount of computation (i.e., the number of Givens rotations
required) is not necessarily minimized. As the following example illustrates, for a
given structure Algorithm 1 may produce different tight orderings that use a different
number of rotations.

Example 3. For
* 0 0

/0 * 0

0 0

so sl s2 O and s3 {r2, r3}. The orderings of the rotations in the QR
factorizations

A T T T T TG31Ga1G32Ga2G43R
and

A (aT1(3T (T32R
are both tight.

A consequence of Theorems 20 and 21 is that if A has the strong Hall property
or if A has the Hall property and is in Dulmage-Mendelsohn form (see, e.g., [1]), then
all orderings that compute the QR factorization column-by-column using diagonal
pivoting are tight. In the first case, there are no nonempty Hall sets. The second case
follows similarly since the diagonal blocks have the strong Hall property and the QR
factorization of A is easily obtained from the QR factorizations of the diagonal blocks
of A. These results correspond to those of Coleman, Edenbrandt, and Gilbert [1].
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ON A STURM SEQUENCE OF POLYNOMIALS FOR UNITARY
HESSENBERG MATRICES*

ANGELIKA BUNSE-GERSTNER? AND CHUNYANG HE:

Abstract. Unitary matrices have a rich mathematical structure that is closely analogous to
real symmetric matrices. For real symmetric matrices this structure can be exploited to develop
very efficient numerical algorithms and for some of these algorithms unitary analogues are known.
Here we present a unitary analogue of the bisection method for Symmetric tridiagonal matrices.
Recently Delsarte and Genin introduced a sequence of so-called /n-symmetric polynomials that can
be used to replace the classical Szeg5 polynomials in several signal processing problems. These
polynomials satisfy a three-term recurrence relation and their roots interlace on the unit circle. Here
we explain this sequence of polynomials in matrix terms. For an n x n unitary Hessenberg matrix,
we introduce, motivated by the Cayley transformation, a sequence of modified unitary submatrices.
The characteristic polynomials of the modified unitary submatrices pc(z), k 1, 2,..., n are exactly
the Vn-symmetric polynomials up to a constant. These polynomials can be considered as a sort of
Sturm sequence and can serve as a basis for a bisection method for computing the eigenvalues of
the unitary Hessenberg matrix. The Sturm sequence properties allow identification of the number of
roots of pn(Z), the characteristic polynomial of the unitary Hessenberg matrix itself, on any arc of
the unit circle by computing the sign agreements of certain related real polynomials at a given point.

Key words, unitary matrices, Sturm sequence, root interlacing, bisection method

AMS subject classifications. 65F15, 15A18, 42C05

1. Introduction. Numerical methods especially developed for unitary eigen-
value problems have been developed in [1], [4], [6], [7], [12], [15], [18], [19], [25]. Such
eigenvalue problems arise for example in signal processing [2], [5], [8], [14], [20]-[23],
[26], or more generally in trigonometric approximation problems [9], [17], [24]. These
special methods make use of the fact that any unitary Hessenberg matrix with pos-
itive subdiagonal elements can be parameterized by n parameters /1,..., /n, called
reflection coefficients or Schur parameters, and essentially only these parameters must
be considered in the numerical process.

The mathematical structure of the unitary eigenvalue problem is closely analogous
to the structure of the real symmetric eigenvalue problem. Thus one can hope to
find unitary analogues for the good numerical methods that exist for the symmetric
eigenvalue problem. Some such unitary analogues have been developed. There are
unitary QR methods [6], [18], a divide-and-conquer method [4], [19], and a method to
solve the inverse unitary eigenvalue problem [3]. In addition there have been special
unitary developments like methods for the real orthogonal eigenvalue problem [1], [7]
and a pencil method [12].

For symmetric matrices we also have the bisection method, which computes the
eigenvalues or only the number of the eigenvalues in a given interval. If for a unitary
matrix only the eigenvalues or the number of eigenvalues on a certain arc of the unit
circle are of interest, then a unitary analogue for this bisection method would be
helpful. The basis for the bisection method for symmetric tridiagonal n x n matrices
is the fact that the characteristic polynomials of the leading principal submatrices,
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dl (x),..., dn(x) say, form a Sturm sequence. They can be evaluated by a three-term
recurrence and the roots of consecutive d’s interlace. The number of sign agreements
in consecutive terms of the numerical sequence {dj(&),j "-- 1,..., n} is the number of
the eigenvalues that are smaller than &.

Recently a new family of polynomials, qo(z), ql (z),..., qn(Z), called ’in-symmetric
polynomials, has been introduced in a series of papers by Delsarte and Genin [10]-
[13]. Given reflection coefficient ’i,...,’tn with I.’ikl < 1 for k 1,...,n- 1 and

I’il 1, and 0 with Iv/01 1, called the circle parameter, these polynomials can be
constructed from Szeg5 polynomials and satisfy the following three-term recurrence
relations:

q-l(Z) 0, q0(z)--qo,

(1) qk+l (Z) (k + kZ)qk(Z) Zqk-l (Z),

for k- 0, 1,..., n- 1. Here q0 and 0 with I01 > 1/2 are nonzero real numbers and
the k are obtainable by the recurrence

]k T]0k-_ll (1 + ?OPkk_l)-l(1 k’ik)-1

for k- 1, 2,...,n- 1 and the pk by

’ik -- 0Pk+l1 + O/ktOk+

for k n- 1, n 2,..., 1 with initial value Pn ’in. The {Pk} are of modulus one
and are called pseudo reflection coefficients [13], [12]. The roots of these polynomials
are all on the unit circle and interlace each other [11]. Delsarte and Genin also
showed that the new family of polynomials could be used to replace the classical Szeg6
polynomials in several signal processing problems and thus provide new techniques
for the interpolation problem [11], the retrieval of harmonics problem [13], [12], and
Toeplitz systems [10].

In this paper we explain the ’in-symmetric polynomials in terms of unitary Hes-
senberg matrices. For a unitary n n Hessenberg matrix H, the k k leading principal
submatrix can be modified in a simple way to a k k unitary matrix Hk by replacing

"+op+the kth reflection coefficient ’ia by p 1-bOkPk+l for /-- 1,..., n- 1 and Pn "in.

We call 0 the cutting point. Note by comparing this definition with (2) that 0 is the
circle parameter in the notation of Delsarte and Genin. This definition of modified
unitary submatrices is motivated by the Cayley transformation: Choosing the cutting
point 0 we get a Hermitian matrix A via the (generalized) Cayley transformation as
A i(oI-H)-(oI+H). Then Ak, the kth leading principal submatrix of A, can be
shown to be exactly the Cayley transform of/k, i.e., Ak i(oI--/k)-i (0I +/k)-
The monotonicity of the Cayley transformation then implies that the eigenvalues
of the Hk-s interlace on the unit circle with respect to the cutting point 0. The
characteristic polynomials of modified unitary submatrices are, up to a constant, the
sequence of polynomials given by Delsarte and Genin. We show that for any on
the unit circle the number of sign agreements in consecutive terms of the sequence
of real numbers {(-o)k pk() k 1 n} is the number of eigenvalues of H that(o)"
are located on the arc between 0 and when moving counterclockwise along the unit
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circle. Thus we can consider these polynomials as a sort of Sturm sequence for unitary
Hessenberg matrices.

The paper is organized as follows. In 2 we introduce the modified unitary submao
trices/k and show that their Cayley transform is the kth leading principal submatrix
of the Cayley transform of H. In 3 we give a three-term recurrence relation for the
characteristic polynomials of Hk, k 1,...,n and have a closer look at the cut-
ting point. In 4 we introduce related polynomials, {dk(), k 0, 1,..., n} given by
dk() --( 2i k pk()V) and prove that the number of sign agreements of consecutive

elements of the sequence (dk(), k 0, 1,..., n} is the number of the roots of pn(Z)
which lie on the arc between -1 and when moving counterclockwise along the unit
circle. This can serve as a basis for a bisection method for the unitary eigenvalue prob-
lem. In 5, a Christoffel-Darboux-type formula is derived analogous to the formula
given by Delsarte and Genin.

2. Modified unitary submatrices. Let H be an n n unitary Hessenberg
matrix with real positive subdiagonal elements. Then it is well known that H can be
written as H GIG2 Gn where

and

Gk diag(Ik_l,
ak

k-- 1,...,n- 1

Gn diag(In_ l, -’n).

The parameters 3’k, k 1,..., n, are called reflection coefficients in signal processing
and satisfy 13,kl 2 + 0. 1, 0.k > 0 and I’Ynl 1. H is of the explicit form

and is uniquely determined by /1,..., /n. We denote this n n unitary Hessenberg
matrix by H(’I,... ,/n). This representation was introduced by Gragg and is the
basic condensed form for the development of unitary eigenvalue algorithms analogous
to the symmetric tridiagonal matrix in symmetric eigenvalue algorithms [17], [18]. Let
Hk be the kth leading principal submatrix of S. Then Xk(Z) det(zI.- Hk), k
1,..., n, the monic characteristic polynomials of the Hk-s, are the well-known Szeg5
polynomials [20]. They satisfy the following recurrence relations:

o 1,0 1,

(z) + (z),

k(Z) k--l(Z) "-}" Z/kX.k-l(Z), k 1,...,It.
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The )k(z), k 1,..., n, are auxiliary polynomials and it follows by induction that

The matrix Hk is not unitary for k < n and the roots of Xk(z) are inside the unit
circle. It will however become unitary if "k is replaced by any number on the unit
circle. Assume for.the following that -1 is not an eigenvalue of H. Motivated by (2),
we introduce the following sequence of modified unitary submatrices:

--1 --(I --(Tl O’k-lPk

(3) /k
ai --’)’1")’2 --"/1(72... (k-lPk

k--- 1,2,...,n,

(Tk-1 --O/k-lPk

where Pn ")’n and

/k Pk+l
Pk 1

k--n- 1,n- 2,...,1.

Here we have chosen 0 -1 in (2) for the definition of the pk-s. We call the point
-1 cutting point, because the unit circle under the Cayley transformation is "cut"
at this point and "stretched to the real axis." The choice -1 as cutting point is for
convenience. In fact any point 0 can serve as cutting point, as discussed in the next
section. Because all Pk are of modulus one, the modified submatrices/k are unitary
and k H(l,...,’k-l,Pk). The Cayley transformation can shed some light on
this special definition of modified submatrices with the following theorem.

THEOREM 2.1. Let A i(I + H)-i(I- H) and Ak be the kth leading principal
submatrix of A. Then

(4) Ak i(I / [-Ik)-i(I k),

i.e., the Cayley transform of [-tk is the kth leading principle submatrix Ak of A, the
Cayley transform of H.

To prove this result we need the following two lemmas. The first one shows that
Ak is related to the Schur complement of the (n- k)th trailing principal submatrix
of H + I. It is proved in [16].

LEMMA 2.2 ([16]). Let U be partitioned as

Hll H12 /(5) H21 H22

where HI is a k k matrix and H22 is an (n-k) (n-k) matrix. Let A
i(I + H)-I(I- H) be the Cayley transform of H and Ak its kth leading principal
submatrix.

Then Ak is the Cayley transform ofH H2(H22 + I)-iH2.
The second lemma we need, expresses pk in terms of ")’k, "a+,..., ")’n. Note here

that for the kth leading principal submatrix Hk ofH we get Hk H(’)’I,..., /k-, 1)Dk,
where Dk diag(1,..., 1, /k) and the (n- k)th trailing principal submatrix of H is
given by Dn-kH(’k+,...,’n), where Dn-k diag(’k, 1,..., 1).

LEMMA 2.3. Let Pn /n and
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(6)
1 --/kPk+l

for k n- 1, n- 2,...,1,

then pk can be expressed in terms of /k,’k+l,..., "n a8

(7) ]gk "k "- O’((--1)n-k-2n) Wk+lWk

where wk det(Dn-kH(Tk+l,. ")’n) -- I), Dn-k diag(’, 1,..., 1) and Wn 1.

Proof. The proof is by induction. For k n- 1 (6) leads to

2
Pn-1 ")/’n-1 + O’n-1 1

2
[n--1 -" n--1 (--n Wn--1

where wn 1 and Wn--1 --n-- n - 1.
Assume that (7) holds for k n- 1,..., g + 1. The essential step in proving (7)

for k t is the observation that the wk-s satisfy a three-term recurrence relation. It
is easy to see that

diag(1, H(9’e+2,..., 7n))[Dn-eH(9/e+l, 7n) + I]HH()/e+I, 9In)

the determinant of which is equal to -we, because det(diag(1,H(-ye+2,...,Tn))
(--1)n--e--3q’n and det(HH(-),e+l,...,9,n))-- (-1)n-e-2"Tn. The Laplace determinant
theorem then implies that

or equivalently

(_l)n_e_2n _We
We+l We+l

According to (7) for k + 1 we have +1 ((--1)n----3"/n)@e+2/We+ Pe+l --"e+l
and therefore

(8) (_l)n_e_2n _we (’e "e+l) (/e+l e-bl) ’e

From (6) we get

Pe+l

and thus it follows from (8) that
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or equivalently

((_l)n__2n) _W
Wt+l

W+I+
Wt

Proof of Theorem 2.1. Suppose that H is partitioned as in (5). We show that

(9) /rk Sll H12(H22 / I)-IH2.

Recall that

Hll H(/1, 7k-l, 1)Dk,

H12 --rkH(’)’1, "Yk-1, 1)ekeT1H(’)%+1,..., ")% ),
TH21 (Tkel k

H22 D,-kH(Tk+ %).

A simple evaluation leads to

Hll H12(H22 / I)-H2I H(’)’I,..., ")’k-i, 1)k / lkH(T1,..., 7k-I, 1)eke,

where

lk --r(efH(’k+l,...,9/n)(Dn-kH(k+l,... ,/n) / In-k)-ll)

By Lemma 2.3 we obtain lk Pk --"k and

HI1 H12(H22 / I)-1H21 /-irk,

and Lemma 2.2 then shows that/k, our kth modified leading principal submatrix of
H, is the Cayley transform of Ak. []

The one-dimensional Cayley transformation x i- mapping the unit circle1+5
onto the real axis is known to be a strictly monotone function of arctan im()

1+re()
Because the eigenvalues of Ak interlace those of Ak+ on the real line, the strict

monotonicity of the Cayley transformation assures that the eigenvalues of/k interlace
those of Hk+ on the unit circle. The cutting point -1 corresponds to both -c and
+cx under this transformation and we thus get the following corollary.

COROLLARY 2.4. Let Hk, k 1,..., n, be the modified unitary submatrices de-
fined by (3). If we number the’eigenvalues of starting from -1 moving counter-
clockwise along the unit circle, then the eigenvalues of Hk interlace those of Hk+ in
the following sense: the jth eigenvalue ofH lies on the arc between the jth and the
j + 1st eigenvalue of k+.

Example 1. Let us consider a 4 4 unitary Hessenberg matrix with
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’’1 --0.5 + i0.3,
"Y2 0.4 + i0.21,
Y3 0.8 i0.1,
/4 i.

Setting p4 /4, we calculate Pk, k 1, 2, 3 by (6). The eigenvalues of/k are denoted
by Ak,..., Ao Figure 1 illustrates the interlacing property.

-1

o x

FIG. i.

3. Three-term recurrence and cutting points. We denote the characteristic
polynomials of//k by pk(z), i.e., pk(z) det(zI-/k). It is easy to show that the
pk(z) satisfy the following three-term recurrence relations"

po(z) 1, Pl(Z) z + Pl,

(10) pt:+l(z) (z + pk+fit:)pc(z) -akzpk-(z),k 1,... ,n- 1,

where

(11)

with ’0 1. It can be shown that the pk(z) differs from qk(z) given by (1) by a
qk(z) As seen in Corollary 2.4 the roots of pk(z)constant, namely, Pk(Z) o/1...k-1

interlace those of pk+(z). We refer to pk(z) as the Sturm sequence of polynomi-
als corresponding to H, because they are the analogues to the Sturm sequence of
characteristic polynomials of symmetric tridiagonal matrices.

As an immmediate consequence of (10) we make the following observation.
LEMMA 3.1. Let Hk, k 1,...,n, be the modified unitary submatrices defined

by (3) and let all 0"1,... ,O’n_ be nonzero. Then Hk and Hk+l have no common
eigenvalues.
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Proof. All al,..., (rn-1 being nonzero implies that ak 0 for k 2,..., n- 1.
Thus from (10) we see that if Ht and Ht+l have a common eigenvalue then is an
eigenvalue of all k. It is then easily seen that this can only hold if is the cutting
point -1.

Figure 1 shows that the cutting point -1 is a common starting point to number the
eigenvalues for all pk(z) such that we get our root interlacing for every two consecutive
polynomials in the sequence. The choice -1 as a cutting point is for convenience. Any
point 0 on the unit circle that is not an eigenvalue of H may serve as a cutting point
and we must then use the generalized Cayley transformation with respect to 0

A i(oI- H)-l(oI + H)

and the definition of the Dn,..., D1 must be adapted to" p y, and

/ + (0P+ k-n- 1,...,1.(12) Pk 1 + O#eP+

The pk, k 1,...,n, are well defined, because 10’1 < 1. The generalized Cayley
transformation then maps the modified unitary submatrices of H defined with this
choice of p,...,pl to A, the kth leading principal submatrices of A i(oI-
H)-(oI + H) and Lemmas 2.2, 2.3, and 3.1 and Theorem 2.1 still hold when -1 is
replaced in the suitable way by 0.

The three-term recurrence relation for the Sturm sequence of polynomials, pk(z)
det(zI- ), is exactly the one given by (10) and (11), but with p from (12). The
roots of pk(z) now interlace those of Pk+l (z) on the unit circle in the following sense.
If we number the roots of pk(z) starting from 0 moving counterclockwise along the
unit circle, then the jth root of pk(z) lies on the arc between the jth root and (j + 1)st
root of Pk+ (z), j 1,..., k.

So far we have had to assume that the cutting point is not an eigenvalue of H.
An easy way to check whether 0 is an eigenvalue of .H is by looking at the sequence
(Pk } defined in (12). In fact, 0 is an eigenvalue of H if and only if

O+Pl =0.

In our matrix terms this can be seen in what follows.
Let all k be nonzero. Then H-oI is singular if and only if the Schur complement

of the (n- 1)st trailing principal submatrix of H- 0I is zero. With the notation of
(5) for k 1 this Schur complement is

A Hit 0 H12(H22 0I)-tH21.

Theorem 2.1, adapted to the general cutting point 0, then gives an adaptation of (9),
which for k-- 1 reads

/ A + o.
Thus we have A 0 if and only if
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4. Counting eigenvalues. For a Sturm sequence of real polynomials {dk(x)},
a(#), the number of sign agreements between consecutive terms of the numerical
sequence (dk(#),k 0, 1,..., n}, is the number of roots of dn(x), which are smaller
than (see [27]). An analogous result can be derived for the Sturm sequence (pk(z)}
of the unitary Hessenberg matrix H.

-1

FIG. 2.

Consider the one-dimensional Cayley transformation on the unit circle

(13) x-i

where I1 1. If 1, then x 0. If is on the upper semicircle then x > 0 and if
is on the lower semicircle then x < 0. A geometrical interpretation for is given by

the following formula and Fig. 2.

imx tan(0)
1 + re

im() (seeThe Cayley transformation is a strictly monotone function of arctan l’Tre()
Fig. 2). Thus for two points and /on the unit circle it is reasonable to define _< /
if" Zl+"I_T_{ _< i-. This gives a complete ordering of the points on the unit circle. Note
that the complete ordering excludes the cutting point -1. Let { k}j=l denote the k
roots of p(z) with

The Cayley transformation (13) preserves the order and therefore the interlacing is
preserved under the Cayley transformation. For the transformed points on the real
line we get

I+A1
< <...<i

l+A2k- l+Ak
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TABLE 1

()
-i o
1 2

-0.9900 + 0.1411i 4

d0()
+
+
+

dl () d2() d3() d4()

+ +
+ + + +

For any on the unit circle, we define a() as the number of sign agreements of
the numerical sequence {dk()}, k 0, 1,..., n, where

do() 1,

1+ I+A1k il- l+A2k/ i1+ I+A
Via the Cayley transformation (13) the sequence {dk()} can be considered as a
sequence of real polynomials with interlacing roots. Thus a() is the number of

.1_Ann- which are less than i L:-g or the number of A, A, which areI+A’’’’’ 1-bA’ 1-b
smaller than f.

The evaluation of the functions {dk(f)} seems to be difficult on first sight. But
noting that

1 A1-
-i k1+ I+A

we fortunately find that

p()
(14) dk(f)

1 + f pk(-1)"

Thus via (14) dk(f) can easily be computed by the three-term recurrence relation (10)
for pk(z)..

Summarizing the considerations above, we get the following theorem.
THEOREM 4.1. Let pn(--1) 0. The number a(f) of sign agreements for consec-

utive terms of the numerical sequence dk(), k O, 1,..., n, is the number of roots of
pn(Z) which are smaller than .

For Example 1 the signs of {dk(f), k 0, 1,..., n} are given in Table 1.
From Theorem 4.1 it follows that for given two points f and ? on the unit circle

the number of roots of pn (z) on the arc between and r/is a(?) a(f). Thus we can
compute the eigenvalues of the unitary Hessenberg matrix H by a bisection method
based on the evaluation of the sequence d(f).

5. A Christoffel-Darboux-type formula. A Christoffel-Darboux-type for-
mula for the 7n-symmetric polynomials has been derived by Delsarte and Genin [12],
[20]. The purpose this section is to show how a Christoffel-Darboux-type formula for
our unitary Sturm sequence of polynomials can be derived in matrix terms. We also
show that H is similar to a Hermitian matrix, which is a product of a lower bidiagonal
matrix and the inverse of an upper bidiagonal matrix and will thus shed light on the
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relation between the unitary QR Hessenberg method [18] and the pencil method in

According to the three-term recurrence relation (10), we have

(15) (0,...,

where

The next theorem shows that the eigenvalue problem for H is equivalent to the eigen-
value problem for the matrix pencil AZt Z2, i.e., H is similar to Ho Z2Z1. Ho
is a Hessenberg matrix of the form

-/91 -plOZl -Pill On-1

1 (Cgn- PnPn-1)

and the following can easily be proved.
THEOREM 5.1. Let the matrix R be given by

O"

0"1

O" O’n

with j 1-/jpj,j 1,... n 1. Then H R-1HoR.
We define dual polynomials {/Sk (z) } by

o(z) zn-l,l(Z) zn--2(z 2t- Pl),

(16) k-bl(Z) (kz-l((Z -" Pk-blk)k(Z) --k-l(Z)), k 1,... ,n- 1.

Here we can show that k(Z) Zn-l-kt...kpk(z) for k 0,1,...,n- 1 and
n(Z) Cl...Cn--lPn(Z). These properties are called "),n-symmetric properties by
Delsarte and Genin. From (16) we get

(17) (Zlw- Z2)

0
I(W)

0
n--1 (W) n(W)
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Postmultiplying (15) by (iS0(w),..., n-1 (w))T, premultiplying (17) by (po(z),...,
pn-(z)), and subtracting the results, we obtain the following Christoffel-Darboux-
type formula.

(Z w)(pO(Z), pn-l (z))

1 -oz o(w
"..

. --On_

1 /Sn-l(W)

pn(Z)n_l (W) n(W)pn--1 (Z).

6. Conclusions. For a unitary Hessenberg matrix H we defined a sequence of
modified unitary submatrices, which are slight modifications of the kth leading prin-
cipal submatrix of H. The characteristic polynomials of the modified unitary subma-
trices, pk(z), k 1,..., n, can be evaluated by a three-term recurrence relation and,
up to a constant, they coincide with the n-symmetric polynomials of Delsarte and
Genin, which in turn are modifications of the tzeg5 polynomials.

We showed that the Cayley transforms of the modified unitary submatrices are
the leading principal submatrices of the Cayley transform of H itself. This allowed
us to view their characteristic polynomials as a Sturm sequence of polynomials for
the unitary Hessenberg matrix H. For a given on the unit circle we derived from
P (),..., Pn() a sequence of real numbers dl(),..., dn (), such that the number of
sign agreements of consecutive terms in the sequence is the number of eigenvalues of
H that lie between 0 and when moving counterclockwise along the unit circle.

We can therefore determine the number of eigenvalues between any and 7 on the
unit circle by computing the corresponding sequence of d’s and have thus developed
a basis for a bisection method for the unitary eigenvalue problem.
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Abstract. Let Ax b be a linear system. We study the relationship between the sign pattern
of the least squares solution to Ax b and the sign patterns of A and b. The system Ax b is least
squares sign-solvable if the signs of the entries in its least square solution can be determined solely
from the signs of the entries of A and b. We construct a family of least squares sign-solvable linear
systems from the vertex-incidence matrices of trees. General properties of least squares sign-solvable
linear systems are developed and the structure of a least squares sign-solvable system is shown to
be analogous to that of sign-solvable linear systems. Square matrices whose sign pattern determines
the sign pattern of its inverse have been extensively studied. We study matrices whose sign pattern
determines the sign pattern of its generalized inverse.

Key words, least squares solution, sign-solvability, generalized inverse
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1. Introduction. Let p,q,...,v be positive numbers and consider the linear
system Ax b where

p r t 0

A- q 0 0
and b-

0
0 s 0 0
0 0 u v

Since the matrix of order 3 obtained from A by deleting its last row is invertible, Ax
b has no solution. However the least squares solution to Ax b has an interesting
property. First note that the columns of A are linearly independent regardless of the
magnitudes of the numbers p, q,..., u. Hence, the least squares solution to Ax b is
the solution to the normal equation ATAx ATb. Computing the normal equation
we have

(1) pr r2 + s2 rt x 0
pt rt t2 - u2 uv

The solution to the linear system (1)

--pt82 ]uv _q2rt
det ATA p2s2 _}_ q2r2 q2s2

Since the columns of A are linearly independent, ATA is a positive definite matrix and
in particular det ATA > 0. It follows that regardless of the magnitudes of p, q,.. v,
the first two entries of the least squares solution to Ax b are negative and the last
entry of the least squares solution is positive. Thus the signs of the entries of the least
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squares solution to Ax b depend only on the signs of,the entries of A and of b. We
study such linear systems in this paper.

To be more precise, we make the following definitions. The sign of a real number
a is 1 if a is positive, 0 if a is zero and -1 if a is negative. Throughout we consider
only matrices with real entries. Let A [aij] be an m by n matrix. The qualitative
class, Q(A), of A is the set of all m by n real matrices A [ij] such that the sign of
y and the sign of aij are equal for all and j. The sign pattern of A is the unique
(0, 1,-1)-matrix in Q(A). Let b be an n by 1 column vector. The linear system
Ax b is a least squares sign-solvable provided the vectors in

{u" there exist .Z. e Q(A) and/ e Q(b) such that IIA-u -/il minxeR- IIA-x -/ll }

are contained in a single qualitative class. The above example shows that

1 1 1 0
1 0 0 0(2) 0 1 0

x--
0

0 0 1

is a least squares sign-solvable system. Other examples of least squares sign-solvable
linear systems are given in 2.

The notion of least squares sign-solvability generalizes the previously studied no-
tion of sign-solvability (see [6], [11]). The linear system Ax b is sign-solvable system
provided each of the systems

(A E Q(A),b Q(b))

has a solution and the vectors in

{u" there exists Q(A) and/ Q(b) such that

belong to a single qualitative class. Clearly a sign-solvable linear system is least
squares sign-solvable. The linear system in (2) is least squares sign-solvable but is not
sign-solvable. The notion of sign-solvability has been generalized in other ways (see
[1], [], []).

In [11] the. structure of sign-solvable linear systems is described in terms of two
special classes of matrices, called L-matrices and S*-matrices. An m by n matrix is
an L-matrix provided every matrix in its qualitative class has linearly independent
rows. If m n, an L-matrix is called a sign nonsingular matrix, which we abbreviate
to SNS-matrix. A matrix is an SNS-matrix if and only if it has a nonzero term in its
determinant expansion and each of the nonzero terms in its determinant expansion
have the same sign. An S*-matrix is an m by m+ 1 matrix such that every submatrix
of order rn is an SNS-matrix. An m by m + 1 matrix is an S*-matrix if and only if
there exists a (1,-1)-vector u such that for each A Q(A) the null space of A is
contained in Q(u) U Q(-u) U Q(O). If u (1, 1,..., 1)T, then A is an S-matrixo The
structure of least squares sign-solvable linear systems is described in 2.

Let A be an SNS-matrix. Then every matrix A in the qualitative class of A has
an inverse. However, in general, A-1 need not be in the qualitative class of A-1. The
matrix A is a strong SNS-matrix (S2NS-matrix) if - Q(A-1) for all E Q(A).
Thus if A is an S2NS-matrix, then the signs of the entries of its inverse depend only
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on the signs of the entries of A. Irreducible S2NS-matrices are characterized in [5],
[14] and S2NS-matrices have also been studied in [7], [12], [13].

In this paper we generalize S2NS-matrices to the least squares setting (see [1], [6]
for other generalizations of strong sign-nonsingularity). Let M be an m by n matrix
of rank n. The generalized inverse of M, denoted by Mt, is the matrix (MTM)-IMT,
and that the least squares solution to Mx b is Mtb. Now let A be an m by n matrix
such that AT is an L-matrix. Then A has a signed generalized inverse if the matrices
in

belong to the same qualitative class. Note that if m n, then A has a signed
generalized inverse if and only if A is an S2NS-matrix. It is easy to verify that if
a, b, c, d > 0 then

1 a(c2+d2) bd2 -bcd
b c

a2c+a2d2+b2d2 -abc ca2 d(a2+b2)0 d

Hence

[l 11 1
0 1

has a signed generalized inverse. Matrices with sign generalized inverses and their
relationship to vertex-edge incidence matrices of trees are studied in 3.

2. Least squares sign-solvability. Recall that the linear system Ax b is
least squares sign-solvable if the signs of the entries of its least squares solution can
be determined solely from the signs of the entries of A and of b. Clearly, if P and Q
are permutation matrices, and D and E are invertible diagonal matrices, then Ax b
is least squares sign-solvable if and only if (PDAQE)x PDb is. It is known that if
Ax b is sign-solvable [11], then AT is an L-matrix. We extend this result to least
squares sign-solvability.

LEMMA 2.1. If Ax b is a least squares sign-solvable linear system, then AT is
an L-matrix.

Proof. Suppose that AT is not an L-matrix. Then there exists a matrix E Q(A)
and a nonzero vector y such that Ay 0. Let z be a least squares solution to Ax b.
Then since A(z + Ay) Az, the vector z + Ay is also a least squares solution to
Ax b for all real numbers A. For some choice of A the vectors z and z + Ay belong to
different qualitative classes, therefore Ax b is not least squares sign-solvable.

In [3] the notion of sign-solvability is generalized by relaxing the requirement that
each system Ax b has a solution. The linear system Ax b is conditionally., sign:
solvable provided there is a matrix in Q(A) and a vector in Q(b) such that Ax b

A square matrix X is irreducible provided there does not exist a permutation matrix P such
that PXPT has the form

X1 O
X3 X2

where X and X2 are square nonvacuous matrices.
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has a solution and each of the vectors in

{u" there exists . E Q(A) and E Q(b) with Au }

belong to the same qualitative class. Thus if Ax b is conditionally sign-solvable
then the signs of the entries of a solution to A-x , provided a solution exists, are
determined by the signs of the entries of A and of b. Clearly, any sign-solvable linear
system is also conditionally sign-solvable. Many of the results for sign-solvability
can be generalized to conditional sign-solvability. In particular, in [3] it is shown
that if Ax b is conditionally sign-solvable then AT is an L-matrix, and that the
structure of conditionally sign-solvable linear systems can be described in terms of
L-matrices and generalizations of S-matrices known as conditionally S-matrices. The
following corollary relates least squares sign-solvable linear systems and conditionally
sign-solvable systems.

COPOLLARY 2.2. If Ax b is a least squares sign-solvable linear system, then
either Ax b is conditionally sign-solvable or A -b IT is a an L-matrix.

Proof. Suppose that Ax b is least squares sign-solvable and that [A -b]T is not
an L-matrix. Then there exists a matrix Q(A) and a vector 6 Q(A) such that
the columns of [ -] are linearly dependent. By Lemma 2.1, AT is an L-matrix,
and hence the columns of . are linearly independent. It follows that A’x has a
solution. Since

{u" there exists . 6 Q(A) and 6 Q(b) such that Au }

is a subset of

{u" there exists E Q(A) and Q(b)

such that u is a least squares solution to Au b

it follows that Ax b is conditionally sign-solvable.
If the columns of A are linearly independent, then the zero vector is the least

squares solution to Ax b if and only if each column of A is orthogonal to b. Two
vectors u (ul, u2, un)T and v (vl, v2, Vn)T are combinatorially orthogonal
if T 0 for all (u) and all (v). Clearly, u and v are combinatorially
orthogonal if and only if uivi 0 for i 1, 2,..., n.

COROLLARY 2.3. The linear system Ax b is least squares sign-solvable and its
solution is the zero vector if and only if AT is an L-matrix and each column of A is
combinatorially orthogonal to b.

Proof. Suppose that AT is an L-matrix and that each column of A is combinato-
rially orthogonal to b. Let (A) and 6 Q(b). Then the least squares solution to
A-x is the solution to Tx T. Since AT is an L-matrix/y.T is nonsingular
and since /y.T 0, the only solution to Tx T is the zero vector. Hence
Ax b is least squares sign-solvable and its solution is the zero vector.

Conversely, suppose that Ax b is least squares sign-solvable and its solution is
Tthe zero vector. By Lemma 2.1, A is an L-matrix. If . e (A) and (b), then

since the zero vector is the least squares solution to Ax we have T) T.(0
0. It follows that each column of A is combinatorially orthogonal to column b.
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COROLLARY 2.4. Let

al bl
a2 b2

and b--

am b"be m by 1 matrices. Then Ax b is least squares sign-solvable if and only if some
entry of A is nonzero and the numbers aibi (i 1, 2,..., m) are all nonpositive or
all nonnegative.

Proof. Since A is an rn by 1 matrix, AT is an L-matrix if and only if A has a
nonzero entry. Lemma 2.1 implies that if Ax b is least squares sign-solvable, then A
has a nonzero entry. Thus, we may assume that A has a nonzero entry. If A E Q(A)
and e Q(b), then the least squares solution to x is (1/)2T where is the
sum of the squares of the entries of A. Hence, Ax b is least squares sign-solvable
if and only if the sign of 2T is independent of the choice of and . The corollary
now follows. El

Note that there do exist least squares sign-solvable linear systems Ax b such
that the sign pattern ofT depends on the choice of Q(A) and Q(b). For
example, let

1 1 -1

Then Ax b is sign-solvable, and hence least squares sign-solvable. But the sign
pattern of .T is not determined by the sign pattern of A and of b.

COROLLARY 2.5. Let A and A2 be rnl by nl and rn2 by n2 matrices, respectively,
and let b and b2 be rn by 1 and m2 by 1 column vectors, respectively. Then

0 A2 x
b2

is least squares sign-solvable if and only if both Au b and A2v b2 are least
squares sign-solvable.

Proof. Let

Clearly, AT is an L-matrix if and only if both AT and A2T are L-matrices. By Lemma
2.I we may assume that AT, and hence AT and A2T are L-matrices. The normal
equation of (3) is

ATA 0
0 AT2A2 I x= [ ATbIAT2 b2 I

which is equivalent to

AAIu AT b and AA2v = Ab2,

where x [u V]T. It now follows that the sign pattern of the solution to the normal
equation of (3) is determined by the sign patterns of A, b, and b2 if and only if the
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sign pattern of the solution to the normal equation of Alu bl is determined by the
sign patterns ofA and b, and the sign pattern of the solution to the normal equation
of A2v b2 is determined by the sign patterns of A2 and b2.

Before further developing the theory of least squares sign-solvability we give
family of examples. A matrix A of order n has an identically zero determinant if the
determinant of each matrix in Q(A) equals 0. By the Frobenius-Khnig theorem, A
has an identically zero determinant if and only if A contains a k by t zero submatrix
for some positive integers k and g with k / g > n. Let G be a graph with vertices 1, 2,

m and edges e, e2, en. The vertex-edge incidence matrix of G is the m by n
(0, 1)-matrix A [aij] such that aij 1 if and only if vertex belongs to the edge
A tree is an acyclic connected graph. Thus a tree with m vertices has m- 1 edges.
Let A be the vertex-edge incidence matrix of a tree. It is easy to verify that AT is
an L-matrix, and that the rows and columns of each square submatrix of A can be
permuted to obtain a lower triangular matrix. Thus, each square submatrix of A is
either an SNS-matrix or has an identically zero determinant. Moreover, this implies
that each square submatrix of A is either an S2NS-matrix or has an identically zero
determinant. We now construct m least squares sign-solvable linear systems for each
tree with m vertices.

Let X be an m by n matrix. If a is a subset of {1, 2,..., m} and fl is a subset
of {1, 2,..., n} then X[a, fl] denotes the submatrix of X whose rows have index in
and whose columns have index in ft. By , respectively fl, we mean the complement
of a in {1, 2,..., rn}, respectively of fl in {1, 2,..., n}. Thus X[, ] is the submatrix
of X obtained by deleting the rows with index in a and the columns with index in ft.
If a {1, 2,..., rn}, we abbreviate X[a, fl] to X[:, fl]. Similarly, if {1, 2,..., n}
we abbreviate X[a, ] to X[:, fl]. If X is a column vector, then we abbreviate X[a, :]
to simply X[a]. If b is an m by 1 column vector, and j is an integer with 1 <_ j _< n
then Xjb denotes the m by n matrix obtained from X by replacing its jth column
by b.

THEOREM 2.6. Let A [aij] be an m by m- 1 (0, 1)-matrix which is the vertex-
edge incidence matrix of a tree with m >_ 2 vertices. Let v be a vertex of the tree and
let b be the n by 1 column vector with a 1 in row v and 0 ’s elsewhere. Then the linear
system Ax b is least squares sign-solvable.

Proof. Let T be the tree with vertices 1, 2, m and edges e, e2, era-1
such that A is the vertex edge-incidence matrix of T. By replacing A by QAP, x
by pTx, and b by Qb where P and Q are appropriate permutation matrices, we may
assume without loss of generality that v m. Thus bm 1 is the only nonzero entry
in b. Let E Q(A) and let E Q(b). Since AT is an L-matrix, the columns of ft. are
linearly independent and hence the least squares solution to Ax b is the solution to
the normal equation

(4) Tx T.
Let u (ul, u2,..., u,-l)T be the solution to (4) and let j be a fixed integer with
1 <_ j _< m- 1. Since 2T2 is positive definite, it follows from Cramer’s rule that the
sign of uy equals the sign of

det (T)yXr.
Note that
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Thus it suffices to show that the sign of det T(.__) is independent of the choice of. in (A) and e (b).
By the Cauchy-Binet determinantal formula we have

(5)
m

det T(j.__) E det .[, :] det A,[{i}, :].
i--1

The graph T obtained from T by removing the edge ej has two connected components.
Let a be the set of vertices of the connected component of T which does not contain
vertex m, and let 3 be the set consisting of the remaining vertices. Let 7 be the
set of all k such that ek is an edge of the connected component of T which does
not contain vertex m, and let 5 be the set of all k such that ek is an edge of the
connected component of T which contains m. Thus, a A {1, 2,..., m}, 7 A 5
{1,2, ,m 1} \ {j}, [hi [7] + 1 and I/3] [5[ + 1. In addition, A[a, 5] O and
A[3, 7] O. By permuting the first m- 1 rows and the columns of A we may assume
without loss of generality that j m- 1, the elements of a come before those of/3,
and the elements of 7 come before those of . This may change the actual sign of uj
but will not change the fact the sign is determined by the signs of the entries of A
and of b. If E then A,.-b[a, 5 U j] is a zero submatrix of A,.-b[{i}, :], and since

la[ + [5[ m- 1 we conclude that det Aj._[{i}, :] 0. Suppose that E a. Since

A[, 7] is a zero submatrix of A[{i}, :] the matrix A[(i}, :] is block upper triangular
and hence

det A[{i}, :] det A[a \ {i}, 7] det A[, 5 t2 {j}].

Because Ajb[a\ {i}, 5U{j}] and A;-b[, 7] are zero submatrices of A;b, the matrix
Ajb is the direct sum of Ay,_b[a\ {i}, 7] and Aj-b[, 7U{j}]. Since the only nonzero
entry in is the entry m in its last row, it follows that

det Ab[{i}, :] bm det A[a \ {i}, 7] det A[/ \ {m}, 7]-

Therefore, we have

det [{i-, :] det A.[{i}, :] m(det [a \ {i}, 7])2 det .[, 5 U {j}] det[ \ {m}, 5].

Since A is the vertex-edge incidence matrix of a tree each of A[a \ {i}, 7], A[, 5U {j}]
and A[ \ {m},5] is an SNS-matrix or has identically zero determinant. Thus if
A[a \ {i}, 7] does not have an identically zero determinant, then the sign of

det A[{i}, :] det Aj_,[{i}, :]

is independent of and of the choice of and . Thus, by (5), the sign of detT(y_),
and hence the sign of u, is independent of the choice of A and b. We conclude that
Ax b is least squares sign-solvable.

Let A be an m by m- 1 matrix which is the vertex-edge incidence matrix of a
tree and let b be an m by 1 vector with exactly one nonzero entry. It is easy to verify
that [A b]T is an L-matrix and hence it follows that the least squares sign-solvable
linear systems described in Theorem 2.6 are not conditionally sign-solvable. If b is an
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m by 1 nonzero vector and A b, then Ax b is a least squares sign-solvable linear
system which is also conditionally sign-solvable. It can be shown that

1 1 1 1
1 1 -1 0
1 -1 1

x=
0

1 -1 -1 0

is conditionally sign-solvable but is not least squares sign-solvable.
Let B be an m by m- 1 matrix such that the matrix A obtained from B by

replacing each nonzero entry by a 1 is the vertex-edge incidence matrix of a tree.
Then it is easy to show that there exist invertible diagonal matrices D and E such
that DBE A. It now follows from Theorem 2.6 that if b has exactly one nonzero
entry, then Bx b is least squares sign-solvable.

COROLLARY 2.7. Let A be an m by m-1 matrix which is the vertex-edge incidence
matrix of a tree, and let b be a column vector with exactly one nonzero entry. Then
for j 1, 2,..., m- 1, the linear system

Aj.-bX Aj

is least squares sign-solvable, where Aj is the j th column of A.
Proof. The corollary follows easily from Theorem 2.6 and Corollary 2.5 by induc-

tion on m. rl

We now study the structure of least squares sign-solvable linear systems. An m
by n matrix A is balanceable provided there exists a diagonal matrix D of order m
each of whose diagonal entries is 1 or -1 such that each nonzero column of DA has
both a positive entry and a negative entry. If A is balanc_eable, then for each row j
there exists a matrix A E Q(A) such that the jth row of A is a linear combination of
the other rows of A. If Ax b is a least squares sign-solvable linear system, then the
ith-entry of the system is exact if for each A E Q(A) and each Q(b) the ith-entry
of b- Au is zero where u is the least squares solution to Ax b. For example, it can
be verified that only the third entry of the least squares sign-solvable linear system

1 0 x= 0
1 1 0

is exact. Suppose that Ax b is a least squares sign-solvable linear system whose
ith entry is exact. Let u be a least squares solution to Ax b. Then Au- b has a
0 in its ith entry and is orthogonal to the columns of A. Thus A[{i}, :In- b[{i}] is
orthogonal to the columns of A[{i}, :]. This implies that u is a least squares solution
to A[{i}, :Ix b[{i}].

LEMMA 2.8. Let Ax b be a least squares sign-solvable linear system such that
the least squares solution to Ax b has no zero entries. If A has no rows of all 0 ’s
and A is balanceable, then no entry of the system Ax b is exact.

Proof. Assume that A has no rows of all O’s and that A is balanceable. Suppose to
the contrary that the last entry of Ax b is exact. Let B be the matrix obtained from
A by removing its last row and let wT be the last row of A. Since A is balanceable,
there exists a matrix B Q(B) and a vector z0 Q(w) such that belongs to the
row space of B. Let u be the least squares solution to

(6) ,&T x-- b.
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Some entry, say the. first, of )T is nonzero and without loss of generality is positive.
Let v be the least squares solution to

x

where el
T (1, 0, 0, 0,..., 0). Since the last entry of Ax b is exact ffTu (CvT+eT1)v,

and both u and v are least squares solutions to Bx b where b is the vector obtained
from b by deleting its last row. Thus (u- v) 0. Since ?T belongs to the row

space of , we have )T (U V) 0.’ It follows that elTv 0 and hence that v has a
zero entry, contrary to assumption. Therefore, each entry of Ax b is exact. El

THEOREM 2.9. Let

(s) B C D x2 b2
0 0 E x3 b3

be a linear system where the vectors and matrices are conformally parititioned, and
the entries of bl, b2, and b3 are nonnegative. Assume that:

(i) A has no zero rows and is balanceable;
(ii) Axl bl is least squares sign-solvable and its least squares solution has only

positive entries;
(iii) each row of [B -b2] is nonnegative or nonpositive;
(iv) the matrix [C b2] is an S-matrix where b’2 is the row sum vector of [B -b2];
(v) ET is an L-matrix or ET has no rows and columns; and
(vi) the columns of E are combinatorially orthogonal to b3.

Then (8) is a least squares sign-solvable linear system.
Proof. Let M be the coeffecient matrix of (8) and let

Consider a linear system

(9)
0 0 x3

where the vectors and matrices belong to the appropriate qualitative classes. Let
and be the coeffecient matrix and the vector on the right-hand side of (9),

respectively. By Lemma 2.1, AT is an L-matrix. Since [C b] is an S-matrix, C is an
SNS-matrix, Cx -b2 is sign-solvable, and each entry of the solution to Cx -b2
is positive. Since ET is an L-matrix or E has no rows and columns it now follows
that MT is an L-matrix and hence that there _is a unique least squares solution u
to (9). Let Ul be the least squares solution to Ax bl. Then the distance between
the column space of fi and equals IIu -111- Since ET is an L-matrix and the
columns of E are combinatorially orthogona_l to b it follows from Corollary 2.3 that
the distance between the column space of E and b3 equals 11311. Thus, the distance

between the column space of r and is at least V/[I.ul + lll2 + lID3112. By (iii) and
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(iv), Cx [}2 ul is sign-solvable. Let u2 be the solution to to x2 ---/}2 ul,
and let

U [ :0: ].
Then the distance between Mu and } equals Iul + 1[[ 2 + 11 ,311 Therefore, u is

the least squares solution to Mx b. Since the sign patterns of ul and of u2 are
determined, it follows that (8) is a least squares sign-solvable linear system. [:l

We now prove a converse to Theorem 2.9. Note that if Ax b is least squares
sign-solvable with least squares solution u then there exist diagonal matrices D and E
each of whose main diagonal entries is 1 or -1 such that Db and Eu are nonnegative,
and (DAE)x Db is least squares sign-solvable. Hence there is no loss in generality
in assuming that both b and u are nonnegative. We use the following facts in the proof
of the next theorem. For each matrix X there exist unique sets (possibly empty) ’7
and such that X[’7, 6] O, A[, 6] is an L-matrix, and X[’7, 6] is balanceable [6].
Note that if XT is an L-matrix then X[,] is an SNS-matrix. In [8] it is shown that
if X [xij] and Y [yij] are distinct m by m + 1 S-matrices such that xij 0 if and
only if Yij --O, then at least two corresponding entries of X and Y are not equal.

THEOREM 2.10. Let M [mij] be an m by n matrix and let b be an m by n
vector such that Mx b is a least squares sign-solvable linear system, b is nonnegative
and the least squares solution u (u, u2,..., Us)T to Mx b is nonnegative. Let-- (j uj 0} and a (i mij 0 for some j E ).

Then M[a,]x b[a] is least squares sign-solvable and in particular M[a, ]T is
an L-matrix. Let "7 and 5 be the unique subsets of and , respectively, such that
M[’7, \ 5] O, i[a \ "7, \ 5] is an SNS-matrix and M[’7, 5] is balanceable. Then
Mx b has the form (8) and satisfies (i)-(vi) of Theorem 2.10 where A =/[’7,
B M[a \’7,5], C i[a \’7, B \ 5], n i[a \’7,], E /[,], b
b2 b[a \ "7], and b3 b[].

Proof. Since Mx b is least squares sign-solvable and u[/] 0, if N

Q(/[a,]), 5 Q(b[a]) and v is a least squares solution to /x 5, then Vo
is the least squares solution to Mx for each Q(M) and Q(b) such that
r[a, 3] 1 and [a] 5. Thus i[a, ]x b[a] is a least squares sign-solvable
linear system. By Lemma 2.1, M[a, ]T is an L-matrix. Thus the sets ’7 and 3 exist.
Let A, B, C, D, E, bt, b2, and b be defined as in the statement of the theorem.

Statement (i) holds by definition, and since M[a, 3]T is an L-matrix, C is an

SNS-matrix. Thus, if . Q(A), Q(B), Q(C), and Q(b) and if Vl is a
least squares solution to

and v2 is the solution to Cx b2 Bv, then
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is the least squares solution to any system Mx b such that M E Q(M) and

]M[a,/]= /

Since C is an SNS-matrix, it follows that Ax b[] is a least squares sign-solvable
system and that (i) holds. In addition, each linear system Cx b2 By1 is sign-
solvable and each entry of its solution is positive. It follows that each of the matrices
( 2-/Vl is an S-matrix. By the remark about S-matrices preceding the

statement of the theorem we conclude that (iii) and (iv) hold.
Suppose that M[%] 0. Let i E , j be integers such that mij 0. By

Lemma 2.8 there exists a matrix e Q(A) and a vector 1 e Q(bl) such that the ith

entry of A-v - is nonzero, where v is the least squares solution toAx 1. Let r
be the matrix in Q(M) such that M[/, 5] A, the (i, j)-entry of M equals 1 and all
other entries of M are 0, e or -e. Let b be a vector in Q(b) such that b[] bl. Let
v2 be the solution to Ax 52 Bvl. Then

is the least squares solution to Mx b. But for e sufficiently small the jth column of
is not orthogonal to Mv ), a contradiction. Thus, M[,] O.
Since MT is an L-matrix and C is an SNS-matrix, it follows that ET is an L-

matrix or ET has no rows and columns. Hence (v) holds. If ba 0, then clearly (vi)
holds. Assume that b3 0. By Corollary 2.3, to show that (vi) holds, it suffices to
show that Ex b3 is least squares sign-solvable and its solution is the zero vector.
Since ET is an L-matrix, each Ex )3 ( Q(E),3 E Q(b3)) has exactly one

least squares solution. Suppose that the least squares solution v to x 3 is
nonzero. Let v be the least squares solution to Ax b and let v be the solution to
Cx bu Bv Dv. Then

v;
where vu is the solution to Cx b2 Bx,

M B C D and b b2

This contradicts the fact that

is the least squares solution to Mx b. Thus Ex b3 is least squares sign-solvable
and has the zero vector as its least squares solution. Therefore (vi) holds and the
proof is complete. [:l
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Note that if in Theorem 2.10 the system Mx b is sign-solvable, then each
row is exact and hence Lemma 2.8 implies that the matrix A has no rows and no
columns. Theorems 2.9 and 2.10 show that the study of least squares sign-solvable
linear systems reduces to the study of L-matrices and to least squares sign-solvable
linear systems for which no entry is exact and for which the least squares solution has
no zero entries. This reduction is quite similar to those for sign-solvable linear systems
and conditionally sign-solvable linear systems presented in [11] and [3], respectively.

Consider a linear system Ax b. Among all least squares solutions to Ax b
there is a unique solution u such that ]lull is minimal. The solution u is the minimal
least squares solution to Ax b. If Ax b is least squares sign-solvable, then by
Lemma 2.1 the minimal le_ast_squares solution is the unique least squares solution for
each linear system A-x b (A e (A), E (b). As suggested by the referee, it may
be of interest to study linear systems Ax b for which the sign pattern of the minimal
least squares solution is completely determined by the sign patterns of A and b. Any
linear system Ax b for which the columns of A are combinatorially orthogonal to b
is an example of a linear system whose minimal least squares solution is completely
determined. If AT is not an L-matrix, then Ax b will not be least-squares sign-
solvable.

3. Signed generalized inverses. Let A [aij] be an m by n matrix such that
AT is an L-matrix, and let p and q be integers such that 1 <_ p <_ n and 1 <_ q _< m.
Then the (p, q)-entry of A is signed provided the (p, q)-entries of the matrices in

all have the same sign. For example let

[11]1 1
1 0

Then AT is an L-matrix and for A Q(A) there exist positive numbers a, b, c, d, e
such that

Then

t 1 [ ad2 cbd cb2 -dab e(b2 +d2) l
detAT. -acd + bc2+be2 -cab + da2+de2 -e(ab + cd) J"

Thus, it follows that the (1,3) and (2, 3)-entry of A are signed, and no other entry
of A is signed. More generally each entry in the jth colunn is of At is signed if
and only if Ax ej is least squares sign-solvable where ei is the (0, 1)-vector whose
only nonzero entry is a 1 in its jth row. The next theorem establishes necessary
and sufficient conditions for the (p, q)-entry of AT to be signed If T is a subset of
{1, 2,..., m} and q is a positive integer, then inv(q, T) is the number of elements in
T which are less than q.

THEOREM 3.1. Let A [aij] be an m by n matrix such that AT is an L-matrix,
and let p and q be integers with 1 p n and 1 <_ q <_ m. Define ( to be the
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collection of subsets T of {1,2,...,m} of cardinality n which contain q such that
neither A[T \ {q}, {p}] nor A[T,:] has an identically zero determinant. Then the
(p, q)-entry of A is signed if and only if one of the following hold:

(i) c is the empty set.

(ii) For each A e Q(A) the numbers

(-1)inv(q’T) det [T \ {q}, {p}] det [T, :] (T E

are nonnegative and at least one is positive.
(iii) For each A e Q(A) the numbers

(-1)inv(q’T) det .[T \ {q}, {p}] det [T, :] (T 6 a)

are nonpositive and at least one is negative.

Proof. Let [Sij] be a matrix in Q(A). Since t (.T)-IT the (p, q)-entry
of .t is given by

(10)

n (--1)P+k det(TA)[{p}, {k}lSqk

k--1 det(ATA)

n(-1)P -(--1)kSqk det(TA)[{p}, {k}]
det(ATA) k--1

By the Cauchy-Binet determinantal formula,

(11) det(TA)[{p}, {kI] det [S, {pI] det [S,
s

where the summation is over all subsets S of { 1, 2,..., m} of cardinality n 1. Thus

by (10) and (11), the (p, q)-entry of .T is given by

(12)
(__1)p n

k

det(AT (-1) 5qdet [S, {p}] det [S,-]
k=l S

det(A_T ’ det J[S, {p}] (--1)kgqk det .[S, {k}]
s k=l

where the summation involving S is over all subsets S of {1, 2,..., m} of cardinality
n-1.

Let S be a subset of {1, 2,..., m} of cardinality n- 1. Then

n

-(--1)kSqk det A[S, (PII det A[S,
k=l

det A[S, {p}] (-)a det A[S,
k=l

=-detA[S’{P}](det[A[{q}’:] ])
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If q belongs to S, then clearly

A[{q},:] ] 0.det
A[S, :]

Otherwise,

det
A[{q},:] ]A[S, :]

(-1)inv(q’s) det A[S LJ {q}, :].

It now follows from (12) that the (p, q)-entry of .t equals

(3) (-1)P+1

det(AT.) (-1)inv(q’T) det .[T \ {q}, {p}] det [T, :].

AT is an L-matrix, .T is a positive definite matrix and in particular det(T) >
0 for all A e Q(A). Therefore, if (i), (ii), or (iii) holds then the sign of (13) is
independent of the choice of A, and hence the (p, q)-entry of At is signed.

Conversely, assume that the sign of the (p, q)-entry of At is signed. If a is empty,
then (i) holds. Assume that a is nonempty, and consider a subset T belonging to c.

It is easy to verify that there exists a matrix A E Q(A) such that

det A[T \ {q}, {p}] det A[T, :] # 0.

For any such matrix A, let A be the matrix in Q(A) such that A[T, :] A[T, :] and
each nonzero entry in A[T, :] is -t-e for some real number e. For e sufficiently small it
follows from (13) that the sign of the (p, q)-entry of A equals the sign of

(--1)P+1
det A[T \ (q}, (p}] det A[T, :].

det(ATA)

Since the (p, q)-entry of At is signed this implies that either (i) or (ii) holds.
As noted by the referee, the fact that the (p,q)-entry of t is given by (13) is

a special case of the formula in [2] for the (p, q)-entry of the generalized inverse of a
matrix whose entries belong to an integral domain.

We now study the structure of matrices whose generalized inverse is signed. We
use the fact that if X is a square matrix which does not have an identically zero
determinant, then X is an SNS-matrix if and only if the determinant of each matrix
in Q(A) has the same sign (see [6]).

LEMMA 3.2. Let A be matrix of order n such that A does not have an identically
zero determinant. Suppose that for each r and s the numbers

(14) (-1)r+sA[{r}, {s}] det ( e Q(A))

are all nonnegative or all nonpositive. Then A is an S2NS-matrix.
Proof. We show first_ show^ that A is an SNS-matrix._ For suppose not. Then

there exists matrices A and A in Q(A) such that A has rank n and A has rank less
than n. Since changing a single entry of a matrix can only change the rank by 1,
we may assume without loss of generality that A has rank n- 1. Furthermore, we
may assume that all but one nonzero entry A is equal to the corresponding entry of
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A. Without loss of generality assume that (1, 1)-entries of A and A are not equal.
Let c and d be the (1, 1)-entries of A and A, respectively. Since A is not invertible
and A is invertible, det A[{1}, {1}] 0. Let A be the matrix obtained from A by
adding e to the (1, 1)-entry. Then for e with lel < Id- cl, Ae is a matrix in
with detAe edet A[{1}, {1}], and det A[{1}, {1}] det A[{1}, {1}]. It follows that
there are numbers in (14) of different sign, contrary to assumption. Therefore, A is
an SNS-matrix.

If e Q(A), then the (s, r)-entry of -1 is

(5) (-1)r+8 det A[{r},
det A

Since A is an SNS-matrix the assumptions on the numbers (14) imply that determinant
of each matrix in Q(A[{r}, {s}] is nonnegative or the determinant of each such matrix
is nonpositive. By the comment preceding the statement of the lemma, we conclude
that A[{r}, {s}] is either an SNS-matrix or has an identically zero determinant. Thus
by (15), the sign of the (s, r)-entry of -1 is determined. Therefore, A is an S2NS
matrix, rl

THEOREM 3.3. Let A be an m by n matrix such that AT is an L-matrix and A
has a signed generalized inverse. Then each submatrix of A of order n either has an
identically zero determinant or is an S2NS-matrix.

Proof. Let T be a subset of {1, 2,..., m} of cardinality rn such that A[T, :] does
not have an identically zero determinant. Theorem 3.1 implies that if p and q are
integers with 1 _< p _< m and q E T then the numbers

(-1)inv(q’T) det *IT \ {q}, {p}] det [T, :] ( e Q(A))

are all nonnegative or all nonpositive. The theorem follows from Lemma 3.2.
Clearly an S2NS-matrix of order m has a generalized inverse and each of its

submatrices of order rn is an S2NS-matrix. Let A be an m by m- 1 matrix such
that the matrix obtained from A by replacing its nonzero entries by l’s is the vertex-
edge incidence matrix of a tree. By Corollary 2.7 each system Ax b where b is a
vector with exactly one nonzero entry is least squares sign-solvable. Hence, A has a
generalized inverse. Since no submatrix of A of order rn- 1 has an identically zero
determinant, Theorem 3.3 implies that each submatrix of A of order rn- 1 is an
S2NS-matrix. We now show that an m by n matrix with m >_ 2 which has a signed

2generalized inverse and each of whose submatrices of order n is an S NS-matrix is
either an S2NS-matrix, or the matrix obtained by replacing its nonzeros by l’s is the
vertex-edge incidence matrix of a tree.

LEMMA 3.4. Let A be an m by n matrix with m > n such that AT is an L-matrix
and A has a signed generalized inverse. Suppose no submatrix ofB A[{ 1, 2,..., n
1}, :] of order n has an identically zero determinant. Then the rnatrix

M= B

det B[{1}, :]
det B[{2}, :]

(-1)n det B[{n + 1}, :1

is an S2NS-matrix of order n + 1.
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Proof. It follows from Lemma 3.3 that M is an SNS-matrix and that each sub-
matrix of order n of M which does not contain the last column is an SNS-matrix.
Consider the submatrix M[{q}, {p}] of order where p n 4- 1. By Laplace expansion
of the determinant along the last column we have

det M[{q}, {p}]

(16)

q--1

Z(--1)n+k(--1)k+l det B[{k), :] det B[{k, q},
k--1

n4-1

4- Z (--1)n+k-l(--1)k+l det B[{k}, :] det B[{k, q}, {p}].
k’-’qq-1

For k 1,2,...,n4-1 and k q, let Tk be the set (1,2,...,n4-1}\{k}. Then
inv(q, Tk) equals q- 1 if k > q and equals q- 2 if k < q. Thus by (16) we have

(7)

det M[(q}, (p]
n

(--1)n+q+k+l (--1)inv(q’T) det B[Tk, :] det B[Tk \ {k, q}, {p}].

kTq

Since the p(__,q)-entry of A is signed, Theorem 3.1 now implies that the sign of
det M[{q}, {p}] does not depend upon the magnitudes of the entries in of M. Hence
M[{q}, {p}] either has an identically zero determinant or is an SNS-matrix. Therefore,
M is an S2NS-matrix. [:l

In [6], it is shown that if C is an S2NS-matrix of order n + 1 such that the last
column of C contains no zero entries and no submatrix of order n which does not
intersect column n + 1 has an identically zero determinant, then the matrix obtained
from C[{ 1, 2,..., n + 1}, {n + 1}] by replacing its nonzero entries by l’s is the vertex-
edge incidence matrix of a tree. In [4] it is shown that if A is an m by n matrix with
m >_ 2 such that each submatrix of order n is an SNS-matrix then m <_ n + 2, and if
m n + 2 then each column of A contains exactly three nonzero entries. An n + 2 by
n matrix each of whose submatrices of order n is an SNS-matrix is a totally L-matrix.
These results, along with Lemma 3.4 imply the following.

THEOREM 3.5. Let A be an m by n matrix with n >_ 2 such that AT is an L-
matrix, A has a signed generalized inverse, and no submatrix of A of order n has
an identically zero determinant. Then either m n and A is an S2NS-matrix, or
m n + 1 and the matrix obtained from A by replacing its nonzero entries by 1 ’s is
the vertex-edge incidence matrix of a tree.

There do exist m by n matrices with signed generalized inverses some of whose
submatrices of order m have identically zero determinant. For example, the matrix

1 0
1 0
0 1
0 1

has a signed generalized inverse, and A[{1,2}, {1, 2}] has an identically zero deter-
minant. We now show that matrices with a signed generalized inverse have a very
specific structure. The following lenma is essentially containecl in [6].
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LEMMA 3.6. Let A be an m by n matrix such that AT is an L-matrix and each
submatrix of A of order n either has an identically zero determinant or is an SNS-
matrix. Then there exist permutation matrices P and Q and an integer k such that
PAQ has the form

A, 0 0
A21 A2 0

A A A

where each AT is either an S2NS-matrix, an S*-matrix a totally L-matrix, or a matrix
with one column and no nonzero entries.

LEMMA 3.7. Let B be an m by n matrix and let D be an r by s matrix such that
BT and DT are L-matrices. Let A be a matrix of the form

[ ]B O
C D

If the generalized inverse of A is signed, then the generalized inverses of B and D are
signed.

Proof. Since BT and DT are L-matrices, AT is an L-matrix. Assume that A has
a signed generalized inverse. Since AT is an L-matrix, there exists a submatrix B[-, :]
of B and a submatrix D[5, :] of D neither of which has an identically zero determinant.
By Theorem 3.3, each submatrix of A of order n / s is either an S2NS-matrix or has
an identically zero determinant. Let T be a subset of {1, 2,..., m} of cardinality n.
Then A[T U , :] is a submatrix of A of order n + s, and is lower triangular. It follows
that BIT, :] is either an S2NS-matrix or has an identically zero determinant. Hence
each submatrix of B of order n is either an S2NS-matrix or has an identically zero
determinant.

We show that B has a signed generalized inverse by showing that each entry of
its generalized inverse is signed. Let p and q be integers such that 1 <_ p <_ m and
1 <_ q <_ n. Let a be the set of T such that neither BIT \ {q}, {p}] nor B[T,] has an
identically zero determinant. Then it follows that ifT E a both BIT \ {q}, {p}] and
BIT, :] are SNS-matrices. Hence by Theorem 3.1, it suffices to show that either a is
empty or the signs of the nonzero numbers

(18) (-1)inv(q’T) det BIT \ {q}, {--1 det BIT, :l (T e

are all the same.
Assume that a is nonempty. Since the (p, q) entry of At is signed, it follows from

Theorem 3.1 that the numbers

(9) (-1)inv(q’TU) det A[(T ) \ {q}, {p}] det A[T t2 , :] (T e a)

are all nonnegative or all nonpositive. Clearly, inv(q, T
5) \ {q}, {p}] det B[T\ {q}, {p}] det D[5, ;] and det A[T U , :] det BIT, :] det D[5, :].
Since the numbers in (19) are all nonpositive or all nonnegative, it now follows that
the nonzero numbers (18) are all of the same sign. Hence the (p, q)-entry of B is
signed. Therefore, B has a signed generalized inverse. A similar argument shows that
D has a signed generalized inverse.
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The following theorem describes the structure of a matrix with a signed generaI-
ized inverse, and is an immediate consequence of Lemmas 3.6 and 3.7 and Theorem
3.5.

THEOIEM 3.8. Let A be an rn by n matrix with no zero rows such that AT is an
L-matrix. If A has a signed generalized inverse, then there exist permutation matrices
P and Q, diagonal matrices D and E, and an integer k such that PAQ has the form

(20)

A1 O O
A21 A2 O

A.k Ak2 Ak

where each Ai is a matrix of one column each of whose entries is 1, an S2NS-matrix,
or the vertex-edge incidence matrix of a tree.

Let A be an m by n matrix of the form (20) such that each Ai is a matrix of one
column and each entry is 1, an S2NS-matrix, or the vertex-edge incidence matrix of
a tree. Necessary and sufficient conditions on the matrices Aij in order that A have
a signed generalized inverse are not presently known, and are a topic of continuing
research.

Let A be an m by n matrix. Even if the columns of A are linearly dependent, the
Moore-Penrose inverse At exists. As suggested by the referee, it might be interesting
to study those matrices A for which the sign-pattern of the Moore-Penrose inverse
of A is completely determined by the sign-pattern of A. In this paper we have only
studied the case in which AT is an L-matrix.
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ON EIGENVALUE ESTIMATES FOR BLOCK INCOMPLETE
FACTORIZATION METHODS*
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Abstract. Eigenvalue estimates of block incomplete preconditioners are considered. We in-
vestigate how the block diagonal entries and off-block diagonal entries influence the bounds of all
eigenvalues. The results presented here improve and unify some previous results. We generalize
the well-known inequality that the spectral radius is bounded by the trace for symmetric positive
semidefinite matrices to block form. Some of the methods can also be useful to estimate lower bounds
of block incomplete preconditioners.
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1. Introduction. To estimate the rate of convergence of preconditioned iterative
methods such as the Chebyshev iterative method and the conjugate gradient iterative
method, one needs to know the extreme eigenvalues and the distribution of eigenvalues
of the preconditioned matrix, respectively; see [1], [2], [8], [7], [5], [12]. Naturally,
this problem by itself is difficult, especially for the distribution of all eigenvalues.
Fortunately, it has been shown (see [4]) that under certain conditions lower and upper
bounds of some eigenvalues can be derived and they provide the information necessary
to compare modified and unmodified incomplete factorization methods for symmetric
positive definite matrices, for instance.

Consider the implicit preconditioner on factorized form

C (X + L)X-1 (X + LT)

of a symmetric matrix A. Let A DA -{- LA -t.- L, where DA is a block diagonal
matrix. If A is a Stieltjes matrix and L LA in some cases, some methods to estimate
upper bounds of eigenvalues of C-1A were derived in [6], [4], [10], [9]. However, the
assumptions limit the applicability of the results because for incomplete factorization
methods they do not hold in general. In this paper, we discuss upper bounds and
distribution of eigenvalues of block incomplete preconditioners for the general case
of A being only a symmetric matrix. All of the results allow that LA differs from
L. As we will see, even when the assumption of A is weakened, we can have strong
results. The results here also unify some of the previous results on upper bounds of
eigenvalues of incomplete preconditioners.

The paper is organized as follows. Under the assumption of A being a symmetric
matrix, in 2 we focus our attention on both estimates of upper bounds and distribu-
tion of eigenvalues of block incomplete preconditioners. The result presented in this
section can also be useful to estimate lower bounds of block incomplete precondition-
ers. In 3, some further useful methods to estimate upper bounds and distribution of
eigenvalues are presented based on the fundamental result in the previous section. We
generalize the well-known inequality p(A) <_ tr(A) for A symmetric positive semidef-
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inite to block form, which with the result in 2 yields a new upper bound depending
only on the block order of matrices for the largest eigenvalue.

For convenience, As(A) denotes the ith eigenvalue of matrix A and it is assumed
that all eigenvalues of a matrix are ordered in a nonincreasing order. For any pair
of matrices A, B of the same order, A >_ B means that the same inequality holds
elementwise. The notation s.p.d, means symmetric positive definite while s.p.s.d.
means symmetric positive semidefinite.

2. Upper and lower bounds of eigenvalues. Let A be a symmetric matrix
partitioned in a block form

A DA W LA q- LTA,
where DA, LA is the block diagonal part and strictly lower block triangular part of
A, respectively. Consider a preconditioner C in the form

C (X -b L)X-I(x + LT),

i.e., a so-called implicit preconditioner, where X is a block diagonal and s.p.d, matrix
and L is a block lower triangular matrix. X and L are partitioned in blocks consis-
tently with DA and LA, respectively. We present first a result for upper bounds of
eigenvalues, which extends some results in [4], [10].

THEOREM 2.1. Let A be symmetric and assume that X is s.p.d, and aX- K
and K-X are s.p.s.d, for some constants a, . Then

(1) Ai(M()) < Ai(C-1A) < Ai(M(a)),

where K A- L- LT, C (X + L)X-I(X + LT), and

M() (I + L) -1 + (I + ],T)-I + (c 2)(I + L)-(I + LT)-x

L X-1/2 LX-1/2.

Proof. We have

A K + (x + L) + (X + i + :)X.

A computation with a similarity transformation of C-1A shows that

X-1/2 (X + LT)C-IA(X / LT)-X1/2
X1/2 (X + L)-A(X / LT)-X1/2
X1/2 (X + L)-I(K- aX)(X + LT)-Ix 1/2

+X1/2 (X + L)-Ix1/2 -I- X1/2 (X + LT)-X1/2
+(a- 2)X1/2 (X + L)-X(X + ir)-X1/2
X1/2 (X + L)-x(g- aX)(Z + LT)-Ix} + M(a).

Since, by assumption, K- aX is negative semidefinite, this shows that

A.i(C-1A) <_ Ai(M(a)).
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Similarly, using that K-X is s.p.s.d., we prove the first inequality in (1). El
If L LA is nonpositive and X is a block diagonal Stieltjes matrix, the special

case of Theorem 2.1 for the maximum eigenvalue of C-1A can be found in [10].
The following five propositions give situations in which the theorem is applicable.
PROPOSITION 2.2. X is s.p.s.d, if X is a symmetric Z-matrix and Xv >_ 0 for

some vector v > O.
Proof. Let v (vl, v2,..., vk)T and D diag(v, v2,..., vk). DXD + I is a

diagonally dominant Z-matrix for any > 0, which implies, in particular, that X is
s.p.s.d. El

PROPOSITION 2.3. Let X be symmetric. If aX- DA is a Z-matrix and the
entries of L + LT are not larger than the corresponding entries of LA + LTA, then
aX K is a Z-matrix. If, in addition, aXv Kv >_ 0 for some positive vector v,
then aX K is s.p.s.d.

Proof. A direct calculation shows that aX-K (aX--DA)/(L+LT--LA--LTA),
which shows that aX-K is a Z-matrix. An application of Proposition 2.2 completes
the proof. El

PROPOSITION 2.4. Ai(M(a)) <_ min(Ai(M(2)),l/(2- a)) if a e [0,2]. The
inequality is strict if a < 2.

Proof. Ai(M(a)) < Ai(M(2)) is straightforward. By a simple computation

M(o) (I + )- + (I + T)-I + ({7- 2)(I + L)-I(/q- LT)-1

--11--(2--0")2--0" ((I+L)-I- --11)2--0" ((/’+’LT)-I
we finish the proof. El

If L- LA, the upper bound 1/(2- a) can be found in [4].
PROPOSITION 2.5. Suppose matrix X is s.p.d, and oX K+ 7I is s.p.s.d. Then

(O" + ")/’/)min(X))Z g is s.p.s.d, if 7 >- 0 and (o + "T/Amax(X))Z K is s.p.s.d, if
<_0.

PROPOSITION 2.6. max(X-1K)X- K and ,min(X-1K)X + K are s.p.s.d. /f
X is s.p.d.

3. Some alternative upper bounds. As we have seen in the previous section,
the maximum eigenvalue of C-A can be bounded by if o < 2, but the situation
is not so fortunate if o > 2. It is impossible to derive a bound by involving o alone.
The bound of the eigenvalues must depend on both o and the lower triangular matrix. In this section, first, we discuss how to estimate the eigenvalue bound of C-A if
o > 2. Though is an upper bound provided o < 2, it is still very large if o is close
to 2. In the second half of this section, we reconsider the bound in this case. The
discussion is based on our generalization of the well-known inequality p(A) < tr(A)
for A s.p.s.d, to block form. It is shown that 2-o + 2(0- 1)m is another upper
bound of A(C-1A)~if 1 < o <_ 2 and A is an m x m block s.p.s.d, matrix.

Let iI (I + L)(I + ,T), where , stands for the same matrix as in Theorem 2.1.
The following result gives a method to estimate upper bounds of eigenvalues

Ai(C-A) if a >_ 2- n_iTl(J[) 2-- i (j/--1).

THEOREM 3.1. Let matrices A and C satisfy the conditions of Theorem 2.1. If
;i >_ i(/-1), where 1 (I + )(I + T), and o > 2 7, 1/2 then

(3) Ai(C-1A) <_ (o- 2)i + ,.
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Proof. Using Weyl’s theorem (cf. Parlett [11, p. 192]), we find for any tt < 2 and
a that

Ai(M(cr)) Ai((I + L)-1 + (I + LT)-1 + (o"- 2)(I + L)-I (I + LT)-1)
<_ Amax((I + L)-1 + (I + LT)- + (#- 2)(I + [)-(I + LT)-1)
+(or- #)Ai(I + .Z)-(I + LT)-1

1< + (or #).
-2-#

Therefore

Ai(M(cr)) < min ((2- #)-1 + (a- #)hi)
/<2

2 + (- 2).

The minimum is taken for # 2- i 2. An application of Theorem 2.1 ends the
proof of inequality (3). F1

The bound given by (3) is clearly an improvement of 1/(2- or) if cr > 2-

xL+().
Let now

I+L=

nl

Lml Lm,m-1

and f-2 be the lower triangular submatrices of I + L of the form

L1 L21 "’.

Lkl Lk,k-1 Ink

nk+

Lk+2,k+l ""
Lm,k+ Lm,m-1 In

and let L21 be (m- k) k block submatrix of I + L at the southwest corner, i.e.,

L21~ / Lk+l,lLml ""... L/c+l,/Lmk. I
Hence

(L o)I+L= ]-,21 L2
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Let A(D) denote the set of all nonzero eigenvalues of matrix D. Let Gt be an
n m matrix and G2 is an m n matrix. It is well known that A(GtG2)-A(G2Gt).
Set/i i],/T, 1, 2, and denote nt +... + nk, nk+t +... +nm. We now
consider how to estimate Ai(M). To this end, we need the following lemmas.

LEMMA 3.2. Let at and a2 be positive numbers, B be a p k real matrix, and
D be a matrix of the form

(4) D a Ik 0 a

S aI 0 aI
where Ik denotes the unit matrix of order k. Then the eigenvalues of D are given by

f-b (al, a2, Iti),

f-(al, a2, itk/p/l-i),

if 1 <_ i <_ min(p, k),
ifp< _k,

ifmax(p,k) < i <_ k + p,

where #t,..., Itmin(p,k) are the first min(p, k) eigenvalues of BBT, f+ (a, , It) and
f_(a, , It) are the largest, respectively, the smallest zero of the function

t t)(3- t)

Proof. If k >_ p, a computation, using a block decomposition of AIk+p D shows
the characteristic polynomial of D

fD(A) det(Mk+p D)

(A al)k-Pdet((A at)(A a2)/p ABBT)
p

( al)k-P H(( al)( a2) Iti)0.
i-1

Thus, f+(at,a2, iti), f-(at,a2, iti), and at are eigenvalues of D. Since f+(al,a2, x)
and f_ (at, a2, x) are monotonously increasing and monotonously decreasing, respec-
tively, the lemma follows immediately due to the fact that f+ (at, a2, x) :> max(at,
and f_(at,a2, x) <_ min(ai,a2) for x >_ 0. Note that A(BTB)- A(BBT). Similarly,
one can prove the case k < p. 71

LEMMA 3.3 With L ( 51 0 where Li are nousingular, and ,
\ L21 L2 ]

( r1521 Oa2 )’ where ri2 Amin(nTiLi), we have that Ai(LLT) >_ ,i(T).
Proof. Note that it is readily seen that A(BG) >_ Ai(DG) if B, D, G and B- D

are s.p.s.d. Hence, we have

Ai(LLT) Ai ( ( Lto o oo
o
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L21
0 /

0

Similarly, it follows that i >_ 3,(.,LT). U
Since A(LLr) A(LTILI), it follows from the proof of Theorem 3.1 with using

Lemmas 3.2 and 3.3 that

fq-(,min(Ul), ,min (M2),/i),
min(Jl),,i(J)_
min(j2),
f--(min(/[1), "min (/2), nq-l--i),

if 1 <_ i <_ min(iS, ),
iris< i_< ,
ilk < i <_i5,
if max(iS, k) < _< n,

LTwhere #1, #2, ]min(/,) are the first min(iS, k) eigenvalues of L21 21 numbered in
a nonincreasing order.

LEMMA 3.4. Let B be a p k real matrix and D be a matrix of the form

D- ( llk
B a2Ip

Then the eigenvalues of D are given by

a+(,,Zi),

As(D) o1,

02
-(, ., &++-),

if 1 <_ i <_ min(p, k),
ifp< i <_k,
ifk<i<_p,
if max(p,k) < i <_ k + p,

where 1, 2, ’’’, and flmin(p,k) are the first min(p, k) eigenvalues of BBT,

Proof. The proof is similar to that of Lemma 3.2. D
THEOREM 3.5. Let A (Aij)i,m.=l be a block matrix partitioning of an s.p.s.d.

matrix. Then

m

(5) p(A)
i--1

Proof. Consider first the case m 2. Let

B ( P(All )I At2 )A21 p(A22)I

which.is clearly s.p.s.d, and p(A) <_ p(B). Lemma 3.4 shows that

p(A_) + p(A22)- ((p(AI) p(A22)2 + IIA2II) 1/2) 2/min(B)

_
0
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and, hence

p(S) < -1 (p(Alx) + p(A22) + ((p(A11) p(A22)2 + [[A[I)1/2)) _< p(A) + p(A22).

By induction, we find for any s.p.s.d, matrix, A (Aij)i,’=l (5) holds.
If A has scalar form, (5) reduces to the well-known inequality

p(A) <_ tr(A).
If 1 < a < 2, we give now an alternative method to estimate an upper bound of

the eigenvalues of C-1A, which yields 2- a + 2(a- 1)m as an upper bound if A is
s.p.s.d.

THEOREM 3.6. Let A and C satisfy all conditions of Theorem 2.1. IfA is s.p.s.d.
and l < a < 2, then

Amax(C-XA) _< 2- a + 2(a- 1)m.

Proof. It holds that

(I + L)-(I + U’)-
m--1 m--1 (1)(m--il )r + (_)L + (_)(r) + (_I)L (_)(L)
i=1 i=1 k i=1

/(2)--I+ ,(l(--1)iLi)i=l ,(l(--l)i(LT)i)"i=1
Since (Ei=xm- (--1)iLi)(2i=lm-1 (_l)i(]T)i) is s.p.s.d, and 1 < a <_ 2, Theorem 2.1 and
the above yield

Since A is s.p.s.d, and C is s.p.d., Proposition 2.4 shows that M(2) is s.p.s.d. Since
the diagonal part of M(2) is 2I, (5) finishes the proof.

Under some additional assumptions, the bound of Theorem 3.6 can be reduced.
For example, if

1. A is a Stieltjes matrix,
2. L--LA,
3. X is a Stieltjes matrix such that offdiag(X) <_offdiag(DA), and
4. there is a positive vector v such that

(6) Cv > 0,
(7) (LT- L)v _< Cv,
(8) (X + LT)v >_ Av,

LpTv > O,
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where X LpPLTp denotes the point LU decomposition of X, then it has been shown
in [9] that

Ama(C-1A) _< m + 1.

These assumptions imply actually that 2X + L + LT A is s.p.s.d. In this case,
2X / L / LT A is a Stieltjes matrix. This follows because, as has been shown in
[9], (6) and (7) imply (X + n)v >_ 0. Hence using (8) shows that

(2X / L / LT A)v >_ 0,

which implies that 2X / L / LT A is s.p.s.d.
The matrix M(2) acts as a key for estimating the eigenvalues A(C-1A) as we

have seen. In general, A(M(2)) can be estimated by using Lemma 3.4. Denote
fj 1 / (_,Ti)-i i-- 1,2, and r/i-- Amax(57/). According to the partitioning of
I / L, it is easy to check that

M(2)= L21 /17/2

and hence

Ai(M(2)) < Ai ( I
\ L2

Again using A(L2t,2T1) A(L2TtL21) and Lemma 3.4, we have that

g+(, z, ),

<

g-(l, ?’12, n+l-i),

if 1 < i < min(/5, ),
if/5< <_ k,
ifk < i _</5,
if max(/5, k) < <_ n,

where -21 ---’1-/21-/’1, "l,-..,’min(i5,) are the first min(/5,) eigenvalues of

J212T1 numbered in a nonincreasing order.

4. Application to generalized SSOR preconditioned matrices. As an ap-
plication of the results presented in 2 and 3, we now consider upper bounds of
the condition number of the preconditioned matrix when the generalized symmetric
successive overrelaxation (SSOR) method is applied to symmetric block tridiagonal
matrices.

Let A be a block tridiagonal matrix of the form

A blocktridiag(Ai,i_l, Aii, Ai,i+l),

where Aii- tridiag(-b, a,-b) and Ai,i-x Ai,i+l ---cI, i- 1, 2,..., m. All blocks
have order n x n. In addition, we assume that b, c >_ 0 and a >_ 2(b + c). Consider

A DA L- L,

a splitting of A, and the generalized SSOR preconditioned matrix

C (D- L)D-I(D LT),
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where DA blockdiag(A11,A22,... ,Amm), L is the lower block tridiagonal part of
A, D blockdiag(D1, D2,..., Din) partitioned as DA.

We compute a preconditioner C for A in a common way as follows (see [3]):

D1 All,

Di =Aii Ai,i_1Xi-1Ai-1, / D 2, 3,..., m,

where Xi, >_ 1, is a sparse approximation to D-1 and D is a diagonal matrix such
that

nv Ai,i-1 (Xi-1 D_11)Ai_l,iv, i 2, 3,.. ,m

for some positive vector v. Hence we have

(9) DIV AllY,
(10) Div (Ai- Ai,-lD_11Ai-.1,)v, i= 2,3,...,m.

Since A (a 2b)I + b tridiag(-1, 2,-1), the smallest eigenvalue of A is

-2b+b 2sin2(n+l)
denoted by A, where n is the order of Aii. Let v be the eigenvector of Aii corresponding
to A. Equations (9) and (10) imply that v is also an eigenvector of D and the
corresponding smallest eigenvalue of Di becomes

)1 , "i A C2A-jl, 2, 3,..., m.

It is readily seen that Ai converges monotonically to the lower bound

1
+ 1/2 ).

Let a
_c2x-I We have a 1 + -c2- < 2. A computation shows that

aDlV Allv >_ O,

A c2A-__11
aDiv- Aiv A v- Av >_ 0, 2,3,...,m,

A c2A-I

which implies that aX L- LT A is s.p.s.d. Now Proposition 2.4 shows that

1 A c2p(C-1A) <
2 a AA 2c2

On the other hand, using A _> 2c, it is also seen that Ai _> i, which satisfy

1 2c, i 2c- c2-1 i 2, 3, m

Hence i /+c. Let

2m
m/2
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Similarly, we find that aD L LT A is also s.p.s.d.
Consider the lower block tridiagonal matrix T I- D1/2LD-1/2. We have

m-1

T- (Tij) E (D-1/2 LD-1/2)t,
t--0

where Tii In, Tij ci-jD1/2 D’:(I -Dj+Dj 2, > j, Tij O, i < j.
Partition (TT)-IT-1 into an m x m block matrix (Bij) consistently with the

partitioning of A. Clearly, (TT)-1T-1 is a nonnegative matrix. Applying D-v <_
(i+i)v shows that

(j(j + 1)) j + 1 j + 1
T/iv< \+1) v< v and Tiv<-i+1 -i+1

v, i>__j.

Hence,
m m

Bijv 2 TT;iTkjv <- E (i + 1)(j + 1)

k’-’l k_max(i,j)
(k - 1)2 v

m i- m (i+l)(j+l)EBi’v=EE (k + 1)2

m m

v /EE (i + 1)(j + 1)

==j
(k+l)

, k (i+1)(j+1)EE (k + 1)2
k=i j--1

V
i+1

1-
k+l (k+l)

v
2

k( 1 2 )i+1
1-

k+l (k+l)(k+2)
v<"2

k=i

<i+1 ( fm+ldx 1 ( 1 1 ))2 m-i+l+ 2
k+l k+2

v
i+1 x i + 1

=i

( ( )-----21 (i+1) m-i+l+log(m+l)-log(i-t-1)+m+2 -1 v

1(( )< g m+l+log(2)+m+ m+3+log(2)+rn,,+2 -4 v

1
(m + 2 + log(2))2v,

which implies that

1
(m + 2 + log(2))2 _---- g,p(M-) p((T.T)-IT-1)

_
where /Q stands for the same matrix as in Theorem 3.1. Since a > p(//-1) and
a > 2 t-1/2, applying Theorem 3.1 shows that

p(C-IA) <_ (a- 2) + 2a1/2 <_ 2x/- 1
(m+ 2 + log(2)).

This bound is approximately 0.4571(m + 2 + log(2)). The result can be further im-
proved if we can estimate p(/l/-) more accurately. Application of the result in [9]
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(Theorem 4.3) shows only an m/2 upper bound for this example, although the result
requires that A is a Stieltjes matrix, L LA and some other additional conditions.

Furthermore, because A-C is a Z-matrix and (A-C)v 0, we have )min C-1A)
1 and, therefore,

cond(C-iA) _<min( AA-c2-2c2’ 2v/ 1
(m + 2 + lg(2)))"4

For the model second order elliptic difference equation on a rectangular n x m
mesh with uniform meshwidth h --, we have Aii tridiag(- 1, 4, 1), c 1. In
this case, using the previously given bound on A, we find

AA-i n+l
AA- 2 2-

Therefore,

cond(C-1A) < min (n + 1 2v/- 1

\ 2r 4
(m+ 2 + log(2)))

It turns out that the second part holds also for the more common choice of the
vector e (1, 1, 1)T, because we have ie > -Ae, where/)i are the corresponding
matrices of Di obtained by using e.

The general bound 2m of the condition number is hence not very accurate for
the model type problem. Bounds involving only m, the number of blocks, are of
particular interest when an elliptic second order difference equation is solved on an
oblong rectangular domain with number of nodepoints N1 N2 where we assume that
N1 > N2. If we number the points such that the order of the matrix blocks is N,
i.e., there are m N2 blocks in the main diagonal, then applying Theorem 3.6 shows
that

cond(C-lA)
_

2N2,

or 0.4571(N2 + 2 + log(2)) for the model problem, both of which hence do not depend
on N. It is therefore efficient to choose big blocks for such domains.
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DIAGONAL DOMINANCE IN THE PARALLEL PARTITION
METHOD FOR TRIDIAGONAL SYSTEMS*
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Abstract. The partition method for the parallel solution of tridiagonal linear systems is dis-
cussed and the coefficients of the reduced global system derived. It is shown that if the full system is
diagonally dominant then the reduced system retains this property. This has important implications
for the stability of calculations in this reduced system and eliminates the need for global pivoting
with its expensive communication overhead.

Key words, diagonal dominance, parallel partition method, tridiagonal linear systems
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1. Introduction. This paper deals with the solution of a tridiagonal linear sys-
tem of equations,

on a network of P distributed memory processors. It is assumed that P << n and
each node has approximately m ,. niP unknowns assigned to it.

The system is said to be strictly diagonally dominant if

(2) I/il > lil + ]/i] i 1,..., n,

where (1 7n 0. This is a useful property as it guarantees that a (sequential)
method of solution such as Gaussian elimination can be performed without row or
column interchanges and that the computations are stable with respect to the growth
of rounding errors. It is even more valuable for parallel algorithms as parallel pivoting
with its inherent global communication would account for a much higher overhead
than a sequential version. Throughout the following we deal with diagonally dominant
systems and consider the implications of this property.

1.1. The parallel solution of tridiagonal systems. Many nearest neighbour
problems (e.g., those involving spatial finite difference approximations) have at their
heart a tridiagonal matrix. Their sparsity pattern suggests that, for large values of n,
such systems are ideal candidates for parallelisation. However the common methods
for solving tridiagonal systems, such as Gaussian elimination or matrix decomposition,
tend to be inherently sequential in nature and, as a result, this topic was one of the
earliest subjects investigated in the field of parallel linear algebra. Amongst the first
such schemes were those introduced by Stone in the early seventies [8], [9] employing
a recursive doubling algorithm. Odd-even cyclic reduction was another early method
developed by Golub and stabilized by Buneman [1], [2]. Since its first introduction for

Received by the editors March 11, 1993; accepted for publication (in revised form) by B.
Kgstrhm September 22, 1994.

School of Mathematics, Statistics and Computing, University of Greenwich, Wellington Street,
Woolwich, London, SE18 6PF, United Kingdom (c.walshaw@gre.ac.uk).
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symmetric constant coefficient matrices it has been extended to general nonsymmetric
tridiagonal systems [10].

In 1981 Wang [12] introduced what he called a new (partition) method. This has
since also been referred to as the spike algorithm (e.g., see spikes in Fig. 1) as it
proceeds by a completely parallel local Gaussian elimination to transform the system
from a tridiagonal one into a diagonal one with spikes or fill-ins at the interprocessor
boundaries. With one communication at the end of this local reduction phase, the
result is a global order P- 1 tridiagonal system in terms of the boundary variables
(the unknowns at the interprocessor boundaries). Figure 1 shows an example matrix
before and after the elimination phase, the dotted lines representing the interprocessor
boundaries and the bold x symbols the coefficients of the O(P- 1) system. This
reduced system can then be solved globally with, for example, cyclic reduction or two-
way Gaussian elimination and finally the internal solutions calculated each as a linear
combination of up to two boundary variables.

xx
xxx
xxx
xxx

)’i( k"
xxx
xxx
xxx
xxx

x x
x x
x x
xx

xx x
x x x
x x x
x xx

xxx x x x
XXX XX X
XXX X X X
XXX X X X
XXX X XX
xxx X X
XXX XX
XXX X X
XXX X X
XX X X

FIG. 1. Matrix transformation for the partition algorithm

A slightly different variant, the method of Sameh and Kuck [7] and Lawrie and
Sameh [6], uses no communication in the reduction phase but results in a pentadiago-
nal matrix. However, Jin a generalisation to narrow banded systems, Johnsson [4] has
shown that the extra communication is valuable and preserves positive definiteness
and a form of diagonal dominance (albeit not in the classical sense; see 3 for further
discussion).

The competing methods and their implementation on different architectures have
all been comprehensively reviewed by Johnsson in [5]. He shows that a hybrid GECR
(Gaussian elimination locally, cyclic reduction globally) algorithm has similar arith-
metic complexity to the full cyclic reduction algorithm and that the best method
therefore depends on communication considerations.

Having established that the partition method is competitive this paper proceeds
in the following manner. In 2 the partition algorithm is described in full and values
for the coefficients of the reduced matrix are derived. It is important for stability
purposes to know which properties of the original system are retained by this reduced
system and some previous results are discussed in 3. Finally, in 4, a proof that
diagonal dominance is indeed retained by the reduced matrix is given.
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2. The partition algorithm. Consider the solution, on a ring of P processors,
of the order n tridiagonal system (1) which is assumed to be diagonally dominant (2).
For convenience the system will be relabelled and throughout the following section,
superscripts denote the partition a particular value is assigned to and subscripts the
position in a vector’

2.1. Assignment of equations. The variables are distributed over the proces-
sors by dividing up the system into P tridiagonal subsystems of order m, interspersed
with P- 1 single equations. For simplicity it is assumed that n and P are such that
m is the same for each processor and so

n=mP+P- 1.

An example of the relabelling of x is shown in (3); a, b, c, and d are relabelled
and partitioned in the same way.

(3)

’i"
Xl

x + ".

i contains the system

cm-
am bm

o

+ xi+l

x, cm dm
where a cPm 0. For brevity these systems will be denoted by

(4) aelx + Tx + c e x+1 d

where el, em denote the standard unit basis vectors with [ej]k 5jk.
Bordering each tridiagonal system (4) are the boundary equations

and

i-1 bix c da xm + + Xl

ai+lxmi + bi+lxi+l + (i+lx+l di+l.

The subsystems are assigned to partitions in a natural way; the first m equations
to partition 1, equations m+ 2 to 2m + 1 to partition 2, etc., Thus each partition
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2.2. The algorithm. The method can be broken into three phases. A com-
pletely parallel reduction phase (Phase 1), the solution of the reduced matrix (Phase
2), and the completely parallel back-substitution (Phase 3).

Phase 1. Reduction. The tridiagonal systems are manipulated to give x as a
linear combination of the two local boundary variables x and x+1,

x w rix sixi+l

where

idef idefwd___ef(T) ld, r=al(Ti)-el, S=Cm(Ti)-em.

Note that although (T)- is written here there is no need to explicitly calculate the
inverse of T and that w, ri, and s can be found by Gaussian elimination or a matrix
factorization algorithm such as LU-decomposition. Diagonal dominance guarantees
that local pivoting is not required and that the decomposition is stable.

The expressions for x, Xl+ - andxm xm are now substituted into the boundary
equations to yield

(s) i--1aii-lxi-lrm + (b _a smi-1 crl)Xi cslx+1- d a Wm CzWZl

These can now be written as a reduced O(P- 1) tridiagonal system whose unknowns
are the boundary variables:

(9) Rx= ".. ".. ".o

x

XP P

The coefficients are given by:

(10)

i 3,...,P,
2,...,P,
2,...,P- 1,

i=2,...,P.

Phase 2. Solution of the reduced system. The second phase is the solution of
this reduced system for the boundary variables. Again this can be accomplished in a
number of ways, for example, via cyclic reduction [3] or two-way Gaussian elimina-
tion/matrix decomposition, e.g., see [11]. This involves a simultaneous sweep in from
both ends of the chain of processors followed by a simultaneous sweep out.

For any of these methods it is important to know if the diagonal dominance of
the full system (1) is retained by the reduced system. Were it not the case the scheme
might require pivoting, a costly operation globally. This question is discussed below.

Phase 3. Back-substitution. Once the reduced system is solved the values of the
two boundary variables can be substituted into (7) to construct the solution. This
operation is local and can be executed completely in parallel.
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3. Properties of the reduced matrix. An important question arising in par-
tition type methods is what properties possessed by the full matrix A are retained by
the reduced matrix R after Phase 1. In his original description of the algorithm, [12,
p. 182], Wang points to a paper by Wilkinson, [13, 8], as demonstrating that diag-
onal dominance is conserved. This comprehensive study of error analysis of matrix
inversion can be used to show that the fill-ins are still dominated by the diagonals.
However, published long before the partition method was of interest it does not (and
had no reason to) address the elements of the reduced matrix--elements that do not
arise as standard fill-ins.

Johnsson [4], in an extension of the partition method to narrow banded systems,
gives a proof that a matrix which is diagonally dominant in a matrix sense gives
rise to a diagonally dominant reduced matrix. This proof is given for narrow banded
systems, but when restricted to the tridiagonal case requires the condition on the full
system that, for each i, the boundary equations be diagonally dominant, i.e.,

(11) Jail / Icl < I,{
and that the matrix systems satisfy the following dominance condition

/ <

This is, of course, not the same as the classical sense of diagonal dominance, (2), which
in the new notation requires the boundary equation condition, (11), plus conditions
on all the other equations in the system, i.e.,

(13) la l / Ic}l <
for each i 1,...,P and for each j 1,...,m.

Theorem 4.1 (below) assumes the classical characterisation of diagonal dominance
for the full matrix and then goes on to show that, as a result, the reduced matrix
is also diagonally dominant. This is a useful result as conditions (11) and (13),
which henceforth shall be collectively referred to as the classical diagonal dominance
conditions, are a much more natural request to make of a system than (11) and (12)-
henceforth matrix diagonal dominance conditions. First, the classical conditions are
much easier to check and second, they arise naturally in many applications.

Another important distinction is that the classical diagonal dominance conditions
are completely independent of the number of processors and of the way the variables
are distributed among the processors. The same is not true ofthe matrix conditions.
As a counterexample, consider the (somewhat trivial) matrix

(14)

1 0 0 0 0
2e 1 1 e 0 0
0 0 1 0 0
0 0 1 e 1 2e
0 0 0 0 1

with e small. If this is solved on two processors with the third equation as the
boundary equation (which is diagonally dominant), then the first matrix condition,

II(T )-14e ll 1 0 ]--12e 1

[1 o
-2e 1

<1,
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(and by symmetry the second one also) is satisfied and hence the reduced matrix
is diagonally dominant. However, if solved on three processors then neither of the
boundary equations, two or four, are diagonally dominant and hence the proof can
make no claims about the reduced matrix. Thus it can be seen that the matrix
conditions are dependent on both P and on the way the system is distributed.

The above example also shows that a matrix satisfying the matrix conditions is
not necessarily classically diagonally dominant. In the next example it can be seen
that classical diagonal dominance does not imply the matrix condition. Consider,
then,

T=I2= 0 1 a=c2=l-e"

This would stem from a tridiagonal system containing the entries

l--e 1
0

0
I 1--e

which is diagonally dominant in the classical sense. However the matrix condition is
that

<1,

which is certainly not true.
Thus it can be seen that neither of these two characterisations of diagonal domi-

nance is implied by the other. Hence a matrix can fail either one of the tests but still
render a diagonally dominant matrix.

Note that the property of positive definiteness has been addressed by Johnsson
[4], who presents a proof employing permutation matrices that a positive definite
symmetric matrix retains those qualities in reduction.

4. A diagonal dominance proof.
THEOREM 4.1. Consider a tridiagoual matrix T as proposed in (1) and a reduced

matrix R as derived in (9). If T is strictly diagonally dominant, (2), then so is R.
The proof is deferred to 4.3. Some preliminary results are established in 4.1

and the main lemma is given in 4.2.
4.1. Preliminaries. It is convenient to express the entries of the reduced matrix

in a different form and to do this first consider the tridiagonal systems (4). Denote
the minors of each matrix T by T:, T2,... so that the inverse

(15) (Ti)- det(Ti)

the transposed matrix of cofactors, divided by the determinant of Ti.
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In particular the four corner minors, TI Timl,Tm, and Tram will be required.
Whence,

(16) TI det a b c H c},
j--1

b cam-1 m-1 m-1

and similarly,
m

1-i a#.
j"-2

Also

(18) TI det ".. ".. ".. det (Tower) say,

Cm-
am bm

(19) T det ".. ".. ".. det(Tripper), say.

Cm-2
am-1 bm-1

Now consider the entries of the reduced matrix R as given in (10).
2,..., P, the main diagonal

b i--1a 8m r
a cm [(Ti-1) em]m al[(T) 111

_b i-1 ca cm [(T- )- ]mm a*l[(Ti)-l]ll
So from (15), (19), and (18),

-1 det(Tlower)i b i-1 det(Tupper) c,a,_acm
det(Ti-1) det(Ti)

But consider det(Mi) defined for i 2,..., P by

i--1
a2

aimI bim-I
a

i--1Cm
b
W1

c

am-
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Then, on expansion by the row containing ai, bi, and ci,

det(Mi) b det(Ti) det(Ti-1" i-1 i- det(Tiower) det(T-1).)-a cm det(Tupper)det(Ti)-cia

Thus, for i 2,..., P,

det(Mi)
det(Ti-1) det(Ti)"

For 2,..., P- 1, the lower diagonal

i-1z a rm
i--1=-a al [(T- )-lel]m

_aia-l[(Ti-1)-llm
_aia-(-1)m+lTii/det(Ti-i).

Then from (17),

i (_l)m

m

j--2

det(Ti-)

i--1and writing a =_ am+

(21)

m+l

5i= (--1)m det(T_).

Similarly, for i 3,..., P, the upper diagonal

i --Ci8 --ci --1Cm[(T) emil

and so from (16) with C/o -_- c{,

(22)

m

5i (_1)m
det(Ti)"

Some simple technical results, the corollaries of the following lemma, will also be
required.

LEMMA 4.2. Consider the series {ai}, {bi}, and {ci} and let

bi lail + lcil + 5i Vi >_ l,

where 6i > 0 is a series of strictly positive numbers. Now if

xl > 0,
X2 --[C21Xl > O,
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and

(23) xi bixi-1 aici_ixi_2 i >_ 3.

Then xi > 0 for all i > 1 and xi -Icilxi_l > 0 for all i > 2.
Proof. Suppose, for induction,

xi-2 > 0 and xi-1 -Ici-ilxi_2 > 0 ( Xi_l > 0).
Then,

Also rearranging the last line

x -IclX_l > lal(X_l -Ic_lx_=) / ixi-1 > o.
But, by hypothesis,

xl >0 and x2-1c21xi >0.

Vi > 1 and xi --ICi]Xi--1 > 0 Vi > 2. El

Hence, by induction,

x>O
COROLLARY 4.3. The determinant of a strictly diagonally dominant tridiagonal

matrix with strictly positive main diagonal is positive.
Proof. Let T be the tridiagonal matrix (of order n) with {ai}’=2, {bi}=l, and
n--1{ci}i=i on the lower, main, and upper diagonals, respectively. Then, in the above

lemma, define xi as the determinants of the leading principal submatrices of To So

and rearranging the last line,

x2 -Ic21x -la21(laxl +  2xx > o,

Now expanding xi by the bottom row,

Hence, by the lemma,

and, in particular,

Xi bixi-1 -aici-lXi-2 3 g i < n.

xi>O 1 <<_i<n

xn det(T) > 0. El

COROLLARY 4.4. If xl > O, x2--[c2[xl > 0 and this time xi > bixi-l-aici-xi-2
in the above lemma. Then again x > 0 for all i > 1.

Proof. An obvious modification of the proof of the lemma, rl
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4.2. The main lemma. From the results in (20), (21), and (22) it can be seen
that the elements of each row of the reduced matrix can be represented solely in
terms of the corresponding boundary equation and the two tridiagonal systems it lies
between. Since the proof seeks to derive a row condition on this matrix it is simpler to
treat one such system. It is convenient therefore to abandon the notation conventions
used up to now and use superscripts to denote rows above the "central" or "boundary"
row, and subscripts to denote rows below. Consider then the system

(24)

an bn cn
an- bn- cn-

a b a1

c

1

am-1 bm-1 Cm-1
am bm am

Now define the series of determinants to be used in the following proof by

MOO de__f b,

M. de____f det

bn cn

an-1

c

c1

am

n, m >_ O,

Vo

n def det

n

an-1
Cn

a

n>_l,

L0

Lm

def 1,

d___f det

bl
a2

1

am bm

m>_l,
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AO def
1
n

An ae Haj n>_l,
j--1

The bulk of the proof now is presented as a lemma (because the notation has
changed) but M,, Un, Lm, An, and Cm can all be readily identified with elements of
the results in (20), (21), and (22). It is worth remarking that I.I will denote modulus
and not determinant.

LEMMA 4.5. Consider the tridiagonal system (24) and suppose that it has a
strictly positive main diagonal and is strictly diagonally dominant, i.e.,

bi= levi + [cl + i i= 1,..., n,

bj lal / Il / j i= 1,..., m,

where , , > 0 Vi, j >_ 1.

Then, if Mn, Un, Lm, An, and Cm are as defined above,

M > [aA"Lm[ + IcCmU"l Vm, n

_
O,

Proof. Corollary 4.3 => Mnm, Un, Lm > 0 for all m, n _> 0.
Now define

(25) n def nem lvl- laAnLm]- [cCmUnl /m, n >_ O.

nThe aim is now to show that m > 0.
First expand Mmn by the top row and substitute for Mmn-1 and Mm-2 from (25)

to get

(26)
b M( chart--1M,-2
bnlaAn-timl_ cnan-l[aAn-2im

+ blCV- ca-llcv-2
in n--1 chart--1 n--2
0 m m

Now considering the constituent parts of the right-hand side in (26)

(27)

b,laA,-L.l cnan-llaAn-2Lm >_ bnlaAn-lLml
=(bn-lcnl)laAn-iiml

(5n +
--5nlaAn-ln,l + laAnLml.
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Also, since Un > 0 for all n,

bn]cCraUn-i cnan-llcCmUn-21 (b,U,-t

So substituting (27) and (28)into (26) gives

M >_ 6"IaA’-L,] + laAnL,.l + ]cC,.U’I + bn.n-1 cnan--1 n--2
Em

n and dropping the 5 termand hence from the definition of

n bn n-1 cnan-1 n-2(29) em em em
Similarly, expansion by the bottom row of Mmn gives

(3o) nEmn _> bme_l araCm-1 m-2"

The proof now goes as follows.
(a) First it is shown e > 0 for all n by induction on n.

(b) Next it is shown e -Icl le > 0 for all n.
n(c) Finally it is shown Em> 0 for all n, m by induction on m.

(a) Consider

MOo b lal + Icl + laALol + IcCoVl + .
Thus

(3) e =i > 0.

Also

M) b b cla
> bb Ical

laALol + IcCoUl + 5lla + b1.

So

Hence, since %0 5,

(32)

Thus, using (31), (32), and (29) together with Corollary 4.4, it can be seen that

(33) e>0 Vn>_0.

N.B. The a’s and c’s swap roles from the statement of the corollary as the determinant
is expanded from the top and not the bottom.
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(b) Now consider

ICl I. M
-IClI(M -laA’Lo]- ]cCoVn])

M- [aAnbll- [ccUnl
-IcIM + laA.ncll + ccUn

M -c]M -]aA=l(b -Icl)

Then expanding M by the bottom row,

e --]Cl]e blM
(51
(li +)i aU -IA(lai + 6)
( + ,)(i -aA)-U
(]a] + 5)(M -]aALo])- acU
(l + *)(icoul + ) u
lacUi + la]e + 6(]cCoU + eS) aicU
]ai]e + 51(cCoUn] + )

(3a) > o,
and this is true for all n 0 by (33).

(c) Finally, using (33), (34), ad (30) together with Corollary 4.4, it can be seen
that

n(35) > 0 Vn, m 0.

Hence,

(36) M, > aA*LI +

4.3, Proof of the theorem.
Proof. This is a direct consequence of Lemma 4.5. First, without loss of generality,

each row of the fifll matrix A can be multiplied by sign(bi) to ensure that the main
diagonal is positive. Now for each i 2,..., P identify Un with det(Ti-1), Lm with
det(Ti) and hence Mmn with det(/i). Then from (20), (21) and (22), and Lemma 4.5

det(Mi)
det(Ti-) det(T

im

M

j=l

N.B. This proof allows rn, the order of Ti, to be different for each processor.
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5. Conclusion. It has been explicitly proven that classical diagonal dominance
is retained by the reduced system required in the partition algorithm for tridiagonal
systems. It follows that methods such as two-way Gaussian elimination, two-way
matrix decomposition, or cyclic reduction are stable to growth in round-off errors
when used to solve the reduced system. It would be desirable to extend this result to
cover narrow banded systems, but it is not clear that the same method of proof will
suffice.
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inburgh, and benefitted greatly from the help of Dr. D. B. Duncan, my supervisor
there. I would also like to thank the referees for their help in making the paper more
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MATRICES WITH SIGN CONSISTENCY OF A GIVEN ORDER*
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Abstract. In this paper, the matrices whose minors of a given order have the same sign are
characterized in several ways. In particular, given an n d matrix A (with n > d), a criterion involving
(n d)d + 1 minors to determine if all d d minors of A have the same strict sign is obtained. A
test of O(m3) elementary operations (with m max(n- d,d}) to check if a given matrix satisfies
these properties is also provided. Finally, these results are applied to improve the characterizations
of alternating polytopes.

Key words, sign consistency, total positivity, alternating polytopes

AMS subject classifications. 15A15, 15A48, 15A57, 65F40, 52B40

1. introduction. Following [9], a matrix A is said to be sign consistent of order
k if all nonzero k k minors of A have the same sign. If all the k k minors of A
are nonzero and have the same sign, then A is called strictly sign consistent of order
k. When A is strictly sign consistent of order k, we show in Theorem 2.2 that the
number of minors of A to check can be considerably reduced.

It is particularly interesting to know when an n d matrix (with n > d) is strictly
sign consistent of order d because this class of matrices has important applications. It
can be applied to characterize alternating polytopes (see [12], [13]). Besides, strictly
sign consistent matrices of maximal order are very closely related with generalized
convexity preserving transformations (see [9, Chap. 6, 3], [5]). On the other hand,
inspired by Ostrowsky, Karlin in [9, Chap. 6, 5] showed that strictly sign consis-
tent matrices of maximal order characterize some variation diminishing properties of
certain systems of polynomials. In this last application, the variation diminishing
properties of these matrices play an important role. Let us recall that, given a vector
x (xi,... ,Xm)T E Rm, S+(x) denotes the maximum number of sign changes of the
sequence xl,..., xm that can be obtained by counting zeros as either + or The
following result (cf. [9, Chap. 5, Thin. 1.1]) characterizes the n d (n > d) matrices
which are strictly sign consistent of order d by a variation diminishing property.

THEOREM 1.1. Let A be a real n d matrix with n > d. Then A is strictly sign
consistent of order d if and only if S+ (Ax) <_ d 1 for any nonzero x Rd.

An n d (n > d) matrix A which is strictly sign consistent of order d has all its

() minors of order d nonzero and with the same sign. In Theorem 2.2(i) we show
that it is sufficient to consider (n- d)d-t- 1 minors of A. Besides, in 3 we provide
a test of O(m3) elementary operations (with m max(n- d,d}) to determine if an
n d (n > d) matrix is strictly sign consistent of order d or if it is sign consistent of
order d with rank d.

A p q matrix A which is (strictly) sign consistent of order k for all k <_ min(p, q)
is called (strictly) sign-regular. If this sign is (strictly) positive for all k _< min(p, q}
then A is called (strictly) totally positive. Some of the main tools used to obtain
our results are the criteria and tests for totally positive and strictly totally positive

*Received by the editors March 9, 1994; accepted for publication (in revised form) by R. Brualdi
September 23, 1994.

Departamento de Matemtica Aplicada, Universidad de Zaragoza, 50009 Zaragoza, Spain
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matrices given in [6]. Totally positive matrices have an increasing importance in
approximation theory, theoretical economics, probability theory, and other fields (see
[1], [9]). New applications to computer aided geometric design can be found in [4].

Finally, in 4 we give an application of our results to characterize alternating
polytopes using a very reduced number of simplices, improving previous well-known
characterizations.

2. Characterizations with a reduced number of minors. Our notation
follows, in essence, that of [1]. Given k, n E N, 1 <_ k <_ n, Qk,n will denote the
set of all increasing sequences of k natural numbers less than or equal to n. Given
a (al, a2,..., ak) E Qk,n, the complement of the k-tuple a is the unique (n- k)-
tuple a Qn-k,n such that a U a {1, 2,..., n}. Let A be an m n real matrix.
For k _< m, _< n, and for any a Qk,m and fi Qz,n, we denote by A[a[/3] the k
submatrix of A containing rows numbered by a and columns numbered by/. Finally,
when a 13, A[a[a] will be denoted by A[a]. On the other hand, if M is an m q

matrix and N is a p q matrix’ ( M ) will dente the (m -b p) q matrix whse

m rows are the rows of M and whose p last rows are the rows of N.
Although the next result is very close to the proof of Lemma 4 of [13], we include

the proof for the sake of completeness.
PROPOSITION 2.1. Let A be a real n d matrix, n > d, such that det All,..., d]

O, and let K (kij)l<_i,j<_d be the matrix whose nonzero entries are: kj (-1)J-1 /f
+ j d + 1. Then the matrix B := A(A[1,..., d])-lK is of the form

and there is a bijection between the d d submatrices A[A[1,...,d], A Qd,\
{(1,..., d)}, and all the submatrices of C. In this bijection, the corresponding deter-
minants coincide up to the sign of det All,..., d].

Proof. Let e be the sign of det All,..., d]. Obviously, there is a natural bijection
between the submatrices B[A[1,... ,d] and the submatrices A[A]I,... ,d], where A e
Qd,n\{(1,..., d)}, such that det B[A[1,..., d] e det A[AI1,..., d] because get K 1.
A submatrix of C is of the form C[a[/] with a Qr,n-d, 13 Qr,d and 1 <_ r <_
min{d,n- d}. Then we may define a submatrix B[A[1,... ,d], A e Qd,n\{(1,...,d)},
such that

Ad-r+l-j=d+l-j forj=l,...,d-r,
(2.1)

Ad_r+i d + ci for i 1,...,

Conversely, given any submatrix B[A[1,... ,d] with A e Qd,n\{(1,... ,d)}, choose r e
{1,..., d} such that Ad-r <_ d < Ad-r+ and define a Qr,n-d, Qr,d so that they
satisfy (2.1). Thus there is a bijection between the submatrices B[A[1,...,d] with
A e Qd,n\{(1,..., d)} and all the submatrices C[a[/3] of C.

Now, using the Laplace expansion of det B[AI1,... ,d] with respect to the first
d- r rows, we may obtain that det B[A]I, d] det C[alZ and so

det A[A[1,..., d] e det C[a[3].

Now we shall characterize the strictly sign consistent matrices of a given order,
obtaining a particularly simplified characterization in the case of maximal order.
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THEOPEM 2.2. Let A be an n d matrix with n > d. Then we have what follows.
(i) n is strictly sign consistent of order d if and only if the following (n-d)d+ 1

submatrices of A have determinant with the same strict sign: A[k, k + 1,..., k + d-
lll,...,d for any k E {1,...,n-d+1}, A[1,2,...,d-r,j,j+l,...,j+r-lll,...,d
for any r such that l <_ r < d and for any j >_ d- r + 2 such that j + r l <_ n.

(ii) A is strictly sign consistent of order k for a given k {1,..., d- 1} if and
only if the following submatrices o.f A have determinant with the same strict sign:
A[AI# with ,# of the form (t,t + 1,...,t + k- 1) for any t {1,...,n- k + 1} or

of the form (1,2,...,k-r,j,j + 1,...,j +r- 1) for any r such that 1 <_ r < k and

for any j >_ k r + 2 such that j + r- l <_ n.

Proof. (i) We must prove that, if the given minors have the same strict sign, then
all the () minors detA[it,i2,...,QI1,...,d] (1 <_ it < i2 < < id <_ n) have the
same strict sign. Let K and

B= A(A[I’""d])-tK= C

be the matrices given in Proposition 2.1. By the same proposition it is sufficient to
prove the equivalence of our hypotheses with the fact that the matrix C is strictly
totally positive, that is, detC[al > 0 for any a Qr,n-d, Qr,d, 1 <_ r

min{d, n- d}. In Theorem 4.1 of [6] it is shown that, in order to prove the strict total
positivity of a matrix, it is necessary and sufficient to prove that it has strictly positive
row-initial minors (the minors formed by consecutive initial rows and consecutive

columns) and strictly positive column-initial minors (the minors formed by consecutive
initial columns and consecutive rows). Thus we have only to check that det C[al > 0
for a (1,..., r) and 3 formed by r consecutive columns among columns of C, and
for/3 (1,..., r) and a formed by r consecutive rows among rows 1,..., n- d of C.
Since the bijection of submatrices given in Proposition 2.1 satisfies (2.1) and (2.2), let
us identify the corresponding d d minors of A.

If a (1,...,r) then we have that Ad-+i d + for i 1,...,r. If/31,...,
are consecutive, since t.J fl’ { 1,..., d}, we deduce that (fl,.. .,/3d_)’ is formed by
(r + 1, r + 2,...,d) or (1,2,... ,d r) or (1,2,...,j + 1, d + 1 i,d + 2 i,...,d)
(where/>_ 0, j >_ 1 and i+j d-r-l). Thus (At, A2,...,Ad-r)is (1,2,...,d-r)or
(r+ 1, r+2,..., d) or (1, 2,..., i, d-j, d-j + 1,..., d), respectively. By our hypotheses
and (2.2), det C[a]/3] get A[AI1,... d] > 0 for all these d-tuples A.

Now, if fl (1, 2,..., r), we have that ’= (r + 1, r + 2,..., d) and so we have
that (At, A2,..., Ad-r) (1, 2,..., d-r). If at,..., ar are consecutive, we obtain that
(Ad-r+t,..., Ad) is formed by consecutive numbers among d + 1,..., n. Again by our
hypotheses and (2.2), det C[al det A[A]I,..., d] > 0 for all these d-tuples A.

Finally let us count how many minors we have used. Analogously to the bi-
jection between the set of () 1 submatrices of C and the set of submatrices
A[il, i2,..., idil,..., d] (except All, 2,..., d]), there exists a bijection between the set
of submatrices that we have used in the statement (except All, 2,..., d]) and the set
of column-initial and row-initial submatrices of C. In order to count this number of
submatrices, we must sum the following arithmetic progressions: (n--d) + (n-d- 1) +
.-+(n-2d+l) and d+(d-1)+...+l ifn-d >_ d, and d+(d-1)+...+2d-n+l
and (n d) + (n d 1) +.. + 1 if d > n d. In the first case we obtain (n d)d + d
and in the second case we obtain (n d)d + n d. Now we must substract the leading
principal submatrices of C because they have been counted twice: their number is

rain{d, n d}. Thus (i) holds.
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(ii) Let us consider any submatrix of A of the form A[1,..., n[#] with # (t, t +
1,...,t+k-1) for any t e {1,...,n-k+l}or#--(1,2,...,k-r,j,j+l,...,j+r-1)
for anyr such that 1 <_ r < k and for anyj >_ k-r+2 such that j+r-1 <_ n.
Then this submatrix satisfies the hypotheses of (i). Thus this submatrix is strictly
sign consistent of order k and so all minors of the form det A[A[#] with A E Qk,, and
It as above have the same nonzero sign.

Now let us consider any minor det A[AI# (A E Qk,n, It Qk,d) of A. Let us
consider the matrix (A[A[1,..., d])T (which is the transpose of a submatrix of A). Let
us observe that now this matrix satisfies the hypotheses of (i) and so det A[A[#] has
also the same nonzero sign, and (ii) follows. [:l

The next matrix shows that we cannot improve Theorem 2.2 (i) by checking only
the signs of minors with consecutive rows:

2 -4)A= 1 -1
-2 3

In [9, Chap. 2, Thm. 3.2] there is a sufficient condition (due to Fekete) to prove
that a matrix is strictly sign consistent (or sign consistent) of maximal order d, which
needs that all minors of order d- 1 formed with the first d- 1 columns and all minors of
order d with consecutive rows have the same sign (always strict for the (d- 1) (d- 1)
minors). The next proposition gives an application of this result (in fact of [9, Chap.
2, Thm. 3.1], which is a consequence of the other one) in terms of only d d minors.

PROPOSITION 2.3. Let A be an n d (n >_ 2d) matrix such that the following
submatrices have determinant with the same strict sign: All,..., d] and All, 2,..., d-
r,j,j + 1,...,j + r- l[1,...,d] for any r such that 1 <_ r < d and for any j >_ d + 1
such that j + r- 1 <_ n. If the nonzero minors among (respectively, if all the minors)
detA[k,k+l,...,k+d-lll,...,d for any k e {d,...,n-d+l} have the same strict
sign then A[d+ 1, d+ 2,..., n[ 1,..., d] is sign consistent of order d (respectively, strict
sign consistent of order d).

Proof. Let K, B, C be the matrices of Proposition 2.1. Taking into account the
bijection between d d minors of A and minors of C (given in (2.1)) and (2.2), we
deduce from our hypotheses the positivity of the minors of C formed by its first k
columns and k consecutive rows (for k- 1,..., d- 1) and the nonnegativity (respec-
tively, the positivity) of the d d minors of C formed by consecutive rows. Then [9,
Chap. 2, Thm. 3.1] implies that all the d d minors of C are nonnegative (respectively,
positive). Finally, applying again (2.2), the proposition holds. [:]

The previous results used the positivity of some minors of the constructed matrix
C. In the next curious result, whose hypotheses will involve (n- d)d + 2 minors of A,
the matrix C will be strictly totally negative. A matrix is said to be strictly totally
negative if all its minors are negative. These matrices were characterized in [8].

PROPOSITION 2.4. Let A be an n d (n 2d) matrix such that det All,..., d]
has a strict sign . Then the d d submatrices A[A[1,... ,d], A e Qd,n\{(1,... ,d)},
have determinant with strict sign - if and only if the following submatrices of A
have determinant with strict sign .-: A[2, 3,..., d, n[ 1,..., d], A[k, k + 1,..., k + d
lll,...,d for any k e {1,...,n-d+ 1}, A[1,2,...,d-r,j,j + 1,...,j + r-- 1] for
any r such that l <_ r < d and for any j >_ d- r + 2 such that j + r- l n.

Proof. Let K, B, C be again the matrices of Proposition 2.1. By the same propo-
sition (taking into account (2.1) and (2.2)), it is sufficient to prove the equivalence of
our hypotheses with the fact that the matrix C is strictly totally negative. In Remark
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3.6 of [8] it is shown that, in order to prove the strict total negativity of a matrix, it
is necessary and sufficient to prove that it has negative row-initial minors, negative
column-initiM minors, and the element of its last row and column is also negative.
But, by (2.1) and (2.2), these properties are equivalent with our hypotheses.

Finally, let us remark that, taking into account the best criteria (using minors)
to check that a matrix is totally positive (cf. [1, Thm. 2.1], [7, Thm. 3.1]), we cannot
obtain a similar result to Theorem 2.2 to check the (not strict) sign consistency of a
matrix. However, in the next section we provide a test to check that a matrix is sign
consist.ent of the maximal order.

3. A test to check (strict) sign consistency of maximal order. Here we
shall obtain a test requiring O(m3) elementary operations (with m max{n- d, d})
to determine if an n x d (n > d) matrix is strict sign consistent of order d or if it is
sign consistent of order d with rank d. Our main tool will be the use of the so-called
Neville elimination. This elimination process was described in detail in [6] and we
shall briefly recall it for the reader’s convenience.

Neville elimination is a procedure to create zeros in a matrix by means of adding
to a given row a suitable multiple of the previous one. For an m x n matrix A
(aj)l<<m,l<j<, (m >_ n), it consists of n- 1 major steps resulting in a sequence of
matrices as follows:

A:=AI A2-....An,

where At (at))<<m,<j<n has zeros below its main diagonal in the t- 1 first
columns. The matrix At+ is obtained from At (t 1,..., n) according to the formula

a(t+l)
j := a) (a) /at)_,t)a,j

0

if/_<t,

ifi>_t+l andj>_t+l,
otherwise.

In this process the element

(3.1) p’=a l<j<n, j<i<m

is called the (i, j) pivot of the Neville elimination of A. The process would break
down if any one of the pivots pij (j <_ < m) is zero. In that case we can move the
corresponding rows to the bottom and proceed with the new matrix, as described in

If A has maximal column rapk, the matrix U := A, is an m x n matrix with zeros
below its main diagonal. The complete Neville elimination of a matrix A consists in
performing the Neville elimination of A until getting the matrix U and, afterwards,
proceeding with the Neville elimination of UT (the transpose of U). When we say that
the complete Neville elimination of A is possible without row or column exchanges, we
mean that there have not been any row exchanges in the Neville elimination of A or
UT. Finally, the (i, j) pivot of the complete Neville elimination of A is the (i, j) pivot
of the Neville elimination of A if i > j and the (j, i) pivot of the Neville elimination
of UT if _< j.

The following result, which will be very useful for our purposes, is a reformulation
of the equivalence of the conditions (1) and (2) of [6, Thms. 4.1, 5.4].

PROPOSITION 3.1. A matrix A is strictly totally positive if and only if the com-
plete Neville elimination of A can be carried out without row or column exchanges and
all the pivots are strictly positive. A matrix A is totally positive if and only if the
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complete Neville elimination of A can be carried out without row or column exchanges
up to null rows or null columns and all the pivots are nonnegative.

Now we shall use Neville elimination to obtain the announced test. Let S denote
the class of n d (n > d) matrices A which are strictly sign consistent of order d and
let Af denote the class of n d (n > d) matrices A which are sign consistent of order
d and with det All,..., d] = 0. We shall obtain the matrix

as in Proposition 2.1. Then, by the same proposition, one must check (using Propo-
sition 3.1) if C is strictly totally positive (respectively, totally positive) to determine
if A E S (respectively, if A E Af). Thus we have the following steps of the test.

STEPS OF THE TEST
I. Check that det All,..., d] - 0.

II. Obtain B :- A(A[1,...,d])-IK.
III. Perform the complete Neville elimination of C.
IV. A S if and only if the complete Neville elimination of C can be carried

out without row or column exchanges and all the pivots are strictly positive. A Af
if and only if the complete Neville elimination of C can be carried out without row or
column exchanges up to null rows or null Columns and all the pivots are nonnegative.

Finally, taking into account that the computational cost of Neville elimination
coincides with the computational cost of Gaussian elimination (so that we may ap-

proximate the number of elementary operations in III by about 2 ), the number
of elementary operations used in this test can be approximated by about

(n 4)3d3 + (n- d)d2 + -------.
4. An application to characterize alternating polytopes. Given an ori-

ented matroid M it is often interesting (and difficult) to find a small subset of bases
whose orientations completely determine M. In this section we shall apply the pre-
vious results to provide a solution to this problem for the alternating matroid, that
is, the oriented matroid associated with the standard cyclic polytope. Let us start by
introducing the main definitions.

Given the (d- 1)-dimensional Euclidean space Ed-l, a polytope P Ed-1 is
cyclic if it is isomorphic to the convex hull of a finite subset of the moment curve
((t, t2,...,td-l) Ed-llt E R}. Among all (d- 1)-polytopes with n vertices (n >
d >_ 1), the cyclic polytopes have the maximum number of j-dimensional faces for
all j 1,..., d- 2 (McMullen’s upper bound theorem [10]). The vertices of cyclic
polytopes are usually labeled with respect to succession on the moment curve. A cyclic
polytope is alternating if all subpolytopes of P are cyclic, and if the corresponding
isomorphisms to cyclic polytopes are all induced by the above canonical labeling of
P. This terminology comes from oriented matroid theory. Shemer proved that every
even-dimensional cyclic polytope is alternating [11, Thm. 2.12], but this result does
not hold for odd-dimensional cyclic polytopes.

As usual, we consider (d- 1)-dimensional Euclidean space Ed-1 embedded as an
affine hyperplane in the vector space Rd. We start by recalling the following well-
known result (cf. [13, Lem. 2], [12, Rem. 2.3]). In fact, it is a geometric reformulation
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of Remark 2.3 of [12], where it is shown that cyclic chirotopes as introduced in [3] are
equivalent to alternating matroids as introduced in [2].

THEOREM 4.1. A set {xl,x2,...,xn} C Ed- is the (canonically labeled) set
of vertices of an alternating (d- 1)-polytope if and only all () oriented simplices
[xil,xi,... ,xi] (1 <_ i < i2 <... < id <_ n), have the same nonzero orientation.

In the next theorem, which is a reformulation of Theorem 2.2(i), we shall consid-
erably reduce the number of oriented simplices. They will be formed by, at most, two
subsets of consecutive vertices, one of them formed by initial vertices.

THEOREM 4.2. A set {Xl,X2,... ,Xn} C Ed-1 is the (canonically labeled) set of
vertices of an alternating (d- 1)-polytope if and only the following (n-d)d+ 1 oriented
simplices have the same nonzero orientation:

(i) [xk, xk+l,..., Xk+d-] for any k e (1,..., n d -t- 1},
(ii) [x,x2,. ,Xd-r, Xj,Xj+l,... ,xj+r-1] for any r such that 1 <_ r < d and for

any j >_ d r + 2 such that j + r l <_ n.
Finally, let us observe that the test given in 3 (using O(m3) elementary opera-

tions with m max(n-d, d}) to recognize that an n d (n > d) matrix is strictly sign
consistent of order d allows us to check if a (d- 1)-polytope of n vertices is alternating.
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1. Introduction. A number of popular numerical techniques are based, explic-
itly or implicitly, on using the matrix commutativity relation and the following im-
portant theorem [11, p. 166]"

THEOREM 1.1. Assume that a matrix G E Cnn is upper block triangular

Gll G12
0 G22

G

0

and the spectra of different diagonal blocks are disjoint:

o(G.  (Gz J.

Then, every matrix B Cnxn commuting with G has block triangular .form

(2) B

Bll B12
0 B22

Slu
B2u

Buu

conformal to (1).
It follows from Theorem 1.1 that if a dense matrix H Cnn is reduced to form

(1) by some similarity transformation

(3) H ---, G =Q-tHQ,
then the same similarity applied to any matrix A commuting with H reduces A to
form (2)"

(4) A -- B Q-AQ.
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Now, we would like to substantiate our assertion in the very beginning by the
following examples.

Example 1. It is well known (see, for instance, [18]) that any n n centrosym-
metric matrix A, i.e., a matrix with the property

aij an+l--i,n+l--j

could be transformed to block diagonal form

B--BlaB2

by similarity (4) where diagonal blocks B1 and B2 are of order L/2J and r/l,
respectively. When n 2m is even, we have

(5) Q- - Pm
and Pm is the special permutation matrix

0 1

When n is odd, the matrix Q is a little more complicated.
From the point of view adopted in this paper, centrosymmetric matrices are

matrix class iH generated by the matrix H Pn via the commutativity relation

As {A E cnn AH HA}.(6)

Such a class is sometimes called a centralizer, and H a generator of AHo The matrix

(5) reduces Pn to block diagonal form

by unitary similarity.
Example 2. The discrete Fourier transformation (DFT) is a standard method for

solving linear equations with a circulant matrix. Circulant matrices can be written
as polynomials of the cycle permutation matrix

0 1
0 1

0 1
1 0

and the columns of an n n DFT matrix are the eigenvectors of Hn.
The main motivation of this paper is to justify the consideration of matrix classes

which are defined, similar to (6), by

(7) FH={AeCnn H=HA},
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where H is a given n n matrix.
DEFINITION 1. The matrix relation in (7) is called concommutativity, the matrix

class FH a concentralizer, and H a generator of FH.
Again, we wish to point out some examples where Definition 1 is useful.
Example 3. Centrohermitian matrices are defined in [13] as n n matrices A

satisfying the relationship

(8) aij -nTl-i,n-t-l-j Vi, j.

It was shown in [13] that centrohermitian matrices constitute a real algebra iso-
morphic to the algebra Rnn of real n n matrices. The isomorphism is established
by similarity in (4), where A is any centrohermitian matrix, B is a real matrix, and
Q (for even n) is the unitary matrix

This fact has an important computational implication which was not mentioned in
[13]. Solving a real algebraic problem requires, in a typical case, from three to four
times less computational work than solving a complex one of the same size. In fact,
only O(n2) additions/subtractions and division by 2 are needed for the similarity
transformation (4). After that, we will have a real matrix to work on.

Once more, we prefer to replace the original definition (8) of centrohermitian
matrices with their description as a concentralizer where Pn is a generator. The fact
the centrohermitian matrices could be simultaneously converted to real ones is simply
a particular case of the general rule in [12]. According to that rule, a concentralizer
FH can be transformed to Rnn by (4) if and only if the generator H satisfies the
relation

(10) HH --aIn, > O.

If (10) is fulfilled then H could be represented (nonuniquely) as a product

(11) H -Q-1,

and any such matrix Q is appropriate for similarity (4). In particular, (11) holds for
H Pn and the matrix in (9).

Example 4. A matrix A of even dimension n 2m with the special block form

A12 J(12) A= 12 11
will be called crosshermitian. Such matrices are found in some quantum theory prob-
lems [5]. We consider these matrices as a concentralizer with a generator

With this matrix H, (10) is satisfied, and for representation (11) the unitary matrix
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could be taken. It follows that similarity (4) with matrix (13) converts all crossher-
mitian matrices to real ones.

The problem we address in this paper can be expressed as follows. Suppose we
are to solve a sequence of linear algebra problems with n n matrices A1, A2,
What kind of computational advantages could be extracted from a priori knowledge
that all the matrices Ai, i 1, 2,... belong to a concentralizer where a generator H
is known? We have already answered this question for the case when (10) is satisfied.
But, what if it does not?

Our solution to this problem is based on a theory which we will discuss in 3.
This theory is parallel to the commutativity theory sketched at the beginning of
this section. However, it uses consimilarity transformations rather than the usual
similarities. Therefore, we include in 2 a review of some basic facts from the theory
of consimilarity. We relate a set of invariants called coneigenvalues to a consimilarity
transformation. The discussion of the numerical condition of coneigenvalues is also
provided in 2.

From the computational point of view, the most appealing type of consimilarity
transformations are unitary congruences. The condensed form of a complex matrix
with respect to unitary congruences is the so-called Youla form. A QR-like technique,
called the con-QR algorithm, for computing the Youla form and the corresponding
unitary transformation is presented in 4. For a discussion of our computer imple-
mentation of the con-QR algorithm and numerical experiments we refer the reader to
the report [6]. In the last section, applications of our results are shown and concluding
remarks are given.

2. Consimilarity and coneigenvalues. We recall the definition of consimilar-
ity [10, p. 244]:

DEFINITION 2. Complex matrices G and H are said to be consimilar if
----1

(14) G--Q HQ.

The relation (14) itself is called a consimilarity.
It is mentioned in [10] that matrices

(15) HR- HH, HL HH

play a very important role in the theory of consimilarity. The reason is that the usual
similarity transformations

(16) GR --IHR-, GL Q-1HLQ

correspond to consimilarity (14). This means that the eigenvalues of either of the
matrices HR and HL can be considered as the invariants of consimilarity transforma-
tions.

The matrices HR and Hi have an identical Jordan structure, so it will be enough
to refer to one of them, say Hi. The spectrum of HL has two remarkable proper-
ties [10, pp. 252-253].

1. It is symmetric with respect to the real axis. Moreover, eigenvalues A and A
are of the same multiplicity.

2. The negative real eigenvalues of HL (if any) are necessarily of even algebraic
multiplicity.
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For reasons which will be evident later, we prefer to deai with the square roots of
eigenvalues of HL rather than with the eigenvalues themselves, and it is these roots
that we consider as the invariants of consimilarities.

DEFINITION 3. If

(17) a(HL) {A1,...,

is the spectrum of Hi, then the square roots with nonnegative real part of the numbers
A1,..., An are called coneigenvalues of the matrix H:

1/2(18) #i A Re# _> 0.

If # is not purely imaginary then its multiplicity is defined as the multiplicity of the
corresponding eigenvalue #2. For a purely imaginary #, we define the multiplicity
of # as one-half of the multiplicity of #2. The set

(19) ca(H) {#1,...,

is called the conspectrum of the matrix H.
We should emphasize that our definitions of coneigenvalues and conspectrum

are different from the definitions in [10, p. 245]. Coneigenvalues as defined in [10]
may not exist; when they do exist, there are always infinitely many of them. Our
definition guarantees that every complex n x n matrix has exactly n coneigenvalues
if the multiplicities are taken into account.

Next, we mention some interesting analogies between the theory of coneigenvalues
and that of singular values. It is well known that, for an n x n matrix A with the
singular values al,..., an, the eigenvalues of the 2n x 2n Hermitian matrix

A

are (71,. (Tn, --(71

By analogy with (20), we define, for a given n x n matrix A, the matrix

(21) BA-- - 0

THEOREM 2.1. If #l,..., #n are the coneigenvalues of an n x n matrix A then

(22) a(BA) {P,1, #n,--1,... --n}-

Proof. The assertion of the theorem follows easily from the equality

B2A AR ( AL. F1

The con-QR algorithm that we describe in 4 amounts to a sequence of special
unitary similarity transformations of the matrix BA (precisely as the singular value
decomposition (SVD) algorithm of Golub and Kahan is equivalent to a sequence of
special unitary similarities of matrix (20)). So, it would be useful to relate the con-
dition of eigenvalues of BA with that of An and AL. This will be done in Theorems
2.5-2.7 below. Here, we first mention some simple connections between the eigenvec-
tors of An and AL.

LEMMA 2.2. If A is an eigenvalue of AR, with u and p the corresponding right
and left eigenvectors, then
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(a) and are the right and left eigenvector corresponding to the eigenvalue )

of AL, respectively.
(b) Ifu (ATp) is nonzero, then it is the right (left) eigenvector for the eigen-

value ) of AL.
Proof. The first assertion follows from the relation AL AR. To prove the first

part of (b), premultiply A on both sides of ARU Act, yielding

(-A)(-u) A(u).

To prove the second part of (b), postmultiply A on both sides of pTAR pT. [:]

Let cond(#, H) denote the condition number of a simple eigenvalue # of the ma-
trix H. Recall that if u and p are the corresponding right and left eigenvectors,
respectively, then

(23) cond(#, H)---I]UlI2]]P]I2
COROLLARY 2.3. cond(A, AR) cond(A, AL).
Let #2 be a simple eigenvalue of the matrix AL. Then, we have two possibil-

ities for "(a) A is a nonnegative real number;
(b) is nonreal.

Since a generator H of a concentralizer FH is usually a nonsingular matrix, we assume
henceforth the matrix A in BA to be nonsingular as well. This assumption excludes
the case 0.

Consider the eigenvalue It of matrix (21), which corresponds to a simple eigenvalue
It2 of AL. Let

(24) w r u, v, p, q E Cn

v q

be the right and left eigenvector associated with It, respectively. From BAW Itw,
and rTBA ItrT, we have

(25) Av Itu,

(26) Au Itv,

(27) qT ItpT,
(28.) pTA ItqT.

if, for example, v 0, then we will have u 0 (recall It 0).
which is impossible.

The second consequence of (25)-(28) is that the vectors

It is clear from (25)-(28) that none of the vectors u, v, p, q could be zero. Indeed,
Therefore, w 0,

are the right and left eigenvectors corresponding to the eigenvalue -it of the matrix
BA, respectively. Therefore, the following lemma holds.

LEMMA 2.4. If It is a simple eigenvalue of BA, then

cond(it, BA) cond(-it, BA).
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The next implication of the formulas (25)-(28) is that u and p (v and q) are the
right and left eigenvector of the matrix AR (AL) associated with its eigenvalue #2,
respectively. To show this, for example, for the vector u we premultiply (26) by A
and use (25)"

(30) A-u #Av #2u.
The last and very important consequence is the equality

(31) pTu qTy.

Using (25), (26), and (30), we have

pTA-u it2pTu #2qTy.

Now we are ready to prove the first main result of this section.
THEOREM 2.5. If is a simple positive eigenvalue of BA, then

(32) cond(#, BA) cond(#2, AR) cond(#2, An).

Proof. First, we point out that #2 is a simple eigenvalue for both matrices AL and
AR. Now, if we take eigenvector (24) of the matrix BA, then both vectors v and T are
the eigenvectors of AL corresponding to the eigenvalue tt2 (see Lemma 2.2, part (a)
and the discussion preceding this theorem). Therefore, there exists a nonzero number
a E C such that

(33) v aT.

Analogously,

(35) cond(#, BA)

(36)
(llull + Ilvll):"/(llpll / Ilqll) ’/

Ix,’ + vl
II’li ilpli
21pl

cond(tt2, A) cond(tt2, AL).

AT #u.

For the last equality, we have used the assumption that # is real. Thus, a- ,
yielding part of (34). The second part of (34) can be shown in the same way. Now,
we have

for some nonzero/ E C.
Next, we show that

(34) I1- I,1- 1.

Indeed, combining (25), (26), and (33), we get

AT= #u

and
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We have used (31), and (33)-(34) for the middle equality, and Corollary 2.3 for the
last equality.

It is impossible to obtain such a simple and nice result for a nonreal eigenvalue
#. One of the reasons is that the condition numbers cond(#2, AR) and cond(#2, AL)
are generally different if Im#2 0. (Notice that it is the numbers cond(#2, AR) and
cond(2, AL) that are equal according to Corollary 2.3.)

It might be conjectured that, for a nonreal simple eigenvalue # of BA, the in-
equality

(37) cond(#, BA) <_ max{cond(#2, An), cond(#2, AL)}

should be valid. However, we are only able to show the following weaker result at this
moment.

THEOREM 2.6. Suppose that an n n matrix A is nonsingular, and # is a simple
nonreal eigenvalue of BA. Then

(38) cond(#,BA) < (1 + cond2(A)) 1/2
max{cond(#2, AR), cond(#2, AL)}.

The proof of the theorem above follows along the same lines as that of Theorem 2.5
and is omitted.

The extension of the two theorems above to the purely imaginary eigenvalue # of
BA is not possible. The reason is that 2 is a double eigenvalue for either of matrices

AR and AL, and definition (23) for the condition number is not applicable. However,
there exist more general definitions that hold for any simple invariant subspace. The
definition in [16, Chap. 5, 2.2] is one of them. For the present situation, it could be
stated as follows.

Let A be a semisimple eigenvalue of multiplicity 2 of the matrix AR, and let ul,

u2 and p, P2 be two biorthogonal systems of eigenvectors associated with A, the right
and left ones, respectively. Let

(39) U [u, u2], P [P,P2].

The biorthogonality implies

pTu I2.

Now we can define the condition number of A by the formula

(40) cond(A, AR) IIUIIFIIPIIF.
Since the biorthogonal systems above can be chosen in infinitely many ways, it

makes more sense to replace (40) by

(41) cond(A, AR)
pTV=I2

Here R(A) and L(A) are, respectively, the right and left eigenspace of AR associ-
ated with . In [16], a choice of orthonormal Ul and u2 is suggested:

(42) cond(A, An) IIUIIFIIPIIF,
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where

U*U I2, pTu I2.

Notice that 1, 2 and Pl, P2 are the right and left eigenvectors of AL for the
eigenvalue ,. Therefore, whichever of the definitions (40)-(42) is employed, we have

cond(A, An) cond(A, AL),

exactly as in Corollary 2.3. In particular, for a negative real

cond(A, AR) cond(A, AL).

THEOREM 2.7. Let ) #2 be a negative real eigenvalue of multiplicity 2 for
either of matrices An and AL. If is semisimple, then

(43) cond(#, BA) cond(A, An).

Proof. We have seen above that an eigenvector w of BA is compiled of eigenvectors
of the matrices An and AL. Now, we show that from any (right) eigenvector u of An,
belonging to , #2, an eigenvector of BA associated with # can be constructed. We
do not need the assumption of , <: 0 for this part of the proof; the condition , 0 is
all that is required.

Define the vector v as

(44) v lu.
Since

(45) Av #-1A-du #u,

we have
(a) the vector v is a nonzero vector;
(b) equations (25), (26) are satisfied which means that

is an eigenvector of Ba for the eigenvalue #.
In the same way, we can reconstruct a lef eigenvector r of Ba for the eigenvalue

# from a left eigenvector p of An belonging to ) . The required vector q is given
by

(46) q 1ATp.

Now suppose that ul, u2 and Pl, P2 are two biorthogonal systems of eigenvectors
of An for eigenvalue , #2. Let wl, w2 and rl, r2 be the corresponding eigenvectors
of BA constructed from (44) and (46). Note that (31) holds for any eigenvectors w
and r. Therefore,

r r i=j,
=Piuj+qivj 0, i=j.
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So, the systems wl, w2 and rl, r2 are almost biorthogonal.
We consider the matrices

V- [Vl, v2], Q--[ql, q2]

along with the matrices (39). Since ui, u2 constitute a basis in R(A), we have

V=US

for some 2 x 2 nonsingular matrix S. Using (44) and (45), we obtain

(47) A-- #U--- #US-1

In deriving the left equality, we used for the first time the fact that # is real. Now,
(47) gives

(as)

In a similar way, we show that in equation Q PT the matrix T is such that TT 12.
Moreover, since QTv pTu I2, the relation

(49) T-- S-1

holds.
Assume that from initial systems ul, u2 and pl, p2 we moved to new, and also

biorthogonal systems 1, 2 and i51,152. Then for the new matrices

we have

(50) -- UZ, P- PZ-T,
where Z is some 2 2 nonsingular matrix.

Let 1, l)2 and 1, ?2 be the right and left eigenvectors, respectively, of BA for
the eigenvalue A, which are constructed from 1, 2 and i51, i52, as described above.
Again, we obtain the relations

for the corresponding matrices , I?, /5, ( with a nonsingular 2 2 matrix , and
-T. Now, from

we obtain

r=UZ, I)=VZ, and V=US,

UZ SZ,

=-2-SZ.
So, the change of a basis in R(A) leads to the matrix S transformed according to the
consimilarity rule!
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It is shown in [10, p. 247] that a 2 2 matrix S could be transformed by a
consimilarity into the identity matrix if and only if S satisfies (48). We, therefore,
come to the following conclusion: there exists in R(A) basis tl, fi2, such that the
corresponding eigenvectors 1, )2 have a form

(52) = -. i=1,2.

Since I2, then I2 as well. Hence, for the left eigenvectors a representation
analogous to (52) is valid:

[i5i ] 1,2.(53)

It is the vectors t, ?)2, ?1, ?2 that are used for computing the condition number
in (40). Letting

and noting that

/TIv 212,

we obtain

1
cond(#, BA) III]VIIF II/llF IIllF IIPlIF cond(A, AR).

It should be noted that the proof of Theorem 2.7 was based on the condition num-
ber definition (40). We believe that equality (43) holds with the stronger definitions
(41) or (42). We will deal with this question in a later publication.

The key message contained in the previous three theorems is that the sensitivity
of coneigenvalues is much the same whether we compute them from the matrices AR
and AL or from the matrix BA. At the same time, equivalent perturbations with
these two approaches could be quite different. For the former, the size of elements in
the equivalent perturbation matrix is proportional to the size of elements in AR (or
AL), while for the latter, it is proportional to the elements in BA or, essentially, the
matrix A itself).

Notice that if the second way is chosen, we need not apply a general eigenvalue
technique to BA. In fact, consimilarity

A ft --AQ
induces the similarity transformation

BA y-1BAY B4,

where Y Q @ Q.
So, it is sufficient to work with A, reducing it by consimilarities to a form that

permits an easy computation of the eigenvalues of BA. One such form is the so-called
Youla form, discussed in the following section.
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3. Concentralizers and unitary congruences. It is well known that the ma-
trix Sylvester equation

(54) AX XB C

has a unique solution X, if A E Crem, B E Cnn, and C Cmn are known
matrices, and the spectra of A and B are disjoint. In [2], an analogous statement
concerning semilinear Sylvester-type matrix equation

(55) AX- XB C

is proved.
THEOREM 3.1. Let A Cmm and B Cn be given matrices. Then the

following assertions are equivalent.
1. Equation (55) has a unique solution for every C Cmn.
2. The homogeneous equation

(56) AX XB 0

has the unique solution X O.
3. The set ca(A)ca(B) is empty.
Although our definition of the conspectrum is somewhat different from the one

in [2], this theorem is still valid with our definition. We are "now in a position to
state the "con" version of Theorem 1.1. Its proof and the following corollary are
straightforward consequences of Theorem 3.1, so are omitted.

THEOREM 3.2. Assume that a matrix G Cnn has upper block triangular form
(1) and the conspectra of its different diagonal blocks are disjoint:

(57) ca(Gii) Nca(Gji) O, j.

Then every matrix B Cnn concommuting with G,

(58) BG GB

has block tridiagonal form (2) conformal to (1).
COROLLARY 3.3. If the matrix G is block diagonal rather than block triangular

in Theorem 3.1

(59)

then every matrix B FG must also have block diagonal form B BllB22" .@Buu
conformal with (59).

The proof of this corollary is obtained by applying Theorem 3.2 to G and GT.
Consider a concentralizer FH with the generator H (see (7)). Apply to all matrices

A FH the simultaneous similarity transformation

(60) A --. B Q-IAQ.

The image of FH under similarity (60) is described in the following theorem.
THEOREM 3.4. Under similarity (60), a concentralizer [’H transforms onto the

concentralizer Fc where

(61) G= Q HQ.



A QR-LIKE ALGORITHM FOR STRUCTURED PROBLEMS 1119

The proof is straightforward and is omitted.
COROLLARY 3.5. If, as a result of consimilarity, G has a block triangular form

(1), and the conspectra of its different diagonal blocks are pairwise disjoint (see (57)),
then every matrix B in (60) has the conformal block triangular form (2).

OBSERVATION 1. The assertion analogous to Corollary 3.5 holds where G is block
diagonal (59) rather than block triangular.

In numerical linear algebra, the preferred type of similarity transformations are
unitary similarities. In the case of consimilarities, we also wish to deal with unitary
ones. When Q is unitary, consimilarity (61) becomes just a unitary congruence

(62) G QTHQ, Q*Q In.
Now, the question is whether there exists a condensed form of a complex matrix

under unitary congruences and if so, the nature of that form. The answer is given in
[20]; see also [9].

THEOREM 3.6. Every matrix A E CnXn i8 unitarily congruent to a block trian-
gular matrix

R

Rtl R12
0 R22

Rlt
R2

Rt
with 1 1 and 2 2 diagonal blocks Rii. The 1 1 blocks correspond to real coneigenval-
ues ofA, and the 2 2 blocks correspond to pairs of conjugate complex coneigenvalues.

The matrix R in. (63) constitutes an analog to the Schur form (and to the real
Schur form) in the theory of unitary (orthogonal) similarity. It is called the Youla
form of the matrix A.

Remark 1. (a) It would be more exact to call R the upper Youla form, since a
lower block triangular matrix with analogous properties can be constructed from A by
a unitary congruence. In this paper, only the upper block triangular case is studied.

(b) Even if a particular type---upper or lower--of the Youla form is chosen, this
form is still not uniquely determined. We have the same kind of nonuniqueness as
with the classical Schur form. For example, we can assign an arbitrary ordering of
the coneigenvalues, and then find the Youla form with this same ordering for the
coneigenvalues on the block diagonal of R. In particular, there always exist Youla
forms with the property below.

DEFINITION 4. The Youla form of a matrix A Cnn is called a good Youla
form if for every multiple coneigenvalue of A all the corresponding diagonal blocks in
R are in consecutive positions.

The con-QR algorithm presented in 4 is a numerical approach for constructing a
Youla form of a general complex matrix and the corresponding unitary transformation.
If a given matrix A has some multiple coneigenvalues, then the computed Youla form
will not necessarily be a good Youla form. However, effective techniques can be
developed for reordering diagonal blocks in the Youla form. They are similar to the
well-known approaches for reordering the Schur form [15].

After this discussion, we are now ready to answer the question posed in the
introduction, namely, what kind of computational advantages could be deduced from
a priori knowledge that a set of matrices belongs to a concentralizer with a known
generator H. The answer is given by the following strategy.
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1. Compute the unitary matrix Q which transforms H into its good Youla form.
We can use the con-QR algorithm, with a possible application of a procedure
for reordering the diagonal blocks, for this purpose.

2. For k-- 1,2,...
(a) apply the unitary similarity

(64) Ak Bk Q AkQ

to Ak. As a result, the initial problem with the matrix Ak is replaced
by a new one with the block triangular matrix

(65) Bk

"12 "-"lu

0 n(k)
-"22 "2u

0 -’U

(b) Solve the sequence of problems with smaller matrices B(uk),... ,Bk).
This last stage may be organized as a successive process (if the problem is
to solve the linear equations Ak Bk, and Bk is indeed block triangular
rather than block diagonal) or as a concurrent one (if only eigenvalues
of Ak need to be computed, and Bk is block diagonal).

This approach is similar to the well-known technique for the direct solution of a
sequence of sparse linear systems with an identical sparsity pattern (see, for example,
[7]). Step 1 corresponds to a symbolic factorization of a sparse matrix, step 2(a) to a
numerical factorization, and step 2(b) to forward and backward solvers.

Whether this technique is cost effective depends on a number of considerations:
the number of problems to be solved, the cost for computing the matrix Q, the cost of
similarity (64), coneigenvalue multiplicities of the matrix H, and so on. It is certainly
more promising when matrices (1) and (65) are block diagonal. We conclude this
section by presenting a matrix class that does have a block diagonal Youla form.

DEFINITION 5. A matrix H E Cn is called conjugate normal if

(66) HH* H*H.

It is shown in [17] that the Youla form of a matrix H is block diagonal if H
is a conjugate normal matrix. In particular, any complex symmetric matrix H is
conjugate normal since

H HT - H*.

All the coneigenvalues of a symmetric matrix H are nonnegative real numbers; in
fact, they coincide with H’s singular values. The Youla form of H is a nonnegative
diagonal matrix A, and step 1 of the procedure above is equivalent to computing the
decomposition

H pTAp, P*P In.

It is called the Takagi factorization of a symmetric matrix H.
The computation of the Takagi factorization is the theme of [4], and we gratefully

acknowledge the influence of this paper on this work.
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4. The con-QR algorithm. In this section, a unitary method that we call the
con-QR algorithm, is described. This technique transforms a given matrix A into
its Youla form. If A is a complex symmetric matrix, the con-QR algorithm becomes
the symmetric singular value decomposition (SSVD) algorithm of Bunse-Gerstner and
Gragg.

The reduction ofa given matrix to the Hessenberg form is not, strictly speaking,
required as part of the usual QR-algorithm (which can be used for a dense matrix
equally well). But for practical reasons of efficiency, an application of the iterative
QR procedure is almost always preceded by this reduction. Therefore, it would be
useful to have an analogous reduction in the case of unitary congruence.

For the reduction we can use transformations with elementary unitary matrices as
well as with complex Householder matrices. Then analogues for the Givens procedure
and the Householder procedure, respectively, will be obtained. Let us, for example,
consider the last one.

The description of the con-Householder procedure is obtained from that of the
usual Householder algorithm simply by replacing unitary similarities by unitary con-
gruences, the final Hessenberg matrix H being the product of the form

(67) H ’n--2 2IAT"T’2T .Tn--2"
Here the i are the usual Householder matrices.

Corresponding to Lemma 3.1 in [4], we have the following result that describes
the freedom in the Hessenberg form of a given matrix.

THEOREM 4.1. Let Q1 and Q2 be unitary matrices such that both

Hi QT1 A QI and H2 QT A Q2

are upper Hessenberg matrices. Assume that at least one of the matrices H, H2 is
unreduced (i.e., its elements on the subdiagonal (2, 1), (3, 2), (n, n- 1) are all
nonzero). I] the first column of Q is a multiple of the first column of Q1 then there
exists a unitary diagonal matrix D such that

Q2--Q1D

and

(68) H2 D H1 D.

(Note that (68) implies that in reality both matrices H and H2 are unreduced.)
The proof of this theorem can be obtained by a slight modification of the proof

for the case of unitary similarity (see, for example, [19, p. 352] ).
From this point on we may deal only with the Hessenberg matrix H instead of the

initial dense matrix A. Our goal is to construct an iterative procedure that ultimately
reduces H to its Youla form.

Recall from 2 that every consimilarity executed for a matrix A is accompanied
by corresponding similarities for matrices AA and AA. Now assume that we have
constructed a sequence of matrices H0, H,..., Hk,..., where H0 H and the
following conditions are fulfilled:

1. The matrices Ho, H Hk,... are unitarily congruent;
2. The matrices H0, H1 Hk,... are upper Hessenberg;
3. Every transformation

(69) Uk ----+ Hk+i
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is accompanied by similarity

k+l’

where we let F(kL) HkHk and (70) is equivalent to one step of some version of the
usual QR algorithm.

The same is true of similarity

(R)
(k
R)

k-t-l

where F(kR) Hk--k.
So, the construction of a matrix sequence Hk is nothing more than the implicitly

implemented QR algorithm for the matrices F(o L) -H and F(oR) H--.
Consider now the limiting matrix F(L) of the sequence {Fk(L) } (understanding the

limits as is customary for the QR algorithm where one sometimes could not speak of
limits in the rigorous sense). In the typical case, the matrix F(L) is upper triangular.
If Ho is a corresponding matrix for the sequence {Hk }, then

F(L) Ho.
In particular,

0-- {F(ooL)}i+2,i {oo}i-F2,i-F1 i 1,2,. ,n 2.

We conclude that the upper Hessenberg matrix H has the following property:
at least one of every two consecutive elements of its first subdiagonal is zero. This
property is characteristic for the Youla form.

Now we describe how the transformation (69) is implemented in the con-QR
algorithm. In doing so we will differentiate between two kinds of the usual QR steps:
a single step with a real shift T and a double step with nonreal conjugate shifts T and. The idea of the analysis followed is borrowed from [4].

We may omit indices and consider, for definiteness, the transition from the matrix
H to H1. If T is real then a single step of the QR algorithm with T aS a shift is described
for the matrix F(L) by the formulas

(71) F(L) T I QR, FL) RQ / T I.

In the unusual event that T is an exact eigenvalue, it can be shown that F(1L) has in
this case a zero in one (or both) of the positions (n- 1, n- 3) and (n, n- 2). Thus,
H is reduced and (1) 0, so deflation will occur naturally after one step of the’n,n--1
algorithm. Otherwise, we deduce from (71) that

F(R) TI QR

and

(72) QT -(F(R) TI)-

Now, using (71) and (72), we get

H QTHQ -(F(R) TI)-IH(F(i) TI)R-1 -HR-1
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We see that the matrix H1 QTHQ is again upper Hessenberg. Moreover, it is
unreduced.

We propose to construct the matrix Q by an implicit procedure akin to that
employed in the usual QR algorithm. Suppose we have a unitary matrix P for which
the following conditions are fulfilled: (i) the first column of P is a multiple of the first
column of Q; (ii) the matrix pTHp is unreduced upper Hessenberg. Then, in view
of Theorem 4.1, P essentially coincides with Q and pTHp is practically the same
matrix as H1.

The matrix P can be constructed by the following procedure.
1. Find the nonzero elements of the first column fl of FL TI. Note there are

only three such elements: f11, f21, f31.
2. Define 7-/0 as the Householder matrix that eliminates from fl its second and

third elements.
3. Implement the congruence

H ----,/7/= 7-/0THT-/0.

The matrix/ is not Hessenberg anymore because of the nonzero elements in

positions^(3,1), (4,1), and (4,2).
4. Reduce H to the upper Hessenberg form by the con-Householder procedure

(67):

/2/1 7-/n-2. 7-/1/2/7-/T T Tin 7-/17-/0THT-/07-/T.. T’n--2 --2 ’ln--2-

The first column of the matrix

p 7_/07_/T T

coincides with the first column of 7-/0 and, therefore, also with the first column of Qo
Note that in each of the matrices

7-[,i I 2WiW

the vector wi has no more than three nonzero elements.
Consider now the case when 7- is a complex number, not equal to any of eigeno

values of FL. A double step of the QR algorithm with T and as shifts is described
for the matrix F(L) by formulas

(73) F(L) "rI Q1R1, ff,(L) R1Q1 + 7"1,

and

(74) (n) I Q2R2, F( L) R2Q2 + I.

(75)

The following equality can be easily derived from (73) and (74):

F(L)2 2oF(L) -+-"yI QR.

Here

ReT, f ImT", i 12 + Z 2, Q Q1Q2, R R2R1.
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So, the matrices Q and R give us a unitary-triangular decomposition of the matrix
in the left-hand side of (75). Replacing all the matrices in (75) by their conjugates
we obtain

(76) F(n)2 2(F(R) + q,I QR.

Note that

H(F(L)2 2F(L) + I) (F(R)2 2F(R) + 9/I)H.

Using (75) and (76) we have

H1 QTHQ
(F(R)2 2aF(R) + /I)-IH(F(L)2

-HR-1.
2aF(L) + /I)R-

Therefore, H is again an unreduced upper Hessenberg matrix.
As for constructing the matrix Q we can repeat almost word for word all that

was said above in the case of real T. The only substantial difference relates to the
number of nonzero elements in the vectors wi. There are now five nonzero elements
in the first column of F(L)2 and, therefore, five nonzero elements in the first column
of Q. Every vector wi has also no more than five nonzero elements.

5. Concluding remarks. In the final section of this paper, we point out two
situations where the Youla form and the con-QR algorithm for computing it are
advantageous.

Numerical solution of semilinear matrix equations. Let A E Crem, B Cnn

and C Cmn. Suppose that

0.

Then, according to Theorem 3.1, the matrix Sylvester-type equation

(77) AX- XB C

has a unique solution X Cmxn.
Now assume that U Cm’ and V Cn

(77) we have
are unitary matrices. Then from

(78) (UTAU)(U*XV) (uT--F)(vTBv) uTcv.

Letting

(79) R VTAU, S VTBV, D VTCV,

and

(so) Y u*xv,

we may rewrite (78) as a new Sylvester-type equation

(81) RY- YS D.
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Suppose the unitary matrices U, V above transform A and B to their Youla forms
R, S, respectively. Then the computation of the matrix Y, the unique solution of
(81), is reduced to solving a number of equations

(82) RaYs -Y Sz D ,
where 1 x 1 or 2 x 2 matrices R, S are diagonal blocks in R and S, respectively.
Every small matrix equation of the (82) type can be considered as a system of real
linear equations consisting of two, four, or eight equations. After Y is computed, the
solution X of the initial equation (77) is obtained by (80).

Matrices U, V in the approach outlined can be computed by the application of
con-QR algorithm to A and B, respectively. This technique can be viewed as an
exact analogue of the Bartels-Stewart algorithm for the classical Sylvester equation
AX- XB --C [1]. We may transform (via unitary congruences) one of the matrices
A, B to its Youla form and the other only to the Householder form. Then we obtain
an analogue of the second algorithm for Sylvester equations, namely, the Golub-Nash-
Van Loan algorithm [8].

Computation of functions of a matrix B -A. It was indicated in [14] that,
for a triangular matrix T with different diagonal elements, any functions F f(T)
could be restored from the commutativity relation FT TF, if the diagonal elements
fii f(tii), 1,...,n, are known. Fewer than n3/3 multiplications are required
to form F from its diagonal. The confluent case when some of the elements tii are
equal is more complicated. However, the commutativity could still be used with
advantage. The same is true for a block triangular matrix T. For a dense matrix B,
the computation of f(B) could be performed by first reducing B to its Schur form.

A similar idea is used in [3] where the computation of square roots of a matrix B
(which are not necessarily polynomials of B) is considered.

If B is a product of the type B AA (or B AA), and A is reduced to its Youla
form, then B also acquires a block triangular form very similar to the Schur form.
This implies that for such a matrix B, we could replace, using Parlett’s technique,
the reduction of B to the Schur form by the reduction of A to the Youla form. This
avoids the explicit computation of B, if A is known.

REFERENCES

[1] R. H. BAI=tTELS AND G. W. STEWART, Solution of the equation AX - XB C, Comm. ACM,
15 (1972), pp. 820-826.

[2] J. H. BEVIS, F. J. HALL, AND R. E. HARTWIG, Consimilarity and the matrix equation AX-
XB C, in Proceedings of the Third Auburn Matrix Theory Conference, F. Uhlig and
R. Crone, eds., pp. 51-64, North Holland, Amsterdam, 1987.

[3] A. BJRCK AND S. HAMMARLING, A Schur method for the square root of a matrix, Linear
Algebra Appl., 52 (1983), pp. 127-140.

[4] A. BUNSE-GERSTNER AND W. B. GRAGG, Singular value decompositions of complex symmetric
matrices, J. Comput. Math. Physics, 21 (1988), pp. 41-54.

[5] J. H. P. COLPA, Diagonalization of the quadratic boson hamiltonian with zero modes, I. Math.
Physica 134A, 2 (1986), pp. 377-419.

[6] A. GEORGE, K. IKRAMOV, L. MATUSHKINA, AND W.-P. TANG, On a QR-like algorithm for some
structured eigenvalue problems, Tech. Report CS-9405, University of Waterloo, Waterloo,
Ontario, Canada, 1994.

[7] A. GEORGE AND J. LIU, Computer Solution of Large Sparse Positive Definite Linear Equations,
Prentice-Hall, New York, 1981.

[8] C. H. GOLUB, S. NASH, AND C. VAN LOAN, A Hessenberg-Schur method for the matrix problem
AX + XB C, IEEE Trans. Automat. Control, AC-24 (1979), pp. 909-913.



1126 A. GEORGE, K. IKRAMOV, E. MATUSHKINA, AND W.-P. TANG

[9] Y. P. HONG AND R. A. HORN, A characterization of unitary congruence, Linear Multilinear
Algebra, 25 (1989), pp. 105-119.

R. A. HORN AND C. R.. JOHNSON, Matrix Analysis, Cambridge University Press, London, 1988.
H. D. IKPAMOV, Linear Algebra: Problem Book, Mir, Moscow, 1983.
KH. D. IKRAMOV, The use of block symmetries to solve algebraic eigenvalue problems, USSR

Comput. Math. Math. Physics, 21 (1990) pp. 41-54.
A. LEE, On centrohermitian and skew-centrohermitian matrices, Linear Algebra Appl., 29

(1980), pp. 205-210.
[14] B. N. PARLETT, A recurrence among the elements of functions of triangular matrices, Linear

Algebra Appl., 14 (1976), pp. 117-121.
[15] G. W. STEWART, Algorithm 406 HQR3 and EXCHANG: FORTRAN subroutines for calcu-

lating and ordering eigenvalues of a real upper Hessenberg matrix, ACM Trans. Math.
Software, 2 (1976), pp. 275-280.

[16] G. W. STEWART AND J.-G. SUN, Matrix Perturbation Theory, Academic Press, New York,
1990.

[17] M. VuJICIC, F. HERBUT, AND G. VuJICIC, Canonical forms for matrices under unitary con-
gruence transformations I: conjugate-normal matrices, SIAM J. Appl. Math., 23 (1972),
pp. 225-238.

[18] J. R. WEAVER, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenval-
ues, and eigenvectors, Amer. Math. Monthly, 92 (1985), pp. 711-717.

[19] J.H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, UK,
1965.

[20] D. C. YOULA, A normal form for a matrix under the unitary congruence group, Canadian J.
Math., 13 (1961), pp. 694-704.

[10]

[13]



SIAM J. (MATRIX ANAL. APPL.
Vol. 16, No. 4, I)P. 1127--1134, October 1995

() 1995 Society for In(tustria,1 and Applied Mathematics

OO7

THE GROUP INVERSE ASSOCIATED WITH AN IRREDUCIBLE
PERIODIC NONNEGATIVE MATRIX *

STEVE KIRKLAND

Abstract. Suppose that M is an irreducible stochastic matrix with period d

_
2. The canonical

form for M that exhibits its periodic structure generates a natural partitioning of M, which in turn
generates a partitioning of (I M)# the group generalized inverse of I M. We derive a formula
for the blocks in the partitioned form of (I- M)# discuss possible sign patterns of (I- M)# and
use the partitioned formula to obtain information about the Markov chain associated with M.

Key words, nonnegative matrix, group inverse, Markov chain

AMS subject classifications. 15A48, 15A09, 15A51

1. Introduction. Square matrices with nonnegative entries have received a
good deal of attention, not only because of their utility in applications, but also be-
cause of the remarkable properties that they possess. Recall that a square nonnegative
matrix M is reducible if there is a permutation matrix P such that pMpT [-0-1--],XY
where X and Z are square (nonvacuous) matrices, and 0 is the zero matrix of the ap-
propriate size; if no such P exists, M is irreducible. In the case that M is irreducible,
there are two possibilities: either some power of M is positive, in which case it is
called primitive, or there is a d

_
2 and a permutation matrix Q such that

(1) QMQT

0 M1 0 0
0 0 Ma 0... 0

0 0 Md-1
Md 0 0

where the diagonal zero blocks are square, and where each of the products Ai
MiMi+l... MdM1... Mi-1 is primitive. In the latter case, M is periodic (with period
d), and we refer to the matrix in (1) as the periodic normal form for M. The theorem
of Perron and Frobenius states that an irreducible nonnegative matrix M has an
algebraically simple positive eigenvalue r, called the Perron value, and that associated
with r are left and right eigenvectors (called left and right Perron vectors) in which
every entry is positive.

Thus if M is an irreducible matrix with Perron value r, rI M is not invertible,
but because its null space has dimension 1, rI- M has a group inverse, i.e., there
is a matrix (rI- M)# such that (i) (rI- M)#(rI- M) (rI- M)(rI- M)#, (ii)
(rI- M)#(rI- M)(rI- M)# (rI- M)#, and (iii) (rI- M)(rI- M)#(rI- M)
(rI- M). The group inverse (rI- M)# provides information about M in (at least)
two different ways.

(i) Let the left and right Perron vectors ofM be yT and x, respectively, normalized
so that yTx 1, and let X and Y be the diagonal matrices whose diagonal entries are

* Received by the editors December 13, 1993; accepted (in revised form) by C. Meyer October
3, 1994. The research of this author was supported in part by the Natural Sciences and Engineering
Research Council of Canada grant OGP0138251.

Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, $4S

0A2 (kirkland(C)max. cc. uregina, ca).
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the corresponding entries in x and y. Deutsch and Neumann [2] show that the matrix
whose (i, j)th entry is the second partial derivative of r with respect to mij is equal to
2Y(rI- M)#TX. Thus the sign pattern of (rI- M)# reveals whether r is convex or
concave as a function of a particular entry in M. Haviv, Ritov, and Rothblum [3] also
use (rI- M)# as part of an iterative method for calculating higher order derivatives
Of ro

(ii) In the case where M is an irreducible stochastic matrix, i.e., each of its row
sums is 1, M can be viewed as the transition matrix of a Markov chain (see [5]). Meyer
[6] shows how (I- M)# can be used to calculate the matrix consisting of the mean
first passage times for the chain. Furthermore, in the case where M is primitive with
left Perron vector yT (normalized so that the entries in yT sum to 1), Meyer shows

that (I M)# limnN nlyT, where 1 is the all ones vector, and N is
the matrix whose (i, j)th entry is the expected number of times that the chain is in
state j in the first n steps, given that the chain was initially in state i. Since yT is the
stationary distribution for the Markov chain, we see that the (i, j)th entry of (I-M)#
measures the asymptotic difference between the expected number of visits to j given
that the chain started in state i, and the expectation of the same quantity given that
the chain started in its stationary distribution.

Consider an irreducible periodic matrix M with Perron value r; without loss of
generality, we assume that M is in periodic normal form. From paragraphs (i) and
(ii) above, (rI- M)# contains information about M, and since M is a partitioned
matrix, it is natural to wonder whether We can partition (rI- M)# conformally with
M and deduce the structure of the blocks in (rI- M)#. This paper provides such
a partitioned formula for (rI- M)#, discusses the sign patterns of (rI- M)#, and
applies the partitioned formula to obtain information about Markov chains whose
transition matrix is irreducible and periodic.

In the sequel we will adopt several conventions. First, we will assume that our
matrix M is irreducible and periodic with period d >_ 2. We will also assume that
M is stochastic; we lose no generality with this assumption, since any irreducible
nonnegative matrix is similar (via a diagonal matrix with positive diagonal entries)
to a positive multiple of a stochastic matrix (see [4, pp. 528-529]). In addition to
assuming that M is stochastic, we will also suppose that M is in the periodic normal
form (1). For each 1 _< _< d, we let Ai MM+I... MdM1... M-I, which is both
primitive and stochastic; in particular, 1 is a right Perron vector for A. We denote
by uT the left Perron vector of Ai, normalized so that uTI 1. Throughout, 1 will
denote the all ones vector, but its order will be suppressed for notational convenience;
the order will always be clear from the context.

2. The main formula. We begin with a useful preliminary result.
PROPOSITION 1. Suppose that A and B are nonnegative matrices of orders n m

and m n, respectively, and that both have row sums 1. Furthermore, suppose that
AB and BA are primitive, and that uT is the left Perron vector of AB, normalized
so that uT1 1. Then (I- AB)# I- luT + A(I- BA)#B.

Proofi Let G I- luT + A(I- BA)#B. A result in Campbell and Meyer
[1, Thm. 8.5.5] implies that ifuTG 0T and (I-AB)G I-luT, then G
(I- AB)#. Now uTA is a left Perron vector for BA, and since (I- BA)# and
(I-BA) have the same null space (see [1]) we find that uTG 0T. Also, (I-AB)G
I- luT+A(luTA-I+ (I-BA)(I-BA)#)B; since (I-BA)(I-BA)# I- luTA
([1, Thm. 8.2.3]), the result now follows.

COROLLARY 1. Let A and B be as in Proposition 1. Then (I- AB)#A
A(I- BA)#.
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Proof. From Proposition 1 we have (I- AB)#A A- luTA + A(I
BA)#BA A(I-luTA+(I-BA)#BA). Using the fact that (I-BA)(I-BA)#
I- luTA now gives the result.

We now present the main formula.
THEOREM 1. Suppose that M is an irreducible stochastic matrix with period d >_

2. Furthermore, suppose that M is in its periodic normal form, that is,

0 M1 0 0
0 0 M. 0... 0

0 0 Md-1
Md 0 0

For each 1 <_ j <_ d, let Aj MjMj+I...MdM1... Mj_I, and let uT1 be the left
Perron vector for A1, normalized so that ul 1, and for 2 <_ j <_ d, let u

T is the left Perron vector for Aj normalized so that ululTM1... My_ 1, 80 that uj
1. Let G (I- M)#, and partition G into blocks Gij, 1

_
i, j

_
d, using the same

partitioning as that for M. Then for each 1

_
i, j

_
d,

(2)
(I- Ai)#Mi... Mj-1 + (_4 AJ) lufd

Gij (I- Ai)# + (@)lu/T
d-1(I- Ai)#Mi...MaM...M_ + a

ifi<j,
ifi=j,

ifi>j.

Proof. Let wT (1/d)[Ul... u], and note that wT is the left Perron vector for
M, normalized so that wT1 1. Let G be the matrix whose blocks are given by (2).
Again we employ [1, Thin. 8.5.5] to establish the result. From (2) it follows that the
jth block of wTG is equal to

d

(d-1(l/d) . 2d
(j i)mod d) luy 0T

d

Consequently, lwTC 0.
Suppose that 1 _< < j _< d. Then the (i, j)th block of (I- M)G, (I- M)(]y, is

given by

(ddl J-i)lu(ij Mi(]i+lj (I- Ai)#Mi... My-1 + d

Mi (I- Ai+)eMi+l...Mj-1 --t-
2d j-i-l) )d

lu

where Mi+I Mj-1 is to be interpreted as I if i j- 1. Applying Corollary 1, we see
that (I-Ai)#Mi...Mj-1 Mi((I-Ai+l)#Mi+l... Mj-1, and hence (I-M)(ij
-(1/d)lu’. Similar arguments show that if 1 _< j < i <_ d, then (I- M)(3ij
-(1/d)lu’, while (I- M)Gii I- (1/d)luT. Thus (I- M)G I- lwT, so that
(I- M)# G.

Theorem 1 may offer some computational advantage in finding (I- M)#, since
it expresses that matrix terms of some group inverses of lower order. Furthermore,
Proposition 1 shows that if j i, (I Aj)# can be computed from (I A)#.



1130 STEVE KIRKLAND

3. Sign patterns for the group inverse. As was mentioned in (i), for an
irreducible stochastic matrix S, the sign pattern of (I- S)# reveals the convexity or
concavity of the Perron value of S as a filnction of its entries. Deutsch and Neumann
[2] give a proof of the fact that the diagonal entries of (I- S)# are positive, and show
that each row and column of (I- S)# contains at least one negative entry. They
then pose the problem of determining those S with the property that (I- S)# has all
nonpositive off-diagonal entries; it is not difficult to see that this is the case if and only
if (I- S)# is an M-matrix. Our next result characterizes the irreducible stochastic
periodic matrices M such that (I- M)# is an M-matrix.

THEOREM 2. Suppose that M is an irreducible stochastic matrix of the form

0 M1 0 0
0 0 M2 0-.. 0

0 0 Md-1
Mg 0 0

for some d > 2. If d >_ 4, then (I-M)# is not an M-matrix. If d 3, then
(I- M)# is an M-matrix if and only if there are positive vectors xT, yT, and zT,
each of whose entries sum to 1, such that M1 lxT,M2 lyT, and M3 lzT. If

1)lU2T < 0 andd 2, then (I- M)# is an M-matrix if and only if (I- A1)#M1 (X
(I- A)#M2 () 0, where A1 M1M2,A2 M2M1, and for 1,2, u
is the left Perron vector for Ai, normalized so that its entries sum to 1.

Proof. Let G (I- M)#, and partition G into blocks Gij,1 _< i,j < d, using
the same partitioning as that fbr M. om Theorem 1 it follows that G121 (-) 1,
which is a positive vector if d >_ 4. Thus if d 4, G has some positive off-diagonal
entries, and so it cannot be an M-matrix.

If d 3, then G121 0, (]231 0, and G311 0. Consequently, if G is an

M-matrix, then each. of G1.2, G23, and G3. must be an all zero block, for if one of
those blocks were to have a nonzero entry, it must necessarily have a, positive entry
because the row sums are zero. Thus we see that G.2 (I- A1)#M1 0. This
implies that each column of M1 is a null vector for (I A1)#, which in turn implies
that each such column is a scalar multiple of 1. Hence there is a nonnegative vector
xT such that M1 lxT; from the fact that M is irreducible and stochastic, it follows
that xT is positive and that its entries sum to 1. A similar argument establishes the
fbrmulae for M2 and M3. Conversely, if M lxT, M2 lyT, and M3 lzT for
x’, yT, and zr as in the statement of the theorem, an application of Theorem I now
yields the fact that (I- M)# is an M-matrix.

Now suppose that d 2. If G is an M-matrix, then certainly G12 (I-
A1)#M1- (x)lu2" < 0 and (]21 (I- A2)#M2- (1/4)lu _< 0. On the other
hand, if (I--A1)#M1---(1/4)1u2T 0 and (I- A2)#M2 -()lu _< 0, then in par-
ticular, (I- A1)#MIM2- (1/4)lu’M2 < 0. Since MiM2 A1 and uM2 UlT,
this last inequality is equivalent to GI (I A1)# + ()1UlT < I ()lu, so
that the off-diagonal entries of G. are negative. A similar argument shows that the
off-diagona.1 entries of G22 are negative, and hence that G is an M-matrix. [3

The next result discusses the conditions under which there is a zero block in the
group inverse associated with a periodic matrix.
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THEOREM 3. Suppose that M is an irreducible stochastic matrix of the form,

0 M1 0 0
0 0 M2 0-.. 0

0 0 Md-1
Ma 0 0

for some d >_ 2, and let G (I- M)#, with G partitioned as Gij, 1 <_ i, j <_ d. Then
(ij is a zero block for some and j if and only if d is odd, (j i)modd (d 1)/2,
and MiMi+l Mj-1 lug.

Proof. From Theorem 1 we find that if Gij 0, then

( d I (j i)mod d) lu O"(I- A)#Mi Mj__. + 2d d

In particular Gjl 0, and it follows that

2d d
1 0.

Hence d must be odd and (j- i)modd (d- 1)/2. Consequently, 0 j (I-
ii)#Mi ...Mj-1, so that each column of Mi...Mj_ must be a null vector for
(I- hi)#; i.e., each column of Mi...Mj-1 is a multiple of 1. Furthermore, by
Corollary 1, (I- Ai)#Mi...Mj-1 Mi...Mj-I(I- A)#, so that each row of

T It now follows that MiMi+I Mj- layMi... Mj-1 is a multiple of uj.
The converse is straightforward.
COROLLARY 2. If (] i8 a8 in Theorem 3, then G has at most d zero blocks.

4. Applications to Markov chains. Consider a Markov chain with irreducible
transition matrix S and stationary distribution uT. Let N,) be the matrix whose
(i, j)th entry is the expected number of times that the chain is in state j in the first
n steps (the initial step, plus the next n- 1 steps), given that the chain was initially
in state i. Evidently

n--1

N(s,’ E S
/=0

and as we noted in (ii), Meyer [6] has shown that if S is primitive, (I- S)#
lim--+o N(") nluT, thus yielding an interpretation of the etries in (I- S)#. Our
next result extends this interpretation to cyclic Markov chains, that is, those whose
transition matrices are irreducible periodic stochastic matrices.

THEOREM 4. Suppose that M is an irreducible stochastic matrix of the form
0 M1 0 0
0 0 M2 0... 0

0 0 Md-1
Md 0 0

for some d >_ 2, and let uv." be the left Perron vector ofM, normalized so that uT 1.
Then
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Proof. Suppose that 1 _< < j

_
d. We find from the special structure of M that

the (i, j) block of Mp, (Mp)ij say, is equal to (Ai)ZMi... gj-1 if p ld + j i, while
that block is zero if p is not congruent to j- modulo d. Consequently, if 0 _< k

_
j- i,

then the (i, j) block ofNd+k) is given by

nd+k-1 n-1

E (MP)iy- E(Ai)ZMi...My-1.
p--0 /=0

A )tSimilarly, ifj i/l <k<d 1, the (i, j) block ofNd+k) is given by-t=0(
Mi... Mj-1. It now follows that the (i, j) block of

(1/d) lN(d+k) (nd + k)luT}
k k=0

n-1 luT)Mi Mj + (1/d)(d 1 j + i)(Ai)nMi Mj-1is equal to (-t=0 (Ai) -n

n--1As n - cx, Et=o (Ai) -nlu + (I- Ai)#, and (Ai) luT,, and hence we
see that the (i, j) block of

is equal to

d-l

N4d+k)lim (l/d) E -(nd + k)luT
k=O

d- 1 j -i) lug"(I A)#M... My_ + 2d d

which agrees with the (i, j) block of (I- M)#. i similar argument goes through when
1 <_ j <_ <_ d, yielding that

(I- M)# lim (l/d) E -(nd + k)luT [J

k--0

For a Markov chain with irreducible stochastic transition matrix A and stationary
distribution vector uT, Meyer [6] has shown that EA, the mean first passage matrix

(i.e., the matrix whose (i, j) entry is the mean first passage time from state to
state j in the chain) can be expressed in terms of the group inverse associated with
A. Specifically, if J is the all ones matrix and Du is the diagonal matrix whose ith
diagonal entry is ui, then

(3) EA (I (I A)# +J(I #A)dig)D

where (I- A)d#ig is the diagonal matrix whose diagonal entries are given by those
of (I- A)#. Our next result gives a partitioned formula for EA in the case that the
chain is cyclic.

THEOREM 5. Suppose that M is an irreducible stochastic matrix of the form
0 M1 0 0
0 0 M2 0..- 0

0 0 Md-
Md 0 0
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for some d >_ 2, and let uT be the left Perron vector ofM, normalized so that uT1 1.
Partition EM conformally with M, as (EM)ij, 1 <_ i, j <_ d. Then

(4)

(6)

(EM)ij d[-Mi. Mj-I(I Aj)# + J(I A # ]D-1J/diag] uS + (J i)J

dMi...Mj_[EA (EA)dia] + (j i)J if < j,

(EM)ii d[I (I Ai)# -- J(I Ai/diagJ# D- dEA, and

(EM)ij d[-Mi... MdM1...’Mj-I(I Aj)# + J(I Aj)d#ig]D] + (d 4- j i)J

=dMi...MdM...Mj_I[EA-(EA)dig]+(d+j-i)J if > j.

Proof. Throughout the proof, a subscript ij on a matrix denotes the (i, j)th block
of the matrix when it has been partitioned conformally with M. Suppose that < j.
From (3), we have (EA)ij [-(I- A) +J(((I- A)#)jj)diag](D-l)jj. Applying The-

orem 1, Corollary 1, and using the fact that (D1)jj dD-, we find that (EA)ij
d[-Mi Mj-l(I-Aj)#+(j-i)(1/d)luj+J(I-Aj# ID-1 d[-Mi Mj-I(I-]diagl uj

Aj)#+J(I Aj# ]D-1
JdiagJ us +(J-i)J. By considering Meyer’s formula for EA, it is read-

ily established that this last expression is equal to dM... Mj-I[EAy (EAy)dig] -(j- i)J. Analogous arguments yield the desired expressions for the cases > j and
i=j.

We remark that the formulas of Theorem 5 have sensible interpretations in terms
of the cyclic Markov chain associated with M. Suppose that il and i are two states
corresponding to the ith cyclic set (i.e., the set of indices of the rows and columns
associated with the ith diagonal block in the periodic normal form for M). Because
of the periodic structure of M, the probability that the chain is in i at the kth step,
given that it was initially in i, is nonzero only if k is a multiple of d. Furthermore,
the d step transition matrix for states in the ith cyclic set is Ai. It now follows that
the mean first passage time from il to i is given by the corresponding element of
dEA, which agrees with formula (5). Similarly, suppose that 1 _< < j

_
d, that il

is in the ith cyclic set, and that jj is in the jth cyclic set. Then the probability that
the chain is in jl at the kth step, given that it was initially in il, is nonzero only if
k (j i)mod d. As above, the d step transition matrix for states in the jth cyclic
set is Ay, and so letting Sy denote the jth cyclic set, it follows that we can write the
mean first passage time from il to jl as

(j -/){Probability of a transition from il to jl in j steps}

+ E {Probability of a transition from il to in j steps}
IES\{jl}

x {j + mean first passage time from to jl}.

It is now readily verified that the above expression is the same as the entry in

dMi...Mj_I[EA -(EA)dig] + (j --i)J corresponding to states il and jl, which
agrees with formula (4). A similar interpretation can be obtained for the case > j.

It is interesting to note that this type of probabilistic interpretation in fact pro-
vides another proof of Theorem 1. Using this type of probabilistic reasoning, we can
establish formulas (4)-(6) of Theorem 5 for the blocks of EM. We can then deduce
the formulas for the block of (I- M)# by using (3) to express (I- M)# in terms of
EM and Du.
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VARIABLE BLOCK CG ALGORITHMS FOR SOLVING LARGE
SPARSE SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEMS ON

PARALLEL COMPUTERS, I: GENERAL ITERATIVE SCHEME*
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Abstract. This paper considers a new approach to construction of efficient parallel solution
methods of large sparse SPD linear systems. This approach is based on the so-called variable block
CG method, a generalization of the standard block CG method, where it is possible to reduce
the iteration block size adaptively (at any iteration) by construction of an A-orthogonal projector
without restarts and without algebraic convergence of residual vectors. It enables one to find the
constructive compromise between the required resource of parallelism, the resulting convergence rate,
and the serial arithmetic costs of one block iteration to minimize the total parallel solution time.
The orthogonality and minimization properties of the variable CG method are established and the
theoretical analysis of the convergence rate is presented. The results of numerical experiments with
large FE systems coming from h- and p-approximations of three-dimensional equilibrium equations
for linear elastic orthotropic materials show that the convergence rate of the variable block CG
method is comparable to that of the standard block CG method even when utilizing a large block
size, while the total serial arithmetic costs of the variable block CG method are comparable or even
smaller than those of the corresponding point CG method.

Key words, large sparse SPD linear systems, variable block preconditioned CG method,
A-orthogonal projector

AMS subject classifications. 65F10, 65F50

1. Introduction. Iterative solution of large sparse symmetric and unsymmetric
linear systems comprises the most time-consuming stage when solving many compu-
tationally intensive three-dimensional industrial problems on parallel and especially
massively parallel computers. The standard approach to construction of efficient par-
allel solution methods consists first of all in designing efficient parallel preconditioners.
Unfortunately, it is very difficult to achieve parallelism for high-quality precondition-
ers. For example, incomplete triangular factorizations provide a promising approach
to construction with reasonable arithmetic costs of high quality preconditioners but
they are very hard to parallelize. High quality factorized sparse approximate inverses
based preconditioners [4] possess the good parallelism but their construction is very
expensive. Construction of polynomial preconditioners is very inexpensive; they are
highly parallelizable but their preconditioning quality is extremely poor especially
when solving large industrial problems.

Another way to enhance the parallelism of the iterative solution methods is re-

lated to consideration of block iterative schemes like the block CG (BCG) method
[5]. Unfortunately, there does not exist any reasonable mathematical approach to
choose the optimal block size of such schemes that achieve parallelism, possess the
fast convergence rate, and minimize total parallel solution time. In most practical
cases an increase of the convergence rate and an improvement of efficiency of the
parallel implementation of one block iteration may not coInpensate its rapid increase
with the block size of the arithmetic costs per block iteration. Moreover, the BCG
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method may become numerically unstable when increasing the block size.
If an a priori choice of the optimal block size is not feasible one can try to find

a constructive compromise between the convergence rate and the arithmetic costs
of one block iteration by an adaptive reduction of the block size. There exists an
opportunity to reduce adaptively (during the iterative process) the current block size
of the standard BCG method. But it is possible only when the current block residual
loses full rank, i.e., in the case of the algebraic convergence of at least one residual
vector of the block residual (see 2).

In this series of papers we consider another approach to construction of efficient it-
erative methods for parallel solution of large sparse symmetric positive definite (SPD)
linear systems coming from three-dimensional industrial applications. It is based on
the so-cMled variable block CG (VBCG) method, where the current block size can be
reduced at each block iteration without any restart and loss of full rank of the block
residual. The mathematical idea of the method consists in an adaptive construction
of an A-orthogonal projector by reducing the block size of the current block direction
vector according to some criterion. This A-orthogonal projector is used on subsequent
iterations with the reduced block size to maintain a convergence rate comparable with
that of the BCG method with the initial block size. For the resulting VBCG method
we prove orthogonality and minimization properties similar to those of the standard
CG method. These minimization properties of the variable block preconditioner CG
(VBPCG) method enable us to investigate its convergence properties in terms of the
convergence properties of the CG method with preconditioning by a projector [2].

The results of numerical experiments with large SPD matrices coming from three-
dimensional finite element (FE) applications show that the complexity (measured in
terms of the required number of the preconditioned matrix vector multiplications)
of the appropriately constructed VBPCG method may coincide with the complex-
ity of the corresponding point preconditioned CG scheme. It means that (1) when
constructing efficient iterative solution methods for parallel and especially massively
parallel applications, we can essentially exploit the best existing serial preconditioners
and (2) the arithmetic costs of the resulting variable block iterative schemes possess-
ing large parallelism may be comparable with the arithmetic costs of the best serial
point iterative schemes.

This part of the paper is organized as follows. Section 2 presents a functional
approach to derivation of the BCG method which underlies the VBCG method and
investigates the reduction of the block size due to the loss of full rank of the block
iterates. In 3 we derive the VBCG method, prove its orthogonality and minimization
properties, and investigate its convergence properties. In 4 we discuss some realiza-
tion aspects of VBCG algorithms, present the results of numerical experiments with
practical three-dimensional FE systems and concluding remarks.

2. BCG method. The classical approach to derivation of the conjugate gradient
method for solving systems of linear equations with an SPD matrix A is essentially
based on the notion of "line search" for minimizing a quadratic function of the form

(2.1) .T’(x) (x x*)TA(x x*),

where x* is the desired solution.
In this section we present a generalization of this approach to the block case

and derive the block preconditioned CG (BPCG) method as an iterative process of
minimizing a special type quadratic function.

It is well known that the problem of solving the matrix equation
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AX B AX*,

where X, X*, B E ’nxs, is equivalent to the unconstrained minimization problem

(2.2) min F(X)

for the nonnegative quadratic function

(2.3) F(X) tr[(X x*)TA(x X*)],

where the block vector X E 7nS(s < n) consists of n s independent variables.
Let Y.i denote the ith column of a block vector Y. Then F(X) can be presented

as the sum of nonnegative quadratic functions

F(X) 9(x.),
i--1

where ’i(x.i) (x.i- x*.i)TA(x.i- x*.i). It can be easily seen that unconstrained
minimization problem (2.2) decomposes into s subproblems of finding the minimum
of Ui(x),x 7n, which can be solved separately, for instance, by the CG method.
It is possible to exploit another step-by-step procedure for solving these subproblems
simultaneously, where instead of a line search, minimization over some linear subspace
is performed at each step. If X is an approximation to the minimum point X* of
F(X) and the columns of an n d matrix P form a basis of some subspace 7, then
we construct the next approximation X" to X* as follows

(2.4) X" X’ + Pc’ and VF’(a’) 0,

where VF’(a’) is the gradient of the function F’(a) F(X + Pa), a Td8, at the
point a’. Procedure (2.4) is equivalent to a plane search on each ’(u) independently,
i.e., to minimization of ’i(x) over all x which lie on the hyperplane i x.i + Pa.io
Therefore, we can write down the optimal value of the step parameter a in the form

(2.5) a’ -(pTAp)-I(pTG’),

where G AX- AX* coincides up to a scalar multiplier with the block vector form
of the gradient VF at the point X.

Taking into account relations (2.2)-(2.5) together with an appropriate updating
strategy for P we can define the BPCG method for solving the matrix equation
AX B, where B, X Tn 8.

THE BPCG METHOD

Given an initial guess X to the solution matrix X*.
Initial stage: Set R B- AX and p0 MR0,0, where M Tn is an SPD

preconditioner, and /0 E 7ss is a nonsingular matrix.
For k 0, 1,... iterate:

(2.6) Xk+l Xk + Pkak,
(2.7) Rk+l Rk Apkak,
(2.8) pk+ (MRk+ + pkk)/k+
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where ck, k and /k E Tsxs are determined so that
(a) Xk+l minimizes tr[(X x*)TA(X X*)] over all X which lie on the variety

Hk Xk + T with :P span(Pk);
(b) P}+I is A-orthogonal (conjugate) to pk: pk+ TApk 0;
(c) k and /k are nonsingular matrices.

It can be easily shown that conditions (a)-(c) can be satisfied simultaneously
for all k independently of the ranks of the matrices R and P}. Moreover, since
span(Pk) span(Pk#) for any nonsingular matrix g E 78x8, the entries of the block
matrices Rk and Xk are invariant with respect to the choice of /}. The following
lemma establishes the main properties of the BPCG iterates.

LEMMA 2.1. For j < k the BPCG method iterates satisfy the.following conditions:

(2.9) Rk TMR#_ 0,

(2.10) pk TApj O,
(2.11) R}Tp# =0.

Proof. We utilize induction to prove the statements of the lemma. Properties of
quadratic functions and conditions (a)-(c) for choosing the parameter matrices

0 and /0 imply the statements of Lemma 2.1 for k 1.
Assume that the statements are valid for all iterations whose numbers are less

than or equal to k. Under conditions (a) and (b) we have

pk+l TAp} 0 and Rk+l Tp} 0.

For j < k by the induction hypothesis we have

Rk+ TMR# Rk TMRj T k
Ck
p TAMR#

RkTMR# apkTd(pj/

Hence, the block residual matrix Rk+l is orthogonal to P# for all j < k since

Rk+TPj Rk+ TM(RJ/# -t- RJ-I)’#-I#-lq’# -1". .-t- R/00 5-1"/#) -0o

The above equalities imply that

Rk+ TMR Rk+ T(pk/ pk-l#k_l O.

Finally, we conclude that for all j < k

Rk+l TMAP# + T ATDkpk+ TApj /Tk+ k+lPk
T

/k+l
T Rk+l TM(R# R#+)a O.

This completes the proof of the leinma.
.Remark. If the matrices R and pk have full rank, then the matrices

Ck (pk TApk)-I’T (Rk TMRk),
--1 T I(Rk+ITMRk+I#k / (Rk MRk)-

satisfy conditions (a)-(c) and in this case the BPCG method takes the form of the
BCG method from [5]. Unfortunately, it is impossible to evaluate the coefficients c
and k according to (2.12) and (2.13) if R and pk lose full rank.
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Taking into account the basic properties of quadratic functions we can establish
the following minimization property of the BPCG method.

THEOREM 2.2. Rk+l is orthogonal to

span{MR, MAMR,..., (MA)kMR}

and thus Z+ minimizes tr[(X x*)TA(X X*)] over all X such that

X X span{MR, MAMR,..., (MA)kMR},
where X* A-lB.

Theorem 2.2 establishes the finite termination property of the BPCG method;
however, in practice we exploit this method as an iterative process rather than a
finite termination method. O’Leary derived in [5] the following upper estimate of the
convergence rate of the original version of the BPCG method. After k iterations of
the block CG method the error in the ruth component ek.m X:m Xk.m satisfies

(2.14) kTk (1 ax/--)
2k

Cm-iC m < C" 1 < m < s,
1+ V--i

where a An/As and An > An-- > > As > > are the eigenvalues of the
preconditioned matrix MA and c is a constant dependent on m but independent of k.
This estimate shows that an increase of the block size not only increases parallelism
but also may lead to an essentially faster convergence. There does not exist a rea-
sonable approach for choosing a block size that determines the required compromise
between the parallelism, the resulting convergence rate, and arithmetic costs of one
block iteration rapidly increasing with the block size. Thus when minimizing the total
parallel solution time, the increase of the convergence rate and the improvement of
efficiency of the parallel implementation of one block iteration may not compensate its
large arithmetic costs. Nevertheless, such a compromise can be found by an adaptive
reduction of the block size during the iterative process.

The original version of the BPCG method by O’Leary exploits the choice of
7k computed using the QR or the modified Gram-Schmidt methods to monitor the
rank deficiency of pk. If a rank deficiency is detected, then "we delete the zero or
redundant column j of Pa and the corresponding columns of X and Rk, and continue
the algorithm with s- 1 vectors" [5]. Let us consider in more detail the case of a rank
deficiency of Rk and pk and describe precisely a process for reducing the block size
of the BPCG method.

First of all we note that rank(R) rank(Pk) and therefore rank deficiency of
Rk leads to the loss of full rank in P. We can easily establish the following lemma
which allows us to discover how the convergence of the BPCG method forces the loss
of full rank of the residual matrix.

LEMMA 2.3. Let two linear systems of equations

AX B and Af ,
where A Tnx is an SPD matrix, and B,[,X,f( TinX(s < n) be given.

Let B5 and f(o xOs, where 5 Tx is nonsingula,; and suppose that the
BPCG method applied to these systems with a and computed according to (2.12)
and (2.13) does not fail after k steps.
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Then the BPCG sequences of block approximations and block residuals satisfy the
following equalities

and k xk.

Now we suppose that after k iterations the columns of Rk are linearly dependent,
i.e., there exists a nonsingular matrix such that

(.1) R (R, 0),

where the column submatrix R, has full rank. If we similarly partition the modified
right-hand side/ and the approximation matrix k, we have

(2.16) / B (B, B*) and k xk6 (zk, Z,k),

and the following matrix equality is valid:

AX*k B*.

In other words, there exists a nonzero matrix B* E ’,nxd (d < s) such that span(B*) C
span(B) and for the corresponding matrix X*

span(A-1B*- X*) C span{MR, MAMR,..., (MA)kMR}.
Furthermore, it can be easily seen that

pk- TAMtk (Pk- TAMRk, 0),

and if "yk is a block 2 2 diagonal matrix of the corresponding block partitioning

Block Diag(/,k, .,k),

then we have

pk (Mk + p-lk_l),yk (pk, 0),

where

p,k (MRk, pk-l(p}-l TApk-1)-I(pk-I TAMR,))/,}.k

Thus for >_ k the approximation matrix Xi+1 can be written in the form

(2.18)

where X,TM are constructed as follows:

(2.19)

(2.21)

provided the matrices R, and P, preserve full rank.
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In the case of a rank deficiency of R, j > k, we repeat process (2.15)-(2.23) with
the residual and the approximation matrices of the form

Rj (RJ, 0)6-1 and Xj (XJ, X*)6-.
The above analysis shows that the block residual R may lose full rank only in the

case of the algebraic convergence of a vector component of the modified block residual
k. Therefore, one can reduce adaptively the block size only at the final iterations if
the convergence rate is to be preserved, but in this case the corresponding reduction
of the arithmetic costs will be small. Thus in order to find a constructive compromise
between the convergence rate of block iterations and their arithmetic costs we must
try to reduce the block size independently of the rank of block iterates.

3. VBPCG algorithm. In this section we describe the block generalization of
the CG method for the iterative solution of systems of linear equations Ax b, where
a reduction of the block size can be performed at each iteration independently of rank
deficiency of Rk. The resulting method will be called the variable block preconditioned
conjugate gradient (VBPCG) method.

THE VBPCG METHOD

Given an initial guess x and an initial block size s(0). Construct a right-hand side
matrix B 7n() and an initial guess matrix X e Tn() whose first columns
coincide with b and x, respectively, while other columns are chosen arbitrarily to
produce a full rank matrix R B AX.

Initial stage: Set R B AX and p0 MRo, where M is an SPD precondi-
tioner.

For k 0, 1,... iterate"
1. k+l Rk Apkak and .k+l Xk + Pkck,

where ak E Ts(k)s(k) are determined so that

[k+1Tpk O.

2. Choose with respect to some criterion a positive integer s(k + 1) <_ s(k) and
matrix e-k ,s(k)xs(k-}-l) SO that

rank(/+lk) s(k + 1)o

3. Set

Rk+l k+l,k
X+ :+
pk pkOkgk.

4. If d(k) s(k)- s(k + 1) > 0 then choose H e Tnd()
so that

(i) span(P) span(Hk) @ span(/Sk),
(ii) TAH 0 and H TAH I.

15. Update the block direction P+I
k

p+ M+ +&+ g/,
i--0
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where the coefficients fk and 3’ are computed so that

pk+l TADk.= 0 and pk+I TAH 0 for i <_ k.

In the following theorem we establish VBPCG properties similar to the orthogonal
and the conjugate properties of the BPCG iterates.

THEOREM 3.1. For j < k the VBPCG method iterates satisfy the following
conditions:

RkTMRj__ O,
pk TApj O,
Rk Tpj O.

Proof. We prove the statements of the theorem by induction. The statements of
Theorem 3.1 are obviously valid for k 1.

Assume that the statements hold true for some k > 1. Then by construction for
i < k we have

pk+l TAk O, pk+l TAH O, pk+l TApk O.

The block residual vector RTM satisfies the relation

Rk+ Tpk ek+l Tpk O.

Furthermore, for j < k we have

The first term in (3.1) is equal to zero by the induction hypothesis while the second
one is equal to zero since

span(Hi) C span(Pi) and span(/5j-1) C span(Pj-).

Note that PJ C span{MRJ, MRJ-,..., MR} and hence

Rk-bl Tpj 0 for j < k,

and

Rk+ITMRk Rk+IT pk [k-k_ Hi/_ O.
i----0

Finally, we prove that pk+ TApj 0 for j < k. To this end it is sufficient to
show that

pk+ TA[=,j O.
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Indeed,
k

pk+ TA/hi (MRk+ //5k / H )TA/hi Rk+ TMA/5
i--0

Rk+TMAPJcj Rk+ITM(RJj Rj+l) O.

The theorem is thus proved.
In order to derive formulas for evaluating the matrix coefficients ck, k, and

we note that rank(Pk) --s(k) since

RkTMR,RkTpk Rk T MRk T pk-lk_ - Hi/-
i-o

and by construction rank(R) s(k). Therefore, step 5 of the VBPCG method is well
defined, i.e., pk 0 if and only if Rk 0, and the matrix (pkTApk) is nonsingular.
By construction

span(Pk) span(Hk) span(/5k)
and we can rewrite step 5 of the VBPCG method in the form

k-1

pk+ MRk’t-1

__
pkk T H

i---O

where the coefficients/k and "7 are evaluated in such a way that

pk+l TApk 0 and pk+l TAHi 0 for < k.

Then we can derive the following formulas to compute k, /k, and
COROLLARY 3.2. It holds that

(a.2) -- (pkTApa)-(RkTMRk),
(3.3) --(RaTMR)-([a+ITMR+I),
(3.4) -(HiTAMRk+) for < k.

Proof. must satisfy the equation (/k+ Tpk) 0; hence

(k (pkTApk)-(pTR),

and relation (3.2) follows from the equality RkTpk RkTMR.
Let us demonstrate that/k from (3.3) and from (3.4) satisfy the conditions

p+TAp O and P+ITAH 0 fori<k.

Indeed,

k-1 /
T

pk+ TAp MRk+ + Pkk + Hi’ APk

i--O

Rk+TMAPk / TkPkTAp R+TM(R 1+)-- (k+ITMRk+I)T(RkTMRk)-I(pkTApk)

(Rk+TMIk+)(--c / (-) 0
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and

Pk+I TAHi Rk+I TMAH 9/TI O.

In the last chain of equalities we used the condition

H TAH I.

The corollary is thus proved.
The whole process can be divided into three stages:
(i) an initial stage, which coincides with the standard BCG scheme with the initial

block size;
(ii) a reduction stage, when we consecutively reduce the block size of iterates;
(iii) a final stage, which coincides with the standard BCG scheme with the final

block size, except of the additional reprojection of the block directions on the subspace
A-orthogonal to span{H, H1,..., Hk}.

The arithmetic costs of the reduction stage are dependent on a particular criterion
for choosing the matrices ek and Hk, but, in general, computation of these matrices
does not require any additional preconditioned matrix-vector multiplications. Since
the number of iterations at this stage is relatively small, their arithmetic costs can-
not affect considerably the total arithmetic complexity of the iterative solution. If
we denote the final block size by s, the reprojection of the block direction requires
2 (s(O)-s) s n additions and multiplications. Thus the arithmetic costs of one VBPCG
iteration at the final stage have only a small arithmetic overhead as compared with
one BPCG iteration of the block size s.

Now we describe relationship between the subspaces generated at k iterations of
the VBPCG method.

DEFINITION 3.3. An n n matrix Q is a conjugate projector with respect to A
on a subspace ]; iff )2 is the span of columns Q, Q2 Q, and QTA(I Q) o.

LEMMA 3.4. Let Qk denote the conjugate projector on

T/k span{H H H

If Pk span{P, P1,... ,pk} and Qk I (k, then

Pk span{QkMR, QMAQkMR, (QkMA) QkMR } @ 7-lk.

Proof. From step 5 of the VBPCG method we have for all j < k

J
Qpj+l QkMR+1 +

i--0

Since span(P) span(QkP) and QkH 0 for <_ k, this equality implies that

span{/50,/5,...,/hk} span{QkMRo, QkMR,. QkMR}.

Now, from step 1 and step 2 we have for all j < k

QkMR+ QkMR QkMAPJ.

Therefore, we have

span{p0,/5,...,/hk} span{QkMRo, QkMAQkMR, (QkMA)k QkMR }
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and the statement of Lemma 3.4 follows immediately from the fact that

span(Pk span(Hk) @ span(/Sk). 13

It is of primary importance to establish relations between the block vector Xk

computed at the kth iteration of the VBPCG algorithm and the solution to the original
system x* A-lb. Let E E sxd have full rank and let X" minimize the following
quadratic functional

F(X) tr[(X x*)TA(X X*)],

over all X which lie on the variety H X’ + :P, where :P is a linear subspace and
X’ E 7TM. If ](* X’E, then f(" X"E minimize the quadratic functional

/() tr[( f(.*)TA(- *)],
over all which lie on the variety lI ’ + 7), where ’ X’E.

Indeed, if P is a basis of the linear subspace :P then

" .’ + p&’,

where

&’= --(pTAp)-I (pTA(f’- f(*)).
Hence, we have

f(" X’E- P (pTAp)-I (pTA(X’ X*))E X"E.

We have thus proved the following theorem.
THEOREM 3.5. Let Qa denote the conjugate projector on

7-/a span{H, H1,..., Ha }

Qa I- Qa and E eoel ea.
Then Xa+l from the VBPCG method minimizes

tr[(X fg*)TA(x *)]
over all X Tns(k+) such that

X fo span{QkMRo, QaMA QkMR,..., (QkMA)k QaMR} @ 7-la,

where f(* A-1BE and f(o XoE.
COROLLARY 3.6. If the first column of E eoel.., ek coincides with the first

unit vector, then the first column of Xk+l provides the optimal approximation to
x* A-b with respect to (x) and to the constructed subspace Pa.

In what follows we assume that the condition of Corollary 3.6 is fulfilled.
Now we present estimates of the asymptotic convergence rate of the VBPCG

method. Without loss of generality we shall consider the case M I. In Theorem 3.5
we established the close relationship between minimization properties of the VBPCG
method and the CG method with preconditioning by the projector (the CGP method)
from [2]. The CGP method for solving the system of linear equations Ax b can be
described as follows.
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THE CGP METHOD

Define a linear subspace T/and a full rank matrix H E Tnxm (n > m) so that
7-/- span(H). Set

P- H(HTAH)-IHTA and Q I- P,

and denote by ); the subspace span(Q).
Initial stage: Set

Xo PA-lb H(HTAH)-1HTb and po ro b Axo.

For i O, 1,... iterate

It can be shown [2] that the approximation Xk constructed at the kth iteration of
the CGP method with a conjugate projector Q minimizes functional ’(u) (2.1) over
all

u E span{Qr0, QAQro,..., (QA)k-lQro} @

where T/is the conjugate complement to the subspace ]; span(Q) and r0 A]; is
an initial residual. Thus the asymptotic convergence rate of the CGP method can be
estimated in terms of the spectral condition number of the positive definite restriction
of QTAQ to A; denoted by QTAQIAV [2]. Let us denote by/: the subspace spanned
by the eigenvectors corresponding to A1, Am and by QAn and Q the orthogonal
projector on A-/and , respectively. If

(3.5) /----IIQA Qz:ll2

is the gap between AT/ and then the spectral condition number of QTAQIA;
satisfies the inequality (see [2])

(3.6) a(QTAQ A1;) <_ An

V/(1 /)2,,2m+ --Now taking into account Theorem 3.5 we can exploit estimate (3.6) to analyze the
convergence rate of the VBCG method. If after k iterations of the VBCG method the
dimension of the constructed subspace 7-/ 7-/k is equal to m, then the asymptotic
convergence of the VBCG method exceeds the convergence of the CGP method with
projector Q Qk since

span(Qkro, QkAQkro,..., (QkA)k-lQkro} C Pk.
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On the other hand, if dim(?-/k) 0, then the VBCG method coincides with the BCG
method and its convergence rate can be estimated in terms of the reduced condition
number of A

),/s(0).
Therefore, with an appropriate choice of H (which is equivalent to the choice of

e) providing a reasonably small value of -), in (3.5) we can make the convergence of
the VBPCG method with rapidly decreasing arithmetic costs per iteration as fast as
the convergence of the standard BPCG method with constant block size.

The practical approach to an a posteriori qualitative analysis of the preconditioned
CG iterations is closely related to computation of the Ritz values by construction of
the tridiagonal spectrally equivalent matrix made up with the CG coefficients. This
analysis seems to be very helpful when investigating and optimizing the performance
of the VBPCG method. To this end we construct in this section a similar block
tridiagonal matrix for investigating the spectral characteristics of the VBPCG method
(for the sake of simplicity we consider only the unpreconditioned VBCG method).

Let for some N > 0 the matrix RN+l be zero, then we define the following
matrices:

R (R0 R RN), P-- (po 1 pY), and H (H H HN).
In our notation we have the equalities

R PU + HF and AP RL,

where F (HTAR) is a upper block triangular matrix by construction, while L and
U are lower and upper block bidiagonal matrices, respectively. Hence, we can write

AR RT + (AHHTA)R
or

A(I- HHTA)R RT,

where T LU is a block tridiagonal matrix. Let rlkTlk RkTRk) and

D Block Diag(r/-1, r/-l,..., r/1),
then the columns of the matrix R RD are orthonormal and hence

A(I- HHTA)[ [D-1TD RT,

where D-lTD.
We have thus proved the following proposition.
PROPOSITION 3.7. The VBPCG method constructs the orthonormal basis in

which the matrix of the operator A restricted to the A-orthogonal complement to
span(H) has block tridiagonal form.

We consider now the tridiagonal matrix T in more detail. The bidiagonal matrices
L and U can be represented in the form

eo o -3o
-I e, , -3

L= -I U=

-I N
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where

(3.7) (piTAp)-I(pTAR).

Therefore, the matrix T LU is of the form

00 -00
-0 l+Z0 -Z

T - e22 +/

where NN r]T(pN TApN)r]V --Note that due to the condition rank(R) s(k) the matrices ek have full rank for
all k > 0. Therefore, equalities (3.7)-(3.8) imply that the matrices U and L also have
full rank and the nonzero eigenvalues of the matrix (A- AHHTA) coincide with the
eigenvalues of the matrix T.

4. Model problem and test matrices. In this section we present the results of
numerical experiments of the VBPCG method when solving three-dimensional equi-
librium equations for linear elastic orthotropic materials approximated both by h-
and p-versions of the finite element method and we discuss some realization aspects
of the VBPCG algorithm. We are mainly interested in demonstrating the potential
capabilities of this approach, so we only consider one VBPCG method in this pa-
per. Comparison of different versions of the VBPCG method and problems related to
construction of an optimal VBPCG algorithm will be treated in a forthcoming paper.

4.1. The model problem (see [3] for more detail). Consider a bounded
domain in 3 with the boundary 0 Ov OT. As a model problem we use in
this paper the three-dimensional equilibrium equations

(4.1) , + F 0

for an orthotropic elastic material, where o’ij is the stress tensor and Fi is the body
force.

The constitutive relation for linear elasticity is the generalized Hooke’s law

(4.2)

Without loss of generality we can assume that N is the identity matrix. If we denote
(TAi)- by u then

T T(3.8) i uiei i i for 0, 1,...,N 1 and g ON1.

Since the matrix ’ D-LUD is symmetric, after some simplifications 2 can be
written as

T T
r/000e0 r]0 -rl0e00vh

T

TT TT T
--?]lV0e0 770 111Vle1 711 -- T]I/]0TI --?]I1VlT]2

r

T T
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which is the most general linear relationship between the stress tensor and the vec-
tor of small strains with the components ekl() 1/2(OUk/Oxl + OU/OXk), where

(ul, u2, u3) is the unknown displacement vector. The coefficients Eijkl are the
components of the fourth order elasticity tensor. Boundary conditions are given by
prescribed surface tractions

(4.3) Ti aijnj on OT,

where nj is the outward normal to OT and T-- (TI,T2, T3), and the homogeneous
displacement boundary conditions

(4.4) ui 0 on Ogtu (mes(Ofu) : 0).

A weak solution to problem (4.1)-(4.4) is obtained by solving the following vari-
ational problem [1]" find g, ui E W2, i= 1, 2, 3, where W is the Sobolev space,
which satisfies kinematic boundary conditions (4.4) such that

(4.5) a(,) b(v),

where (Vl,V2, V3), =0 on Ou, and v E W, 1,2,3, and

(4.6) a(,

(4.7) b(V) [-. dFt + [ " dOgt.
d

gt O2T

an applied
load

zero displacements

-J zero displacements

FIG. 4.1. The domain and the boundary conditions of the channel model problem.

For our model problem of computing the displacements of a channel, the domain
homogeneous condition (4.4) and the applied load are shown in Fig. 4.1.
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The variational problem (4.5)-(4.7) is approximated using the p-version of the
conforming FE mesh with the parametric brick-shaped finite elements and the hi-
erarchical shape functions Hidk li(x)ld(y)lk(z), where lo(t) 0.5(1- t), /l(t)
0.5(1 + t), lm(t) Pro(t)- Pm-i(t), m _> 2, and Pro(t) is the Legendre polynomial
of degree m.

We thus consider the following FE approximation of variational problem (4.5)-
(4.7): find with ui E S, i-- 1, 2, 3, such that

(4.8)

where is the space of global basis functions, or, taking into account the symmetry
of the elasticity tensor, such that

(4.9)
Eq3.

FE approximation (4.9) gives rise to the linear algebraic system

(4.10) ik kA,nu, f,

with the SPD coefficient matrix A, where

Amnik f EkOCmOCndox Ox
and fim=/Fmd+ /TiCmdO.

4.2. Numerical experiments with the VBPCG algorithm. We use the
simplest criterion at step 4 of the VBPCG method when constricting the A-orthogonal
projector, namely, after a prescribed number of iterations we reduce the number of
columns of the block direction one by one.

In Table 4.1 we present the characteristics of four test coefficient matrices orig-
inated from p 2 and p 3 FE approximations of the anizotropic channel model
problem (see Fig. 4.1) with the Poisson ratios pxy 0.31, pxz 0.32, and yz 0.33
on two curvilinear meshes, respectively. This table adopts the following notation:

N denotes the size of a test matrix, while NZA denotes its number of nonzero
entries.

For all test matrices we exploited the incomplete block symmetric successive over-
relaxation (IBSSOR) preconditioning [3]. The test matrices are very ill-conditioned
and even the IBSSOR preconditioned test matrices are still ill-conditioned. The spec-
tral characteristics of the IBSSOR preconditioned test matrices are presented in Table
4.2. In this table Ai denotes the ith eigenvalue of the block tridiagonal matrix made
up with the coefficients of the BPCG method applied to solving a linear system with
the corresponding test matrix.

Table 4.3 contains the results of numerical experiments with the IBSSOR-VBCG
method and adopts the following notation:
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TABLE 4.1
Characteristics of test matrices TM1-TM4.

,Test Matrix
TM1
TM2
TM3
TM4

p Mesh N NZA
2 M1 3834 473606
3 M1 6579 1277737
2 M2 7030 937762
3 M2 12112 2537096

TABLE 4.2
Spectral characteristics of IBSSOR preconditioned test matrices TM1-TM4.

1 0.169066e-6
A2 0.380e-5
3 0.6425
Aa 0.8865
5 0.910e-5
6 0.324e-4
7 0.4384
As 0.186e-3
9 0.1903
1o 0.212e-3
Amax 1.055865

TM1 TM2 TM3 TM4
0.103144e-60.160861e-6

0.368e-5
0.606e-5
0.731e-5
0.758e-5
0.258e-4
0.388e-4
0.172e-3
0.181e-3
0.231e-3
1.048247

0.108627e-6
0.162e-5
0.302e-5
0.518e-5
0.879e-5
0.259e-4
0.318e-4
0.619e-4
0.170e-3
0.240e-3
1.074104

0.133e-5
0.294e-5
0.493e-5
0.725e-5
0.230e-4
0.255e-4
0.503e-4
0.144e-3
0.186e-3
1.097654

BPCG(k) stands for the standard BPCG method with block size k;
VBPCG(k,s) denotes the VBPCG method, where k is the initial block size and

s is the final block size;

1 denotes the first Ritz value of the preconditioned matrix while Cond stands
for its spectral condition number computed via Ritz values;

Iter denotes the number of preconditioned iterations required to reduce the rel-
ative preconditioned residual by a factor of 10-11. A residual of this size is needed
in order to obtain the desired level of accuracy in the computed solution. When high
levels of accuracy are required, fixed-size BPCG methods typically require about the
same number of matrix-vector multiplications as the single vector versions. MVM
stands for the number of preconditiom,d matrix-vector multiplications required to
satisfy the above stopping criterion.

Analyzing the data from Table 4.3 the following conclusions can be made.
1. The VBPCG method provides a real opportunity to substantially reduce the

number of preconditioned matrix-vector multiplications as compared with the corre-
sponding BPCG method and thus to decrease significantly the serial arithmetic costs
of the iterative solution.

2. The VBPCG method can preserve parallelism while significantly reducing the
serial arithmetic costs. It should be emphasized that the gain in the serial arithmetic
costs is accompanied by only a slight increase in the number of iterations.

3. In some cases the VBPCG method even possesses better serial arithmetic
complexity than the corresponding PCG method and hence can be an efficient serial
algorithm.
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TABLE 4.3
Convergence and spectral characteristics of VBPCG methods for channel problem.

Test Matrix

TM1

TM2

TM3

TM4

Method Iter MVM
BPCG(1) 1085 085 0.1690663e-6
BPCG(10) 93 930 0.1690662e-6
BPCG(15) 65 975 0.1690636e-6

VBPCG(10,1) 417 687 0.4119750e-5
VBPCG(10,3) 194 799 0.3265010e-5
VBPCG(15,1) 335 678 0.3873469e-5
VBPCG(15,3) 159 735 0.4637082e-5
BPCG(1)" 968 968 0.1608613e-6
BPCG(10) 105 1050 0.1608613e-6
BPCG(15) 73 1095 0.1608596e-6

VBPCG(10,1) 484 844 0.4224703e-5
VBPCG(10,3) 218 941 0.3713804e-5
VBPCG(15,1) 368 753 0.1411960e-4
VBPCG(15,3) 181 861 0.6701381e-5
BPCG(1) 1069 1069 0.1086269e-6
BPCG(10) 105 1050 0.1086272e-6
BPCG(15) 73 1095 0.1086251e-6

VBPCG(10,1) 432 785 0.2872412e-5
VBPCG(10,3) 218 941 0.2221500e-5
VBPCG(15,1) 365 722 0.4134046e-5
VBPCG(15,3) 190 864 0.3934473e-5
BPCG(1) 134 i347 0.i031435e-6
BPCG(10) 133 1330 0.1031437e-6
BPCG(15) 98 1470 0.1031434e-6

VBPCG(10,1) 664 1141 0,3054796e-5
VBPCG(10,3) 312 1307 0.2845067e-5
VBPCG(15,1) 433 916 0.7444543e-5
VBPCG(15,3) 197 993 0.5628691e-5

A1 C0nd
6245272.71
6245278.36
6245375.80
256293.52
323388.10
272580.47
227685.02
6516468.89
6516471.09
6516541.50
248123.44
282257.19
74239.19
156419.63

"9888013.49
9887989.04
9888183.01
373938.30
483504.16
259819.04
272998.22

10642010.5’6
10641990.08
10642025.81
359321.78
385809.79
147444.20
195010.65

4. The VBPCG method provides a real opportunity to find a constructive compro-
mise between opposing factors such as convergence rate, parallelism, and arithmetic
costs of one block iteration. However, we should note that the performance of the
VBPCG method is evidently dependent on spectral characteristics of the precondi-
tioned matrix.

We would like also to note that two further parts of the paper are under prepara-
tion. One of them is dedicated to an analysis of efficient implementations of VBPCG
algorithms on massively parallel computers while another will consider construction
of efficient and reliable mathematical criteria for reducing adaptively the block size.
We also hope to present in one of these parts results of numerical experiments with
VBPCG algorithms on massively parallel computers.

Acknowledgments. The authors would like to thank Professor D. P. O’Leary
for helpful discussions and several improvements and Professor A. Greenbaum for
valuable remarks to the final version of this paper. The authors are grateful to Cray
Research, Inc. (USA) for providing computer resources to make numerical experi-
ments.



VARIABLE BLOCK CONJUGATE GRADIENT ALGORITHMS 1153

REFERENCES

[1] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,
1987.

[2] Z. DOST/L, Conjugate gradient method with preconditioning by projector, Internat J. Comput.
Math., 32 (1988), pp. 315-323.

[3] L. Yu. KOLOTILINA, I. E. KAPORIN, AND A. YU. YEREMIN, Block SSOR preconditionings for
high order FE systems II: Incomplete BSSOR preconditionings, Linear Algebra Appl.,
154-156 (1991), pp. 647-674.

[4] L. Yu. KOLOTILINA AND A. YU. YEREMIN, Factorized sparse approximate inverse precondi-
tioning II: Solution of 3D FE systems on massively parallel computers, Research Report
EM-RR-3/92, Elegant Mathematics, Inc.(USA), 1992.

[5] D. P. O’LEARY, The block conjugate gradient algorithm and related methods, Linear Algebra
Appl., 29 (1980), pp. 293-322.



SIAM J. MATRIX ANAL. APPL.
Vol. 16, No. 4, pp. 1154-1171, October 1995

() 1995 Society for Industrial and Applied Mathematics
OO9

A RESTARTED GMRES METHOD AUGMENTED WITH
EIGENVECTORS *
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Abstract. The GMRES method for solving nonsymmetric linear equations is generally used
with restarting to reduce storage and orthogonalization costs. Restarting slows down the convergence.
However, it is possible to save some important information at the time of the restart. It is proposed
that approximate eigenvectors corresponding to a few of the smallest eigenvalues be formed and
added to the subspace for GMRES. The convergence can be much faster, and the minimum residual
property is retained.
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1. Introduction. The GMRES method [32] is popular for solving the large
nonsymmetric system of linear equations

(1) Ax b.

But GMRES is generally used with restarting, and this slows down the convergence.
We examine a way to retain some of the information lost at the time of the restart.
The convergence can be improved in many situations. This section gives background
material on GMRES. Section 2 gives the new method and analyzes its effectiveness
for certain cases. Section 3 discusses the implementation and the expenses. Examples
and comparisons are given in 4, and 5 looks at the possibility of having a procedure
that selects the number of approximate eigenvectors and decides how long they should
be used.

For symmetric problems, the conjugate gradient method [13], [17] is often the
best iterative method. It extracts an approximate solution from the Krylov subspace
Span{b, Ab, A2b,... ,Am-lb}. There is an efficient recurrence formula for generating
a sequence of orthogonal vectors that span the Krylov subspace. Also the convergence
properties are fairly well understood for a Krylov subspace. They depend on the
eigenvalue distribution, h simple bound for the minimum residual version [15], [17],
[28] of the conjugate gradient method applied to a symmetric positive definite matrix
is

<_2((x/+ 1 m x/-1 m

-) +(+) )
( : )_<2

-1

where r is the residual vector b- Ak, and is the approximate solution. Also a _--
is the condition number, the ratio of largest to smallest eigenvalues. So convergence
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RESTARTING GMRES 1155

is generally slow if there is an extremely small eigenvalue. But the placement of the
other eigenvalues also influences convergence. Clumping of eigenvalues is favorable.
The actual convergence rate often improves as the method proceeds [4], [5], [7], [35].
This is because some of the outlying eigenvalues are effectively eliminated from the
spectrum once the Krylov subspace contains a good approximation to the correspond-
ing eigenvector. Another good thing about the conjugate gradient method is that
the convergence can usually be improved by preconditioning (multiplying (1) by an

approximate inverse to A) [3], [6], [13], [15], [23].
The conjugate gradient method can be generalized to nonsymmetric problems

in several ways. The three main approaches are the nonsymmetric Lanczos algo-
rithm [19], [20], [37], the conjugate gradient method applied to the normal equations
(CGNE) [8], [16], and GMRES [32]. The nonsymmetric Lanczos method is similar to
the conjugate gradient method in that it uses a Krylov subspace and has a recurrence
formula. The algorithm is unstable, but improvements have been made [11], [12], [14],
[18], [29], [36]. In particular, the QMR version [11], [12] has attracted attention. The
CGNE method transforms to another problem (the normal equations), so the conver-
gence properties are different. Often convergence is much slower. Nevertheless there
are some problems, particularly indefinite and fairly nonsymmetric ones, for which
CGNE is best [26]. GMRES is currently a popular method for large nonsymmetric
problems (see, for example, [21], [27]). It uses the Arnoldi algorithm [1], [30], [31],
[37] to build an orthonormal basis for the Krylov subspace, so full orthogonalization
is needed. The best approximate solution is extracted from the subspace, in that the
norm of the residual vector is minimized.

Because full orthogonalization is used, the method becomes more expensive as
the subspace grows. Also importantly, the storage requirements increase. Restarting
can be used when the subspace reaches a certain size.

RESTARTED GMRES
1. Start: Choose x0 and compute ro b- Axo and Vl ro/llroll.
2. Iterate: For j 1, 2,..., m do:

h (Ave, v), 1, 2,..., j,

i--1 hiivi,+ Av
hi+,j --IIy+lll, and
Vj+l )j+l /hj+l,j.

3. Form the approximate solution: xo + V, where d minimizes Ifel -/dl I, for
all d Rm. Here H is the (m + 1) by ra matrix with elements hii defined in step
2, and IIr0ll.

4. Restart: Compute r b- A&; if satisfied then stop, else let x0 &, Vl r/llrll,
ro r, and go to 2.

The convergence of GMRES is similar to that for the conjugate gradient method if
the matrix is nearly normal. Again the presence of small eigenvalues slows convergence.
Suppose A has spectral decomposition A =_ ZAZ-, with all the eigenvaIues being real
and positive. Assuming that the initial guess x0 is the zero vector, we have

2 m

(3) Ilrll < 211ZIIIIZ-111(1- + 1)
(see [32] for similar but more general results). Again 1’ but here it is not
necessarily the same as the standard condition number. For more highly nonnormal
matrices, convergence properties are more complicated. Some analysis has been done,
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especially if all of the eigenvalues are in an ellipse not containing the origin (see [9],
[22], [30-32]).

The disadvantage with restarting is that some information is lost at the time of
the restart. The subspace is discarded, and this slows down the convergence. Other
methods such as nonsymmetric Lanczos and CGNE avoid restarting. But they have
their own disadvantages as mentioned earlier. Another attempt at avoiding restarting
is incomplete orthogonalization [30], [31], but convergence properties are not well
understood.

2. Adding approximate eigenvectors to the subspace. We attempt to im-
prove GMRES by reducing the ill effects of restarting. Some information can be
retained at the time of the restart. This is done by saving vectors from the old sub-
space and adding them to the new subspace that is generated. For instance, one could
save the last few Arnoldi vectors (the vi’s). However, there are other vectors that are
more helpful to the convergence.

We note that information about the eigenvalues and eigenvectors of A is available
during GMRES. They can be calculated with the Arnoldi method for eigenvalues [1],
[30], [37]. Eigenvalue calculations have been used before in conjurction with GMRES
to implement hybrid methods (see [10], for example).

We investigate saving approximate eigenvectors of A corresponding to the small-
est eigenvalues in magnitude. These vectors are added to the new subspace. The
motivation for this is that if a converged eigenvector is added to the subspace, the
corresponding eigenvalue is effectively eliminated from the spectrum or deflated. Con-
vergence proceeds according to the modified spectrum. This is demonstrated in the

thefollowing theorem for the case of real and positive eigenvalues. We let
"effective condition number," and assume that the initial guess x0 is zero.

THEOREM 1. Suppose A has spectral decomposition A =_ ZAZ-1, with all the
eigenvalues being real and positive. Assume that the minimum residual solution is
extracted from the subspace Span{b, Ab,..., Am-lb, Zl, z2,..., Zk}, where the zi’s are
columns of Z. Then

IIr[I <_ 211zIIIIZ-l[I (1- 2 m

Ilbli v / 1

where r =- b- A& is the residual vector.
Proof. Any vector 2 from the subspace Span(b, Ab,...,Am-b,z,z2,...,Zk}

can be written in the form
k

2c izi + p(A)b,
i--1

where p is a polynomial of degree m- 1 or less. Expand b in terms of the eigenvectors:

n

i--1

and define the polynomial q as q(x) 1- xp(x). Then we can calculate that

k

r b A2c cAzi -t- q(A)b
i--1

(6) n

+
i=l i=kl
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where % iq(Ai) iAi.
Since the solution minimizes the residual norm, it will be at least as good as any

choice we make. Pick q to be the shifted-and-scaled Chebyshev polynomial that is
small over the interval [Ak+l, An]. Then pick ai

q()
h---j--., so that each /i is zero. Now

r
n

E iq(Ai)zi,
i--k+l

and the desired result follows from the standard bound in (3).
Next, the effect of saving eigenvectors is examined for a couple, of specific distribu-

tions of eigenvalues. First suppose the eigenvalues are distributed 1, 2, 3,..., n. Some
linear equations problems do have a spectrum roughly similar to this (for example,
see the model problem [15] from finite difference descretization of Poisson’s equation).
Suppose the eigenvectors corresponding to the k smallest eigenvalues are added to the
subspace. Then the convergence bound improves from

Ilrl[[[b[[ -< 2[]ZI]]IZ-11] (1 v/2+ 1) m

to
Ilrl] < 211ZIIIIZ-II{ 2v/k+1 ))mI1 [[ + v’a +

We can roughly compare convergence by comparing x/ to x/. The ratio is

v/-d v/-d =v/k/1.
Vk+l

So convergence is roughly v/k + 1 times as fast with the eigenvectors added to the
subspace. For example, with k 3, the rate of convergence is about twice as fast.
However, to get quadruple the convergence requires k 15. The returns are dimin-
ishing as more eigenvectors are added.

-n -2 -1 1 2 nNext, consider the eigenvalue distribution 2 - 1, .
This is a much tougher problem than the previous one, because it is indefinite. The

2 in each iteration [2] [24]. Ifresidual norm is reduced by roughly a factor of 1-
k is even and the k eigenvectors with smallest eigenvalues in magnitude are added
to the subspace, then the factor improves to 1 +2. This means convergence isn

approximately k+2- times better with the eigenvectors. Adding eigenvectors to the
subspace is even more important in this indefinite case than it was in the previous
positive definite example. With k 8, convergence is about five times better. This
compares to three times better in the previous example.

The results in the preceding two paragraphs may not always apply. We will
discuss three problems with them. First, the distribution of eigenvalues may not be so
favorable. For example, there may not be small eigenvalues. Then convergence could
still be slow for indefinite and highly nonsymmetric problems, yet saving approximate
eigenvectors would not be beneficial. Also, if the eigenvalues are not so evenly spaced,
the results may not be as good.

Second, we have only analyzed bounds on convergence and estimates of rates, not
the actual rates of convergence. As mentioned earlier, the convergence of the conjugate
gradient method does not depend strictly on the condition number. An outlying
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eigenvalue does not have a perpetual effect on the covergence rate. It will at most add a
number of iterations, then the outlying eigenvalue is taken care of and the convergence
proceeds according to the other eigenvMues. This is because the underlying polynomial
can have a zero at that eigenvalue. However, Cline [5] observed in some experiments
that adding an extremely smll eigenvMue to a particular distribution of eigenvalues
requires from 5 to 19 extra iterations. With restarted GMRES, reducing the number
of iterations by a few is worthwhile, because this reduction occurs during every restart
cycle.

A third problem with the earlier analysis is that it may be awhile before the
approximate eigenvectors become very accurate. However, an approximate eigenvector
can have beneficial effects long before it has attained full accuracy. This is shown in
the following theorem for the case of one approximate eigenvector.

THEOREM 2. Suppose A has spectral decomposition A =_ ZAZ-:, with A diag-
onal. Suppose the GMRES with eigenvectors method is used with one approximate
eigenvector y:. Let =_ Z (y, z), and let be the coe]:ficient of z in the expansion
of b; see (5). Then

(8)
i:/:1 A1

where q is a polynomial of degree m or less such that q(O) 1.

Proof. Similar to (6), we can derive

r q(A)b- alAyl,

where q is a polynomial of degree m or less, such that q(0) 1. Decompose y as

yl cos Zl + sine u,

where yl, z1, and u are all unit vectors and u _k Zl. Then

r q(A)b :A:cosCzl alsinCAu
n

Efliq()i)zi + (fl:q(A:) a:A:cos)z: clsinCAu.
i=2

Pick CI
fllq(’l) and use the minimum residual property. Then,X:cos

Ilrll
i:2

fl:q(A:)sinCAu
,1COS

The second term in the right-hand side of (8) occurs because of.the inaccuracy of
the approximate eigenvector. Roughly, it appears that this term will not be significant
as long as the accuracy of the approximate eigenvector is greater than the amount of
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improvement brought by the polynomial q (as long as tanb is somewhat less than
max#

If the eigenvalues are all real and positive, (8) can be made more specific by
choosing the polynomial q to be a shifted and scaled Chebyshev polynomial that is
small over the interval [A2, An]. Then

2 \ m

(9) Ilrll <_ IIZIIIIZ- ll(1, +
where ae --- -. And this can be put in a form more similar to (4)"

(10) Ilrllllbll <- IIZIIlIZ-II (1- ve + 1) -t---tan

3. Implementation. The implementation presented here first generates the
Krylov subspace, then adds the approximate eigenvectors. There is still an upper-
Hessenberg matrix for the linear equations problem, but the eigenvalue problem is
more complicated.

Let m be the dimension of the Krylov subspace, and suppose k approximate
eigenvectors are used. Let m / k. Let W be the n by matrix whose first m
columns are the orthonormalized Arnoldi vectors (the vi vectors in step 2 of GMRES)
and whose last k vectors are the approximate eigenvectors yi, for i 1,..., k. Let Q
be the n by + 1 matrix whose first m + 1 columns are Arnoldi vectors and whose last
k columns are formed by orthogonalizing the vectors Ayi, for i 1,..., k, against the
previous columns of Q. Then

(11) AW-QH,

where H is an (1 + 1) by upper-Hessenberg matrix (this is similar to (3) in [32], for
the standard Arnoldi iteration on which GMRES is based).

The restarted linear equations problem is

A(x xo) to.

The approximate solution 2- x0 is a combination of the columns of W, so

xo Wd.

The minimum residual solution can be calculated in the same way as for standard
GMRES. Let

(12) PH R,

where P is orthogonal and R is upper triangular. Then

(13)
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The minimal solution is then found by solving for that makes the first entries be
zero. Note Q*ro is a multiple of the first coordinate vector. As in standard GMRES,
the residual norm is a byproduct. It is the magnitude of the last entry of PQ*ro.

We wish to find approximate eigenvectors from the subspace spanned by the
columns of W. Since W is not orthonormal, the generalized Rayleigh-Ritz procedure
with reduced eigenvalue problem

W*AWgi OW*Wg

could be used. However, we choose a version of Rayleigh-Ritz that finds good approx-
imations to the eigenvalues nearest to zero [24], [25]. This version uses the reduced
problem

(4)
1
W*A*AWgi.W*A*Wg

Let F W*A*W and G =- W*A*AW. Then the reduced eigenvalue problem is the
by generalized eigenvalue problem

1
(15) Fgi- Ggi.

’s (or the k smallest 0i’s) are needed. AnThe gi’s associated with the k largest
approximate eigenvector is yi Wgi. And Ayi AWgi QHgi. If yi is complex,
the real and imaginary parts are used separately.

Little calculation is required for G, because

(16)

G W*A*AW
H*Q*QH
H*H
R*R.

The first m columns of F are the same as the first m columns of H*. Entries in the
intersection of the last k rows and the last k columns can be cheaply computed using
the previous F, since fij yi A*yj gi WoldA Woldgj gi Foldgj. The remaining
entries are calculated as fly yA*y (Ayi)*yj, so they are more expensive.

The small generalized eigenvalue problem (15) is solved with EISPACK [33] in
the examples in the next section. However an iterative method, such as subspace
iteration, could also be used. Only the eigenvectors associated with the largest values
of are needed, G is already in a factored form, good starting vectors are the last k
coordinate vectors, and full convergence is not necessary.

The implementation is a little different for the first run, before any restart. Stan-
dard GMRES is used, except eigenvector calculations are added on at the end. F is
the same as H* except that the last column is removed, and G can be found with (16).
For simplicity, the listing of the algorithm is given just for the second and subsequent
runs.

ONE lESTAlTED PUN OF GMRES WITH EIGENVECTORS

i. Initial definitions and calculations: The Krylov subspace has dimension m, k is
the number of approximate eigenvectors, and m + k. Let ql ro/llroll and
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wl ql. Let y, y2,..., Yk be the approximate eigenvectors. Let Wm+i yi, for
i-m/l,i 1,...,k. For j m / 1,...,1 do: fij giFoldgj,

2. Generation of Arnoldi vectors: For j 1, 2,..., m do:
hii Aqy, qi), i 1, 2,..., j,
fji hij 1, 2,..., j,
fj,m+i (Aq,yi),i- 1,2,...,k,
j+l Aqi Yi= hijqi,
hj+,j -II(lj+ll, and
qj/l j+l/hj/l,j.
If j < m, let Wj+l --qj+l and fj,j+ hj+,.

3. Addition of approximate eigenvectors: For j m / 1,..., do:
h (Aw, qi), 1, 2,..., j,
fji hj, 1, 2,..., m,
(j+ Awj i=1 hijqi,
hj+l,j --I](j+lll, and
qj+ Oj+/hj+,j.

4. Form the approximate solution: Let lit011. Find d that minimizes II/el-dll
for all d E RL. The orthofional factorization P/ R, for R upper triangular, is
used. Then & xo + Wd.

Ggi,5. Form the new approximate eigenvectors" Calculate G R*R. Solve Fgi
for the appropriate gi (separate gi into real and complex parts if it is complex and
treat as two distinct vectors). Form yi Qgi and Ayi Q[-Igi. Let Fold F.

6. Restart: Compute r b- A2; if satisfied with the residual norm then stop, else
let x0 & and go to 2.

We now examine the expenses and storage requirements for the GMRES with
eigenvectors method as compared to standard GMRES. We consider only the ma-
jor expenses. Suppose the subspace is currently a Krylov subspace of dimension j.
If we choose the next vector for the subspace to be one more Arnoldi vector, then
there is one matrix-vector product needed. The orthogonalization requires about 2in
multiplications. If instead we let the next vector be an approximate eigenvector, no
matrix-vector product is required. The other costs are approximately 5jn multiplica-
tions. This includes 2in for the orthogonalization of Ayi, jn for computing a portion
of F, and 2in for forming yi and Ayi. This can be reduced to 4jn if a matrix-vector
product is used for Ayi ins.tead of forming it from the columns of Q. It is also possible
to reduce costs by another jn if Ayi is not explicitly orthogonalized (the entries of H
can still be calculated). This last option has not been tested.

We compare the storage for a Krylov subspace of dimension rn / k in standard
GMRES to storage for the GMRES with eigenvectors method using a Krylov subspace
of dimension m and k approximate eigenvectors. The major storage requirement for
GMRES(m + k) is rn + k + 2 vectors of length n. For GMRES with eigenvectors, the
major storage requirement is for m/2k/2 vectors of length n. So using an approximate
eigenvector requires about twice the storage of using an additional Arnoldi vector. This
is because both y and Ayi are stored.

The relative efficiency of the two methods depends on how expensive the matrix-
vector product is compared to the orthogonalization costs. We consider two extreme
cases, although many problems will fall somewhere in between. The first case is where
the matrix-vector product is the main expense, and the second is where the matrix-
vector product is fairly inexpensive and orthogonalization costs dominate. Saving
approximate eigenvectors is particularly worthwhile for the first case, since no matrix-
vector product is required for the approximate eigenvectors. The benefits of the
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approximate eigenvectors are essentially free from expense. However, since storage
is often limited, using one approximate eigenvector means two less Arnoldi vectors
can be used.

For the second case of expensive orthogonalization, a matrix-vector product would
be used to get Ayi. So the expense is about 4jn for an approximate eigenvector.
Therefore using an approximate eigenvector instead of an Arnoldi vector costs about
twice as much. To be useful, an approximate eigenvector must be as effective as two
Arnoldi vectors.

4. Examples. In the following examples, the right-hand sides have all entries
1.0. The first four examples are bidiagonal matrices with 0.1 in each superdiagonal
position. The initial guesses x0 are zero vectors. The calculations are done in double
precision on either an IBM 3090-170J or a Vax 6510. We call the iteration between
restarts a "run."

Example 1. We let the matrix have 1, 2,3,... ,999, 1000 on the main diagonal
and as mentioned above, the super diagonal elements have 0.1’s. For this matrix, the
quantity IIZIIIIZ-111 in (3) and (4) is small (about 1.2). The new GMRES with eigen-
vectors method using m 21 and k 4 (21 Krylov vectors and four approximate
eigenvectors) is compared to GMRES(25). Thus the same size subspaces are used.
After 12 runs, the eigenvector method has a residual norm of 0.42e-9 compared to
0.15e-4 for standard GMRES. See Fig. 1 for a graph of the convergence. After iter-
ation 100, the eigenvector method converges more than twice as fast. This is roughly
as predicted by (7), even though the Krylov portion of the subspace is smaller for the
eigenvector method than for the regular GMRES. At iteration 100, after four runs,
the eigenvector approximations are not very accurate. The approximate eigenvalues
are 1.01, 2.20, 3.86, and 6.10, and the corresponding residual norms range from 0.13
to 1.9. But already the eigenvectors are accurate enough to assist convergence. After
eight runs, the approximate eigenvalues are more accurate with from 8 to 2 significant
digits and.. residual norns from 0.13e-3 to 0.17.

lO

10 i

10-7

lOq

............... GMRES(25)

m=21, k=4

0 50 100 150 200 250 300

iterations

FIG. 1. GMRES vs. GMRES with eigenvectors.

Next, methods requiring about the same storage are compared. The eigenvector
method with m 17 and k 4 reaches residual norm of 0.22e-6 after 12 runs (see
Table 1). This is still better than GMRES(25), even though smaller subspaces are used
and far less matrix-vector products are required. If an equal number of matrix-vector
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TABLE 1.
Eigenvalues 1, 2, 3 1000.

Residual norms

After After 300 matrix-
m k Initial 12 runs vector products
25 0 25 0.31e+2 0.15e-4 0.15e-4
21 4 25 0.31e+2 0.42e-9 0.35e-ll
17 4 21 0.31e+2 0.22e-6 0.18e-10
21 2 23 0.31e+2 0.67e-7 0.20e-8
19 3 22 0.31e+2 0.76e-7 0.14e-9
13 6 19 0.31e+2 0.19e-4 0.23e-ll
9 8 17 0.31e+2 0.25e-2 0.40e-ll

products are taken, the eigenvector method with m 17 and k 4 is much further
ahead. After 300 matrix-vector products, it attains 0.18e-10 versus 0.15e-4. Table
1 also gives results with different choices of k but with the same storage (the same
m+ 2k). Using just two approximate eigenvectors gives the lowest residual norm after
12 runs. However, if one is most interested in the number of matrix-vector products,
using six eigenvectors is better, even though the Krylov subspace has dimension of

102

10

10

10-t

10.2

10-3

only m 13.

10-5

10-6

10-7

10"s0 50 100

TQMR

GMRES(25)

GMRES

10 200 250 300

rom
FIG. 2. Comparison for Example 2 (TFQMR uses two mvp per iteration).

Example 2. The next matrix has some very small eigenvalues that make the
problem difficult. The entries on the main diagonal are 0.01, 0.02, 0.03, 0.04, 10, 11, 12,
13,..., 1005 (taking on all integer values frown 10-1005). See Table 2 and Fig. 2 for the
computational results. Figure 2 also includes the TFQMR method; this is discussed
in Example 7. It appears that the regular GMRES method will not converge. Going
past 12 runs, there is no further improvement in the residual norm. The four slnall
eigenvalues make this problem too difficult for Krylov subspaces of dimension 25. The
GMRES with eigenvectors method also stalls out for a while. Considering the case
m 21 and k 4, the residual norm only improves from 0.65-0.63 during runs four
through seven. But finally after run seven, there are .rough approximations to all four
of the small eigenvalues. With the corresponding approximate eigenvectors in the
subspace, the convergence rate is soon fairly rapid.

Example 3. Here an indefinite matrix is used. The diagonal entries are -2,-1, 1, 2,
3, 4,..., 997, 998. In this situation, the eigenvector method is much better ttmn regular
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TABLE 2.
Eigenvalues 0.01, 0.02, 0.03, 0.04,10,11,12,..., 1005.

Residual norms

After After 300 matrix
m k Initial 12 runs vector products
25 0 25 0.32e-2 0.64 0.64
21 4 25 0.32e+2 0.17e-6 0.91e-10
17 4 21 0.32eT2 0.18e-2 0.47e-9

TABLE 3.
Eigenvalues -2, -1,1, 2,..., 998.

Residual norms

After After After After After 500
m k Initial 5 runs 10 runs 15 runs 20runs mvp’s
25 0 25 0.32e-t-2 0.90 0.58 0.38 0.24 0.24
21 4 25 0.32e2 0.22 0.83e-4 0.21e-7 0.54e-ll 0.14e-13
17 4 21 0.32e-2 0.53 0.24e-2 0.50e-5 0.11e-7 0.64e-13

GMRES; see Table 3. With k 4, approximations are developed to the eigenvalues
-2, -1, 1, and 2. This eliminates the two negative eigenvalues and effectively turns
the indefinite problem into a definite one.

Example 4. This example is designed to be difficult for the GMRES with eigenvec-
tors method. Let the matrix have diagonal elements 1, 1.01, 1.02, 1.03, 1.04, 2, 3, 4, 5,

995,996 (see Table 4). Removing the four smallest eigenvalues does not have much
effect on the spread of eigenvalues. The two methods are roughly equivalent when us-

ing the same size subspace. With equal storage, standard GMRES is one order of
magnitude better after 15 runs and the eigenvector method is a little better after each
has taken 375 matrix-vector products. Even in this difficult situation, using eigenvec-
tors does not substantially decrease efficiency. In another test with five approximate
eigenvectors (m 20, k 5), the method does not improve. The reason is that ap-
proximations to the five smallest eigenvalues do not develop in time to substantially
help. The eigenvalues are so close together that they are difficult to compute (after
15 runs, the five approximate eigenpairs have residual norms no smaller than 0.05).

TABLE 4.
Eigenvalues 1, 1.01, 1.02, 1.03, 1.04, 2, 3,..., 996.

Residual norms

After After After After 375
m k Initial 5 runs 10 runs 15 runs mvp’s
25 0 25 0.32e+2 0.10e-1 0.58e-4 0.48e-6 0.48e-6
21 4 25 0.32e+2 0.67e-2 0.17e-4 0.12e-6 0.16e-7
17 4 21 0.32e+2 0.22e-1 0.24eo3 0.50e-5 0.77e-7

Example 5. Let the matrix be block diagonal with eigenvalues equally spaced
around a circle in the complex plane with center at (1,0) and radius 0.99, starting at
0.01. The matrix is normal with blocks of size 2 or 1. With n 100, the approximate
eigenvectors are very helpful. Theoretical convergence results for GMRES often con-
sider an ellipse or circle [32] containing the eigenvalues. The smallest circle containing
all of the eigenvalues does not change when a few of the eigenvalues nearest the origin
are eliminated. Nevertheless, the convergence is improved. With a change to n 200,
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TABLE 5.
Eigenvalues in a circle.

Residual norms for n 100

After After After After After 500
m k Initial 5 runs 10 runs 15 runs 20 runs mvp’s
25 0 25 0.10eT2 0.47 0.13 0.38e-1 0.11e-1 0.11e-1
21 4 25 0.10e-t-2 0.52 0.45e-2 0.85e-5 0.16e-7 0.26e-9
17 4 21 0.10eT2 0.65 0.12 0.98e-3 0.77e-5 0.13e-8

Residual norms for n 200

After After After After After 1000
m k Initial 10 runs 20 runs 30 runs 40 runs mvp’s
25 0 25 0.14e+2 0.19 0.1he-1 0.12e-2 0.10e-3 0.10e-3
21 4 25 0.14e+2 0.25 0.30e-1 0.36e-2 0.44eo3 0.92e-4
17 4 21 0.14e+2 0.38 0.68e-1 0.12e-1 0.22e-2 0.94e-4

the problem of finding the eigenvalues is tougher, because they are closer together.
Here the eigenvalue problem is apparently more difficult than the linear equations
problem and the eigenvector approximations never become accurate enough to really
help (see Table 5). After run 10, the approximation to the smallest eigenvalue has
residual norm 0.26e-1 and this does not improve during the next 30 runs. For com-
parison, during the test with n 100, the approximation to the smallest eigenvalue
has residual norm 0.13e-3 after 10 runs, and it slowly improves.

Example 6. This example has a standard test matrix (see Table 6). The problem
is from the finite difference discretization of the partial differential equation uxx +Uyy/
Dux -(41)2 on the unit square with u 0 on the boundary. Central differences are
used. The mesh spacing is h , so n 1600. Tests are done with increasing degrees
of nonsymmetry: D 1, D 41 and D (41)2. For the first two, the results are
similar to Example 1. Using eigenvectors is definitely worthwhile. For the last test,
the approximate eigenvectors are not particularly useful. There are no eigenvalues
near to the origin, and the algorithm has trouble computing the ones that are closest
to the origin. Perhaps this is because there are several about the same distance away.

The rest of this section has comparisons with the quasiminimal residual, or QMR,
method of Freund and Nachtigal [12] and the QMR transpose-free variant, TFQMR
[11]. Because these methods do not restart, they have an advantage for difficult
problems that require large subspaces. The quasiminimization in QMR controls much
of the instability, but it does not insure that the subspace is used as effectively as in
GMRES.

In the tests here, TFQMR uses standard weights [11] and QMR has unit weights.
The right-hand side of all 1.0’s is used for both of the initial vectors. The look-ahead
feature is not used [12], [22]. Convergence of QMR and TFQMR is monitored with
the approximate residual norms given in [11], [12]. The matrices from Example 5 are
left out because of their small size: while QMR reaches convergence faster than the
GMRES methods, it is only after the dimension of the subspace is larger than the size
of the problem (actually QMR is unstable, but it does converge when an initial vector
is changed).

Example 7. Table 7 has comparisons between GMRES(25), the modified ver-
sion of GMRES with 21 Krylov vectors and four approximate eigenvectors, and the
two versions of QMR. Both the number of iterations and the number of matrix-
vector products are given. The QMR methods require two matrix-vector products
per iteration (and one for the residual norm at the end), while GMRES requires one
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TABLE 6.
Finite difference matrix.

Residual norms for D=I

After
m k Initial 8 runs
25 0 25 0.40e2 0.13e-3
21 4 25 0.40e2 0.52e-10
17 4 21 0.40e-t-2 0.33e-7

After 200 matrix-
vector products
0.13e-3
0.28e-12
0.12e-ll

Residual norms for D----41

After
m k Initial 8 runs
25 0 25 0.40e+2 0.70e-4
21 4 25 0.40e+2 0.33eo9
17 4 21 0.40e+2 0.95e-7

After 200 matrix-
vector products
0.70e-4
0.64e-11
0.90e-11

Residual norms for D--(41)2

After After 500 matrix-
m k Initial 20 runs vector products
25 0 25 0.40e-2 0.98e-7 0.98e-7
21 4 25 0.40e+2 0.71e-8 0.16e-9
17 4 21 0.40e+2 0.57e-6 0.32e-9

matrix-vector product per iteration, and the GMRES with eigenvectors method re-
quires one for each Krylov vector but no matrix-vector products for the approximate
eigenvectors. For these examples, TFQMR always converges in the least number of
iterations, while GMRES with eigenvectors always uses the fewest matrix-vector prod-
ucts. Figure 2 also shows TFQMR converging in less iterations for the matrix from
Example 2, but GMRES with eigenvectors uses less than half the number of matrix-
vector products (see Table 7). For one more comparison not included in the table,
the matrix in Example 2 is modified to have ten small eigenvalues from 0.01-0.10 and
the rest from 10-999. For this problem, GMRES with eigenvectors using m 15
and k 10 was compared to TFQMR. The modified GMRES approach required
fewer iterations, 707 compared to 1109, and it used less than one-fifth the number
of matrix-vector products, 437-2219. These tests do not indicate that one method
is better than the other, but they do show that GMRES with eigenvectors is worth
considering, especially in situations where the matrix-vector product is expensive.

Example 8. The GMRES with eigenvectors method may also be particularly use-
ful when there are several similar systems of linear equations or several right-hand
sides. One such case occurs in solving time-dependent differential equations. In the
following tests, a simple time-dependent problem is considered. Let the differential
equation be ut Uxx + Uyy --ux, on the unit square with t going from 0.0-1.0. The
initial condition is u(x,y,0) 1.0, the boundary condition is u 0 on the boundary.
The backward difference method is used with time steps of 0.1, and discretization of
the spacial variables is as in Example 6. The termination criterion while solving the
systems of linear equations is llrll < 10-4. Table 8 gives the mlmber of iterations at
each time step and the total number of iterations and natrix-vector products for the
QMR methods, GMRES(20), and GMRES with eigenvectors with m=17 and k=3.
The QMR methods have a tendency to start slowly, then converge rapidly. This can
be a disadvantage when several systens are solved to low accuracy. Meanwhile the
GMRES with eigenvectors method has an advantage, because it can use the approx-
imate eigenvectors frown the previous time step to help at the current one. GMRES
with eigenvectors performs better than the QMR methods for this problem.
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TABLE 7.
Comparison to QMR.

Iterations and matrix-vector products to reach Ilrll < 10-6

Ex. 1 it’s
mvp’s

GMRES GMRES QMR
m=25, k-0 w/e.vectors

m--21, k--4
370 214 180
370 186 361

Ex. 2 it’s 286 339
mvp’s 246 679

Ex. 3 it’s 339 215
mvp’s 291 431

Ex. 4 it’s 355 325 252
mvp’s 355 277 505

Ex. 6 D--1 it’s 278 132 125
mvp’s 278 116 251

D--41 it’s 300 149 100
mvp’s 300 134 201

D--412 it’s 441 382 366
mvp’s 441 326 733

Because of instability, a different left initial vector was used.

TFQMR

119
239

250
501

160
321

162
325

95
191

(83)*
(167)

218
437

TABLE 8.
Time-dependent problem.

Iterations for each time step

GMRES GMRES
m--20, k--0 w/e.vectors

m----17, k--3

QMR TFQMR

0.1 130 91 92 62
t 0.2 113 34 71 70

0.3 48 27 60 67
0.4 28 20 38 49
0.5 14 14 29 44
0.6 15 12 22 27

t 0.7 13 14 11 24
0.8 11 11 13 16
0.9 6 6 11 18

t 1.0 1 2 2

Total
iter.’s 379 231 349 378

Total
mvp’s 379 213 708 766

5. Attempt at an automatic procedure, ttere we deal with two questions.
How many approximate eigenvectors should be used, and should the approximate
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eigenvectors be discarded at some point? However, it is difficult to give answers that
apply to all matrices.

For determining the proper number of approximate eigenvectors to use, we con-
sider the model eigenvalue distribution 1, 2,..., n. If we assume that the storage is
fixed, then methods with the same value of m -b 2k should be compared. We compute
k that gives the lowest value of

1) / 1)
)" This formula comes from Theorem 1, but with the more accuratewhere ;e Nk+.

bound given in the first part of (2). After doing some comparisons, we find that if
m + 2k is given, the best value is approximately

m+2k
7

or values of m + 2k greater than g0, slightly more should be used, and for values less
than 20, the number should be rounded down.

It would be desirable to have a code that adaptively increes or decreases the
number of approximate eigenvectors being used. However, it is dicult to determine
if adding another eigenvector will help when no accurate approximation is available
for he next eigenvalue. or now we just consider the possibility of releasing the
approximate eigenvectors and going back to standard GMRES. his switch should
be done if the eigenvectors are not helping. Even beneficial eigenvectors may lose
their effectiveness once components of the residual vector in the directions of those
eigenvectors have been purged.

One possibility is to check how effective the addition of the approximate eigen-
vectors is in lowering the residual norm. This information is, readily available. The
amount the eigenvectors lower the residual norm can be compared with the amount
the residual norm decreases in the previous Krylov iterations. This suggests the
test" switch when

However, it turns out that the beneficial effect of the eigenvectors is not fully reflected
in how they lower the residual norm. They also enable he Krylov vectors to be more
effective. This makes it dicult to deermine whether the eigenvectors are useful or
not. A factor can be added in

(17)

This is effective for Examples 1 and 2, but it releases much too early for Example 3.
We consider the addition of some more complicated tests that involve the accuracy

of the eigenvectors. For the approximate eigenvector yi, denote the eigenvector residual
norm by rnei. Then

[Ay piy I[

where
yAyi gF*gi
yyi yi yi

The eigenvector residual norm can be computed explicitly since Ayi and yi have been
formed, and there is also a formula involving F*, G, pi, and gi. To determine if the
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eigenvectors are not helpful, we check that the improvement of the best approximate
eigenvector is at least one-tenth as much as the improvement of the linear equations
approximate solution during a restarted run of the method. So the criterion is

(18) -lOgl0(r?zel)new q-loglo(rnel)old < 0.1(--lOglOl[rm+k[[new -b lOglo[[rm+k[[old).

The switch is done if both (17) and (18) are satisfied.
In addition, we check to see if the eigenvectors are no longer useful. We use the

test

(19) rne(k_l) matrix) -lglo[[rm+k[[ > --lgl(rtl)-lg (largest element in

where rtol is the desired residual norm for the linear equations problem and rne(k_)
is the residual norm of the eigenvector that is second to last in accuracy. This test
roughly follows from Theorem 2. The idea is that the magnitudes of the components
of the solution to the restarted problem are approximately [Irm+}[[. If an approximate
eigenvector is fully used, then the component in that direction will be reduced from
this size by approximately the accuracy of the eigenvector. So the resulting size of the
component is reflected in the left-hand side of inequality (19). Once these components
have been reduced to the desired magnitude specified by rtol, the approximimate
eigenvectors are no longer needed. The switch is done if both (17) and (19) are
satisfied.

In the tests that follow, the method begins with m 21 and k 4, then switches
to GMRES(25). However, we note that if storage is the limiting factor, the switch
could have been to GMRES(29). For the problem in Example 1 with rtol 1.e- 9,
the switch is made when (17) and (19) are satisfied after eight runs. Then after 12
runs the residual norm is 0.26e-9. This is just as good as if eigenvectors are kept for all
of the runs. See Table 9. For Example 2 with rtol 1.e- 6, the switch is made after
11 of 12 runs, and the method does better on the last run without the eigenvalues. For
Example 3 with rtol 1.e- 10, the switch is after 11 runs. The residual norm after
20 runs is 0.47e-8, not as good as the residual norm of 0.54e-ll without switching. In
this case the eigevectors are very important and the switch test is triggered too soon.
For Example 5 with n 100 and for Example 6 with D 1 and D 41, the switch
is not particularly significant.

Next for Example 4, Example 5 with n 200, and Example 6 with D (41)2,
the eigenvectors are not particularly useful and the switch is done when (17) and (18)
are both satisfied. For Example 5, this happens after just 11 of 40 runs, because the
approximate eigenvectors are not improving. The switch also works well for Example
6 with D (41)2.

More complicated adaptive procedures can be implemented. One possibility is
to adaptively choose the number of eigenvectors to be used. Also the eigenvectors
could be released individually as they converge. However, even the simpler procedures
described in this section may not work for all problems.

6. Conclusion. Forming and using approximate eigenvectors can improve the
convergence of restarted GMRES. Even just a few eigenvectors can make a big dif-
ference if the matrix has both small and large eigenvMues. Once the eigenvectors
converge, the corresponding eigenvalues are essentially removed or deflated from the
spectrum. And the approximate eigenvectors can improve convergence even before
they are accurate.
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TABLE 9.
Discarding eigenvectors.

total switch res. norm
rtol runs after res. norm w/o switch

Ex. 1 1.e-9 12 8 0.26e-9 0.50eo9
Ex. 2 1.e-6 12 11 0.36e-8 0.17e-6
Ex. 3 1.e-10 20 11 0.47e-8 0.54e-ll
Ex. 5, n----100 1.e-8 20 17 0.81e-8 0.16e-7
Ex. 6, D----1 1.e-10 8 6 0.30e-9 0.52e-10
Ex. 6, D--41 1.e-10 8 8 0.33e-9 0.33e-9

Ex. 4 15 9 0.84e-7 0.12e-6
Ex. 5, n--200 40 11 0.13e-3 0.44e-3
Ex. 6, D--(41)2 20 5 0.94e-8 0.71e-8

This method is useful for any problem that is difficult because of small eigenvalues.
However, there are several situations where it is particularly beneficial. If the matrix-
vector product is expensive, approximate eigenvectors can be used with relatively
little extra expense. The method is also particularly effective when the spectrum of
the matrix is well-behaved except for a few eigenvalues, such as in the case of having
only a few negative eigenvalues or only a few eigenvalues with negative real parts.
Also, if GMRES is used with a problem that has more than one right-hand side, then
the eigenvectors can be computed once and used efficiently for all of the right-hand
sides.

The method is not really needed for easy problems where few restarts are used.
It also may not help if the problem is hard because of eigenvalues scattered around
the complex plane. Another possibly related situation is when the small eigenvalues
are less separated from rest of the spectrum than the spectrum is separated from zero.
Then the eigenvalue problem is tougher than the linear equations problem. If the
eigenvectors are not converging, then they probably should be discarded.
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COMMENTS ON LARGE LEAST SQUARES PROBLEMS
INVOLVING KRONECKER PRODUCTS*
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Abstract. In this note we point out that the least squares solution of (A (R) B)x can be
obtained numerically without referring to Kronecker products.

Key words, linear least squares problem, Kronecker product
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In [1], least squares solution of (A(R)B)x t is considered and a Qa decomposition
based method is developed using the machinery of Kronecker products. The paper
also contains many interesting properties of matrices in Kronecker product form.
However, we want to point out that the method in [1] can be derived in a more direct
and concise way without even mentioning Kronecker products.

It is easy to see that the least squares problem is equivalent to

(1) min lit- BxATIIF,x

where X and T is given in (1.6) and (1.7) in [1]. The minimal F-norm solution of
(1) are given by X B+T(A+)T as is pointed out in [1], where + denotes Moore-
Penrose inverse. If the QR decompositions of A and B are available (assuming A and
B are of full column rank), i.e.,

where P1 and P2 are permutation matrices. Let

(TILT12)Q TQ :

where Tll has the same row dimension as RB and same column dimension as RA.
Then

X P1RITllR]TP2.
If the SVD of A and B are available, similar procedure can be used.

Remark. A more complicated least squares problem that might benefit from a
gronecker product formulation is the following, minx I]T-BXAT BkXAI]F,
which is easily seen to be equivalent to min lit (A (R) B +... + Ak (R) Bk)xlif.
It will be interesting to see how the Kronecker product structures can be explored in
the above least squares problem.
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TRACE AND EIGENVALUE INEQUALITIES FOR ORDINARY AND
HADAMARD PRODUCTS OF POSITIVE SEMIDEFINITE

HERMITIAN MATRICES*
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Abstract. Let A and B be n n positive semidefinite Hermitian matrices, let c and/ be real
numbers, let o denote the Hadamard product of matrices, and let Ak denote any k )< k principal
submatrix of A. The following trace and eigenvalue inequalities are shown:

tr(AoB) <_tr(AoBa), c_<0or_> 1,

tr(AoB)a_>tr(AaoBa), 0_a_ 1,

A1/a(A o Ba) <_ Al/(Az o B), a <_ /,a O,

Al/a[(Aa)k] <_ A1/[(A)k], a <_/,a/ 0.

The equalities corresponding to the inequalities above and the known inequalities

tr(AS) <_ tr(AaSa), lal >_ 1,

and

tr(AB) >_ tr(AaSa), I1

_
1

are thoroughly discussed. Some applications are given.

Key words, trace inequality, eigenvalue inequality, Hadamard product, Kronecker product,
Schur-convex function, majorization

AMS subject classifications. 15A18, 15A39, 15A42, 15A45

1. Introduction. Let A be an n n complex matrix. We denote A(A)
(AI(A),... ,An(A)), where the Ai(A)’s are the eigenvalues of A; furthermore, we ar-
range AI(A)

_ _
An(A) if they are all real. As usual, A o B (aijbj) is the

Hadamard (entrywise or Schur) product of A and B when A and B are of the same
size. For real vectors x (xl,...,xn) and y (Yl,...,Yn) with components in
decreasing order, we write x <_ y ifx _< Yi, i 1,...,n; x -<w y ifx is weakly

k kmajorized by y, i.e., V’.= xi _< =1Y, k 1,...,n; and x -< y if x -<w y and
Ein_ n

Xi Ei--1 Yi.
For any scalar a and any n n diagonalizable matrix A with spectral decomposi-

tion A UDU*, where D diag{A(A),... ,An(A)} and U is unitary, we define (for
more general definition, see [HJ, p. 411])

As UDaU Udiag{(A(A))a,. (An(A))a}U

whenever all the (A(A))a’s make sense, and denote

AS(A) (A(A)) A(A).
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We write A >_ 0 if A is a positive semidefinite Hermitian matrix, and A _> B if A
and B are Hermitian and A- B >_ 0. Throughout this paper we assume that A _> 0,
B >_ 0, a and 3 are positive numbers unless A and B are both positive definite, in
which case a and/ can be any real numbers, and m is a positive integer. It is well
known [HH, Corollary 2.3] that the product of two positive semidefinite Hermitian
matrices is diagonalizable and has nonnegative eigenvalues.

While studying the moments of the eigenvalues of SchrSdinger Hamiltonians in
quantum mechanics, Lieb and Thirring [LT] first showed (in the setting of operators
on a separable Hilbert space) that

(1) tr(AB) _< tr(ABa)

for any real number a >_ 1.
The inequalities in (1) were extended to unbounded operators by Araki [Ar].

Upper and lower bounds for tr(AB)m and tr(AmBm) when m is a positive integer
were obtained by Marcus [M], Le Couteur [C], and proved again by Bushell and
Trustrum [BT]"

n n

E A(A)A’ (B) < tr(AB)m < tr(A’Bm) < E(A)A’(B)n--i-b
i--1 i----1

In a recent paper, Wang and Gong [WG] generalized the above results in terms
of majorization, and proved

log Al/a(A’Ba) - log AI/(AB), 0 < a < ,
as consequences

(3) A1/’(A’B’) "w A1/Z(AB), 0 < a <_ ,
(4) AI/(AZB) - A/(AB), a <_ < O,

A"(AB) - A(A"B"), la[ _> 1,

and

(6)

We are concerned with analogues of these inequalities for the entrywise product.
A simple example shows that an analogue of (2)

n

n--i+l (B)

_
tr(A o B)m

i--1

(10)does not hold in general: take A 0
the inequality

(1,B= 1 and m 2. However,

n

tr(A" o B") <_ E A(A)A(B)
i----1
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is valid, due to the majorization (see, e.g., [H, p. 146], [BS], or [Z])

),(A o B) -<o A(A) o A(B), whenever A, B >_ 0.

Consequently, we always have

A(A" o B") -<o A(A") o A(B’).

It will be seen shortly that

A1/(A o B) <_ AI/Z(A o B)

for any nonzero real numbers a and such that a <_ . In particular

Am(A o B) <_ A(Am o Bm), m=1,2,

In this paper we first give necessary and sufficient conditions for equalities in
(5), and (6) to hold, then show some eigenvalue inequalities for principal submatrices
and matrix powers. Finally we discuss an analogue of the Lieb-Thirring inequality
(1) .for the Hadamard product and present some applications.

2. Trace inequalities for ordinary product. This section is devoted to the
discussion of the Lieb-Thirring inequality (1) and majorizations (5) and (6). Neces-
sary and sufficient conditions for trace equalities to hold, i.e., for -<o in (5) and (6)
to become -, are given.

In the following (and thereafter), A and B are automatically understood to be
positive definite when a (or ) is negative or equal to 0.

THEOREM 2.1. Let A and B be positive semidefinite Hermitian matrices. Then

(8) tr(AB) < tr(AB), whenever [a[ >_ 1,

and

(9) tr(AB)a >_ tr(AB), whenever [a[ < 1.

Equality holds for some value of a if and only if a -1, 0, 1, or AB BA.
Proof. The inequalities follow from (5) and (6) which have appeared in [WG]. We

need consider only the equality case. Sufficiency is obvious if one recalls that A and B
are simultaneously unitarily diagonalizable when A and B are normal and commute.
To prove necessity, noticing that tr(AB) tr(A-B-)- when a < 0, we may
assume that

tr(AB) tr(AB), for some a > 0, c - 1,

and break down the proof into cases (a) a >_ 2, (b) 1 < a < 2, and (c)0 < a < 1.
Equality holds trivially when a 0, A and B are nonsingular.

(a) a > 2. In this case we claim that tr(AB) tr(ABa) implies that AB BA.
If a 2, i.e., tr(AB)2 tr(A2B2), we assume, without loss of generality, that A

is a diagonal matrix with diagonal entries a1,..., an. Then

2 2 2 2 2tr(A2B2) tr(AB)2 E ai IbiJl E aiajlbij E(hi aj) Ibijl O.
i,j i,j i<j

Thus aibij ajbij for every pair of and j, i.e., AB BA.
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For a > 2, we show that tr(AB) tr(AaBa) implies tr(AB)2 tr(A2B2),
which leads to AB BA, as we have just seen.

If tr(AB)2 tr(A2B2), we apply the strictly increasing and strictly Schur-convex

function (see [MO, p. 60, A.8.a]) -i=1 t/2 to the weak majorization A2(AB) -w
)(A2B2), and get

tr(AB)a <
n n. A/2(A2B2) <_ Ai(AaB) tr(AaBa),

i--1 i--1

where the last inequality follows from (5), a contradiction.
(b) 1 < a < 2. In this case we claim that

tr(AB)x tr(AXBx) for all 1 < x < a.

In fact, if tr(AB)x0 = tr(ABxo) for some x0 and 1 < x0 < a, applying the strictly
increasing and strictly Schur-convex function ’i1 t/ to AX(AB)-<w A(AB),
where -w is strict, we have

n

tr(AB) A(AB)
i--1
n

<AI=(A=oBO)
i----1
n

<_ i(AB), (use (5))
i=1

a contradiction. Thus tr(AB)z tr(AXB) is identically zero for 1 < x < a.
Now expanding tr(AB)x -tr(AXBx) as a series of x and using the fact [Co,

pp. 31, 78] that if a series converges to zero on an open interval, then it converges
to zero on the whole real number line, we have tr(AB)x- tr(AZBx) 0, that is,
tr(AB)x tr(ABx) for all real x > 0, particularly for 2, thus AB BA.

(c) 0 < a < 1. We show that

tr(AB) tr(AB), for all a < x < 1.

Otherwise, tr(AB)x > tr(AXB) for some x0 and c < x0 < 1. Applying the
n ---t.

strictly increasing and strictly Schur-convex function i=1e to log A(ABx) -log A(AB) (see [WG, Theorem 6]) when both of A and B are nonsingular, we have

n

tr(ABa) Ai(A"Ba)
i--1
n

<
i--1
n

i--1

tr(AB)

(use (6))

a contradiction. Due to the same reason as in (b), tr(AB) tr(ABx) for all real
x > 0, thus AB BA when A and B are nonsingular. The singular case can be
accomplished by the usual technique of continuity.
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Notice that when two normal matrices commute they are simultaneously unitarily
diagonalizable. The corollary below is immediate.

COROLLARY 2.2. Let A and B be positive semidefinite Hermitian matrices. If
tr(AS) tr(AB), a - -1, 0, 1, then (AB) AB.

3. Eigenvalue inequalities for principal submatrices. For an n n matrix
A, we use Ak to designate any k k principal submatrix of A, 1 <_ k _< n. A result
of Ando [A, Corollary 4.2] yields the following lemma when one notices that the map
A -- Ak is normalized positive linear (see [A] for the definition).

LEMMA 3.1. Let A be an n n positive semidefinite Hermitian matrix. Then

(10) Ak

_
[(Aa)k] l/a, 1 <_ a < c

and

(11) Ak >_ [(A-)k]-1/, 1 _< a < oo.

The following theorem says that A/X[(AX)k] is a monotone vector-valued function
of X.

THEOREM 3.2. Let A be an n n positive semidefinite Hermitian matrix. Then

(12) A/[(A)k] <_ A/[(A)], whenever <_ , O,

with equality if and only if a or A P(Ak H)PT for some H >_ 0 and some
permutation matrix P.

Proof. For 0 < a _< 1, using (10), we have

(A)k <_ [(A)]= (Ak).
For -1 <_ a < 0, using (11), we have

(A)k >_ [(A)k] (Ak).
Thus

(13) (A}) >_ (A)}, 0 < a _< I,

and

(14) (Ak) <_ (Aa)k, --1 <_ a < O.

For a <_ with the same sign, using (13), we get

(A)/ >_ (AS)k, when 0 < a/[ <_ 1,

and

(A)k/’ >_ (A)k, when 0 < /a <_ 1,

in either case

A/[(A)k] <_ A/[(AZ)k].
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If a _< with different signs, using (14),

(AS)k/s <_ (AZ)k, when 1 <_ 3/a < 0,

(A)/ <_ (AS)k, when 1 < all3 < O,

in either case we have

A1/S[(AS)k] <_ A1/Z[(AZ)].
Thus inequality (12) follows immediately.

Now we discuss the equality case in (12). Without loss of generality, we may as-

sume that A lies in the upper-left corner of A, i.e., we partition A as A 6’*
where H is some positive semidefinite Hermitian matrix. We first consider the case
where a 1 or 1 and a . Suppose

A(Ak)

for some s 0, 1. Then

A(A)

for all x - 0 between s and 1, because of (12). Thus we can always find an interval I
between s and 1 on the positive real number line, such that

AX(Ak) A(A)k, x e I,

that is,

tr(A)-tr(Ax)=0, xeI,

which is the same as

tr(BA)x tr(BXAz) 0, x e I,

where B (Iko o ) Hence AB- BA by Theorem 1, which leads to A-- Ak (R) H
as required.

For general a and/ with a </3 and a/3 0, if

,l/S[(AS)k ,l/[(AZ)k],
we rewrite it as

A[(A)] A/Z[(AZ)] )l{[(A’)l’]k}.

The earlier argument yields As (As)k (R) for some/ >_ 0. Thus

A (AS)1/s [(AS)k] 1/s @ (I)I/s Ak @ H,

where H (/)l/s. [’]
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and

COROLLARY 3.3. If A is an n n positive semidefinite Hermitian matrix, then

A(Ak) <_ A[(A")k], a <_ O or l <_ a,

A(Ak) >_ A[(A")k], 0 < a < 1,

with equality if and only if a O, 1, or A P(Ak @ H)PT.
Lemma 3.1 and Theorem 3.2 yield the following corollary.
COROLLARY 34. Let A-- ( A1 A2 > 0 be an n n matrix, and write

\ A. A3 ]

A ( BI B2 ) where A1 and B1 are corresponding k k principal submatricesB B3
of A and An, respectively. Then

/,A <_ B a >_ 1,

A>_B, 0<a<l,

A <_ B1, -1 < a < O,

Equality in each case holds if and only if one of the following conditions is satisfied:
1. a=l;
2. trA trB1;
3. A2 B2 O, i.e., A A A3.
Moreover (2) and (3) are equivalent when a O, 1. Thus (2) is the same as

A B when a l.
A direct computation gives the inequality (Ak)2 <_ (A2)a. However (Ak)3 _< (A3)k

does not hold in general, as the following example shows.
Take A to be the 4-by-4 matrix with (1,1)-entry 2 and 1 elsewhere, and k 2.

Then (A3)2- A2)3 ( 1416 1412 ), which is not positive semidefinite.

It is well known that A o B is the principal submatrix of the Kronecker product
A (R) B lying in the intersections of rows and columns 1, n / 2,..., n2 of A (R) B.
Considering A (R) B in Theorem 3.2 in place of A and noticing that (A (R) B)t A (R) B
for any real number t, we have the following theorem.

THEOREM 3.5. Let A and B be positive semidefinite Hermitian matrices. Then

(15) AI/a(A o B)

_
A1/f(A o B), whenever a <_ 3, a/3 O.

It is immediate that for A, B,..., C positive semidefinite Hermitian matrices

A/"(A" o B o o C) <_ A/(A o B o o C), a <_ , a/3 O.

Taking fl 1, a 1, and 1 in Theorem 3.5, respectively, we get the following
corollary.

COROLLARY 3.6. Let A, B >_ O. Then

A"(AoB)<_(A"oB), a<_Oor a>_l,
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and

AS (A o B) >_ A(AsoBs), 0<a<l.

It is noted in 4 that equality holds in (15) or Corollary 3.6 if and only if A and
B have the structures described in Theorem 4.1 oF a fl 0 in (15) or if a 0, 1
in Corollary 3.6.

4. Trace inequalities for Hadamard product. The following is an analogue
of Theorem 2.1 for the Hadamard product.

THEOREM 4.1. Let A, B >_ O. Then for any real number a

(16) tr(AoB)s<_tr(AsoBs), if a <_ O or 1

and

(7) tr(AoB)s>_tr(Asobs), ifO<a<l.

Equality occurs if and only if one of the following conditions is satisfied:
(i) a=0 orl;
(ii) (AoB)s=AsoBs

(iii) there exists a permutation matrix P such that

A (R) B P[(A o B)@ HIPT

for some H >_ 0;
(iv) there exists a permutation matrix P such that PAPT DA ( 0 ( and

PBPT DB ( ( O,where DA and DB are invertible diagonal matrices of the same

size, and [ are positive semidefinite Hermitian matrices each with the same size
as 0 in the other direct sum;

(v) (A o B)(X o Y) (AX) o (BY) for all n m matrices X and Y, where m is
an integer.

Moreover, (ii), (iii), (iv) and (v) are equivalent when 0, 1.

Proof. The trace inequalities (16) and (17) follow from Corollary 3.6. We need dis-
cuss only the equality case. We assume a - 0, 1, and show that "equality" =(ii)(iii)
(iv)=v(v), (iv)=v(ii), and (v)=v(iv).

Consider the Kronecker product (A (R) B)s As (R) Bs and note that As o Bs is a
principal submatrix of As (R) Bs, consequently of (A (R) B)s, lying in the same position
as A o B does in A (R) B. If tr(A o B)s tr(As o BS), then (ii), equivalently (iii),
results from Corollary 3.4. To obtain (iv), we notice that for any permutation matrix
Q

trQ(A o B)SQT trQ(As o BS)QT

and

tr(QAQT o QBQT)s tr(QAQT)s o.(QBQT)s.

Thus we may assume bll 0 if B 0 and consider the first row of A (R) B (aijB).
allbll appears in A o B; for j > 1 cub11 lies on none of columns 1, n + 2,..., n2. In

other words, if R(A (R) B)RT ( A o.B A2 ) for some permutation matrix R, thenA2 Aa
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aljbll is contained in A2. Applying Corollary 3.4 or by (iii), we have A2 0. Hence
alibi1 0, and alj 0 for j > 1. Interchanging the roles of A and B, we
obtain blj bjl 0 for j > 1 if all 0. Repeating the argument for all bii 0, we
see that for some permutation matrix S

SBST

* * b

SAST

where b,..., b are the nonzero b,,’s and n-k is an (? k)-square positive semidef-
inite Hermitian matrix. Let al,..., as be those of a,..., a which are nonzero, then
we have a permutation matrix P such that

pApT

a 0

0 as
Ot

An-s-t

pBpT

bl 0

0 b8

On--s--t

where bl,..., bs are not equal to zero. (iv) follows. Thus we have proved the implica-
tions "equality" =(ii)=(iii)=(iv).

Direct computations give (iv)=(ii) and (iv)=(v). To see (v)=(iv), we take X A
and Y B in (v). Then (A o B)2 A2 o B2 which results in (iv), as seen.

Going back to Theorem 3.5, we see equality in (15) holds, that is,

A(A’ o B) A’/Z[(A’)/’ o (B)/],

if and only if either a # 0 or A and B have the structures described in the
previous theorem, by applying Theorem 4.1 to As and Ba.
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5. Applications. The Lieb-Thirring inequality (1) may be investigated for a
variety of real-valued matrix functions in the place of the trace function. We consider,
as an example, the matrix function--sum of principal minors. Let Ek(X) denote the

of all the ( nk ) k-square principal minors of the n n matrix X, let Ek(x)sum

denote the kth elementary symmetric function of the row vector x, and let Ck(X)
denote the kth compound matrix of Z. Then (see [MM, pp.18, 24])

(8) Ek(X) trCk(X) Ek(ik(X)).

THEOREM 5.1. Let A and B be positive semidefinite Hermitian matrices. Then

(19) Ek(AB)s <_ Ek(ASBS), la[ >_ 1,

(20) Ek(AB)s >- Ek(ASBS), 1,

(21) Ek(AoB)S <_Ek(ASoBS), a<_O or l <_a,

and

(22) E(A o B)s >_ E(AsoBs), O <_ a <_ l.

Equality holds in (19) or (20) if and only if a -1, O, 1 or the kth compound matrices

of A and B commute, and equality holds in (21) or (22) if and only if a 0, 1, the
rank of As o Ba is less than k, or A and B have the structures described in Theorem
4.1.

Proof. Noting that Ck(XY) Ck(X)Ck(Y)) and applying (18), we have for
> 1,

E AB s trCk AB S

tr(Ck(A)C(B))s

<_ tr(Ck(A))S(Ck(B))s (by Theorem 1)
Ek(ASBS).

Equality holds if and only if Ck(A)C(B) Ck(B)Ck(A). The inequality is reversed
when [a <_ 1.

For the case of the entrywise product and a _< 0 or 1 _< a, we have

E(A o B)s Ek(AS(A o B))
<_ Ek(A(As o BS)) (by Corollary 3.3)
E(As o

Equality occurs if and only if either As(AoB) A(AS oBs) or each term of E(A(AS o

Bs)) vanishes. The former results in the structures of A and B given in Theorem 4.1
when a - 0, 1, and the latter is equivalent to A(As o Bs) containing at least n- k + 1
zeros, that is, to rank(As o Bs) < k. The case 0 _< a <_ 1 is similarly discussed, gl

Remark 1. Theorems 2.1 and 4.1 are obtained if one takes k 1 in the previous
theorem. If k n, then (19) is the identity det(AB)s det(ASBS), and (21)
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becomes det(A o B) <_ det(Aa o Ba), both sides of which vanish when one of A and
B is singular, since rank(A o S) <_ rank(A (R) S) rank(A)rank(S).

Remark 2. Regarding Theorem 3.5, we can also prove, by using a result of Ando
[A, Theorems 10 and 11], that for A, B >_ 0,

(A o B)1/ <_ (An o B)1/ a_</<_-i or l<_a_</.

The inequality above does not hold for all a <_/, a/ : 0, as the following example
shows:

Take a= l/3, l A B ( 2 1)
3

1 1 Then (A1/30 B1/3)3 A o B, since

(169 64)(73 22)det[A o B (A1/3 o B1/3)3] det[ 64 25 22 7 -36 < 0.

In general, (A o B)3 : A3 o B3. However, the inequality (A o B)2 _< A2 o B2 holds,
as seen in [A], [HI, or [Z].

Acknowledgments. Dr. Zhang wishes to thank Professor E. H. Lieb for drawing
his attention to [Ar] and Professor R. A. Horn and the referee for helpful suggestions
and valuable comments.
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A BASIS-KERNEL REPRESENTATION OF ORTHOGONAL
MATRICES*

XIAOBAI SUNf AND CHRISTIAN BISCHOFf

Abstract. In this paper we introduce a new representation of orthogonal matrices. We show
that any orthogonal matrix can be represented in the form Q I- YSYT, which we call the
basis-kernel representation of Q. In particular, we point out that the kernel S can be chosen to be
triangular and that a familiar representation of an orthogonal matrix as a product of Householder
matrices can be readily deduced from a basis-kernel representation with triangular kernel. We also
show that there exists, in some sense, a minimal orthogonal transformation between two subspaces of
same dimension, an important application of which is on block elimination problems. We explore how
the basis Y determines the subspaces that Q acts on in a nontrivial fashion, and how S determines
the way Q acts on this subspace. Especially, there is a canonical representation that explicitly shows
that Q partitions R into three invariant subspaces in which it acts as the identity, a reflector, and
a rotator, respectively. We also present a generalized Cayley representation for arbitrary orthogonal
matrices, which illuminates the degrees of freedom we have in choosing orthogonal matrices acting
on a predetermined subspace.

Key words, orthogonal matrices, block elimination, orthogonality condition, basis-kernel rep-
resentation, Cayley transform, householder matrices

AMS subject classifications. 15A04, 15A21, 15A23, 65F25

1. Introduction. Orthogonal transformations are a well-known tool in numer-
ical linear algebra and are used extensively in decompositions such as the QR factor-
ization, tridiagonalization, bidiagonalization, Hessenberg reduction, or the eigenvalue
or singular value decomposition of a matrix (see, for example, [7], [11]). The orthog-
onal transformations employed are usually compositions of the following elementary
transformations.

Givens rotator.

cos(O) sin(O))(1) G G(O) sin(O) cos(O)
In the two-dimensional plane, application of G to a vector x amounts to a clockwise
rotation of x by an angle of 0.

Jacobi reflector.
cos(0) sin(0) )(2) J J(O)= sin(0) -cos(0)

In the two-dimensional plane, application of J to a vector x amounts to reflecting x
with respect to the line spanned by the vector

(cos(0/2), sin(0/2))w

Householder reflector.
(3) H H(v) I- flvvT, vWv/3 2.
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R(Y)

T

X

R(Y)

FIG. 1. Reflectors.

This representation of Householder matrices is used in the LINPACK [5] and LA-
PACK [1] libraries. The condition on v and in (3) covers all choices for v and
that result in an orthogonal matrix H. In particular, it includes the degenerate case

0 where H is the identity matrix I. Note that the application of H to a vector
x amounts to a reflection of x with respect to the hyperplane TO(v) -L, the orthogonal
complement of the range T(v).

Each of the three well-known elementary transformations, when applied to a
matrix, implies a low-rank (rank 1 or 2) update of the matrix.

Givens rotators form a group under matrix multiplication with the identity matrix
as the unit element of the group; in particular, the product of any two Givens rotators
is again a Givens rotator. Note that unless 0 mod 2r, G(O) has no eigenvalue at
I. That is, except for the identity, a Givens reflector rotates every nonzero vector in
the entire two-dimensional space.

In contrast, Jacobi reflectors are not closed under matrix multiplication. As a
matter of fact, the product of any two reflectors is a rotator. A Jacobi reflector can
be represented as a rank-1 modification to the identity matrix, namely,

(4) J(O) I- (I- J) I-2T, where
-cos(0/2)

Unlike Givens rotation, a Jacobi reflector divides R into two complementary sub-
spaces, acting the identity on one of them and reflecting on the other:

Jx x x (y),
-x x e n(y).

For an arbitrary vector x 2, J(O)x is therefore a reflection of x with respect to
the line n(y) ([cos(O/2),sin(O/2)]w). We may also say Jx is the reflection of x
along n(y), or simply along y. For the special Jacobi reflector J(0), J(0) J(2)
I- 2e2e. This is illustrated in Fig. 1.

A Givens rotator G(O) can always be represented a product of two Jacobi
reflectors,

G() J()J() with 0 mod 2.
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In particular, G(O) J(O)J(O). That is, G(O) can be decomposed as a reflection with
respect to (cos(8/2),sin(8/2))w followed by another reflection with respect to (1,0)w.
Thus G(8) can be represented as a rank-2 modification to the identity matrix,

(5) G(O) I- YSYT,

with, for instance,

y=< 0 sin(0/2) ) < 2 4cos(/2) >1 cos(8/2) and S
2

An orthogonal matrix Q is a reflector if Q2 I, and Householder reflectors are a
direct generalization of Jacobi reflectors. For each vector x, H(v)x is the reflection
of x with respect to the hyperplane T(v) -L. The concept of reflectors was further
developed by Schreiber and Parlett [9] to block reflectors, for example,

(6) Q-- I- 2YYT yTy i, Y E Tmxk

Note that the reflectors we have mentioned so far are all symmetric.
The representations (3), (4), and (6) for reflectors and (5) for rotators are all

special cases of the representation

(7) Q I- YSYT, Y E Tmxk, S Tkk

for an m x m orthogonal matrix. With a triangular matrix S, this form of representa-
tion appears first as the compact WY representation by Schreiber and Van Loan [10],
as a way of expressing the product of k Householder matrices in a computationally
more advantageous form.

If S is nonsingular and Y is of rank k, then Q acts on the space 7(Y)J- as the
identity and changes every nonzero vector in 7(Y), which we call the active space of
Q. From the preceding discussion we see that Jacobi and Householder reflectors have
one-dimensional active subspaces, whereas, except for the identity, Givens rotations
have two-dimensional active subspaces.

We show in this paper that the representation (7), which we call the basis-kernel
representation, is a universal representation for any orthogonal matrix. This is proved
in the next section, and there we also introduce the so-called orthogonality conditions
on Y and S, which must be satisfied for the matrix Q of (7) to be orthogonal. We
prove further that any orthogonal matrix can be expressed in basis-kernel form with a
triangular kernel, and we show how the familiar representation of orthogonal matrices
as products of Householder matrices can be readily deduced from this representation.
Our theory is also used to show that, for orthogonal transformations mapping a matrix
A to a matrix B, there is a "minimal" transformation Q in that its associated basis
Y has a minimal number of columns. In 3 we describe in detail how the basis Y
and the kernel S characterize Q. We derive a canonical form that makes explicit
how Q partitions Rn into a couple of subspaces in which it acts as the identity, a
reflector and/or a rotator, respectively. In 4 we present a generalized form, applicable
to arbitrary orthogonal matrices, of the Cayley representation [6]. The generalized
Cayley form reveals that, given a subspace : of dimension k, there are k(k- 1)/2
degrees of freedom in choosing a nonsymmetric matrix active upon the subspace/:
while there is one and only one symmetric matrix. Finally, we comment on our results
and outline directions of future research.
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2. The basis-kernel representation of orthogonal matrices.
THEOREM 2.1. For any m x m orthogonal matrix Q there exist a full-rank m x k

matrix Y and a nonsingular k x k matrix S, k <_ m, such that

(8) Q :-- Q(Y, S) I- YSYT.

Proof. If I-Q is nonsingular, we may choose Y I and S I-Q. Otherwise,
let X and Y be orthonormal bases of Af(I-Q) and T(I-Q), the null space and range
of I-Q, respectively. Then,

0 I- S yW

for some orthogonal matrix I-S that has no eigenvalue at I. Therefore, S is nonsin-
gular and Q I- YSYT.

As already mentioned in the preceding section, we call 7(Y) of (8) the active
subspace of Q (which is uniquely defined by Q as to be seen later) and denote it with
A(Q). We define the degree of Q as the dimension of A(Q). We call S the kernel
of Q, Y the basis, and (8) the basis-kernel representation of Q. So, for example, a
Householder matrix (3) is an orthogonal matrix of degree 1.

Now let Xy and Xs be two j-by-k matrices, j > k, such that TXy Xs I. Then,
YSYT (yxTy)(XsSXT)(xuyT). It is important to realize that a particular or-
thogonal matrix Q has many representations in the form of (8), and Y and S need
not necessarily be of full rank. For convenience, we call them all basis-kernel repre-
sentations of Q.

2.1. The orthogonality conditions. Like the condition on v and in (3)
for a Householder reflector, there is a condition on Y and S that guarantees the
orthogonality of Q(Y, S), even when Y and S are not of full rank.

LEMMA 2.2.
1. The orthogonality condition

(9) sYTYST S -- STor

(10) sTyTys S -b ST

is a sufficient condition for the orthogonality of Q(Y, S).
2. The condition (9) and the condition (10) are equivalent.
3. When S is nonsingular, the orthogonality conditions can be expressed in the

unified form
yTy S- q_ s-T.

Proof. Parts 1 and 3. If we write Q I YSYT, then the condition (9) implies
QQT I and the condition (10) implies QTQ I. The expression of (11) follows
immediately from the conditions in Part 1 when S is nonsingular.

Part2. Now assume S is of rank r < k. LetS-U( E
0 ) VTbeasingular

value decomposition of S with E E Rrr nonsingular. Then,

UTSU ( E 0) ( V7 11 $12
v2T ) (U1U2) ( 0 0 )
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where 11 EvTuI is a square matrix, and 12 v1Tu2.
condition (9) can then be expressed as

The orthogonality

(12) (;110 12)(YU)T(YU)O ( /1T1;1T2 00) (/110 o)"
The last equation implies that 12 0 and that t must be nonsingular. Thus,
S U111Uw. Multiplying (12) by 5 andT from the left and right, respectively,
we obtain

(YU)T(YU 11 nu 1T

Therefore,

Tll (YU1)T(YU1)11 11 -}- ;1T1,

and hence the condition (10). In the same fashion, (10) implies S2 0.
Given Y, we now show some examples of choices for S such that the orthogonality

condition is satisfied.
EXAMPLE 2.3. Q(Y, S) is orthogonal if

S 2(yTy)t,

where B denotes a pseudoinverse of the matrix B [13]. Such a singular and symmetric
kernel was first introduced in [9].

EXAMPLE 2.4. Q(Y, S) is orthogonal if Y has no zero column and

S [tril(yTy) + diag(yTy)/2]-,
or

S [triu(yTy) + diag(yWy)/2]-,
where tril(A) (triu(A)) is the strictly lower (upper) triangular part of matrix A, and
diag(A) is the diagonal of matrix A. Note that the triangularity of S and the orthog-
onality condition (11) together imply that S is unique. One can see that, given Y,
the triangular kernel is easy to compute. As a matter of fact, it is the procedure for
computing the compact WY representation proposed in [14], [8].

2.2. Regularity assumption. The discussion following Theorem 2.1 and the
examples above have shown that Y and S need not necessarily be of full rank. On
the other hand, we know from Theorem 2.1 that for an orthogonal matrix, there
is always a basis-kernel representation with full rank Y and nonsingular S. Such
a representation we call a regular basis-kernel representation. Under the regularity
assumption, the active space of Q is 7(Y) and the degree of Q is the number of Y’s
columns.

THEOREM 2.5. A nonregular basis-kernel transformation can be transformed into
a regular one.

Proof. Suppose Y is rank deficient. Let YP YR, with

0 0
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be a rank-revealing QR decomposition of Y (see, for example, [31, [4]), that is, Rll
is nonsingular and rank(R11) rank(Y). Then, Q(Y,S) Q(Y,S) with
RPwSPRT. Thus, we can assume without loss of generality that Y is of full rank.

Now suppose S is singular. We know from the proof of Lemma 2.2 that S UUw

for some U and of full rank. Thus, Q(Y, S) Q(, ) with I2 YU.
We therefore assume in the rest of the paper that a basis-kernel representation of

an orthogonal matrix is regular unless explicitly stated otherwise.

2.3. Triangular kernels. For a given Y, the triangular kernel of Example 2.4
presents another way of computing the compact WY form of a product of Householder
reflectors. In fact, any orthogonal matrix can be expressed in basis-kernel form with
an upper or lower triangular kernel.

THEOREM 2.6. Any orthogonal matrix Q can be expressed as Q I- YSYT
with a triangular kernel S.

Proof. Let Q Q(Y, S) be an orthogonal matrix of degree k. It is sufficient to
prove the claim that there is a (unit) lower matrix L such that S LTRL for some
upper triangular matrix R, since Q(YLT, R) will be a basis-kernel representation of
Q with triangular kernel. The claim holds for orthogonal matrices of degree k 1.
Let Q(Y, S) be an orthogonal matrix of degree k > 1. Suppose the claim holds for all
matrices of degree less than k. Partition S-1,

T--s-l-- I T a_T Ib T_I

The orthogonality condition (11) implies 2T eTI(YTy)el 7 O. Thus,

(13) LITLT1 ( T (a--b)T)0 T_I

with

o)I and T_I _1 --baT/T.

Substituting (13)into (11) results in

(14) L1 (YTy)LT1 ( TO r_l nt (a b) o)
Now let

bT/T )r_l Y I and S_I T_- 1.

We know from (14) that I- Y_l S_I Y_l is an orthogonal matrix of degree k 1. With
the induction hypothesis, there is a unit lower triangular matrix L_I and an upper
triangular matrix R_I such that S_1 LT_IRALA. With

L-( 1 ) ( T-1
L_I L1, and R (b- a)TL_IR-_I "R_-I )

we then have S LTRL.
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Similarly, we can find nonsingular upper triangular matrices R and lower trian-
gular matrices L such that S RTLR S LTRTL, or S RTLTR. The last two
decompositions follow from the fact that ST is the kernel of QT. [:]

Example 2.4 shows that, for a fixed Y, the upper (lower) triangular kernel is
unique. An orthogonM matrix, however, has more than one representation with an
upper (lower) triangular kernel. Let Q(Y, S) be a representation with upper triangular
kernel S. There is an orthogonal matrix U.such that UTSU is also upper triangular [7,
p. 385], and hence Q(YU, uTsu) is another representation of Q with triangular
kernel.

From the compact WY representation we know that the product of k Householder
matrices can be expressed in basis-kernel form. The converse holds true as well.

COROLLARY 2.7. Any orthogonal matrix of degree k can be expressed as a product
of exactly k nontrivial Householder reflectors.

Proof. We prove the corollary by induction on the degree k of the orthogonal
matrices. The corollary holds for the case of k 1 since an orthogonal matrix of
degree 1 is by itself a Householder matrix. Let k > 1, and assume that the theorem
is true for all orthogonal matrices of degree <_ k 1. Let Q be an orthogonal matrix
of degree k and Q I- YSYw with an upper triangular kernel S. The orthogonality
condition implies

S (triu(yWy, 1) + diag(yWy)/2) -1.

If we partition Y as Y (y, Y_I), then

S--( s

and hence

Q I ysyw -k ysyWy_l S_ yT_ Y_ S_1YW_l (I ysyW)(I Y_ S_ yw_l ),

where (I- ysyT) is a nontrivial Householder matrix and (I-Y_IS_1Y) is an orthog-
onal matrix of degree k- 1 and can be expressed, by the induction hypothesis, as a

product of exactly k- 1 Householder matrices. [:]

Notice how easy it is to determine the representation of Q in terms of Householder
matrices from a basis-kernel representation with triangular kernel. The Householder
vectors are simply the columns of the basis Y, and the scaling factors are the cor-
responding diagonal elements of the kernel S. Since the basis-kernel representation
with triangular kernel is not unique, the representation of an orthogonal matrix as
product of Householder matrices is not unique, either.

Generalizing the proof of Corollary 2.7, we note the following result for factoriza-
tion and composition of arbitrary orthogonal matrices in basis-kernel representation
with (block) triangular kernel.

COROLLARY 2.8.

QI(Y1 Sl)Q2(Y2 $2)--I-(rl Y2)( $1 --Sl(YITy2)s2 ) 1"2)T$2

Using this formula, one can, for example, quickly assemble random orthogonal
matrices in a "binary tree"-like fashion from lower-degree random orthogonal matrices,
deriving, in effect, a parallel block version of the Householder-oriented approach by
Stewart [12].
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2.4. Block orthogonal transformations. The following theorem shows that,
if there is an orthogonal transformation that transforms an m x k matrix A into a
matrix B, k < m, the degree of Q concerned need not be larger than k.

THEOREM 2.9. Let A and B be two m-by-k matrices, k < m. If B QA for
some orthogonal matrix Q, then Q is either of degree no greater than k or can be
replaced by an orthogonal factor of its own with degree no greater than k.

Proof. Let Q Q(Y, S) be a basis-kernel representation of Q. Suppose the

degree of Q is n, n > k. Let yTA U ( MO ) be a QR-factorization of yTA, with

ME Rrk, where r _< k is the rank of yTA and U E Rnn. Then Q(Y, S) Q(, ),
where YU and UTSU. Partitioning " [1, 2], where 1 is m r, we then
have 2TA 0. From the proof of Theorem 2.6, , LRLw for some lower triangular
matrix L and_upper triangular matrix R. Thus, Q(, ) Q(, R) with IV L. If
we partition Y (11, Y2) in the same fashion as , then 2TA 0. Partition

R= ( RIO R2

conformingly, we have from Corollary 2.8

Q Q(l,R)Q(’.,R22) QIQ2,

and

B QA Q(]I, Rll)A,

since Q2A A- }2R22]V2TA A.
Not surprising, for any two vectors a and b with Ilal12 --Ilbl12, there is always an

orthogonal matrix Q of degree l(i.e., a Householder matrix) such that b Qa.
In matrix computations, the following block elimination problem is fundamental.

Given an m k matrix A, determine an orthogonal matrix Q such that

where C is a k-by-k matrix. The usual Householder-based approach constructs an
orthogonal matrix Q and an upper triangular matrix C in a column-by-column fashion
as a product of k Householder matrices. Using the WY representation, one then can
deduce a basis-kernel representation with Householder vectors and a triangular kernel..

Theorem 2.9 and its proof lead to the following conclusions.

(i) The elimination problem (15) can be solved with an orthogonal matrix of
degree at most k.

(ii) Finding ways to determine orthogonal matrices directly in terms of their basis
and kernel (as compared to products of Householder matrices or Givens rotations)
seems preferable to arrive at computationally more advantageous procedures. This
issue is explored further in [2].

(iii) The minimal degree of a solution Q to a transformation problem between
subspaces of dimension k could be even lower than k(such as the case of r < k indicated
in the above proof), which would result in a lower degree, and hence computationally
less expensive transformation. See also [2].
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3. (]eometric properties. In the introduction, we reviewed the geometric prop-
erties of reflectors "active" in one-dimensional or multidimensional subspaces and of
rotators in two-dimensional subspaces. In 2, we showed that the basis-kernel rep-
resentation is a natural approach for representing, composing, and decomposing or-
thogonal matrices. This section shows that the basis-kernel representation also makes
it easy to understand geometric properties of orthogonal matrices.

3.1. The basis and active subspace. The following theorem shows how Y
defines the active space and S specifies the transformation in the active subspace.

THEOREM 3. i.

(i) Qx x x e T(Y)+/-.
(ii) For any u E T(Y), there exists one and only one vector b such that u ySTb,

and Qu -v, where v YSb.
Proof. Part 1. For any x such. that Qx x, we have ySyTx O. Since Y has

full rank, YSyTx 0 if and only if if SyTx O. Thus, x E T(Y) +/- if and only if S
is nonsingular.

Part 2. Since Y is a basis for its own column space, for any vector u in T(Y)
there exists a unique vector c such that u Yc. By the orthogonality condition we
have

Qu (I- YsYT)yc- Yc- Y(I + sST)c- -YSSTc-- -YSb,

where b---- s-Tc. Hence u- ySTb. D
Thus, when k < m, the matrix Q has eigenvalues at 1, and the orthogonal com-

plement of T(Y) is the invariant subspace of Q corresponding to its eigenvalues at 1.
Furthermore, on T4(Y), vectors u ySTb and v YSb in 7(Y) are images of each
other under the mappings Q and Q-l, respectively.

With respect to the composition of orthogonal matrices, Corollary 2.8 shows
that, if T(Y1) n T(Y2) {0}, then A(QIQ2) 7(Q) @ T@(Q1), or degree(QiQ2)
degree(Q) +degree(Q2). On the other hand, if Y2 Y and $2 $1T, then the degree
of QQ2 I is zero. In general, we have the following.

COROLLARY 3.2. Let Q1 and Q2 be two orthogonal matrices. Then,

A(QIQ:) c_ A(Q1) @ A(Q:).

3.2. The kernel. While the basis Y determines the space acted upon by Q, the
kernel S specifies the action taken in this subspace.

THEOREM 3.3.
1. A(Q) A(-SS-T) U {1}.

1, ilk is even,
2. det(Q)= -1, otherwise,
3. Qx -x :: x T(Y) if and only if S is symmetric.
Proof. Part 1. When S is nonsingular, the orthogonality condition can be ex-

pressed as

s(yTy) SS-T + I.

For any vector y 7(Y), there exists a unique vector b such that y Yb, and

(16) Qy (I- ysyT)yb Yb- Y(SS-T + I)b -YSS-Tb.

In particular,

QY -y(ss-T).
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By Theorem 3.1, 7(Y) is the invariant subspace of Q corresponding to all of its
eigenvalues not equal to 1. Therefore A(Q) )(-SS-T) [_J {1}.

Part 2. We know from Part 1 that det(Q) -det(--ss-T). We then have

det(Q) -(-1)kdet(S)det(S-1) (-1)k.

Part 3. From Part 2 of Theorem 3.1 and Part 1 of Theorem 3.3, it remains to
show that Qx -x for any x E n(Y) implies that S is symmetric. We see from (16)
that

Qx -x Vx 7(Y),
= YsS-Tb Yb b Rk,

SS-w I

and the symmetry of S follows.
Note that the determinant of H does not depend on the symmetry of H and that

S cannot be skew-symmetric.
Theorem 3.3 implies that reflectors and symmetric orthogonal matrices are really

one and the same.
COROLLARY 3.4. An orthogonal matrix is a reflector if and only if it is symmetric

and not equal to the identity.
Theorem 3.3 also illustrates how Q acts upon the subspace T(Y). The matrix

(-SS-T) is the representation of Q in 7(Y) with respect to the basis Y, and it
has eigenvalues on the unit circle in the complex plane, but not at 1. Let gj be an
eigenvector of -SS-w corresponding to its eigenvalue cos(0j) + sin(Oj). Then,

Q(Yg) Y(--ss-T)g (Yg)(cos(Oj) + isin(Oj)).

That is, for an arbitrary vector in 7(Y), its components along Ygj are "rotated" by
0j, respectively. When Q is a block reflector, the components are rotated uniformly
by the same angle 7r; that is, the sign of vectors in 7(Y) is simply flipped.

If Q should act as other than a reflection on 7(Y), S must be nonsymmetric and
-SS-w must have truly complex eigenvalues, which exist in conjugate pairs. Taking
into account Lemma 3.6, we then have the following corollary.

COROLLARY 3.5. If Q is nonsymmetric, then its kernel S can be expressed with
respect to properly chosen Y via

([ cos(O)sin(O) ] )(17) SS- diag -sin(O) cos(O) ’B

where B -I or the empty matrix, and O diag(0j), sin(0j) 0. The first
diagonal block of (17) can be viewed as a block Givens rotator. Corollary 3.5 shows
that an orthogonal matrix divides its active subspace into two subspaces: it acts as
a reflector in one of them and a rotator in the other. An orthogonal matrix of odd
degree always has a nontrivial subspace that it acts on as a reflector.

As it turns out, there is a close relationship between SS-T and Y when Y is
orthonormal.

LEMMA 3.6. Let Q be an orthogonal matrix and Q I- YSYw be a regular
basis-kernel representation of Q. The following statements are equivalent:

Y is orthonormal;
I- S is orthogonal;
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SS-T i8 orthogonal.
Proof. We have seen from Theorem 2.1 that if Y is orthonormal, then I- S is

orthogonal. Now suppose that I- S is orthogonal. Then S I + SS-T. At the same
time, the orthogonality condition (9) implies that

s(YTY) I 4- SS-T.

Together, they imply that yTy I.
Corollary 3.5 and Lemma 3.6 allow us to derive a particularly simple canonical

form for S-1.
THEOREM 3.7. For any orthogonal matrix of degree k there exist an orthonormal

basis Y and a kernel S such that

S- 1( 1
I D- -D I

where D is either zero or a nonsingular diagonal matrix.

Proof. Let Q Q(Y, S), and, invoking Corollary 3.5, assume that Y is orthonor-
mal and (17) holds. From the proof of Lemma 3.6, we have

S-1 (I + ssT)-1.

The theorem is true for the special, case that SST I with D 0. As another special
case consider SST to be a 2-by-2 Givens rotation G(0) with sin(0) 0. We then have

+ cos(0)
-sin(O)

sin(0) ) (cos(0/2) sin(0/2) )1 + cos(O) 2 cos(O/2) sin(O/2) cos(O/2)

and since sin(0) 2 sin(0/2)cos(0/2) # 0,

(I+G(O))_I= ( 1 cot(0/2) )cot(O/2) 1

The claim of the theorem in general easily follows from (17). V1

4. The generalized Cayley representation. For any skew-symmetric matrix
B, the matrices

(18) (I + B)(I- ,B) -1 and (I + B)(B-- 1) -1

are orthogonal. The former does not have eigenvalue at -1, and the latter does
not have eigenvalue at 1. Conversely, an orthogonal matrix Q can be represented
in one of the above forms with some skew-sylnmetric matrix B as long as Q does
not have eigenvalues at both 1 and -1. Representation (18) is known as the Cayley
representation [6] or the Cayley transform of B.

Note that the Cayley representation does not include symmetric orthogonal ma-
trices except I and -I, nor does it include the nonsymmetric matrices that have
both a nontrivial "inactive" subspace and a nontrivial "active" reflection subspace.
We can, however, generalize this representation to cover all orthogonal matrices, by
combining the traditional Cayley representation and our basis-kernel representation.

THEOREM 4.1. Let Y be an orthonormal matrix with k cohtmns. Then Q is an

orthogonal matrix with active subspace Ti(Y) if and only if

(19) Q I- Y(I (B + I)(B I)-1)YT
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for some skew symmetric matrix B. Moreover, Q is symmetric if and only if B O.
Proof. It can be checked directly that, for a skew-symmetric matrix B, Q of (19)

is orthogonal. On the other hand, if Q is an orthogonal matrix with active subspace
T(Y), then Q can be represented as Q I- YSYw for some S that satisfies the
equation I yTy S-1+ s-T. Thus, B I- 2S-1 is skew-symmetric and
S I + SS-w I- (B + I)(B- i)-1. The orthogonal matrix Q is symmetric if and
only if S 2I and if and only if B -0.

Note that, for the special case that Q has full degree (i.e., no eigenvalue at 1), the
generalized Cayley representation (19) becomes the traditional one when one chooses
Y=I.

Theorem 4.1 implies that, given a subspace J) of dimension k, we have k(k- 1)/2
degrees of freedom in choosing a nonsymmetric orthogonal matrix so that 4(Q)
but there is only one symmetric orthogonal matrix whose active subspace is

5. Conclusions. This paper introduced the basis-kernel representation Q
I- YSYT of an orthogonal matrix. We showed that any orthogonal matrix can
be represented in this form, in particular with a triangular kernel, and showed the re-
lation to the familiar representation of orthogonal matrices as products of Householder
matrices.

We also showed how the basis Y determines the subspace that Q acts on in a
nontrivial fashion, and how the kernel S determines the action taken on this subspace.
This led to a particularly simple representation of-SST and S-1 which explicitly
shows how Q acts on its active subspace as a composition of rotators and reflectors.
We also showed that reflectors are exactly the symmetric orthgonal matrices.

We generalized the Cayley representation to cover all orthogonal matrices and
pointed out that, given a subspace, there is great freedom in choosing nonsymmetric
orthogonal matrices acting upon it, but that the symmetric orthogonal matrix is
uniquely determined by an active subspace.

We would like to point out that the basis-kernel representation, and the theory
we have developed for it, deals directly with Y and S, whereas the usual approaches
to orthogonal matrix computations deal principally with elementary operations such
as Givens rotators, Jacobi reflectors, or Householder reflectors. Thus, we believe that
this representation opens the door to different a.pproaches for deriving orthogonal
matrices with desired properties. For exanple, the proof of Theorem 2.9 hinted at the
possibility for finding lower-rank orthogonal matrices for block elimination problems
than the orthogonal matrices provided by the usual approaches. These issues are
explored further in [2].

Acknowledgment. We thank Beresford Parlett for some stimulating discus-.
sions.
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ON THE CONVERGENCE OF THE JACOBI METHOD FOR
ARBITRARY ORDERINGS*

WALTER F. MASCARENHAS

Abstract. This paper presents new results concerning the effect of the ordering on the rate
of convergence of the Jacobi iteration for computing eigenvalues of symmetric matrices. We start
by showing that the diagonal elements converge for any ordering. Next we emphasize that different
parts of the matrix converge at different speeds. Taking advantage of this phenomenon, we propose
a strategy that leads to a convergence exponent of 34/5 2.41. Then we show that choosing the
rotations to sort the diagonal can improve the convergence by a constant factor and we present
experimental results on the performance of this new strategy.

Key words, eigenvalues, Jacobi method, convergence, convergence exponent

AMS subject classifications. 65F15, 65H15

1. Introduction. The theory of the convergence of the Jacobi method for com-
puting eigenvalues of symmetric matrices was a lively field of study in the 1960s. This
theory described some cyclic orderings for which the method converges, and the rate
of convergence was proven to be quadratic. In the next decade these questions be-
came less interesting because the QR method was found to be more efficient for the
computers available at that time. However, the introduction of parallel computers has
renewed interest in the Jacobi method, since it can easily be made to work efficiently
on such machines. Another point in favor of the Jacobi method is its accuracy, as
shown recently in [DV].

Instead of looking at the parallelism and accuracy of the Jacobi method, in this
work we are mainly concerned with its convergence. We do not know if the ideas in

3 are parallelizable, although progress in this direction was made in [EM].
In 2 we give the first new result about convergence: The diagonal of the iterates

is convergent, The proof of convergence of the diagonal is very general; it works
for any ordering, cyclic or not, and even for angles outside of the traditional interval
(-/4, /4). However, it does not prove that the diagonal elements converge to the
eigenvalues for we must leave open the possibility that the off-diagonal elements never
decrease to zero. In the case where there are no repetitions among the entries of the
limit of the diagonal, the proof in [P, p.181] can be easily adapted to show quadratic
convergence towards the eigenvalues, regardless of the ordering (see [M]). The case
where we have repeated components in the limit of the diagonal is much more complex
[BP], [CVD]. In the author’s Ph.D. thesis [M], he presented contrived orderings and
matrices for which repetitions in the diagonal can lead to divergence. The proof of
divergence for the examples above is quite tedious and the present paper is oriented
to the generic case instead, where there are no repetitions in the limit diagonal. Thus
in 3 and 4, we make the nonrepetition hypothesis.

Nonrepetition hypothesis. The entries of the limit of the diagonal are distinct.
We would like to emphasize that the nonrepetition hypothesis is not equivalent to

the absence of multiple eigenvalues. We strongly believe that, for contrived orderings

Received by the editors March 26, 1990; accepted for publication (in revised form) by F. T. Luk
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and matrices, it may well be that the iterates get trapped close to some nondiagonal
matrix with repeated diagonal entries, even if our original matrix does not have mul-
tiple eigenvalues. If this is indeed the case, then the nonrepetition hypothesis points
out what can go wrong more precisely than does the usual assumption about the
multiplicity of eigenvalues.

Section 3 is developed around the basic fact that different parts of the matrix
converge at different speeds. Using this fact we present an ordering with super-
quadratic convergence, with exponent 34/5 2.41. We also argue in 3 that the row
ordering has convergence rate better than quadratic, but the convergence exponent
depends on the size of the matrix, decaying quickly to 2 as the dimension of the
matrix increases. For the ordering by diagonals, on the other hand, the decay of the
convergence exponent with the dimension is much slower and we have an exponent
of at least 2.2 even for matrices of dimension 256. In 4 we present experiments
comparing the performance of the strategy proposed in 3 with that of the standard
row ordering and the ordering by diagonals. The conclusion of this section is that
the asymptotic rate of convergence is of little relevance in practice. In practice, the
transient regime is more important than the asymptotic regime and the performance
of the Jacobi method depends strongly on the initial matrix. In 4 we also present
an idea that has a practical impact: choosing the angles in each rotation in order to
sort the diagonal. We explain why this idea works for the strategy of 3, making it
competitive with the more traditional orderings..

We refer the reader to [P] for basic information on the Jacobi method. One
remark about notation: the tilde (~) will be used to denote the value of a quantity
after one rotation is performed. For example, when pivoting in (i, j), < j, we have
(see [P])

(1.1)
(1.2)

5it cosO air sinO air,

5jr cos0 air + sinO air,

if r (i, j}. The rotation angle in the expressions above is such that

(1.3) =i= if aii ajj,

(1.4) tan (20) 2aij
if aij aj.

ajj aii

There are two angles 0 that satisfy this last equation. We will call the in the
interval [-/4, r/4) the inner angle. The other angle is called the outer angle. It is

als0 possible to choose 0 satisfying (1.3) and (1.4) in such a way that 5 > 5jj, what
tends to sort the diagonal in nondecreasing order. We call this last angle the sorting
angle.

If we take 0 to be the inner angle then the diagonal entries are updated by

ii aii tan0 aij

5j aj + tan0 aj.

If 0 is the outer angle then

ii ajj + tan0u ai,

5i =aii tan0u
where Ou is the inner angle.
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2. The convergence of the diagonal. In this section we consider the evolution
of the diagonal elements under the Jacobi iteration. Understanding this evolution is
important because, first, the diagonal elements should converge to the eigenvalues
and, second, most analysis of convergence makes some kind of assumption about the
behavior of the diagonal. Our fundamental result is that the (sorted) diagonal always
converges, regardless of the ordering. If v is a vector, let sort(v) denote the vector of
elements of v sorted in nondecreasing order. The theorem follows.

THEOPEM 1. Let 0 be any ordering for the Jacobi method, applied to an arbitrary
matrix A, with any rule .for choosing among the two possible angles in each rotation.
The vectors sort(d) of sorted diagonal elements converge to some limit sort.

It should be pointed out immediately that this theorem says nothing about the
relation between sort and spec(A), the spectrum of A. Indeed, as shown in [M],
there exist orderings for which the Jacobi iteration does not always converge to a
diagonal matrix. However, Theorem 1 provides a framework to proceed in the study
of the convergence of the Jacobi method for arbitrary orderings, because it allows us
to state the nonrepetition hypothesis. A natural continuation of this work would be
to show that, given an ordering, the nonrepetition hypothesis holds for "almost all"
matrices. We could use a slight modification of the proof [P, p.181] to show that an
arbitrary ordering of the Jacobi method works "almost always."

We present now the proof of Theorem 1.

Proof. Let us analyze the effect that a Jacobi rotation with pivot (i, j) has on the
diagonal. The first thing to notice is that if r : i, j, then dr does not change. Define

d+ max{di, dj } and d_ min{di, dj }. Then we have the situation shown in Fig.
1.

R1 R2 d_ d+ R4 R5

FIG.

The R are various subsets of the real line whose significance will become clear in
the arguments below. In words, Fig. 1 shows that the bigger of the two diagonal
elements involved in the rotation gets even bigger, and the smaller gets smaller by the
same amount. Since the trace of A is preserved by any similarity transformation, it is
clear that the diagonal elements move by the same amount and in opposite directions.
However, the fact that the biggest moves to the right and the smallest to the left,
or equivalently A > 0, is an interesting property of Jacobi rotations. This simple
observation is the building block of this section.

The diagram can be formalized by the equations

+
(2.2)

_
d_ A,
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(2.3) A > 0.

This is a consequence of (1.1)-(1.8). In fact, in the case aii ajj then (2.1)-(2.3)
hold for A =1 tan0 aij I. In the case when aii 7 ajj and we take the inner angle we
have

sign(tanO aij) sign(tan (20) aij) sign ( ajjai- aii ) sign(ajj aii).

Therefore, if aii > ajj then tan0 aij < 0 and (1.5) leads to

+ gzii gzi tan0 aij a+ + A,

for A -tan0 aij >_ O. Analogously, in the case ajj > aii, A + tan0 aij > O. A
similar analysis using (1.7) and (1.8) shows that (2.1)--(2.3) are also true if we take 0
to be the outer angle.

Let us now look at the sum

r,s=l,n

The nice feature of Z is that if di dm decreases, then this is compensated by a
corresponding increase in dj -dm I, as can be seen in Fig. 1. Adding these terms
gives the inequality

(2.4) Z] >_ + 2A.

To prove (2.4) we notice that each of the diagonal elements belongs to one of the five
regions indicated in Fig. 1:

R1 (-oe, d_ A),
Ru [d_ ZX, d_],
R3 (d_, d+),
Ra [d+, d+ + A],
R5 (d+ + A,

Equation (2.4) follows from the statements below, which the reader can verify.
1. Ifdm eR1UR5 then I,- a+ + Id-m- a_ Idm-d+l + Idm-d_l.
2. If d, e R3 then Im -+1 + Id-m --I ]dm -d+ + Id, -d_ +2A.
3. If dr e R2 then~ _d-m-+_1 Id_m-d+ +A and Id-,-_ I>_ Idm-d_

Therefore dm d+ + dm d_ >- dm d+ + dm d_ I.
4. The same result above holds for dm E R4.
5. Finally, a+

_
d+ d_ +2A.

Defining Ilvll max vi I, an analysis similar to the one above shows

(2.5) Ilsort(d) sort(d)llo _< A,

Equation (2.5) follows by looking at the maximum change in sort(d) in regions R2
and R4. Applying (2.4) to the sequence Ar we have
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Summing this last equation from r 1 to r k gives

k

2E/r
_
k+l

Since IIAkllF- IIAIIF, the Ek are bounded. Therefore

A_< C<oo.
k--1

As a consequence of (2.5),

k k

E IIsrt(dk) srt((/k)ll <- E Ak-
k--1 kl

Thus the series -]k=l Ilsort(dk) sort(k)ll is convergent. This implies that sort(dk)
is (absolutely) convergent, which finishes the proof of the theorem.

The theorem doesn’t state that each diagonal element will converge. The diagonal
elements might, for example, be permuted in each rotation. The following corollary
shows that this is not the case if we always choose the inner angle.

COROLLARY 1. If at each rotation we choose the inner angle, then the diagonal
converges.

Proof. In this case (1.5)implies that max Idi-d+ I<_ Ak. Since Ak converges,
dk also converges. [:l

The diagonal will also converge if in each rotation we choose either the inner or
the sorting angle, but the proof is more involved (see [M]).

3. Orderings with higher order of convergence. The goal of this section
is to show that, for matrices satisfying the nonrepetition hypothesis, the usual char-
acterization of the convergence of the Jacobi method as "quadratic" [P] is not a
complete picture of the actual dynamics of the off-diagonal elements. In actuality,
each entry will decay at its own speed, some faster than others. The uual theorems
about quadratic convergence show that the decay is at least quadratic, but they do
not say anything about the fast decaying entries. This observation suggests trying to
identify which elements are decaying more slowly and pivoting them more often than
the others. That is exactly what is done when we look for the maximum pivot or
use thresholds, and that is why these tricks work. Of course this identification of the
slowly decaying elements should be cheap if it is supposed to be practical.

In this section we are concerned only with the asymptotic rate of convergence. In
the next section we will discuss practical aspects of the convergence. We will present
examples where the slower parts are easily localized that will lead to a strategy for
obtaining a higher order of convergence. The idea is that by pivoting twice in the
slower part and once in the faster part we can reduce the off-diagonal to its cube.
The slow part will amount to one quarter of the matrix. Therefore the total work
involved to get this cubic reduction is 1.25 sweeps. If we think in reruns of sweeps this
corresponds to a convergence exponent of 34/5 2.41. The results are formalized in
Theorem 2 below. A simple example of the difference in the sizes of the off-diagonal
entries is as follows. Suppose we have a symmetric matrix of the form
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)
where the O(e) refers to the off-diagonal part. Assume that the diagonal elements
are far apart. Take the ordering to be any block ordering for which we perform the
rotations in the diagonal blocks first and only then in the upper-right corner block.

As usual, after we pivot in the diagonal blocks we have

Now when pivoting in the upper-right corner block we will have, for av in one of the
diagonal blocks,

5 cosOau +/- sin0ar8

for some ars in the upper-right corner block (see (1.1)). But from equation (9-5-2) in
[P] we have

which implies that 0 O(aij) O(e) if the diagonal entries are far apart. Therefore,
since ar is O(e), 5. O(e2) and, as a conclusion, the diagonal blocks will remain
O(e2) until the end of the sweep.

Now comes the surprising part: At the end of the sweep the upper-right corner
block will be O(e3). To see why this is true, note that if a is the upper-right corner
block then

?z,, cosOauv +/- sinOa.s

for some ars in one of the diagonal blocks. Thus

(3.1) 5uv cosOauv + O(e3),

since 0 O(e.) and a O(e2). Observe, again, that at some point auv will be the
pivot. Thus just after this rotation 5,v 0. An easy inductive argument using (3.1)
shows that at the end of the sweep we will have 5 O(e3).

Therefore, after the sweep is finished the matrix will look like

(3.2) ]t7/= (O(2) O(3) ).O(2)
This shows that the upper-right corner block will decay faster than the rest of the
matrix.

"We now show how to exploit this observation so as to obtain a strategy for high
order of convergence. The idea is to repeat the argument above by breaking the O(e2)
blocks in smaller sublocks, as in the following matrix.
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o() o()

o(d)

o()

O(d)

Suppose that we apply the ordering above to the submatrix formed by the three blocks
in the upper-left corner and also to the submatrix corresponding to the three blocks
in the lower-right corner. By the same argument we get a matrix of the form

0@4) 0(6)

O(e

0(4 o(d)

o(4)

At this point it would be natural to pivot in the O(C3) block. If we do this we get

The C3 terms did not get cubed because when they interact with the e4 terms they
become eT. However, suppose that instead we pivot first in the O(e4) blocks and only
then in the O(e3) block. This will cost an additional .. .25 of a sweep since the 0(4)
blocks contain roughly .25 of the off-diagonal entries of the matrix. The same kind of
analysis shows that this will lead to
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B1
B7

B B6

B

FIG. 2. Partition of a matrix in three levels: Level 1, 87; Level 2, B3 and B6; Level 3,
B1, B2, B4, and B5.

and then to

O(ea)J

The O(e3) terms in M2 are responsible for the O(e6) entries at the diagonal blocks in
M.

To summarize, by applying the equivalent of 1.25 sweeps to M0 we get to M3,
and we have reduced the off-diagonal part to its cube.

Let us call a 2.41 ordering any strateg:, in which we divide the off-diagonal of the
matrix into blocks as in Fig. 2 above and pivot according to the block ordering

{1,2,3,4,5,6,1,2,4,5,7}.

Inside of each block the pivots are chosen according to any of the usual cyclic order-
ings, pivoting each entry only once.

In order to make a more formal statement about what was said above, suppose
that A’ is the sequence of iterates obtained applying a given 2.41 ordering to a matrix
A, and B, i 1,..., 7 are the off-diagonal blocks defined when we decompose Ak as
in the matrix above. Let us also cM1 N the number of rotations needed to perform
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one sweep of O. We are interested in knowing what happens to A at the end of s
sweeps, or, in other words, in the properties of AsN. In order to measure how big

A is in a scale-invariant fashion, we define

i--1,...,6
AdA AdA

We can then state the main theorem of this section.
THEOREM 2. Let A A be an n n symmetric matrix,, n >_ 8, and assume we

apply the Jacobi method according to a 2.41 ordering to it. If
1

(3.3) ro <
16nx/--

n thenwhere an - / 1 >_ 3,

for Cn 5.6a3, which implies

F+I <_ Cnr3s

(3.4) rs <_ (CnF0)3s

with Cn x/n.
This theorem states that if the ratio of the off-diagonal entries to the difference

of the diagonal entries is small enough (3.3) then it will be cubed after one sweep of
a 2.41 ordering. The first proof of Theorem 2 was presented in [M]. After that [HR]
gave a proof that provides sharper bounds and also shows global convergence for the
2.41 ordering that performs the orderings by rows inside of each block. These proofs
are quite tedious and we refer the reader to [HR].

The 2.41 orderings are just one example of orderings with superquadratic conver-
gence. Their nicest property is simplicity, since it is clear why and when we should
pivot again in the slowest part. We also believe that they are optimal in the sense
that any strategy that reduces the off-diagonal to its cube requires at least as many
rotations as one sweep of a 2.41 ordering. We do not have a proof of this optimal-
ity, but in [M] we present some heuristics in this direction. Another question is to
determine which orderings are optimal in the sense of having the biggest convergence
exponent. We have not made any progress in solving this problem, which we expect
to be very hard. A natural idea to get higher order of convergence would be to repeat
(3.2) and partition the matrix in more levels (see Fig. 2). Unfortunately, this idea
did not work and our efforts to find strategies with convergence exponent higher than
2.41 have failed.

We present now a method for analyzing the terminal behavior of any particular
ordering. Assume that each entry is of order eej, for e <: 5. If the nonrepetition
hypothesis holds then (1.3) implies that when pivoting at aij we will also have
O(eej). Supposing then that ars and auv interact during this rotation, we will have

rs COSars :]= sinauv 0(l)

for min{er, ev +eij}. Therefore the exponents will evolve according to the
formulae,

kT1 min{ekr, k(3.5) ei eiy+ ejr },
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(3.6)
(3.7) k+l min(eki, k k

vri eij W erj },
(3.8) ej eij+ eri

k+l

and

(3 10) k+l k
UV euv

for (u,
These considerations lead to the following lemma, whose easy inductive proof is

left to the reader.
SLEMMA 1. Let O be an ordering for which there are eij and such that if we

Slet the eij evolve according to (3.5)-(3.10), we get

after N rotations. Suppose that A is such that AdA > ti > 0 for all k > k0. Then
k > k0 implies

for

and

F+N <_ CF

25/

m x{ 1" 5 }.

The size of C makes this result a lemma instead of a theorem. If the ordering O
in Lemma 1 has period N, then a lower bound for its convergence exponent is

(n,O) 2N

where

{ {-An,o=max min eiy
i<j=2 n >1

eij
eij

Another detail in Lemma 1 is that before we can apply it we need to find the
appropriate eij and A. Determining An,o is in itself an interesting problem. We
provide below a naive algorithm for finding .n,O. Observe that the. equation for the
eiy and An,o is similar to an eigenvalue problem: F(e) >_ Ae. Our idea is to use the
power method for solving this problem. This leads to the following algorithm.

ALGORITHM 1
1. Set ei 1.0 for all i, j.
2. Apply one sweep according to O and (3.5)-(3.10) in order to obtain eij.-k

-k

3. Estimate An o by Ak min{ e }
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4. Set mk mini5 (-keij} and normalize the eij by

-k

tij
mk

5. Repeat 2, 3, and 4 until convergence.
We have not been able to prove the convergence of Algorithm 1, but some partial
results in this direction are presented in [M].

Algorithm 1 can be used with Lemma 1 in order to give a rigorous proof of
higher-order convergence, under the nonrepetition hypothesis, for specific orderings
and dimensions. By reducing a little bit, so that we can take into account the
rounding errors, we can even use a A computed numerically. Our experiments with
Algorithm 1 suggest that for the row ordering the convergence exponent approaches
2 rather quickly as the dimension n increases. On the other hand, Algorithm 1 shows
that the ordering by diagonals, with pivots given by

(3.11)
{(1, n), (1, n- 1), (2, n),..., (i,j), (i + 1,j + 1),..., (i,n), (1,n- i),..., (n- 1, n)},

has convergence exponent bigger than 2 even for n moderately large. In fact, we
got A 2.25 for n 128 and A 2.2 for n 256. However, we point out that
Algorithm 1 gives only a lower bound for the convergence exponent.

An interesting observation is that experiments with a variation of Algorithm 1,
where the rotations were performed in order to eliminate the smaller exponents, also
seem to lead to quadratic convergence when the dimension n is large. This has the
surprising implication that for large n, distinct eigenvalues, and infinite precision, the
classical "greedy" strategy in which we pivot the biggest element in the off-diagonal is
not optimal! Any 2.41 ordering is better. Of course infinite precision is not what we
have in practice, and looking to the biggest possible pivot, or variations on the theme,
seems to lead to optimal convergence in a practical sense [GK], with the caveat that
this idea is hard to implement on massively parallel machines.

4. Comparing orderings in practice. This section describes how the ideas
discussed in the preceding sections perform in practice, where by "practice" we mean
the first few sweeps. We use two classes of matrices: matrices with random en-
tries coming from a uniform distribution in [-1, 1] and matrices with eigenvalues
1, ,..., cn-l, for some , which we call graded matrices. The experiments show that
the performance depends both on the ordering and on the matrices. They also show,
unfortunately, that the superquadratic convergence of 2.41 orderings is not relevant
in practice. This happens mainly because the dynamics of the first few sweeps is
dictated more by the constant factors in front of the "O(e)" estimates from 3 than
by the asymptotic rate of convergence. As one way to improve these constant factors,
especially for 2.41 orderings, we propose choosing the rotations in such a way to sort
the diagonal. We will explain why this idea works so well for 2.41 orderings, making
them competitive with the row ordering for-matrices with random entries.

The experiments use the ordering by rows and the ordering by diagonals (see
(3.11)), and a 2.41 ordering, with the ordering by diagonals inside of each block.
The results of the first experiment are listed in Table 1. Each entry on this table
corresponds to averages over 100 matrices, generated using a standard random number
generator for the uniform distribution in [-1, 1]. The entries on and above the diagonal
were generated independently.
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TABLE 1
n n random matrices.

8
32
128

Row Row Row
sort sort

at first always
"4.89 4.90 4.93
6.67 6.63 6.46
7.95 7.94 7.55

Work until convergence
Diagonal

4.66
6.40
6.97

Diagonal
sort

at first
4.74

Diagonal 2.41 2.41 2.41
sort sort sort

always at first always
4.82 5.19 5.04 5.08
6.09 6.13 6.02 5.69
6.90 9.14 8.66 7.34

6.05
6.91

Comparing columns 2, 5, and 6 in Table 1 we see that that the ordering by
diagonals is the winner among matrices with random entries and the 2.41 orderings
do poorly. The other columns of Table 1 show the effect of permuting the rows and
columns of the matrix in order to sort the diagonal. For n 128, sorting improved
the performance of all orderings, but the effect on the 2.41 orderings is much more
pronounced.

The main reason why 2.41 orderings do not perform well is that pivoting in the
O(3) terms at the first level (see Fig. 2) destroys the O(e8) terms that we have
already obtained at the third level. Sorting the diagonal attenuates this increase of
the third level since it reduces the angles of rotations on the first level by increasing
the difference between the corresponding diagonal entries.

In the same way that each ordering has its slower and faster entries, the effect of
sorting also depends on the ordering. For the 2.41 orderings it is clear that sorting can
lead to improvement. For the other orderings we have empirically verified that sorting
also improves convergence and we believe that a similar phenomenon of coupling be-
tween angles and slow-fast parts happens, but in a weaker form. Again, 2.41 orderings
have the nice property of being simple and allowing us to get an understanding of
sorting in its simplest effects.

The next experiments show that the effect of sorting also depends on the matrix.
Our test matrices are simplified versions of the matrices in [DV]. Each test matrix
was obtained by applying 5n(n- 1) rotations, at randomly chosen entries and by
randomly chosen angles, to a diagonal matrix with diagonal entries in a geometric
progression from 1 to a-1, where is the condition number. Each number in Tables
2 and 3 is the average over 500 experiments.

TABLE 2
n n graded matrices, condition number 1020.

n Row Row
sort

at first
8 4.38 3.90
32 7.27 6.98
64 9.15 8.85

n Row Row
sort

at first
8 2.79 2.31
32 4.82 4.62
64 6.15 5.91

Total work performed until convergence
Row Diagonal Diagonal Diagonal 2.41
sort sort sort

always at first always
"3.32 5.;10 5.2S 5.35 4.76
5.23 12.03 12.10 10.24 10.00
6.77 15.55 15.57 11.91 14.11

TABLE 3
n n graded matrices, condition number-- 106.

2.41 2.41
sort sort

at first always
4.48 4.17
9.77 7.40
13.49 9.20

Total work performed until convergence
Row Diagonal Diagonal Diag0nal 2.4i
sort sort sort

always at first always
2.19 3.44 3.34 3.59 2.89
3.55 8.60 8.60 8.26 6.90
4.60 11.47 11.79 10.80 10.18

2.41 2.41
sort sort

at first always
2.65 2.66
6.70 4.61
10.05 6.58
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Notice that the effect of sorting is much more pronounced for graded matrices.
Another interesting point in Tables 2 and 3 is the awful performance of the ordering
by diagonals, which performs best in the first experiment. The disparity between the
convergence for the two different classes of matrices makes it clear that the "best"
strategy in practice is hard to characterize, since the performance of the different
orderings depend strongly on the matrix. Sorting, on the other hand, leads to im-
provement in both classes.
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Abstract. Let Ax b be a linear system where A is a symmetric positive definite matrix.
Preconditioners for the conjugate gradient method based on multisplittings obtained by incomplete
Choleski factorizations of A are studied. The validity of these preconditioners when A is an M-matrix
is proved and a parallel implementation is presented.
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1. Introduction. Let A be an n n nonsingular symmetric M-matrix (see [4]
for definition and properties of M-matrix). We consider the solution of the linear
system

(1) Ax=b

by the preconditioned conjugate gradient (PCG) method. This minimization method
of conjugate directions consists of solving the new linear system

where SAST, c S-Tx, and -- Sb, provided that cond() < cond(A) or that
a better clustering of the matrix eigenvalues is obtained. The matrix

(2) g--(sTs)-1

is said to be the preconditioning matrix or preconditioner.
The PCG method can be written in terms of the matrix K and the main difference

from the conjugate gradient method is the need to solve an auxiliary system Ks r
in each iteration, for obtaining the next conjugate direction.

There exist several techniques for constructing the preconditioner (see [14], [9],
and [11]). A usual technique consists of considering a splitting of the matrix A

(3) d P Q,

where P is a nonsingular matrix and the spectral radius of P-Q is less than 1 (i.e.,
p(P-Q) < 1). From this splitting one constructs the preconditioner matrix K by
using a partial sum of the power series of A-. That is

(4) K=P(I+T+...+Tm-1)-1,

where T p-1Q. This preconditioner is called m-step polynomial preconditioner. In
addition, for this type of preconditioners one can solve the auxiliary system Ks r
by doing rn steps

Ps() (s(i-1) -t- r, i 1, 2,..., m
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of the iteration given by the splitting (3) for the system As r, choosing s() 0.
Adams and Ong [2] give an additive polynomial preconditioner, by considering two

different splittings of the matrix A based on the symmetric successive overrelaxation
(SSOR) method, and then averaging the updates of each splitting. Huang and O’Leary
in [8] study a Krylov multisplitting algorithm based on multisplitting of a symmetric
positive definite matrix. Other related work is found in [6].

A usual way for choosing the splitting (3) is based on the incomplete Choleski
factorization. Our goal in this paper is to construct an additive polynomial precon-
ditioner based on a multisplitting defined by O’Leary and White [12], obtaining that
multisplitting by means of the incomplete Choleski factorizations. Thus, this method
can be clasified as generalized preconditioned conjugate gradient (GPCG) following
the taxonomy of conjugate gradient methods given in [3]. In 2 we deal with this
preconditioner and we give sufficient conditions for K to be symmetric and positive
definite. In 3 we work with a particular multisplitting and study the parallel imple-
mentation of the PCG method in this case. Finally, we give some numerical results
on a distributed memory multicomputer (Parsys SN1040).

2. Multisplitting preconditioner. Let 9 be the set of all pairs of indices (i, j),- {(i,j)" 1 _< i,j <_ n}

and let G be a subset of 9 such that

(a) (i,i) EG, l_i_n.
(b) If (i, j) G, then (j, i) e G.

The set G is said to be the nonzero set of the following factorization. According
to Meijerink and Van der Vorst [11], when A is a symmetric M-matrix then there
exists a unique lower triangular matrix L and a nonnegative matrix N with

lij 0 if (i, j) G,
nij -0 if (i, j) G,

such that

A M- N LLT N

holds. This is the so-called incomplete Choleski factorization (ICF) of A. In addi-
tion, this defines a regular splitting. Moreover, the nonzero entries of M match the
corresponding entries of A.

Consider p subsets, G1,G2,...,Gp, of 9 satisfying (5). Then from the p in-
complete Choleski factorizations, obtained from these subsets as nonzero sets of the
factorizations, we obtain the p regular splittings

A Mk Nk, k 1, 2,...,p.

Let us recall the definition of a multisplitting as introduced by O’Leary and White

DEFINITION 1. Let A, Mk, Nk, and Dk, k 1,2,...,p, be matrices of size n n.
Then (Mk, Nk,D) is said to be a multisplitting of A if

(i) A Mk- Nk, where M is nonsingular, k 1, 2,... ,p,
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p

(ii) Dk I, where Dk are nonnegative diagonal matrices.
k-1

In the case that the p splittings (i) are regular, the multisplitting is called regular.
Now we are ready to construct the m-step additive polynomial preconditioner

based on a multisplitting. As mentioned in the Introduction, we define the precondi-
tioner K ([m in such a way that solving Ks r amounts to doing m steps of the
iteration scheme

p p

(7) s() DaM; Nas(-) + DaM;Xr, 1, 2,..., m
k----1 k--1

with s() 0. Then the updated vector from m steps is given by

s(m) (I + H +... + Hm-)Wr,

where

p p

W DkM[ and H DkM[INk.
k--1 k--1

Therefore the m-step additive polynomial preconditioner related to the above multi-
splitting defined in (6) is given by

(8) K-1 [[n (I -[- H +"" + Hm-)W.

Let us check whether this preconditioner is valid. The next results give sufficient
conditions on the multisplitting obtained by incomplete Choleski factorizations so
that 3V[ is symmetric positive definite.

THEOREM 1. Let A be a symmetric positive definite matrix. Consider the sub-
sets of indices G, G2,..., Gp satisfying (5) such that the corresponding incomplete
Choleski factorizations yield the multisplitting (Mk, Nk, Dk). Suppose that DkMk
MkDk for k 1,2,...,p. Then the preconditioning matrix n defined by (8) is
symmetric.

Proof. Since the matrices Mk LLT are symmetric and since they commute
with Dk, k 1, 2,...,p, the matrix W is symmetric also.

The matrix :M:n can be written as

m-1

3V[= HW.
i--o

Since

p

DMfNk I- WA,
k--1

we have

m--I

[(I WA) W],
i-o
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that is, ?V[ is a linear combination of

(WA)j W, j O, 1, m -1,

which are symmetric since W and A are symmetric and the result follows.
The condition DkMk MkDk holds if the matrices Dk are scalar. Furthermore,

the same condition holds for the class of multisplittings defined below.
DEFINITION 2. We say that the multisplitting (Mk,Nk,Dk) is block diagonal

conformable if, .for every k:
(k)

k)
2(i) Mk is block diagonal, Mk

(k)

(k)
(ii) Dk is block scalar, that is Dk

-22

".o

qq

(iii) the size of M(k) coincides with the size of Dk ), i-- 1, 2,... q.
We quote that the size of one block M(k) (and Dk)), i 1,2,... ,q, can be

different from the size of another block Mj or M().
The following result establishes a necessary and sufficient condition for the pre-

conditioning matrix to be positive definite.
THEOREM 2. Let A be a symmetric positive definite matrix. Consider the subsets

of indices G1, G2,..., Gp satisfying (5) such that yield the block diagonal conformable
multisplitting (Mk, Nk, Dk). Then the matrix V[n defined by (8) is positive definite
if, and only if, the matrix I + H - - Hm- has only positive eigenvalues.

Proof. We saw in the proof of Theorem 1 that the matrix W is symmetric.
Since Ok and M-1 commute, and since M-1 is positive definite and Dk is positive
semidefinite, then DkM[ is positive semidefinite for all k. And so, W is a positive
semidefinite matrix. Let us see, indeed, it is positive definite. Suppose that

xTWx O.

Then, for all k

xTDkM[x Oo

Pick an arbitrary component xt of the vector x. By the properties of the mul-
tisplitting, there exists at least an index k such that the diagonal entry of Dk is
positive. Let Dk) be the diagonal block of Dk containing this entry and let 2 be the
corresponding subvector of x. Then

Since D (M())
positive definite.

-1
is positive definite, 0. Hence, xt 0 and the matrix W is
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Then, from (8) we can write

([n W-1 I + H +... + Hm-

and the result follows by Theorem A.2.7 of [13].
THEOREM 3. Let A be a symmetric positive definite matrix. Consider the sub-

sets of indices G1, G2,..., Gp satisfying (5) that yield the block diagonal conformable
multisplitting (Mk, Nk, Dk). Then

(i) if m is odd, the matrix I + H +... + Hm-1 has only positive eigenvalues.
(ii) If m is even, the matrix I + H +... + Hm-1 has only positive eigenvalues if,

and only if, p(H) < 1.

Proof. Since A and W are positive definite and H I- WA, the matrix H has
real eigenvalues 1 a, with a > 0. Any eigenvalue of I + H + + Hm-1 can be
written as

l_bA+..._bAm-l-

where is an eigenvalue of H.
If m is odd then 1-’ +H,-11- > 0 and hence I+H+... has positive eigenvalues.

Consider the case that m is even. If p(H) < 1 then 1.. > 0 for each eigenvalue
of H.

Conversely, suppose that p(H) >_ 1. There exists an eigenvalue A of H such that
A <_ -1. Hence the matrix I + H +... + Hm-1 has a nonpositive eigenvalue. D

Therefore, to use the above preconditioner, we must make the matrices :M:n
positive definite. It is sufficient that A is a symmetric M-matrix.

THEOREM 4. Let A be a symmetric M-matrix. Let G1, G2,..., Gp be subsets
of indices satisfying (5) such that yield the block diagonal conformable raultisplitting
Mk, Nk, Dk). Then

(i) the multisplitting (Mk, Nk, Dk) is regular.
(ii) The matrix /[n is positive definite.
Proof. (i) Since Gk satisfies (5), by Theorem 2.4 of [11], the corresponding splitting

is regular, and the multisplitting is as well.
(ii) Since the splittings A Mk Nk are regular, U ’=0 Dki[1ik is

nonnegative, and so p(H) is an eigenvalue of H.
Since the eigenvalues of H are 1- a, with a > 0, we deduce that p(H) < 1. Then

the proof follows by Theorems 2 and 3. [:]

Note that p(H) < 1 obtained above is a particular case of Theorem l(a) of
O’Leary and White [12].

Remark. We want to point out that the conditions on Theorem l(a) of [12] also
guarantee the convergence of the parallel chaotic methods given by Bru, Elsner, and
Neumann [5] and hence the iterative scheme (7) can be replaced by the synchronous
and asynchronous schemes given in [5] provided that, for the last one, the sequence
of integers of Theorem 2.2 of [5] is regulated.

3. Parallel implementation on a distributed memory multiprocessor. In
this section we implement one of the possible parallel algorithms of the PCG method
with the multisplitting preconditioner given in the last section.

3.1. Implementation description. We define a particular multisplitting and
we evaluate the performance of the resulting parallel algorithm on the distributed
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memory multiprocessor Parsys SN1040 with 16 transputers connected by a bidirec-
tional ring, for the solution of the Laplace equation satisfying boundary conditions in
the unit square. A five-point discretization of this equation yields the linear system
Ax b, where A has the following structure:

i

B -I
-I B -I

-I B -I

-I B -I
-I B

I is the n x n identity matrix and B is the n x n tridiagonal matrix

4 -1
-1 4 -1

--1 4 -1

-1 4 -1
-1 4

Therefore, A is a pentadiagonal matrix of size n2 n2. It is clear that A is an M-
matrix. For simplicity we consider that n is a multiple of the number of processors
p.

Different iterative methods can be applied to solve this problem. In particular, it
is well known that the multigrid method is very efficient. However, the later method
does not seem to be as parallel as the method presented. As we explain below, we took
the algorithm given in [11] as sequential algorithm as speedup reference. Therefore,
we selected our splittings similarly to that in [11].

We considered nonzero subsets G contained in the set of pairs of indices illustrated
in Fig. 1.

FIG. I.

Let

be the corresponding splitting to one of that subset G. Then we construct the
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multispliting (Mk, Nk, Dk), where

I 0
0 I

D1-- D2

0 0

,...,Dp

with I and 0 the 2 2 identity and null matrices, respectively, Mk M and
P P

Nk N for k-- 1,2,...,p.
It is worth noting that there are different multisplittings that yield the same

iterative scheme, with distinct matrices Mk. Our choice has been suggested by the
splitting used by Meijerink and van der Vorst in [11], but note that the nonzero set
G described above (and so the splitting) is not the same as the nonzero set in [11]. In
fact, in [11] one considers an incomplete Choleski factorization to be "more" complete
than our ICF. In fact, the nonzero set of our factorizations are strict subsets of the
nonzero set of [11], which includes properly the nonzero set of A, as can be seen by
comparing Figs. 1 and 2, that contains the nonzero set of the ICF of [11]. Finally, we
quote that the above multisplitting is block diagonal conformable.

FIG. 2.

This multisplitting allows us to distribute the work and the matrix A among the
processors in such a way that each processor stores n2/p consecutive rows of A. Thus,
from the symmetry of the matrix, each processor has access to the corresponding n2/p
columns of A.

According to the above comments, the incomplete Choleski factorization of A can
be computed independently by blocks in each processor.

As we mentioned in 2, once we compute the incomplete Choleski factorization,
the algorithn requires computing the iterative scheme (7). We discuss below its
implementation.

The iteration steps in any processor are defined by

Ms() Ns(’-) + r, i 1,2,...

with s() 0. Since M LLT we must solve the triangular systems

Ly Ns(-) + r and LTs() y.

Because each processor has a block of the matrix L and since the structure of the
matrices Dk of the multisplitting, then the solution of those systems can be imple-
mented by solving p independent subsystems of n2/p unknowns corresponding to the
p (decoupled) diagonal blocks of .L.
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In this way, the computation of the incomplete Choleski factorization and the
solution of the triangular systems do not require communication among the different
processors. Therefore, each processor computes a block of the vector s and broadcasts
the result in each step.

The algorithm also requires some inner products. In this implementation only
the inner product (p, Ap) has been parallelized, where p is the conjugate direction.
The residual vector is also updated in parallel.

Oo

FIG. 3. N1 1, N2 0. FIG. 4. N1 N2-- 2.

3.2. Results. In our numerical experiments we always considered the same num-
ber of blocks Mk) as the number of splittings. To simplify, that number equals the
number of processors. We chose three types of nonzero sets, varying the number of
nonzero diagonals of the matrix L. All nonzero sets, as we mentioned early in this
section, are contained in the subsets sketched in Fig. 1.

Let N1 denote the number of diagonals that we will add from the main diagonal
and let N2 denote the number of diagonals that we will add from the last nonzero
subdiagonal of A towards the main diagonal. The first type of nonzero set corresponds
to the choice N1 1 and N2 0, which is equivalent to consider G as a strict subset
of the nonzero set of A. This is shown in Fig. 3. The second type of nonzero sets
considered corresponds to N1 N2 2, which is illustrated in Fig. 4. The last type,
N1 n- 1, N2 0, corresponds to the complete Choleski factorization of each block
of M. Note that some nonzero elements of A will be zero in the incomplete Choleski
factorization.

We experimented with different matrix sizes, n2 256,576, 1024. The behaviour
of the number of iterations as a function of the number of steps is similar. However,
the efficiency increases with the size of the matrix. Next we discuss the results for
the size n2 1024, the biggest possible size that we can perform on one processor.

Table 1 shows the number of iterations in function of the number of steps m for
each type of nonzero sets and the number of blocks M( and Table 2 displays the
estimation in norm 1 of the condition numbers of the matrices in function of the
number of blocks, of the nonzero sets and of the number of steps (the estimation of
the condition number of the matrix A is 422.6537). We used MATLAB to obtain the
condition numbers.
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TABLE 1
Number of iterations/number of steps, matrix 1024 1024.

Number of iterations
Number 1 Block 4 Blocks 8 Blo}:ks 16 Blocks
of Steps 1,0 2,2 31,0 ],0 2,2 31,0 1,0 2,2 31,0 1,0 2,2 31,0

0
1
2
3
4
5
6
7
8
9
10

49 49 49
22 11 1
13 7 1
11 6
9 5 1
8 4 1
8 4 1
7 4 1
7 3 1
6 3 1
6 3 1

49 49 49
25 19 17
15 11 11
13 10 10
10 8 8
9 7 8
9 6 6
8 6 6
7 5 6
7 5 5
7 5 5

49 19 49
29 23 23
17 13 14
14 13 13
11 9 10
10 10 10
9 7 8
9 8 8
8 6 7
8 6 7
7 6 6

49 49 49
32 32 31
18 17 19
16 18 18
13 12 13
12 14 14
11 10 11
10 12 11
9 8 9
9 10 10
8 7 9

TABLE 2
Condition numbers of , matrix 1024 1024.

1 Block

4 Blocks

8 Blocks

16 Blocks

N. Steps (1,0) (2,2) (31,0)
1
2
3
4
5
1
2
3
4
5

61.5564
30.5612
21.0536
16.0138
12.9838
114.4251
54.0487
40.8713
30.6652
25.1980
133.’8638
60.2741
44.7025
33.0003
26.9623
134.6827
59.4193
44.7839
33.0271
27.1491

12.1822
6.3692
4.3942
3.3699
2.7481

172.8624
80.7103
57.9777
39.6803
31.4235
151.4745
65.5247
48.6135
34.3462
28.1091
109.9920
47.7501
37.0339
26.5663
22.4489

1.0000
1.0000
1.0000
1.0000
1.0000

263.2012
109.4664
70.7226
46.1034
34.5530
160.9327-
69.8067
50.8713
35.6532
29.0656
108.2051
46.9271
36.4563
26.0868
22.1085

Figure 5 displays the condition number of the matrices . in function of the number
of steps and the number of blocks for the nonzero set corresponding to N1 N2 2
and Fig. 6 shows the condition number for the three types of nonzero sets with four
blocks M/().

One can observe that the condition number decreases when the number of steps
increases, very fast when the number of steps is small. This behaviour is similar to
the behaviour of the number of iterations.
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FIG. 5. Number of steps and condition number of , N1 N2-- 2.
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N1=1, N2=0
N1--2, N2=2
N1=31, N2=0

0 1 2 3 4 5
Number of Steps

FIe:. 6. Number of steps and condition number of , four blocks.

Figure 7 displays the above results for the nonzero set N1 N2 2. In all
graphics the zero value in the X-axis corresponds to the CG method without precon-
ditioning.

Note that when the number of splittings (and so the number of blocks) increases,
the number of iterations (see Table 1) and the condition number of the matrices

(see Table 2) rise. This is due to the fact that when the number of blocks increases
the nonzero sets in the factorizations becames smaller, and so, the factorizations are
"more" incomplete. Then one can expect a bigger number of iterations as Fig. 7
shows.
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N 50u
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FIG. 7. Number of steps and iterations, matrix 1024 x 1024, N1 2, N2 2.

Figure 8 shows the number of iterations versus the number of steps for a 1024 x
1024 matrix and 16 blocks (processors) for the three types of nonzero subsets. Finally
Fig. 9 shows the parallel execution time versus the number of steps for the same case.
The unit time is 10-6 seconds.

It seems that the optimum number of steps is one or two, for all types of nonzero
sets (this happens for any number of blocks Mi(/k)). From Table 1 and Fig. 8 one
notes that for this number of steps the optimum number of iterations corresponds to

N
5O

45

4O

35

3O

25

20

15

10

0 1 2 3 4 5 6 7
Number of Steps

NI=I, N2=0
Nl=2, N2=2
Nl=31, N2=0

FIG. 8. Number of steps and iterations, matrix 1024 x 1024, 16 blocks.

8 9 10
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FIG. 9. Number of steps and parallel execution time, matrix 1024 x 1024, 16 blocks.

N1 n- 1, N2 0. But, for N1 N2 2 we get similar results. Then the last
nonzero set seems preferable.

From Figs. 7-9 we observe that when the number of steps is odd, then the number
of iterations and the parallel execution time increase with respect to the previous even
number of steps. By definition of ., the matrices and 9Vl:IA are similar and since

:biOtA (I + H + H2 +... + H’-I) (I- H) I- Hm,

the condition number of is

(9) cond(.) max
A’ ([IA)

i,j

1 min Ai (Hm)
1 max )j (Hm)"

J

Then, if H has negative eigenvalues and m is odd, the numerator of (9) is greater
than one, however, if m is even the numerator of (9) is always less than one, and then
we can expect a better relative decreasing for even values of m. This fact can explain
the numerical behaviour displayed in the corresponding graphics. In fact, when the
fill-in of the incomplete Choleski factorization is total, it is easy to check that H
is indefinite, in fact, all diagonal entries are zero. Furthermore, we made several
numerical experiments with small Laplace matrices with MATLAB and always H
was indefinite.

We used the algorithm given in [11] as sequential algorithm as speedup reference,
that is Sp T/Tp, where T1 is the execution time of the algorithm given in [11] and
Tp is the parallel execution time of our algorithm in p processors. In both algorithms
the same number of steps are considered.

Instead of speedups, the efficiencies Ep Sp/p are given in Table 3.
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TABLE 3
Ejficiency, matrix 1024 x 1024.

4 Processors

8 Processors

16 Processors

No. Steps
1
2
3
4

(1,0) (2,2)
.4336 .4343
.7727 .6586
.8157 .6527
.8908 .6934
.2252 .2495
.5638 .4888
.6658 .4662
.7358 .5780
.1120 .1093
.3870 .2935
.4626 .2830
.5186 .3811

(3,0)
.5770
.5604
.5066
.5218
:49
.4785
.4230
.4507
.3325
.3648
.3178
.3634

One observes that the efficiency increases with the number of steps. This fact is
due to our preconditioner "more" incomplete than the preconditioner given in [11],
as we discussed in the above subsection. Then the increasing of number of steps
improves the accuracy of the solution more than in the other algorithm.

Finally note that the efficiency decreases notoriously when the number of pro-
cessors increases. This is because of the inadequate use of the capabilities of the
processors when the number of processors increases for a fix matrix. One must con-
sider also that the topology used, the bidirectional ring, is not the most efficient.

Acknowledgment. The authors thank Professor L. Elsner for very helpful com-
ments.
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ON THE SYMMETRIC AND UNSYMMETRIC SOLUTION SET OF
INTERVAL SYSTEMS*

GTZ ALEFELD AND GONTER MAYER:

Abstract. We consider the solution set S of real linear systems Ax b with the n n coefficient
matrix A varying between a lower bound A and an upper bound A, and with b similarly varying
between b, b. First we list some properties on the shape of S if all matrices A are nonsingular. Then
we restrict A to be nonsingular and symmetric deriving a complete description for the boundary of
the corresponding symmetric solution set Ssym in the 2 2 case. Finally we derive a new criterion
for the feasibility of the Cholesky method with which bounds for Ssym can be found.

Key words, linear interval equations, unsymmetric solution set, enclosures for the solution
set of linear interval systems, symmetric linear systems, symmetric solution set, interval Cholesky
method, criteria of feasibility for the interval Cholesky method

AMS subject classifications. 65F05, 65G10

1. Introduction. In [2] we introduced the interval Cholesky method in order to
find an interval enclosure Ix]C of the symmetric solution set

(1.1) Ssym :-- (X e lnl Ax b, A AT e [A], b e [b]),

where [A] [A]T is a given n n matrix with real compact intervals as entries, and
where [b] is a given vector with n.real compact intervals as components. We showed
that Ix]C need not enclose the solution set

S "= {x e R"l Ax b, A e [A], b e [b])

___
sym,

where in this definition the symmetry of A is dropped. This phenomenon is not
astonishing, since, in general, Ssym differs from S as was shown in [2] by a simple
example.

In this paper (4) we want to intensify our study on the symmetric solution set
Ssym. To this end, in 3 we repeat some characteristic properties of S. Parts of them
are stated and proved in [4]. We will prove them again in a much shorter way than
in [4] following the lines in [8]. We then turn over to properties of Ssym. For 2 2
matrices Ssym can be represented in each orthant O as the intersection of S, O, and
two sets of which the boundary is formed by conic sections. Thus, one deduces at
once that in the general n n case, the boundary 0Ssym can be curvilinear in contrast
to OS, which is shown in [4] to be the surface of a polytope.

In the second part of our paper (5) we prove new criteria for the feasibility of the
interval Cholesky method. Assuming the midpoint matrix ft. of [A] to be symmetric
and positive definite we will show, for example, that the method results in an enclosing
interval Ix]e if the spectral radius of 1/21field([A]) is less than 1, where d([A]) e 1nn

denotes the diameter of [A] and where IAcI is a matrix which is defined later.
We mention that symmetric interval systems have also been considered by Jansson

[5]. In his paper the symmetric solution set is enclosed by an iterative process.
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2. Preliminaries. We start this section with some notations that we use through-
out the paper.

By Rn, l:t", II:t, II:t’, Ilrlren, we denote the set of real vectors with n
components, the set of real m n matrices, the set of intervals, the set of interval
vectors with n components, and the set of m n interval matrices, respectively. By
"interval" we always, mean a real compact interval. Interval vectors and interval ma-
trices are vectors and matrices, respectively, with interval entries. We write intervals
in brackets with the exception of degenerate intervals (so-called point intervals) which
we identify with the element being contained, and we proceed similarly with interval
vectors and interval matrices. Examples are the ith column e(i) of the n n identity
matrix I and the null matrix O. As usual, we identify ixi and IRxi with/n
and IRa, respectively. We use the notation [a] [a, ] E IR simultaneously without
further reference and, in an analogous way, we write Ix]- [x, 5]-- (Ix]i) E Itn and
[A] [A,] ([a]ij) E I1nxn. For [a], [b] E IR we define

(2.1)

a := (a +
I[ ]1 "= ma {l_al, I 1}

d([a])
q([a], [b]) "= max{l__a _hi,

1141 +

midpoint,

absolute value,
diameter,

distance,

For interval vectors and interval matrices, these quantities are defined entrywise, i.e.,
they are real vectors and matrices, respectively. In particular, Ixl ([xi[) G Rn for
point vectors x. We equip/n and also/ with the natural partial ordering <_. In
addition we write x < y or, equivalently, y > x for vectors x-- (x), y (y) R if
xi < yi for 1,..., n. With the definition

0 if 0 E [a] e IR,([a]) :=
min{lal, Igl} otherwise,

we construct the comparison matrix ([A])"= (cj) e 1nn of [A] by setting

([a]ij) ifi =j,:.-.
-I[a]ij[ if j.

We call [A] IRn’ regular if no matrix A e [A] is singular, and we write p(A)
for the spectral radius of A Rn’. Intervals [a] are named zero symmetric if a -.
For interval vectors and interval matrices zero-symmetry is defined entrywise.

We close this section by noting equivalent formulations of nonempty intersections
of intervals and by recalling two properties of the function/3 above, which are proved
in [6, Lemma 1.7.5, p. 28].

LEMMA 2.1. Let [a], [b] Ilrl. Then the following properties are equivalent.
(a) [a] F [b] O.
(b) a < b and-d >_ b.
(c) la- D] <_ 1/2d([a])+ 5d([b]).
LEMMA 2.2. With from (2.1) the following properties hold.
(a) If [a]i, [b] e I/, [a]i C_ [b]i for i= 1,..., n, then

/3 ([all..... lain, [b]l..... [bin _/ ([a]l, [b]l)..... fl([a]n, [bin)
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(b) /f [a], [b] e IR, [a] C_ [b] and ([a]) :> q([a], [b]), then

([a] -1, [b] -1) (([a]) q([a], [b]))-1,
where [c] -1 := { c-llc e [c] } for [c] e I, 0 [c]

3. The solution set S. In this section we recall some properties of the solution
set S defined in (1.2). To this end, we always assume that a fixed regular interval
matrix [A] E IRnn and a fixed interval vector [b] E IR are given. Then the
elements of S can be characterized in two equivalent ways.

THEOREM 3.1. The following three properties are equivalent.
(a) x S;
(b) Ix d([A])x + d([b]);
(c) [A]x [b] 0.
The equivalence (a) (b) is known as Oettli-Prager criterion [7], the equivalence

(a) (c)is due to Beeck [3]. We will omit the proof.
To derive some more properties on S we decompose R into its closed orthants

Ok, k 1,... ,2n, which are uniquely determined by the signs s {-1, +1}, j
1,... n, of the components of their interior points. Hence, if O denotes some orthant,
fixed by the signs s,... ,Sn, then x (x) O fulfills

>_0 ifsj=l,(3.1) xj <_0 ifs=-l.
For [A], [b] as above, and for i, j 1,..., n, let

(3.2) ci :- aij if sy 1,
ij if sj 1,

(3.3) dij := ij if s 1,
aij if sj -1o

Denote by Hi, Hi, the half spaces

(3.4)

Hi

n

y e lnl EciJYJ i
j=t

y e l:lnl E diyyj >_ b
j-’l

i-- 1,...,n.

Note that Hi, Hi depend on the choice of the orthant O. By means of these half
spaces we can represent S N O in the following way (cf. also [8, Cor. 1.2]).

THEOREM 3.2. Let [A] IRnn be regular and let 0 denote any orthant of l:tn.
Then

n

(3.5) s n 0 n .i) n O.
i--1

In particular, if S N 0 is nonempty, it is convex, compact, connected, and a polytope.
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S is compact, connected, but not necessarily convex. It is the union of finitely
many convex polytopes.

Proof. Let [a] E IR, R. Then. [a] { [a, Cd] if > 0,
[, a] if < 0.

Hence (3.5) follows from Lemma 2.1(a), (b), from Theorem 3.1(a), (c), and from the
definition of Hi, Hi.

Since O, Hi, Hi are convex, the same holds for S g O because of (3.5). This
in turn shows that S N O is connected. The compactness and the connectivity of S
follows from the same property of [A] [hi and from the continuity of the function

g" [A](A,b) A-]b,
the range of which is S. Now S being compact the same holds for S r O since O is
closed. The remaining property of S follows trivially from

2

s= U (,s, n
j=l

and from (3.5), where Oj, j 1,..., 2n, denote the orthants of Rn numbered arbi-
trarily. El

That S can be nonconvex is seen by the following example.

(1 0)( [-1,1] ) Then S is given byExample 3.3. Let [A] [-1,1] 1 [b] 0
S-- {(x, Y) IlYl < Ixl <- 1} as illustrated in Fig. 1.

THEOREM 3.4 Let [A] be a point matrix. Then S is a parallelepiped; in partic-
ular, S is convex.

Proof. Let [A]- [A, A], and denote the columns of A-1 by cl,..., cn. Then

{ }S A-lb + t dl 0 <_ tj <_ d([b]j), j 1,...,n
j--1

This proves the theorem, rl

We remark that a necessary and sufficient criterion for the convexity of S can be
found in [9].

4. On the symmetric solution set sym. We now turn over to the symmetric
solution set Ssym defined in (1.1). We again assume [A] IRnxn to be regular, and,
in addition, to fulfill

which is equivalent to A AT and T.
We first prove two simple properties of sym.



ON THE SYMMETRIC AND UNSYMMETRIC SOLUTION SET 1227

--1

\

/
/

Y

1

-1

X

FIG. 1. The shape of the solution set S in Example 3.3.

THEOREM 4.1. Let [A] [A]T E I1:nn be regular. Then Ssym is compact and
connected.

Proof. Define [A]sym :-- (A e JAil A- AT}. Then

[A]sym x [b] Rn,
(4.1) f" (A, b) H A-lb

is continuous. Let {Ak} be an infinite sequence from [A]sym. Since the (1, 1)-entries
of Ak are all contained in the compact set [a]l, there is a subsequence {A(1) } of
{Ak } such that its (1, 1)-entries are convergent. By the same reason one can choose a

subsequence {A(k2) } of {A(k1) } such that the (1, 2)-entries are convergent. It is obvious

that the (1, 1)-entries of {A(2) } keep this property. Repeating the arguments by
running through the indices (i, j), 1 <_ i <_ j <_ n and taking into account the
symmetry of Ak shows that there is a convergent subsequence of {Ak }, which proves
[A]sym to be compact. Therefore, [A]sym x [b] is compact, and the same holds for the
range Ssym of f.

If A1, A2 [A]sym then the line segment A + t(A2 A) [A]sym, 0

_
t

_
1.

Hence [A]sym is connected and also [A]sym [b]. Using the continuous function f
from (4.1) once more shows Ssym to be connected, v1

We next investigate Ssym in the 2 2 case more carefully. To this end, as in 3,
we fix an orthant O given by the signs s,..., Sn of the components of its interior
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points. We define Hi, Hi as in (3.2)-(3.4) and e, f E I:ln by

if si 1,
ei - if si 1,

f’=l i ifs=l,
b if si -1.

For n 2 we use the sets

(4.2) c- := {u e a22Y2- flYl + e2Y2

_
0},

(4.3) C+ := {y E R21-ly- a22Y22 -ely + f2y2 >_ 0}.
Obviously, each of these two sets has a conic section as boundary provided that

a2 +2 0 for C- and, similarly, 2 + a22 : 0 for C+. As for the hyperplanes
Hi, i in 3 we point out that C-, C+ depend on the choice of the orthant O.
However, the type of the conic section is independent of O if one does not distinguish
between hyperbolas and pairs of intersecting straight lines, and if one considers a
single point as an ellipse. If each symmetric matrix from [A] is positive definite then

aii > 0, i 1, 2, hence the boundary of C- and C+ is formed by hyperbolas in the
above-mentioned generalized sense.

We now describe Ssym in the 2 2 case by means of S, C-, and C+
THEOREM 4.2. Let [A] [A]T e IR22 be regular and let 0 denote any orthant

of R2. Then

(4.4) Ssym l O S N O l C- C+

In particular, if Ssym n O is nonempty, it is compact, but not necessarily convex.

Proof. The compactness follows from Theorem 4.1. The nonconvexity is shown
by Example 4.4. It remains to prove (4.4).

C_ Let x sym n O. Then x S O, and there exists a symmetric
matrix d e [A] and a vector b e [b] such that Ax b. With It] [a]12 [a]2 and
t ": a12 a21 we get

(4.5) aix + tx2 b
(4.6) tx + a22x2 b2

Multiplying (4.5) by x and (4.6) by x2 and substituting txx2 we obtain

ax2 a22x22 bx b2x2

Thus

(4.7) xT( xo

whence, by Lemma 2.1, we get equivalently

ax -ax _< flX ex
x2 -a22x >_ ex f2x2

This means x C- and x C+, respectively. Therefore, Ssyn gO C_ S O C- C+.
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D Let

(4.8) x SNONC- NC+

Since x E S, there are A E [A], b E [b] such that

(4.9) Ax b

holds. We are going to show that A [A] in (4.9) can be chosen to be symmetric
when changing b [b] appropriately. To simplify the notation we use

tl := a12 e [a]12 and t2 := a21 e [a]21 [a]12 =: It]

for the two off-diagonal entries of A in (4.9).
If t t2 then x sym CI O. Therefore, assume t t2, say

(4.10) tl < t2.

If xl 0 then A can be replaced in (4.9) by the symmetric matrix

thus showing x sym N O Analogously one proceeds for x2 0
Let now xl = 0 and x2 0. We first consider the case xl > 0, x2 > 0, which, by

(4.8), means that O is the first quadrant of R2. Our proof is based on the equivalence
of (4.9) with

bl allXl b2 a22x2(4.11) tl e It], t2 e [t].
X2 Xl

Assume x -sym ["10. This means that b e [b] and A e [A] from (4.9) cannot be
replaced such that (4.9) is satisfied for some symmetric matrix Asym [A] and some
suitably modified vector b G [b]. Taking into account (4.10) we consequently obtain

bl _allXl 52 22x2(4.12) _t

_
tl

_
tmax :--- < tmin

_
t2

_
t,

X2 Xl

whence

Since we supposed O to be the first quadrant this implies x C-, which contradicts
(4.8).

Replacing (4.10) by tl > t2 and assuming x Sym O yields

b 11xl b2 a22x2t

__
t

__
rEin :-- > tmax t

X2 Xl

from which we get the contradiction x C+. Therefore,

(4.13) S ["I O C- C-l-

_
Ssym N 0

holds if 0 is the first quadrant 01.
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Let now x E O O1, xl 0, x2 0, sl sign(x1), s2 :-- sign(x2), D :=
diag(sl, s2) E R22. Then (4.9) is equivalent to

(4.14)

with := DxADx e Dx[A]Dx =: [], 2 := Dxx e 01, [ :-- Dxb e D[b] =: []. Let
S, Ssym, C-, C+, el, f be associated with the given quantities [A], [b], and O, and
let , sym, -, +, i, ]i be the corresponding quantities associated with [], [/],
and O1. Since

and

{ bl if :max{sl[b]l} ]1slfl= -hi if sl= -1

h if se 1 } min{s2[b]2} 2,se= - if s= -1

we get from y C- the inequality

0 > +
a22Y2 ]11 + 2)2,

where ) :--- Dy Hence y E C- implies ) (-, and analogously y C+ yields
) (+. Therefore, x S N O N C- N C+ results in E N O1 - g (+ whence

(4.15) e ym O1

as we have proved above. Since (4.15) implies sym / for some symmetric matrix

2sym [2] and some right-hand side [/], it yields x e Ssym f"l O via (4.14).
The generalization of Theorem 4.2 for the case n > 2 is not straightforward since

the elimination process performed in the proof does not seem to work in this case.
Since x E C- C+ is equivalent to (4.7), we obtain immediately the subsequent

corollary from Theorem 3.1(a), (c) and from Theorem 4.2.
COROLLARY 4.3. For regular matrices [A] [A]T e IR2x2 and [b] IR2 the

following properties are equivalent.
(a) X sym.
(b) [A]x [b] = 0 (i. e., x e S) and

xT ( [hill 0 ) xT ([b]l)0 -[a]22 x 3 -[b]2 : 0.
Note that in contrast to Theorem 4.2 no orthant enters explicitly in Corollary

4.3. Therefore, it can be viewed as an analogue of Theorem 3.1.
We now illustrate Theorem 4.2 by two examples. In particular we show that Ssym

can be nonconvex in the orthants and that its boundary can be curvilinear.
Example 4.4. Let

(5 [-4,0] ) and [b].=(9 )[A] "= [-4,0] 5 0

With

5 tl ) tl t2 E [-4, 0],At,t :-
t2 5
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we get

A_ 1 / 5
t,t. 25- ttt2 , -t2

(4.16) A_ (9) 1 (45) t,t2[-4,0].t,t 0 25 tt2 -9t2
Hence S nd Ssym are completely contained in the first quadrant O. With the
notations of 3 and 4 we obtain

HI-{y /2 5yl -4y2 _< 9} l={y R2[ 5yl 9}
2={yR2} _4yl+5y20}, 2={yR2 5y20},

hence S gHg2H2DO1 is the triangle with the vertices (1.8, 0), (1.8, 1.44),
and (5, 4). To describe Ssym we list the sets

C- {yR2] 5y-5y-9yl 0},

Then K "= C- C+ is the hyperbola

K- - _= al
100

By (4.16) or by Theorem 4.2 one can see that Sy is that part of the right branch of
K which lies between the points (1.a, 0) and (g, 4). The sets S and Sym are illustrated
in ig. 2.

Our next example shows that parts of a parabola, of a circle, and straight lines
can also form the boundary of Sy.

Ezmle 4.. Let

(1 [1,2] ) ( 4 ) ( 1 )[A[1, 1 [-1,0] [b].= [1, 1
with , [1,2], e [-1, 0]. Since act A,, 7- -1, the interval matrix

[A] is regular with

’’ det A,, - 1

Wihb >2b >2wegetA- -b>0foranychoiceA,, [A] b [b] Hence
S and sym are completely contained in the first quadrant O. Using the notation
above we obtain for O the following sets:

1 {Y e R21 Yl + Y2 4},1 {Y e R2I Yl + 2y2 4},
2={yeR2Iy-y22},2={yeR2I 2y11},

C- {y E/:/21 y2 4y + Y2 _< 0} {y E R21 Y2 _< 4- (Yl 2)2},
C+ ={yeR2ly2+y22_4y1+2y2_>0} --{yeR21 (yl-2)2+(y2+1)2>_5}.

The set S H [1NH2II2I’IO1 is the convex hull of the points (1/2, 1/4), (1/2, ), (, ])
and (3, 1). The boundary of Sym S C’101 C-C+ is formed by the following four
curves.
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5

3

Saym

1 3 5 x,

FIG. 2. The shape of the solution sets S and Ssym in Example 4.4.

(i) The straight line between (1/2, 1/4) and (, ).
(ii) The straight line between (1,3) and (3, 1).
(iii) The part of the parabola y2 4- (yi 2)2 between (1/2, 1/4s and (1, 3).
(iv) The part of the circle (yl 2)2 + (y2 + 1)2 5 between (5, ) and (3, 1).

The situation is illustrated in Fig. 3.
5. Computing enclosures for sym- As was shown in [2], Ssym can be enclosed

by the vector Ix] C, which results from the following interval version of the well-known
Cholesky method, for which we assume [A]- [A]T E IRnn, and [b] E IRn.

Step 1. "LLT decomposition"
for j 1 to n do

[1]jj :-- [a]jj -[/l2
jk

k--1
for i := j + 1 to n do

[1 -= [a] -[][1 /[]
k--1
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5

3

1 3 5 x
FIG. 3. The shape of the solution sets S and Ssym in Example 4.5.

Step 2.

Step 3.

Forward substitution
for :-- 1 to n do

j-1

Backward substitution
for := n downto 1 do

( n )j--iT1

ICh([A], [b]) := Ix]c

Here,

(5.1)

and

[a] { e [] }

Jail/2 V/ :_. { [a]}

for intervals [a].
In contrast to the classical, i.e., noninterval Cholesky method, it is an open ques-

tion when the interval Cholesky method is feasible. In [2] several criteria are given that
guarantee the existence of Ix] C. We add here two new ones as well as a nonexistence
criterion, which we formulate first.
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THEOREM 5.1. If [A] [A]T E IRnn contains at least one symmetric matrix
A which is not positive definite, then Ix]C does not exist.

Proof. We first recall that a real symmetric matrix has an LLT-decomposition
with positive diagonal entries lii if and only if this matrix is positive definite (see [11]).
L can be computed by the Cholesky method. Assume now that A AT e [A] [A]T
is not positive definite. Then the Cholesky method will break down. This is the case
if and only if for some index j either ljj cannot be computed because of

(see Step 1) or yi cannot be computed because of lii 0 (see Step 2). By the inclusion
monotonicity of the interval arithmetic, either [1]jj does not exist, or 0 [/] and the
interval Cholesky method will break down. U

Example 4.5 illustrates Theorem 5.1: Since

-1 [A]= [1,21 [-1,01

is not positive definitive, [x]C does not exist for [A]. Note, however, that the interval
Gaussian algorithm is feasible for this interval matrix.

Before formulating our new feasibility criterion we need some preparations.
By Theorem 3.4 in [2] we have for [y] from Step 2 in the interval version of the

Cholesky method

[y] [D*] ([Ln-if ([Dn-if (... ([L2] ([D2] ([L1] ([D1][b]))))...)))
and

(5.2) Ix]C [D1] ([LXlT ([D2] (... ([Ln-2]T ([D’-1] ([L’-I]T ([Dn][y]))))...))),

where the diagonal matrices [D8] and the lower triangular matrices [Ls] are defined
for s 1,...,n- 1 by

1 ifi=j#s,
[dS]ij := 1/[/]ss if j s,

0 otherwise,

1 ifi =j,
[/]ij:= -[1]is ifi>j=s,

0 otherwise,

with [1]j from the Cholesky method. (Note that [1]j is computed in the jth step of
the "LLT-decomposition’’). By (5.2) it is easy to see that the mapping

IRn .-+ IRn,
(5.3) f" [b -+ ICh([A], [b])

is a sublinear one in the sense of [6, p. 98], i.e.,
[b] c_ :. f([t,]) c_

(ii) a R = f(o[b]) of([b])
(iii) /([b] + [c]) G /([b]) + /([c]) for [b], [c] e IRn.
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An easy computation yields

[D=] I. [L=-] I. [D=-] [L=] I. [D=] [L1] [D1] <[L]> -1

again with ILl ([/]ij) from the Cholesky method. Hence, for the particular "right-
hand side" [] :-[-1, lie, where e (1,..., 1)T, one gets

With the abbreviation

(5.4) I[A]C I:= {[LIT} -1 {ILl} -1,

one therefore obtains for any [b] C_ [] the inclusion

ICh([A], [b]) C_ I[AICl [/]

Thus, I[A]c can be thought of as a measure for the width of the enclosure ICh([A], [b])
of Ssym that does not depend on the right-hand side [b] as long as [b] is contained in

[/]. The condition [b] C_ [/] can be considered as a sort of normalization. If it no

longer holds, replace [/] by t[/] with t > 0 as small as possible such that [b] C_ t[] is
valid. Then

ICh([A], [b]) c_ t] [A]C [/],

hence t [A]C is a corresponding measure.
By (5.2) we also get

hence [A]C is the absolute value of the sublinear mapping f in the sense of [6, p.
100]. By an elementary rule of the diameter d (cf. [1]) one proves at once the property

d(f([b])) >_ [A]C d([b])

of f which is then called normal in [6, p. 102].
We next recall an equivalent definition of Step 1 in the interval Cholesky method.
DEFINITION 5.2. ([2]) Let either [A] ([a]) e IR or

)[A’] [AIT e 11nn, ? > 1, [c] e 11:n-l,

[A’] E IR("-)(n-).

(a) E[A] := [A’]- (1/[a]) [c][c]T e II(n-1)(n-1) is termed the Schur comple-
ment (of the (1, 1) entry [a]l) provided n > 1 and 0 [a]. In the product
[c][c]T we assume that [c]i[c]i is evaluated as [c]2 (see (5.1)). E[A] is not
defined if n 1 or if 0 [a].

(b) We call the pair (ILl, ILlT) the Cholesky decomposition of [A] if 0 < al and
if either n 1 and ILl (v/a]) or
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4[a]ll 0 )[L] [c] [L’]

where ([L’],([L’])T) is the Cholesky decomposition of E[A] provided that
it exists.
As was shown in [2] the matrix [L] of the Cholesky method and that of the

Definition 5.2(b) are identical.
The proof of our main result, Theorem 5.4, is heavily based on the following

lemma.
LEMMA 5.3. Let the Cholesky decomposition (ILl, ILlT) of [A] [A]T e IRnn

exist, and let [B] [B]T D_ [A] be such that for a suitable u > 0 we have

q([A], [B])u < ([L]}([L]T)u.

Then the Cholesky method is feasible for [B].
Proof by induction. The proof proceeds similarly as for Lemma 4.5.14 in [6].
Let n 1. Then (5.6) implies u > 0. Again (5.6) together with 0 <all yields

(_all- bll)u _< q([A], [B])u < {[a]ll)U allU,

hence

0 < bll?.t

follows. This shows 0 < bll ([bill) which proves the existence of ICh([B], [b]) for
n--lo

Assume now that the statement is true for some dimension n _> 1, and let (5.6)
hold for

(5.") [A]--( [a]ll [c]T )C [B] ( [bIll [d]T ) (n+l)
[C] [A’] [d] [Bt] e l/(n+l)

We first show bll > 0. With

(5.8) q([A], [B])--(qij)- qllr Qt

we get from (5.6)

n-t-1 n+l

E qljUj < ([a]ll)Ul E l[a]lj[Uj
j=l j=2

hence

n+l }al ,, ([1/- ql > (q + [] I) /1 >_ o.
j--2

Together with (5.7) this implies 0 < bll ([b]11/, whence the Schur complement
E[B] _D E[A] exists.
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By our assumptions, the Schur complement [A] has a Cholesky decomposition
(I/q, [L’]T). If we can show that

(5.9) q(E[A], E[B])U’ < ([L’])([L’]T)u
holds for some vector u’ > 0 then [B] has a Cholesky decomposition, say ([/], [,]T),
by the hypothesis of our induction, and with

o)[,1 := [d] [L’I

we obtain the Cholesky decomposition ([L], [L]T) of [B].
To prove (5.9) we apply/3 from (2.1) componentwise, and use the notation from

(5.8) as well as that of Lemma 2.2. We then get

(.10)
q(E[A], E[B]) q ([A’]- [c][c]T[a]-{), [B’]- [d][d]T[b]-{11)

<_ Q’ + q([c][c]T[a]-{11, [d][d]T[b]-{)
Q’-I[c][clT[a]dl+ 13([c][c]T[a]l1, [a][d]T[b]1)
Q’_ [c] [c]Tl([a]11} -x + Z([C][c]T[a]-, [d][d]T[b]-{1)

<_ Q’ -I [a] [tIT ([dill) -1 +/([C], [d])-/([a]T, [d]T) /([a] -:, [b] ]-1)
Q’ -I [c] ][c]T (Jail1) -1 -t- (I []1+ r)(I [c] -+- r)TZ([a]:, [b])

We now want to apply Lemma 2.2 (b) on the last factor in (5.10). To this end we
must show

(5.11) <[a]x> > q([a]l, Ibid,) qx

Therefore, we set u u’ in (15.6). With (15.15) and with the notation (15.8), we
then obtain

Ul 4([a]11) 2/1qli

Q’ u’ < l[c]l <[L’]) 4<[a]11> u’r
V/<[a]l> 0 <[L’]T>

whence

(5.12) qll2Zl + rTlt < <[a]11>Ul --I[C]T [Ut
and

(5.13) ru + Q’u’ < --I [c] lu + [c] [[c]T <[a]x>-lu + <[L’])<[L’]T>u
Since u > 0, the inequality (5.12) implies (5.11), and Lemma 2.2(b) and (5.10) yield

q(IAl, rIsl) <- Q’-I [c] [c]Ti([a])- + ([ []1+ )([ []1+ r)T(([a]) q11) -1

Together with (5.11), (5.12), (5.13), this implies

q(E[n], E[B])U’ Q’u’-[c] [c]T ]([a]l>-u
+(] [c]l+ r)(<[a]11) q11)-1(] [C]I+ r)Tu

< -1 -[[1 [1 + ([L’]) ([n’])
+(I [c][+ )(([]) q)-l(([a],) q)
([n’])([n’]T)u’.
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This proves (5.9) and terminates the induction.
We are now ready to prove our main result.
THEOREM 5.4. Let [A], [B] e IRnn, [A] [A]T, [B] [B]T, and suppose that

ICh([A], [b]) exists. If

(5.14) P(I [A]CI q([A], [B]))< 1,

then the Cholesky method is feasible for [B].
Proof. Let Q := q([A],[B]), IV] := [A] + [-Q,Q]. Then [B] C_ IV], and

ICh([B], [b]) exists if ICh([C], [b]) does. By (5.14) the inverse of I- I[A]C]Q ex-
ists and can be represented as Neumann series

(I- [A]CIQ) -1 (I [A]C IQ) >- O.
k=O

With any v E Rn satisfying v > 0 define

(5.15) u := (I- [A]C IQ) -1 [A]C Iv.

Since [AlC >_ 0 and (I -I[A]C IQ) -1 >_ 0 are regular each of their rows contains at
least one positive entry. Therefore I[A]C Iv > 0 and u > 0. Now (5.15) yields

[A]CIQu u- I[A]C Iv,

whence

Qu ([L])([L]T)u v

< (L)(L)Tu,

with (ILl, ILlT) being the Cholesky decomposition of [A]. Hence, Lemma 5.3 guaran-
tees the feasibility of the Cholesky method for [C] and therefore also for [B]o

We illustrate Theorem 5.4 by a simple example.
Example 5.5. Let

4 2 2 )[B] := 4 [0, ]
2 [0, 2] 4

Then ([B]). (1,1,1)T O, hence ([B]) is singular. In particular, ([B]) is not an
M-matrix (which requires ([B]) -1 >_ 0; cf. [2]), whence, by definition, [B] is not an
H-matrix. Therefore, Theorem 4.2 in [2] does not apply. Consider now

4 2 2)[a] := 2 4 1
2 1 4

Since ([A]} is irreducibly diagonally dominant, the interval Cholesky method is feasible
for [A] by Corollary 4.3 (ii) in [2], for example. A simple computation yields

ILl= 1 0 ([L])-I= x/-
1 2 0

1 0 / 6 1 0 2
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and

[A]Cl ([LIT) -I([L]) -1 2 4 0
12 2 0 4

From

0 0
q([A], [B]) 0 0

0 1 0)
we get the matrix

[A]CIq([A], [B])

1 1o
1o o

1o o

which has the eigenvalues -1/2, 0, 1/2. Therefore, Theorem 5.4 applies. The elements
[[]ij that result from the interval Cholesky method for [B] are given by

2 0 0 )ILl 1 0
1 [-1,1]/- [/-, 3]//

Our example also illustrates the following corollary.
COROLLARY 5.6. Let the midpoint matrix A of [A] [A]T E IRnxn be positive

definite, and assume that

Then the interval Cholesky method is feasible for [A].
Proof. Because of [A] [A]T, the matrix . is symmetric. Since it is positive

definite by assumption, the interval Cholesky method is feasible for when viewed
d([A]) the assertion is a directas a point matrix. Taking into account q(, [A])

consequence of Theorem 5.4. D

6. Concluding remarks. We stress the fact that the main purpose of this paper
is to give criteria for the feasibility of the interval Cholesky method. If this feasibility
is guaranteed--for example, this is the case if one of the criteria presented in this paper
or in [2] holds--the question arises immediately how close the symmetric solution set
Ssym is included. Especially, what is the relation between the results of applying
the Gaussian algorithm (or some other method) and the interval Cholesky method,
respectively? In [2] it was shown by simple examples that generally no comparison
is possible. The examples from [2] can be generalized to arbitrary large dimensions
n > 2 without any difficulties. Hence up to now it is not clear under which conditions
on the given interval matrix the interval Cholesky method is superior to the interval
Gaussian algorithm or vice versa. The investigation of this question and/or some
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statistics about the width of the bounds for systems of larger dimension will be part
of further research.

We also mention that for a given real system a very careful analysis of the floating-
point Cholesky decomposition was performed in [10]. If the matrix as well as the
right-hand side are afflicted with tolerances then bounds are computed for the set of
all solutions for data within tolerances.

Acknowledgments. The authors are grateful to two anonymous referees for a
series of comments and remarks that improved the paper considerably.
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A DOMAIN DECOMPOSITION METHOD FOR FIRST-ORDER PDES*
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Abstract. In this report a nonoverlapping domain decomposition method to solve first-order,
time-dependent partial differential equations is developed. The time discretization used is implicit,
which gives a large system of equations to solve for each time step. Preconditioners with a fast
inversion based on a fast modified sine transform are defined. Theoretical analysis of the method
is presented, indicating that the ratio in the grid might be crucial for the convergence. Finally
numerical results from a parallel implementation on an Intel Paragon are presented, showing very
nice properties. Especially a nonuniform decomposition of the domain leads to very good results.

Key words, first-order PDEs, domain decomposition, fast modified sine transform
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1. Introduction. We consider systems of time-dependent, first-order partial dif-
ferential equations in two space dimensions

(1)

Ou Ou Ou
+ Sl(Xl, x2)-x-- + B2(xl,x2)-x-- g, x e fl, t >_ 00-

+boundary conditions

+initial conditions.

Here B1 and B2 are nc x nc-matrices, and u and g are nc-vectors.
Systems like (1) are often discretized explicitly in time. In problems with different

time scales, where we are only interested in the slowly varying part of the solution, the
restriction on the time step due to the Courant-Friedrichs-Lewy (CFL)-criterion for
the fast oscillations becomes unrealistic in some applications. If we are only interested
in the slowly varying part of the solution, we can discretize implicitly in time with
a large time step and still obtain an accurate solution [8], [9], [20]. Then a semi-
implicit or an implicit discretization in time is preferable. This gives a large system
of equations

(2) Au=b

to solve for each time step.
The time step used may be large compared to the smallest space step. Hence A

may be strongly nondiagonally dominant. Moreover it is nonsymmetric. Holmgren
and Otto have investigated a number of iterative methods and block or semicirculant
preconditioning matrices for (2), showing very good results, [14], [15]. In [11], [12],
preconditioners based on a Toeplitz structure are examined, showing similar results.

Large scale problems will still be very time expensive, and the necessity to use
a more efficient method becomes obvious. Over the past several years much effort
has been focused on investigating domain decomposition methods on multiprocessor
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berger December 1, 1994. This work was supported by the Swedish National Board for Industrial
and Technical Development, NUTEK, contract 9303806.

Department of Scientific Computing, Box 120, S-751 04 Uppsala, Sweden (:t+/-na(C)tdb.uu.se).
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computers, [3]-[5], [16]. In these techniques, the domain is divided into several subdo-
mains. Each processor is given one or more subdomains and they can work in parallel
with communication only on the interfaces.

In this report a nonoverlapping domain decomposition method to solve (2) is
developed and examined. For semi-implicit/implicit time discretizations, the implicit
part in the semidiscrete equations often have constant coefficients. The idea presented
in this paper is to divide the original domain into subdomains where the implicit part
of the semidiscrete PDE has well-known fast solvers defined by a fast modified sine
transform [10]-[12]. To avoid the difficulties introduced by the numerical boundary
conditions, the boundaries are treated separately by a nonuniform decomposition of
the domain. The fast solver allows for variable coefficients in one space dimension,
which means that we can have a nonuniform space grid in one space dimension. This is
suitable for instance when we are computing a two-dimensional viscous channel flow.
In the other space dimension we can treat piecewise constant coefficients and still
employ the fast solver. For the case with variable coefficients in both space dimensions,
we suggest a solution method based on an iterative solver in the subdomains.

2. The domain decomposition setting.

2.1. Introduction. The first known domain decomposition algorithm was in-
troduced by Schwarz in 1869 [19]. The idea was to use known solvers for elliptic
equations on simple geometries such as circles and rectangles to solve the equation on
a more complex domain. This is known as the Schwartz alternating procedure.

In this report we study the case with nonoverlapping subdomains. In Fig. 1
the original domain is divided into four rectangular subdomains. The idea is to
reduce the original system to a smaller system for the unknowns on the interior
boundaries (dashed lines). This smaller system is called the Schur complement system.
The solution of this system includes the solution of the different subdomain systems.
These subdomain systems can be solved using known solution methods for rectangles.
Once the Schur complement system is solved, each subdomain system can be solved
separately with no communication. This can be exploited using a parallel computer.
The inherent parallelism in this solution method leads to the suggestion that one
might even use this method on more regular domains. Implementing the method on a
parallel computer could lead to a considerable gain in time. It also gives the possibility
of solving larger problems as each processor only stores the unknowns of its awarded
subdomains. We shall study a domain whose closure is decomposed into p rectangular
subdomains. For the sake of simplicity we will only consider a decomposition in which
the interior boundaries are parallel to the x1-axis. Denote the subdomains by fq and

the interior boundaries by Fq Also denote PUq--1 r-q and Fq F. Theq--1

unknowns in q are denoted by uq) and the unknowns on Fq by U(oq).
If we arrange the system so that we write the unknowns on F first and those of

last, we obtain a system of equations for the solution vector (uo, u)T, which we
express in block form as

(3)

where

Ul bl

A00 A01 )A= A10 All
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F3

F2

Pl

4

3
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FIG. 1. The domain decomposed in four subdomains.

or more explicitly expressed in terms of the different subdomains

(ll)
lO

(21)
lO

A((p- 1)(p- 1))
lO

A(ll) ,zl. (12)
Ol ""oi

A((P-1)(p-1)) ,zl.((p-1)p)
01

Those blocks which are not written explicitly are understood to be zero.

2.2. The Schur complement method (SCM). In a Schur complement method,
[3]-[5], [16], (3) is reduced to a system for the unknowns on F

(4) Cuo g,

where

C A00 AolA-A10,

and

g b0 A0A-bl.

Equation (4) is solved for u0 and this u0 is inserted into (3). The remaining
unknowns uq) can then be computed locally in tq. This computation is the same
as solving the differential equation on t with Dirichlet boundary conditions u0 on F.
The inherent parallelism in the algorithm can be exploited by using a computer with
a parallel architecture.

We now state the algorithm to solve our problem.
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ALGORITHM SCM
1. Solve Allw bl.
2. Solve Cuo bo Aow.
3. Solve Aiv Aouo.
4. Ul-W--V.

Steps 1 and 3,

(6) Solve AlXl yl

are local subdomain solves,

(7) Solve A])x) ya), q 1,.. p,

that can be effected totally in parallel with no communication. Similarly, Step 4 is
a local operation, while Step 2 demands the solution of a system that is spread over
the processors.

In this paper we use an iterative method to solve (4) and (6). We consider
PGCR(t), preconditioned generalized conjugate residuals, with restarting length t, [6],
which is a method that works well for nonsymmetric, nondiagonally dominant systems
of equations.

In some cases it might be somewhat inconvenient to use an iterative method to
solve (4), and (6). First we must decide how accurately to carry out Steps 1 and 2 in
Algorithm SCM. Then we must carry out Step 3, such that the convergence criterion
used is fulfilled. Thus the accuracy in w and u0 affects the total number of iterations
needed to obtain the accuracy called for and, consequently, the performance of the
method. Furthermore, we must deal with the subdomain solves in the matrix-vector-
multiplications Cx that we perform at each iteration step. Studying C we see that
each such multiplication requires local subdomain solves in each subdomain. Hence
a stop criterion is needed for these inner iterations, which is a parameter that also
affects the performance. In 6.2 we describe how to partly circumvent these problems,
when we have constant coefficients in one space dimension in the PDEo

3. Iterative methods. Consider a general system of equations

(8) Bx y.

PGCR is a minimal residual iteration [7], which in step k fulfills

pk ETk, pk (O)=

where Pk is the set of all polynomials of degree k,/ is the let preconditioner, rk
[-l(Bxk --y), and x is the approximation of x obtained in iteration k. If/-B is
diagonalizable we obtain

(9) min max Ip(A)l-- cond2(W_,B) k
(pkeP,pk(O)=l) 1_?

where Wh_lB is the eigenvector matrix and A are the eigenvalues of/-1B. We also
define the asymptotic convergence factor p as

(10) p-_- lim /k.



A DOMAIN DECOMPOSITION METHOD FOR FIRST-ORDER PDES 1245

From (9) we conclude that we will have finite termination in r iterations, where
is the number of distinct eigenvalues to the preconditioned system. Moreover, if

we can precondition our system such that the eigenvalues of B-1B are contained
in # dense clusters, we have a good approximation to the solution in # iterations.
Clustering of the eigenvalues may be even more important than a condition number
improvement, [1], [2], and [21]. In 5, preconditioners to (4), and (6) which yield
highly clustered spectra are presented. We also show in 6.1, that it might not be
necessary to precondition (4).

4. The model problem.

4.1. The differential equation. The model problem studied is a scalar two-
dimensional equation

(11)

OqU

Ot
Ou Ou-- O’1 (Xl)-N--- -{- (T2(X2)-A---- g,

0<xl <_l,0<x2<_l,t>0,

where al(x) > 0 and a2(x2) > 0. Equation (ii) is well-posed if we prescribe
u(x,O,t), u(O, x2,t), and U(Xl,X2, 0). We could also consider a periodic boundary
condition in either space direction. Note that since we are aiming at solving systems
of PDEs, we cannot use any particular features of the scalar equation.

4.2. Discretization. Introduce a uniform grid as

Xl,k khl k 1,...,n,

x2,j jh2, j 1,...,m.

Let uk,j denote the approximate solution at the point (Xi,k, X25). Equation (11)
is discretized in time using the trapezoidal rule with time step At. For the space
derivatives we use centered differences in the interior of the domain and one-sided
differences at the outflow boundaries (k n or j m).

(12)

U
Do,x1 uk,j,

U
Ox2 Do,x2 uk,j

k=l,...,n-1 and j=l,...,m-1,

j 1,...,m and k n,

k=l,...,n and j=m.

The relations obtained from the last two definitions will be referred to as the numerical
outflow boundary conditions.
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To give the equations a simpler appearance we define the following quantities:

At
hi’

;1,k O’1 (Xl,k)gl, k= 1,...,n,

j= 1,...,m,

ltl,1 U2,1 Un,1 1,2 ?’tn,m )T
Rearranging the equations leads to a system of equations to solve for each time step

(13) Au’+1 -b.

Here b contains known quantities and A has the block tridiagonal form

where

nl el
-G2 D2 G2

-Gin-1 Din-1 Gin-1
-2Gm D,, + 2Gm

4 ;1,1
-1,2 4 ,1,2

(14) n.= ".. ".. ".. j= 1, ,m,

-2,n 4 + 2;,n

where In denotes the identity matrix of order n. In the following we consider the
dornain decomposition defined in (3) applied to the system of equations (13).

Next we will show that for constant coefficients, the coefficient matrix C defined
in (5) is nonsingular. For constant coefficients we define

d =- O’dl’d, d 1, 2

A 4Inxm -t- llm (R) A1 -t- k2A (R) I,,

which yields

(16)

where A is a matrix of order n and A2 a matrix of order m defined by

0 1
-1 0 1

-1 0 1
-2 2
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If A is nonsingular we know that a unique solution exists, and hence the Schur com-
plement C in (4) will also be nonsingular. In order to prove nonsingularity, we restate
a lemma from [17]. Let g(a, b) denote the closed ellipse centered at the origin with
semimajor axis b oriented along the imaginary axis and semiminor axis a. Also let
+(a,b) denote the region {zlz e (a, b) and e(z) >_ 0}.

LEMMA 4.1. The eigenvalues Al,k, k 1,...,n of AI and the eigenvalues A2,j,
j 1,..., m of A2 satisfy

(i) Ad,k 7 ;d,j, k 7 j,
(ii) ,,k E g+ (4n-3/a, 2 + 4n-3/2),
(iii) ,k2,j E +(4m-3/4, 2 + 4m-3/2).
With this lemma we will now prove the nonsingularity of A.
THEOREM 4.2. The coejficient matrix A defined in (16) is nonsingular.
Proof. From Lemma 4.1 we conclude that there exist nonsingular matrices Vd,

d 1, 2, such that

A (V2 (R) V)A(V2 (R) V)-where

A 4Ixm + IIm (R) A + 2A2 (R) I diag(,k,...,

h diag(,l,,...,,,n), and A2 diag(A2,,...,A2,m).
Now from Lemma 4.1 we get

e(Akj) 4 + l)e()l,k) -- 2}e(,2,j) _ 4

which proves the theorem.

5. Preconditioners. Holmgren and Otto have investigated semi and block cir-
culant preconditioners for (13) showing very good results, [14], [1.5]. The idea is to
create blocks in the preconditioner that are circulant, and then use Fourier techniques
to compute the inverse. A somewhat similar approach is presented in [11], where the
blocks are Toeplitz with a certain symmetry. By a modified sine transform defined
in [10], the solver for the preconditioner system again is based on Fourier tectniques.
In this report we employ preconditioners based on Toeplitz blocks. Circulant precon-
ditioners have also been implemented, but since the results from these were inferior
to the ones presented here, we do not further discuss such preconditioners in this
report. However, we cannot conclude that circulant preconditioners do not work in a
domain decomposition context. Numerical spectra indicate that for larger problems
they might do, but since we are interested in all problen sizes, these results are left
out.

5.1. Definition of matrices and operators. We start by defining sone im-
portant matrices that we will use in what follows.

DEFINITION 5.1.

Aoo(D) Ip-1 (R) D,
where
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Aq) ., D
Dj, Gj,

-Gj,+I Dj,+ Gj,+I

-Gj,+mq-2 Djp+mq-2
-Gj,+mq-1

Gj,-t-mq-2
Dj’Tmq-1

q 1,...,p,

q--1where j’ q + =1 m, and Dj, Gj are defined in (14) and (15). Finally

D G),
-Gj,+I D G,+I

Aql) (D, D) ... ... ...
-Gj’+mq-2 ) Gj,+mq-2

-Gj,+,_ D

q= 1,...,p.

Next we define the matrix that will be the basis of the preconditioning matrices.
DEFINITION 5.2. Rn is the matrix of order n defined by

0 1

Those elements that are. not written explicitly are understood to be zero.
R, has the following eigenvalue decomposition

Rn R HnAnn
where Sn is the modified sine matrix defined in [10], with entries

Sn(k g) / 2 ik++sin(kE)
R RThe eigenvalue matrix AR diag( ,..., An) is defined by

 z--  cos
In the following we will define preconditioners that have a decomposition in modified
sine matrices. We terminate this section by defining some operators that we will use.

DEFINITION 5.3. Irt Table 1 we define a number of operators to be used.
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TABLE 1
Definition of operators.

C

c(

C(s2)

Operand Q
number of blocks size of blocks

1’1 nxn
ss nn
sxs nxn
sxs nxn

Definition

Equation (17)
Equation (18)
Equation (20)

1 () 1 ((qk,k+l_qk+l,k)) Rn(17) c(Q)

(s) (,) (Q)

c([Q]ll) c([Q] 12)

([Q]) ".. -..
"’. "’. c([Q]s-l,s)

c([Q],_l) c([Q],)

(19)
I)(Q)__ [is ( (E;-----I[Q]j,J)]--2(sl--1) [Rs ( (E;_ ([Q]j,j+I- [Q]j+I,j))]

5.2. Definition of preconditioners. In this section we define the precondi-
tioners ( to (4), and 1 to (6). We start with which is defined by

(20) 11 (’, D) diag(Al (., D),..., ei,] (., D)),

where

We also define

)(., D) 7(1) A]) (.mq( ,n)), q-1,...,p

O(D) Aoo(D) AoA-[(D,D)Ao,
where

and

Aoo(D) C(p (A00(D)),

and

]) (D, D) c(2) (A) (D D)),mq

All(D, D) diag(All)(D, D),... ,A{Pl)(D,D)).



1250 L. HEMMINGSSON

5.3. Preconditioner solve.

5.3.1. Schur complement preconditioner. From the definition it is clear that
D) has the following decomposition:

(21) (D) (Ip-1 (R) Sn)U(D)(Ip-1 (R) SHn ).

The matrix U(D) is sparse with only three nonzero diagonals

(22) U(D)

A(1) (D)A(1) (D)
O(2) (D) ".. ...

O(P-1) (D)
A(p-2) (D)
A(p-) (D)

where

Here

A(q)(D)) /A(q)(D) diag(Aq)(D),... 5(q)A(q)(D) diag(5q)(D),.. (D))
O(q) (D) diag(Oq) (D),..., O(nq) (D))

q--1,...,p-1.

mq+l
Smq+l (1,j)SmHq+ (j,1)

./=1

Smq+l (1,j)SHmq+l (j,mq+l)5(kq) (D) -2,ff+l2,ff+mq+l+a ET____q?
4+2igl(D) cos(n_i)+2ig2(O,q+X)coS(mq+l+l_ Jr

Smq (mq,j)SHmq (/,1)Oq)(D) -u’3+u’s-’q+ ’Jm-J1 a+,l(n)co()+,(n,q) mq+l

k 1,...,n, q 1,...,p,

where ff q- 1 + ’-1 me and

n-1

gl(D)
2(n- 1) kl(gl’k= + k,k+l),

jstop
1

g2(D,q)
2(mq 1 E (k2,j + 2,j+11, q 1,...,p,

3 start

q--1jstart q + Ee=x me, and jstop q 2 + E=I me.
From (21) and the fact that Sn is unitary it is clear that the solution of

O(D)x y

is defined by
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ALGORITHM SCHUR COMPLEMENT PRECONDITIONER SOLVE

1. w (Ip-i (R) sH )y.
2. Solve U(D)z w.
3. x (Ip_ (R) Sn)Z.

Steps 1 and 3 are p- 1 modified sine transforms and inverse modified sine trans-
forms, respectively. The transforms can be computed completely in parallel. In [10]
it is shown that each such transform can be accomplished using O(2.5n log2 n) oper-
ations, provided that n + 1 is a power of 2. The system defined in Step 2 and (22),
decouples into n systems of order p- 1. These systems that are spread over the pro-
cessors are solved using cyclic reduction, [13]. By symmetry only half of the number
of systems must be solved ,for, [10].

5.3.2. Subdomain preconditioner. The subdomain preconditioner flll is de-
fined in (20). The inversion of 211 decouples into p independent local solves. Hence
they can be performed in parallel with no communication. In [11] it is shown that

q)(.,D) (S,q (R) I,)T(q)(.,D)(SHq (R) I,),

where T(q)(., D) is sparse with only three nonzero diagonals. Hence

"(q) (q) Y(q)i(23) -Ii Xl

can be solved using the following algorithm.
ALGORITHM SUBDOMAIN PRECONDITIONER SOLVE

(q)

2. Solve T(q) (., D)z w.

3. xq) (S’ITI, (R)

By he previous section it is dear that Steps 1 and 3 are n ransforms requiring
0(2.5m log2 mq) operations each. Step 2 yields he solution ofm gridiagonal systems
of order n. By symmetry we must only solve for half of the number of systems.

6. Theoretical analysis. Here we consider (11) with a a2 1. Initially, we
state a lemma that we use in the following. The proof can be found in [12].

LEMMA 6.1. Let a be a complex number with e (a) > O, and fl > 0 real. Then

I),t(a, , N)
2

N sin N+l ) sin \

N+I1"= 2a + 2ifl cs ( -AS-)N+
i [zk+t zlk-l (z-k zk)(z-t

-’ ,
Z Z-1

"Jr" Z_Z-1 1 z2N+2 J
where

z=i
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6.1. The Schur complement system for a semiperiodic problem. Here
we theoretically analyze the semiperiodic problem, i.e., we impose periodic boundary
conditions in one space direction. We replace (12) by

,’ Do,x1 uk,j

cu
’ Do,x2ukOx2 ’J’

k=l,...,n-1 and j=l,...,m-1,

Ou U ,j Un- 1,j, j- 1, ooo,m,
Oxl 2hi

D-,x2 uk,j, k=l,...,n and j=m.

We consider the two-domain decomposition and restrict our formulation to the
case m m2. The latter condition is not necessary, it is just to simplify the notation.
The coefficient matrices then become

(24) A00 D,

-G b G

(2) ) -. .. ..
-G D G

-G /)

and

/) G
-G b G

(26) A21 ". ". ".

-a b
-2G / + 2G

where

and G a2I,. We also have

o, =(0 o -o),

01 --(e 0 0),
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11) _(A(oII))TI0

and

2) (A(12))T.10 --01

We are going to study the eigenvalue decomposition of C defined in (5), whenA
is defined through (25) and (26). We start by considering the eigenvalue decomposition
of A]), q 1, 2. A11 defined in (25)is block Toeplitz with circulant blocks, which

means that it has an eigenvalue decomposition as All (Sml ( Fn)A()(SHml (R) FnS),
where Fn is the Fourier matrix defined by

Fn(k,g) k g=l n.

The eigenvalue matrix A(t) is defined by A(’) diag(At),... ,A), where At)

diag(Ai),..., 1]), and

( ) ( " ) k:l, n,j:l, m.(1) 4 + 2ia sin 2(-) + 2ia2cos ml+l’kj n

Since it is the eigenvalue decomposition of C we really are interested in, we observe
_A(ll) --1A(11)that the term --01 (A)) "’0 can be written as

N(T @ I)(m @ )(A(i))-1( @ f)( @ I)

)
where

(27) u--( 0 0 1 )T.

S(1) di&g(e1) e(n1)), where

ml

e(k1) _--;22 m’(ml’j)sHm (i’m1)

j= 4 + 2ial sin 2(k-)rn + 2ia2 cos m+

By Lemma 6.1 we get

e(kl)__g22ffPm,m (2Tiglsin(2(k-1)r)) l-z:
n 1"2 ml g2iZk 2mi+’l_zk

k 1,...,n.

k 1,...,n,

(28)
2"-illsin(2(k-1)r) i n

Zk =i 1+
2 1’2

As m2---ml we express A2 as A21)-- A)+ UVT, where

U -----/2(u (R) In),
V =v(R)In,
v=(O o- 2)v,

2
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and u is defined in (27) Using the Sherman-Morrison-Woodbury formula we obtain

(29) (A.ll) -t- uvT)-1 (All)) -1 --(AI))-Iu(In + vT(All))-I u)-IvT(All))-I
Now

(30)

Here L diag(ll,...,ln) and

(31)
mi (--ml (ml 1 j) + 2Sm (ml, j))SHm (j, m)

Ik 1 +t2 E k= 1,...,n.
j=l 4+ 2iglsin(2(k1)r) -t-2i2cos( jrm-l-1)

Using Lemma 6.1, (32) yields

(32)

lk l+t2x (i@m-t’m(2+itsin(2(k-1)r) ,t2, mt

+2@mi’ml (2+isin ( 2(k-1)r)n ’2’ml))
--2 ~2mr

k kz2/: 1
~2m, 1

1
1 ,2m+2z.mt +2 + 2izk k 1, n,

1 zk

where zk is defined in (28). Inserting (30) in (29) yields

(All) + uvT)-1 (Sm, (R) Fn)((A(1)) -1 t2(A())-IW(A(I))-)(SmH (R) FH),
where W is defined by

(33) W (Slim, (R) FnH)(u (R) In)FnL-FnH(vT (R) In)(Sm (R) Fn)

(SHm uvTSmt) (R) L-1.

_A<12>(A!2))-I A(21)Now ":01 ":10 can be written as t(wT (R) In)(All -b UVT) l(w (R) In),
where w 1 0 0 )T which, together with (33), yields

where E(2) is defined by

--’01 A,o FnE(2)FH,

E(2) t(.=lSrn(1.H --I,3)Sm, (J, 1)(A))
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ml

,2L-1

_
Sin, (1, j)SmH1 (j, ml)(A))-j--1

)x ’ SmH1 (j, 1)(-S, (ml 1, j) + 2Sml (m, j))(A))-1

The sums in e2), k 1,..., n, can be computed using Lemma 6.1, and by inserting
(32) we get

zzk(l--Zk ZZ [l--zk)(1--z)+2zl(!,Zl)e) 2 1_+- + :(_ +)(’_z+2 2 2-2-(- )+(-))

k 1,...,no

Finally A00 defined in (24), has a well-known decomposition in Fourier matrices, and
hence the semiperiodic problem divided in two subdomains gives a Schur complement
C with an eigenvalue decomposition

(34) C FnAFnH,
with eigenvalues

(35)

Ak--4+2ialsin( 2(k-l)r)n
,2rn1+21 -zk

2mi--1 2 4 2m 2 2z ( z)( z) + ez ( z)
2m+2 2mr+2 2m fi+

(1 z )(1 z z(1 ;= ii z
where za is defined in (28).

From (34) we see that the solution of the Schur complement system for a semi-
periodic problem can be obtained from one Fourier transform, the solution of a di-
agonal system of order n, and finally one inverse Fourier transform. This can be
generalized to an arbitrary number of subdomains. Then we perform p- 1 Fourier
transforms in parallel, solve n tridiagonal systems of order p- 1, and finally compute
p- 1 parallel inverse Fourier transforms. The solution of the tridiagonal systems can
be parallelized using cyclic reduction for example.
om (35) we will derive a theorem concerning the ymptotic spectrum. Note

that we do not require

At ch, 0 < a < 1, c > O,

which is the ce in [17] and [12].
THEOREM 6.2. Assume that

n
(36) .- < 1,
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15,

0

FIG. 2. Asymptotic spectrum solid line and eigenvalues marked with circles for 1 100,
n 250, and m 263, i.e., 0.95.

and that I’; is large and fixed. In the limit n -- oc the eigenvalues Ak, k 1,..., n,
dnd n (35) rd o c,-a.t () d4nd bu

4i
(37)

Proof. Let 5k be defined by

5k=sin(2(k-1)zr)"n

Then for large tl we get from a Taylor expansion that

2izk=--Sk--i 1--5++
/1

+ O(ai-), k 1,..., n.

Since

izl
_

4 + 0(]-) < 1,
glV/1

we get limn_ Izl’ 0, and hence, from (35) we get (37).
From Theorem 6.2 we see that the eigenvalues stay bounded and are well separated

from the origin when the problem size increases. In Figs. 2 and 3 we show how well
the asymptotic formula agrees with the eigenvalues for large problems.

We now enclose the asymptotic spectrum A, defined in (37), in a semicircle
C-(c, R). Here C(c, R) denotes the circle with center c and radius R, and C-(c, R) is
the semicircle defined by

{zl(z e C(c,R) and Ne(z) <_ c) or (Ne(z)= c and Im(z)l <_ R)}.
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I :’-’,., ci
I .:.o_

i o

i o

"f40 160 180 200 220 240 260

FIG. 3. Asymptotic spectrum solid line and eigenvalues marked with circles for 31 100,
n 250, and m 313, i.e., 0.80.

In the following we neglect O(ai-1)-terms.
LEMMA 6.3. The semicircle C-(c, R), where c and R are defined by

/ 162

R ](4-)- c[ gl " 2 - 42 (2 2 2 v/i 2)
(2

encloses the asymptotic spectrum defined in (37).
Proof. Define r() as the distance between c and (). Then

r2 1642 4321(1 V/1 2)2 1642
1 2 2 1 2

432(2-2-2V/1-<2)
2

and

d2r2 32(1 2)2 128(4 2) 432 ( 2 +
d2 (1-2)4 +- - 2(1+424.))v/l_

>0.

Hence, r2 obtains its maximum value at the endpoints yielding r() _< R. Finally

e (()) 23’V/1 2

which proves the theorem. [:]

From Lemma 6.3 and the general result in [18] we derive the following theorem.
THEOREM 6.4. The asymptotic convergence factor p defined in (10), fulfills

4(/)4
(38) P -- a(1 2) + 2 2 2 V/1 2.
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FIG. 4. Asymptotic convergence factor solid line. The residual reduction 2o is marked with
asterisks for m 31 and circles for m 63.

Proof. From [18] we get that if the spectrum is enclosed in a circle C(c, R), then
the asymptotic convergence factor fulfills

R
C

With this result and Lemma 6.3 we get (38).
Now define the residual reduction k as

(39) k ( "rkl12 ) 1/k

IIr01i 
From (9), (34), (39), and the fact that the Fourier matrix is unitary, we conclude that

In Fig. 4 we display the asymptotic convergence factor as a function of for
al 100. In the same figure we present 520 for the original problem (12).

From Fig. 4 we conclude that the shape of the obtained residual reduction agrees
very well with the asymptotic convergence factor, especially for the larger problem.
Hence we can expect an extensive gain in time by simply letting the aspect ratio of
the space discretization slightly decrease from 1.

6.2. The subdomain systems. From [12] we can draw the following conclu-
sions for the preconditioned subdomain systems. PGCR on (7) with preconditioner

(i) .)(-, D), q 1,... ,p- 1, converges in one iteration since i.) (o, D)

(ii) A (-, D) yields an asymptotic convergence factor p defined in (10), which
fulfills

/

/2 / 32 2V/1 2
P 2
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where is defined in (36) and the time step At is given by

At ch, 0 < a < 1, c > 0.

The proof of this result can be found in [12].
The most time-consuming part in the solution of (4), is the local preconditioner

solves. It requires

itouter

lbinner,k
k---1

such solves to solve (4), where "’(q) is the number of inner iterations requiredlbinner,k
in outer iteration k in tq. Hence, for constant coefficients, most of the time in the
iteration will be spent by performing inner iterations in gtp. Thus, processor number p
will be working most of the time while the others remain idle. This is not a good load
balancing in a parallel method. So, no matter how much we can reduce the number of
outer iterations by preconditioning the Schur complement system, it will still be the
inner iterations in "p that limits the performance of the method. A remedy to this
problem is to only consider the grid line j m as subdomain tp. Then the coefficient

matrix A is tridiagonal, and this system can be solved with a direct method using
O(8n) operations. Note also that for q 1,... ,p- 1 we solve (23) instead of (7)
which leads to a reduction in memory requirements.

7. Spectra. In this section we present the spectra of both the preconditioned
system and the original problem. In all figures the parameters are n 23, m 23,
p 4, mq 5, q 1,...,4, t g2 100, and al a2 1 We also present
different properties of the spectra in each case. For that reason we define the spectral
quotient # as a measure of the condition of the spectrum

mini

Here Ai are the eigenvalues of the coefficient matrix considered.

7.1. The Schur complement system. In Fig. 5 and Table 2 we see that
the .Schur complement system seems to be relatively well-conditioned even without
preconditioning. The Toeplitz approximations lead to a preconditioner that yields a
well-clustered spectrum.

TABLE 2
Properties of the spectra of the Schur complement system.

maxi Re()i
mini Re(Ai
maxi m(Ai
maxi

mini

#(Ai 1)

Preconditioner
None ’(D)
484.69 4.56
12.43 0.21
258.74 1.12
542.25 4.56
25.38 0.21
21.36 22.16
0 34



1260 L. HEMMINGSSON
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FIG. 5. Spectra of the Schur complement system with preconditioner (a) I and (b) 7(D).
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FIG. 6. Spectra of a subdomain system with preconditioner (a) I and (b) A)(.,D).

7.2. The subdomain systems. We only consider the subdomains gtq, q
1,...,p- 1, since the spectra for gtp are shown in [11].

From Fig. 6, and Table 3 we immediately see that )(., D) yields the exact
solver and hence we have convergence in one iteration, which is also pointed out in

6.2.

8. Results from the implementation on a parallel computer. Here we
show the results obtained from a parallel implementation on an Intel Paragon. The
program was originally written for the iPSC/2 at the Department of Scientific Com-
puting, Uppsala University. It was then transferred to the Paragon located at Para//ab



A DOMAIN DECOMPOSITION METHOD FOR FIRST-ORDER PDES 1261

TABLE 3
Properties of the spectra of a subdomain system.

Preconditioner

None ]) (., D)
maxi e()i) 28.41 1.00
mini e()i) 4.16 1.00
maxi 9m(Ai 371.35 0.00
maxi IAil 371.38 1.00
mini Ail 6.93 1.00
/z 53.62 1.o0
=/:/=(,i 1) 0 115

at the University of Bergen.
The coefficients al and r2 are chosen as

(40) O’d(Xd) cosh2 (Sd(2Xd 1)) tanh(sd).
8d

This is suitable when we want to simulate stretchings in the physical grid. We then
employ the coefficients (40), and perform the calculations in the equidistant computa-
tional grid. The scalar parameter Sd determines how much the grid is stretched in the
xd-direction. We consider both stretching in one space dimension, and stretchings in
both space dimensions. Stretching in one space dimension is interesting, for instance,
when we want to compute a two-dimensional viscous channel flow. In order to resolve
the boundary layers, the grid lines are denser near the solid walls.

We will study the nonuniform decomposition of the domain discussed in 6.2. This
is to avoid the difficulties introduced by the numerical outflow boundary conditions.
For s2 0, i.e., when we have constant coefficients in the x2-direction, the subdomain
solves are carried out exactly by the fast solver defined in 5.3.2 in tq, q 1,..., p-1.
In tp we use a direct method. For s2 > 0 we employ an iterative method to solve the
subdomain problems in tq, q 1,...,p- 1. We then use the preconditioner defined
in 5.3.2. Again we use a direct method in tp.

The iterative method that we use to solve (4), and possibly also (6), is PGCR(6).
A longer restarting length cannot be motivated due to memory restrictions. However,
numerical experiments indicate that the number of iterations decreases considerably
with increasing restarting length. As convergence criterion for a general system of
equations (8), we use

IIZ}-(y- Bx)ll: < 10-6.

For all iterations we have taken the right-hand side as the initial guess to the solution.
In all cases we consider p #subdomains #processors.

8.1. Definitions. To determine how efficient a parallel program is, two quanti-
ties have been defined: speedup Sp,t and rate of e3Cficiency Ep,t and Ep,s. The speedup
shows how much faster the program executes on p nodes than on one node

T1

Here Tp denotes the execution time on p nodes. Tp could be determined in two different
ways. To get the "nonscaled" speedup, Tp is measured as the time required on p nodes
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FIG. 7. Number of iterations and cpu time obtained for convergence.

when the problem in all is as big as the one on one node. To get the "scaled" speedup,
the execution time is measured when each node deals with a problem as big as the
one executed on one node. Then the time obtained is divided by p to get Tp.

The rate of efficiency indicates how efficient the program is. Two quantities are
defined here, the rate of efficiency in time

S,t
P

and the rate of efficiency in arithmetic speed

Ep,s= Mlp"

Here Mp is the arithmetic speed in floating point operations per second on p proces-
sors.

8.2. The method. In this section we study how the method depends on different
parameters. We consider the nonuniform decomposition of the domain discussed in

6.2. We present here the results from iterating on (4).
The parameters used are p 4, al 100, 81 82 0, m 49, mq 15,

q 1,...,p- 1, and mp 1. We present the results for varying defined in (36).
In Fig. 7 we see that the iteration count is strongly dependent on , i.e., the grid

ratio. By decreasing from 1 to 0.90-0.95 we decrease the number of iterations
considerably. Next we show the results from iterating on (4) for different problem
sizes. The parameters used are p 4, /1 100, 81 82 0, mq (m- p)/(p- 1),
q 1,... ,p- 1, and mp 1. Since the grid ratio is so crucial for the performance,
we have used n 0.95-m.

From Fig. 7 and Table 4 we draw the following conclusions.
(i) The convergence depends only on the grid ratio and not on the number of

unknowns.
(ii) Using only the grid line j m as ’p is very suitable for constant coefficients.
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TABLE 4
Number of iterations and cpu time obtained for convergence on an Intel Paragon.

n m # iterations T[S]
24 25 77 0.45
47 49 47 0.63
92 97 27 1.20
183 193 19 3.40

150

100

50

4 4.5 5 5:5
og2(n+l)

150

(b)
150

5o .’..-

150,

o 100

50

0 0

4.5 5 5.5 6
Iog2(n+l)

(d)

4 4.5 5 5.5 6 4 4.5 5 5.5 6
Iog2(n+l) Iog2(n+l)

FIG. S. Number of iterations obtained for convergence for (a) st 52 0.0, (b) st 0.5,
s2 0.0, (c) st 0.0, 52 0.5, and (d) st s2 0.5. The solid line represents the preconditioned
system and the dashed line the original system.

(iii) The fact that the number of iterations decreases with increasing problem
size, is even more pronounced here compared to [14], [11].

Henceforth we will only consider this nonuniform domain decomposition. The
subdomain solves are accomplished through solving (23) with fi-11(’, D) for 52 0.
For s2 > 0 we solve (7) with an iterative method and preconditioner Al1(., D).

Now that we have an efficient method to solve (4) due to the nonuniform decom-
position of the domain, we will study the influence of the preconditioner on the Schur
complement system. The parameters used are p 4, al 100, mq (n + 1)/2- 1,
q 1,...,p- 1, and mp 1.

From Figs. 8 and 9 we draw the following conclusions.

(i) For Sl 0 the preconditioner reduces both the number of iterations and the
cpu time.

(ii) For 51 0.5 the preconditioner works well for small problems, but for larger
problems, the iteration on the original system is preferable.

(iii) The iteration on the original system is independent of the stretching in the
grid. Note however that in all four cases, the stretching is quite moderate.

(iv) For s2 0 we can solve (23) instead of (7) which reduces the cpu time
considerably.

Now we have found out how the method depends on the problem size and the
stretching in the grid. In the following we consider 51 52 0. The next thing we
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will study is the dependency on the time step, i.e., we vary 1 and 2. Here we have
used p 4 and n+ 1 2. ((m-p)/(p- 1) + 1).

In Fig. 10 we see that the number of iterations decreases with increasing problem
size with very few deviations. We also see that the iteration count increases with
increasing time step, but the increase is less for larger problem sizes. Note that the
shapes of the curves from the original system and the preconditioned system are
similar.

Finally we have examined the behavior when we increase the number of subdo-
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TABLE 5
Number of iterations and cpu time obtained for convergence on an Intel Paragon.

C n m p
I 255 385 4
I 255 449 8
I 255 481 16

7(D) 255 385 4
(D) 255 449 8

(D) 255 481 16

iterations T[s]
11 7.18
35 9.26
147 17.3
7 5.21
9 3.21
12 2.14

TABLE 6
Number of iterations, cpu time, arithmetic speed, and rate of ejficiency on an Intel Paragon.

p
4
8
16
32
64

n m # iterations t [s] Ttot Is] Mflops Ep,t Ep,s
255 385 7 5.21 7.84 9.33 1.00 1.00
255 449 9 3.21 4.95 19.1 0.79 1.02
255 481 12 2.14 3.17 37.2 0.62 1.00
255 497 16 1.68 2.36 65.8 0.42 0.88
255 505 26 1.70 2.21 105 0.22 0.70

TABLE 7
Number of iterations, cpu time, and arithmetic speed on an Intel Paragon for some "large"

problems.

p n m iterations Tit Is] Ttot [s]
32 511 993 11 4.20 5.96
32 1023 993 10 7.16 10.5
32 1023 1985 9 13.5 20.0
64 1023 1009 12 4.67 6.42
64 1023 2017 11 8.54 11.9
64 2047 2017 9 14.3 20.7

Mflops
76.8
82.1
84.1
151
157
157

mains for the same problem, i.e., the scalability of the method. Note that we must
vary the problem size slightly when we vary the number of subdomains due to the
fast modified sine transforms. We have used the parameter 1 100.

As seen in Table 5 the iteration on the original system clearly isn’t very scalable.
The preconditioned system on the other hand seems to be quite scalable. We shall
further investigate this in 8.3.

8.3. Parallel computing. In this section we consider the solution of the whole
problem, i.e., Algorithm SCM. The Schur complement system is preconditioned with
preconditioner ((D). Here Tit is the time to solve the Schur complement system and
Ttot is the time to solve the whole problem. iterations refers to the number of
iterations to solve the Schur complement system. The parameter used is a 100o
To obtain the rate of efficiency, the reference level is set to p 4 as shown in Table 6.

The reason we obtain a rate of efficiency > 1 for the arithmetic speed is that
the inefficiency due to the nonuniform decomposition of the domain becomes less
pronounced the more subdomains that we have. Note that the poor rate of efficiency
in time is partly due to the fact that we are solving larger problems when we have
more processors.

We end this section by presenting the results from some "large" problems in Table
7. Again al 100.

9. Conclusions. In this report we have presented a domain decomposition method
to solve first-order PDEs in two space dimensions. The method is analyzed theoreti-
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cally and numerical results corroborating the theory have been performed.
We have defined preconditioners built on Toeplitz blocks, which have fast solvers

based on a fast modified sine transform. Numerical spectra for the preconditioned
systems are presented, showing highly clustered spectra.

Due to a nonuniform decomposition of the domain, the method was very successful
for constant coefficients in the x2-direction. The preconditioned system was the one
that gave the best results. This method was also highly scalable. However, we have
shown theoretically and numerically that the Schur complement system can be solved
successfully without preconditioning, for a decomposition with only few subdomains.
Hence, this method can be used for more irregular domains. The preconditioned
Schur complement method on the other hand requires logically rectangular domains,
due to the solver of the preconditioner.
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Abstract. Stone [Ph.D. thesis, Dept. of Operations Research, Stanford University, Stanford,
CA, 1981] proved that within the class of Q0-matrices, the U-matrices are P0-matrices and conjec-
tured that the same must be true for fully semimonotone E0/ matrices. In this paper we show
that this conjecture is true for matrices of order up to 4 4 and partially resolve it for higher order
matrices. This is done by establishing the result that if A is in E0/ N Q0 and if every proper principal
minor of A is nonnegative, then A is a P0-matrix. Using this key result we settle the conjecture
for a number of special cases of matrices of general order. These special cases include E0/-matrices
which are either symmetric or nonnegative or copositive-plus or Z-matrices or E-matrices. Also the
conjecture is established for 5 5 matrices with all diagonal entries positive. While trying to settle
the conjecture, we obtained a number of results on Q0-matrices. The main among these are charac-
terizations of nonnegative Q0-matrices and symmetric semimonotone Q0-matrices; results providing
sufficient conditions under which, principal submatrices of order (n- 1) of a n n Q0-matrix are
also in Q0.

Key words, linear complementarity problem, matrix classes, Lemke’s algorithm

AMS subject classification. 90C33

1. Introduction. For any A E Rx and any q E Rn, define the sets F(q,A)
and S(q,A) as:

(i.i)
(1.2)

F(q,A) {zeRO_ Az + q > O },
S(q,A) { z e F(q,A) (Az + q )tz 0}.

The linear complementarity problem (LCP) wi.th data A and q is to find an element
of S(q, A). This problem is denoted by (q, A). For z F(q, A), let w Az / q. Then
w _> 0. Note that if z S(q,A), then wzi 0 for each i. Thus, if z S(q, A), then
w and z are complementary to each other. Any z of S(q, A) (or equivalently the pair
(w, z)) is called a solution of (q, A).

Cottle and Stone [5] introduced the classes of U-matrices and fully semimonotone
(Eo/) matrices and studied their properties (see Table 1 for notations and definitions).
If A is a U-matrix, then (q, A) has a unique solution for every q in the interior of
K(A). If A is in Eo/, then (q, A) has a unique solution for every q in the interior of
any complementary cone. It was observed [5] that P C_ U C_ Eo/. Stone [21] showed
that U N Qo c_ Po and raised the following conjecture.

CONJECTURE 1.1. Every EIo Qo-matrix is a Po-matrix.
In this paper we show that this conjecture is true for matrices of order up to

4 4 and partially resolve it for higher order matrices. We first establish that if A
is in Eo-f N Qo and if every proper principal minor of A is nonnegative, then A is a

Po-matrix. An important corollary of this key result is that (o Eo C_ Po, where
Qo is the class of completely Qo-matrices. As a consequence of this corollary, we
establish Conjecture 1.1 for a number of special cases. These special cases include Eof-
matrices that are either symmetric or nonnegative or copositive-plus or Z-matrices
or E-matrices. Using the above result it is shown that interior of l:lnn EIo is

Received by the editors August 12, 1993; accepted for publication (in revised form) by R. Cottle
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same as Rnxn P. In the sequel we introduce a subclass of Eo/, the class of fully
copositive matrices (Co), and prove that symmetric Eo-matrices are fully copositive.
Furthermore, it is shown that if A is a Co-matrix with at most one zero diagonal
entry, then A is a Po-matrix.

Aganagic and Cottle [2] characterized Qo-matrices with nonnegative principal
minors and established that Lemke’s algorithm--with a suitable apparatus to resolve
degeneracy--processes (q, A) whenever A is in Po Qo. Appealing to this result, we
conclude that Lemke’s algorithm processes (q, A) for all those A for which we establish
Conjecture 1.1.

Our other main results of this paper are on properties of Qo-matrices. Marry [15]
gave a characterization of nonnegative Q-matrices. We present a characterization of
nonnegative Qo-matrices. Jeter and Pye [8], [9] studied the connections of Q-matrices
with their principal submatrices. While extending their result to Qo-matrices, we
derive conditions, in terms of principal pivotal transforms (PPTs), for an n n Qo-
matrix to have all its principal submatrices of order (n-l) to be in Qo. As applications
of these results, we show that matrices that are either nonnegative or symmetric
semimonotone are Qo if, and only if (iff) they are Qo. The study of Qo-matrices in

comp  x IS],
In 2, we present results on Qo-matrices. Section 3 is devoted to results on Eo-

matrices of general order. In 4, we establish Conjecture 1.1 for n less than or equal
to 4 and prove that it is valid for 5 5 and 6 6 matrices with some additional
assumptions.

With every matrix A E Rnxn there is a real number associated with it, called
the (minimax) value of A and is denoted by v(A). It is well known that v(A) is
positive (nonnegative) iff there exists a nonzero nonnegative z such that Az is positive
(nonnegative) (see [22]).

Remark 1.2. It is easy to see from the definition that every Eo-matrix must have
all its diagonal entries nonnegative. Also if A is in Eo, then A and all its PPTs must
have all their diagonal entries nonnegative. In addition, if A is also in No, then A
must have all its diagonal entries equal to zero.

Remark 1.3. A matrix A is in Eo iff all principal submatrices of A have value
nonnegative. If A is in Eo, then A is also in Eo. Furthermore, if A is a symmetric
Eo-matrix, then it is copositive (see [4, pp. 187,188]).

Remark 1.4. If A is a Qo-matrix and v(A) is positive, then A is in Q.
Remark 1.5. If A belongs to any of Eo, Eo, Po, No, Co, and Co then ev-

ery principal submatrix of A is also in the same class. If A belongs to any of
Eo, Eo, Po, No, Co, Co, Q, and Qo, then every principal rearrangement of A
is also in the same class. Furthermore, if A belongs to any of Eo, Po, Q, Qo, then
every PPT of A is also in the same class.

2. Some results on Q0-matrices. The following result is due to Jeter and Pye

THEOREM 2.1. Suppose A RnnQ and a \ {i}. Then either Aa Q or
there exists a u S(ei, A) such that Ai.u -1, where ei is ith column of the identity
matrix of order n.

We extend the above theorem to Q0-matrices.
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TABLE 1. Notations and definitions.

Symbol Definition
the set {1, 2,..., }, n is any positive integer

n

R
Rmxn

A (aij)

I
det A

Ai

A.
Ai.
A.j
v(A)
supp(z)
(A/Ann)

pos CA(a)

K(A)
Co

E
Eo

N
No
P
Po

o
o
Ro
U

collection of all nonempty subsets of 5
cardinality of the set a
denote the subsets of fi
complement of the set a relative to
the set a gl l
n-dimensional space of reals
the space of m n real matrices
the nonnegative orthant of R
a matrix with ali’S as its entries. We denote the entries of
a matrix by the corresponding lower case letters, for
example entries of B are denoted by bij
the identity matrix
determinant of matrix A
the submatrix of A obtained by dropping rows and columns
of A corresponding 5 and
stands for A{i}, E fi
stands for An A R x

stands for Arf A R x

ith row of A
jth column of A
(minimax) value of A
the index set {i " zi 0}, where z R
Aaa Aan (Ann) Ana.
if det Ann 0, then M gan(A) is called the principal pivotal
transform of A with respect to a, where Mnn (Ann) -1,
Mna -(Ann)-lAna, Man Aan(Ann)-1, /aa (A/Ann)
the complementary matrix with respect to a C , where
CA (a).j -A.j if j a and CA(oz).j I.j otherwise
{CA(a)z" z E R}, the complementary cone with respect to a
Columns of CA (o0 are called generators of pos CA (o0
the set {q R S(q,A) }
Un{A R n x*Ax >_ 0 Vx R}
Un{A e Rnxn V1Co [xtAx O, x R] (A+ At)x 0}
Un{A Rnxn V O C x R 2 k fi 2 xk >0and (Ax)k >0}
Un{A Rnxn V O C x E R 2kfi9xk >0and (Ax)k >_0}
Un{A Rnxn Va n*,detAnn 0 = gon(A) e E0}
Un{A Rnxn /o n*,det Aan < 0}
Un{A Rnxn Va n*,detAnn <_ 0}
Un{A Rnxn Va n*,detAnn > O}
Un{A Rnxn Va n*,detAnn >_ O}
Un{A Rnxn S(q,A) C V q Rn}
Un{A E Rnxn vq Rn, F(q,A) S(q,A) }
Un{A E Rnxn Va n*,Ann E Q}
Un{A E Rnxn Va n*,Ann Q0}
Un{A Rnxn (0, A) has a unique solution}
Un{A RX lS(q,A)l 1 V q interior of K(A)}

THEOREM 2.2. Suppose A E l:ln fl Qo and a \ {i}. Then either Aaa Qo
or there exists a u S(e,A) such that A.u -1.

Proof. Without loss of generality take n. Suppose Aa Qo. Then there
exists a c Rn- such that F((t, Aaa) - and S((l, Aaa) . For each pos-
itive integer k, define qak l/k, qnk 1. Observe that F(q,Aaa) = for every

F kk > 1 This is because for any za F(qa, Aaa) za (qa, Aaa) for all
k >_ 1. Then F(q, A) :/: for all positive integers k sufficiently large. As A Qo,
S(q, A) for all k sufficiently large. So each qk lies in a complementary cone for
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all k sufficiently large. Since there are only finitely many complementary cones, there
is a complementary cone containing a subsequence q, qk, qka,.., of {qk}. Since q
converges to en and as the complementary cones are all closed, en also lies in a com-
plementary cone containing the subsequence {qk, }. Also note that for each k >_ 1, if
z S(q,A), then zk > 0 as otherwise it would imply that S(,A,a) . Thus,
for all k sufficiently large, qk lies in a complementary cone with A.n as one of its
generators. Therefore, en lies in a complementary cone with one of its generators as
A.n and there exists a u S(en, A) such that (Au)n -1.

It can be proved that if A Rn Q and Ai. >_ 0 for some i, then Aaa Q,
where a \ {i}. The following is an analog of this for Qo-matrices.

COROLLARY 2.3. Suppose A Rnn g Qo and that Ai. >_ 0 for some i. Then
A, Qo, where \ (i}.

Proof. The proof follows from Theorem 2.2 and the fact that (Au)i >_ 0 for every
/.

THEOREM 2.4. Suppose A Rn’ N Qo. Assume that A is nonnegative. Then
A is a Qo-matrix if A is a Qo-matrix.

Proof. If A is in o, then obviously A is in Qo. Conversely, assume that A is in
Qo. Since every row of A is nonnegative, by Corollary 2.3 every principal submatrix
of A of order (n- 1) is also a nonnegative Qo-matrix. Repeating this argument with
principal submatrices, we conclude that A is in o.

THEOREM 2.5. Suppose A 12nn is a nonnegative matrix where n >_ 2. Then
A belongs to Qo i the following implication is valid:

for every i5, Ai.0=aii>0.

Proof. (Necessity) We shall prove this by induction on n. It is easy to check this
when n 2. Assume that the result is true for all (n- 1) (n- 1) matrices. Let
A Rnn, n _> 3, be a nonnegative Qo-matrix. Suppose Ai. 0 for some 5. Let
j be such that aij > 0. If j i we are done. Suppose j i. Choose any k
(we can do this as n >_ 3 ). Let a (k}. By Theorem 2.4, Aa Qo. By choice of
k, Aia 0. By induction, we must have aii > 0.

(Sufficiency) Assume that aii> 0 for every i such that Ai. O.
Let c (i - A. 0}. Then

Aa Aaa 0 0

Suppose q Rn is such that F(q, A) : . Then we must have qa >_ 0. Since A
is nonnegative with all its diagonal entries positive, A, Q (see [15], [16]). Let

,Ot)za S(q,na). Then (za S(q,n). As q was arbitrary, n
COROLLARY 2.6. Suppose A R’’ is a nonnegative nonsingular Qo-matrix.

Then A is in Q.
Proof. Since A is nonsingular Qo-matrix, we must have ai > 0 for every

i . It follows that A is in Q. []

The following examples illustrate the application of the above theorem.
Example 2.7. Let

0 0 -1 0 3 2 1 -i

A-- 0 0 0 1 2 2 -I 0
1 0 0 0

and B
-i 0 0 1

0 1 0 0 -i -2 1 0
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Note that A3. _> 0. If A E Qo, then A E Qo, where a {1, 2, 4}. But by Theorem
2.5, n Qo. Hence n Qo.

Let a {3, 4} and M pa (B). Then

3 4 -1 1
2 0 0 -1
1 2 0 1
1 0 1 0

Suppose M Qo. Since last two rows of M are nonnegative, Ma Qo- But by
Theorem 2.5, Maa Qo- It follows that M Qo.

THEOREM 2.8. Suppose A Rn’ A Eo A Qo. If A is symmetric, then A is in
Qo.

Proof. We will show this by induction on n. If n 1, there is nothing to prove.
Assume that the result is true for all real square matrices of order less than or equal
to n- 1, n > 1. Suppose A Rnn Eo Qo and A is symmetric. Let a be any
subset of such that lal n- 1. Without loss of generality, we may assume that
a {n} Suppose A, Qo Then by Theorem 2.2, there exists a u Rn such that

__
Au + en >_ 0, utAH + un 0, and (Au)n -1. Since A is symmetric Eo-matrix,
A is copositive. As u >_ 0 and utAH + Un O, utAH 0 and Un 0. Since A is
symmetric copositive matrix, it follows that (An) >_ 0 (see [20, Lemma 3.1]). This
contradicts (Au)n -1. Hence Aaa E Qo. As a was arbitrary, it follows that every
(n- 1) (n- 1) principal submatrix of A is in Qo. By induction, it follows that
AQo.

Pang [17] proved that if A is a Eo V Q-matrix, then every nontrivial solution
of (0, A) must have at least two nonzero coordinates. Paraphrasing, if A is a Eo V
Q-matrix, then A cannot have a diagonal entry zero and all other entries in the
corresponding column nonnegative. We have the following results for Qo-matrices in
this direction.

THEOREM 2.9 Suppose A Rnn Eo N Qo. Assume that for some io, jo ,
aioio 0 and aiojo O. Then there exists a k t such that akio < O.

Proof. Since aiojo is positive, we can choose a q Tln such that qio < 0, qj 0
for allji0 andF(q,A) . SinceAQo, S(q,A) : . LetzS(q,A) and
let a=supp(z). Let =a\{i0}. Sinceaioio --0 andqi0 < 0, /3:/:. Since zz is
positive, we have

0 AfioZio -- Azzz + q.

Note that qz > 0. If A.io

_
0, then

Azz -q zioAio < 0,

which in turn implies that v(At) < 0. This is not possible as A Eo. Therefore,
A.o must contain a negative entry. There exists a k such that ako

COROLLARY 2.10. Suppose A RnEo Qo. Assume that every row of A
contains a positive entry. Then every nontrivial solution of (0, A) contains at least
two positive coordinates.

THEOREM 2.11. Suppose A Rnn, where n _> 3. Assume that all a22 0,
a12 > 0 and a21 > 0. Let g (aa, ala,...,an) and h (a23, a2a,...,a2n). Assume
that A satisfies any of the following conditions:

(a) g<_O andh>_O.
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(b) g >_ ( and h <_ O.
Then A is not a Qo-matrix.

Proof. Suppose A satisfies condition (a). Since a12 > 0, there exists a q E Rn

such that ql ( 0, qj > 0 for every j : 1, and F(q, A) : . Hypothesis implies that
for every z F(q,A), z2 > 0. Since A2.>_ 0, w2 (Az)2+q2 > 0. Thus (q,A)
cannot have a complementary solution. Therefore, A is not a Qo-matrix. Similarly,
we can show that if A satisfies (b), then A is not in Qo. []

In the above theorem, there is nothing special about the indices 1 and 2. The
theorem is valid even when they are replaced by any other indices.

THEOREM 2.12. Suppose A Rnn. Let k and let c {k}. Assume that A
satisfies the following conditions:

(a) A,<_O,
(b) aiok > 0 for some io c, and
(c) Ak. >_ O.

Then A does not belong to Qo.
Proof. Note that the assumptions of the theorem imply i0 - k. Since aiok > 0,

there exists a q R such that qio < 0, qj > 0 for every j E , j : i0 and
F(q,A) . Let z F(q, A). Since Aa <_ 0, we must have zk > 0. Note that as
k i0, qk > 0 and wa (Az)k + q > 0. This implies (q,A) cannot have a solution.
Therefore, A is not in Qo. []

For any A Rnn, define the sign pattern matrix of A, denoted by SP(A), as a
matrix of the same order with entries as either the corresponding entries of A or their
possible signs. For example, if

-1 0 2

then

are all sign pattern matrices of A (here G stands for nonnegative, ( for nonpositive,
and, for the corresponding entry).

THEOREM 2.13. Suppose A R33 f3 Qo. Then SP(A) cannot be equal to any
of the following:

(a) * * . (b) (R) (R)

+ ( 0 + * 0

Proof. Suppose SP(A) is given by (a). As a31 > 0, there exists a q //3 such that
SP(q) =(+,+,-) andF(q,A) . Let zEF(q,A). Thenzl >0. SinceAi. >_0
and ql > 0, w (Az) + q > 0. This implies (q,A) cannot have a solution. This
contradicts the hypothesis. Therefore, SP(A) cannot be equal to the sign pattern
given by (a).

Suppose SP(A) is as in (b). Note that A2.

_
0. By Corollary 2.3, A Qo

where a- {1, 3}. Observe that

SP(A,)= + 0
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By Theorem 2.5, Ass Qo. From this contradiction it follows that A cannot have
the sign pattern given by (b).

DEFINITION 2.14. Let A E Raxe and q Rn. A complementary matrix B is
called a complementary basis of (q, A) provided B is nonsingular and q belongs to
pos B.

A linear complementarity problem may have a complementary solution without
having a complementary basis. Consider the following example due to Mohan [11].

Example 2.15. Let

0 0 0 0
0 0 0 0
1 0 -1 0
0 1 0 -1

and q

0
0

It is clear that (q,A) does not have a complementary basis even though it has a
complementary solution, namely, z (1, 1, 0, 0)t.

Thus, in general, the existence of a complementary solution need not necessarily
imply the existence of a complementary basis. However, the existence of complemen-
tary bases can be asserted in some special cases.

DEFINITION 2.16. Let A Rnx’. Say that A has property (D) if the following
implication is valid for every a n*:

det Ass 0 =v columns of A.s are linearly dependent.

Remark 2.17. The class of matrices having property (D) is rather large. Obviously
it contains column adequate matrices and all nondegenerate matrices (see [4], [7] for
definitions).

THEOREM 2.18. Suppose A Rnn. Assume that A has property (D). If q Rn

is such that (q, A) has a solution, then (q, A) has a complementary basis.
Proof. Since S(q,A) : , choose z S(q,A). Let a supp(z). If a ,

then z 0 is a solution of (q, A) and I is a complementary basis. Suppose a .
Without loss of generality, assume a {1,2,...,k}. If det Ass : 0, then CA(a) is a
complementary basis for (q, A). Suppose det Ass 0. Then by property (D), there
exists a RIsl such that

A.sd=O, dO.

Let d be such that d and do 0. Since zs > 0, we can choose a real number
A such that zs Ads _> 0 and at least one coordinate of zs Ads is equal to zero.
Define 2 Rn by+

2s z Ads and 2a 0.

Then

A2 + q A.szs ,kA.sds + q Az + q :> O.

Let w Az + q. Since zs > 0, w 0 and hence dt(Az + q) O.
Since Ad A.sds O, t(A2+q) 0. Thus, 2 S(q,A). Let supp(2). It is

clear that I/1 < lal. If det AZ : 0, then CA() is a complementary basis for (q, A).
Otherwise we can repeat the above process to get a new solution whose cardinality
of its support is strictly less than Ii- It is clear that in a finite number of steps (at
most n) repeating the above process we end up in one of the following situations:
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(a) (q, A) has a solution with a complementary basis,
(b) 0 is a solution of (q, A).

In either case (q, A) has a complementary basis.
THEOREM 2.19. Suppose A E l:lnn Qo. Let t and c {i}. Suppose A

has property (D). Then either Aaa Qo or there exists a n* satisfying:

(b) detA - O,
(c) M. <_ O, where M p(A),
(d) A), O,
(e) (Au)i -1.

Proof. Without loss of generality, take n. Suppose A Qo. Then there
exists a (/ Rn-1 such that F(, A) = and S(c, Aaa) . For each positive
integer k, define qk by qk /k, and qnk 1. As F
for all k sufficiently large. Since A Qo, for all k sufficiently large, there exists
a solution (wk, zk) of (qk,A). By Theorem 2.17, we may assume, without loss of
generality, that (wk, zk) corresponds to a complementary basis with 3k supp(zk).
Then det CA(3k) 0 for all k sufficiently large. Since has only finitely many subsets,
one of its subsets must repeat infinitely often in the sequence/1,/2,/3, Again,
without loss of generality, we can assume /k / for all k sufficiently large. Then

kdet CA() O. Let M p(A). Note that for each k, zn > 0, as otherwise it would
imply that S(c, Aaa) . Thus, n E/. Hence we have:

Since det CA (13) O,

sufficiently large.

-(A)-1 q sufficiently large.

Note that as k o, q -- en, and hence

where

wk

u ]’

u 0 _(A)_I en -M.n.

Since v >_ O, u >_ O, M.n

_
0 and u (0t, -Mn) e S(en, A). Obviously (Au)n

-1, as wnk 0 for all k sufficiently large implies vn 0. This completes the proof of
the theorem.

COPOLLAI.Y 2.20. Suppose A l:tn Qo. Assume that A has property (D).
If every PPT M of A is such that v(Mt) > O, then every principal submatrix of A of
order (n- 1) is in Qo.

Proof. Suppose there exists an a c_ such that [a n-- 1 and Aa Qo. By
Theorem 2.19, there exists a PPT M of A such that M. 0 where {k} . This
implies v(Mt) <_ 0 which contradicts the hypothesis. It follows that every principal
submatrix of A of order (n- 1) is in Qo.

3. Results on E0/ N Q0-matrices. In this section, we consider Eo/-matrices of
general order, we need the following results on No and almost Po-matrices.
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DEFINITION 3.1. Let A E 1:nxn. Say that A is an almost Po-matrix (almost
P-matrix) if det Aa >_ 0 (det Aa > 0) for all a n*, a fi and det A < 0.

It is a well-known fact (see Pye [19]) that a matrix n is an almost Po-matrix
(almost P-matrix iff A is nonsingular and A-1 is an No-matrix (N-matrix). A
matrix A is said to be an N-matrix if it can be obtained as a limit of a sequence of
N-matrices. If A E Rnxn is an 2-matrix, then there exists a nonempty subset a
of such that A and Aaa are nonpositive, and Aa and Aa are nonnegative [12]
(see also [13], lS]).

THEOREM 3.2. Suppose A Rnn is an almost Po-matrix. Let B A-. Then
there exists a nonempty subset a of satisfying:

B<_0, Baa<_0, B,a >_ O and Baa >_ O.

Proof. It suffices to show that B is an N-matrix. It is easy to show that for all
positive sufficiently small, A + I is an almost P-matrix. Therefore, (A / sI)- is
an N-matrix for all positive sufficiently small. Note that (A / I)- converges to
B as converges to 0.

LEMMA 3.3. Let A Rnng Eo V No. Suppose A <_ O. Then there exists a
principal rearrangement M of A such that M is a strict upper triangular matrix, that
is, mij 0 for all i, j t such that i >_ j. In other words, there exists a permutation
matrix P Rnn such that PAP is a strict upper triangular matrix.

Proof. We shall prove this by induction on n. If n 1, the result is trivially
true. So assume that the lemma is valid for all matrices of order up to (n- 1) (n-
1), n > 1. Now assume A Rnn satisfies the hypothesis of the lemma.

If every column of A has a negative entry, then, as A <_ 0, we have

etA<O, where e

This implies that value of A is negative. This contradicts the hypothesis that A Eo.
Hence A must have a zero column. Suppose A.j 0. Then interchange the first column
and jth column and then the first row and jth row. In the resulting matrix the first
column will be zero. Since both Eo and No properties are invariant under principal
rearrangements, the new matrix is also in Eo N No. Hence assume, without loss of
generality, that A. 0. Let a {2, 3,..., n}. ThenA R(-1)(-) V Eo g No.
Also Aaa

_
O. By induction hypothesis, there exists a permutation matrix P E

R(-1)(n-1) such that )Aaa is a strict upper triangular matrix. Let

Then

[1 0]P= 0 P

pApt [0 AtaP
0 PAP

Since PAP is a strict upper triangular matrix so is PAP
THEOREM 3.4. Suppose A Rnn N Eo N No. Assume that A is nonsingular.

Then there exists a principal rearrangement

Aa Aaa

of A such that a , a , Aaa, and Aaa are nonpositive strict upper triangular
matrices, and Aac, and Aaa are nonnegative matrices.



SOME PROPERTIES OF FULLY SEMIMONOTONE, Qo-MATRICES 1277

Proof. Since A is a nonsingular No-matrix, A-1 is an almost Po-matrix. By
Theorem 3.2, there exists a nonempty subset a of such that A and Aa are
nonpositive, and Aaa and Aaa are nonnegative matrices. Since A is nonsingular, a -. By Lemma 3.3, there exist permutation matrices M E Rlallal and L E Rlallal
such that MAaM and LAaaL are strict upper triangular matrices. Let

Then

pAp MAaaMtMAaaLt
LAaaM LAaaL

Since Aaa, Aa, M, and L are all nonnegative, we have LAaaM >_ 0 and MAaL >_
0. This completes the proof.

THEOREM 3.5. Suppose A tlnxnVElo gQo. Assume that every proper principal
minor of A is nonnegative. Then A belongs to Po.

Proof. It suffices to show that det A > 0. Suppose det A < 0. Then A is an almost
Po-matrix and hence A-1 No. Since A-1 is a PPT of A, A- EoY No Qo. Let
B A-. Then by Theorem 3.4, there exists a principal rearrangement of B such
that Ba and Baa are nonpositive strict upper triangular matrices, and Ba and
are nonnegative matrices for some a C_ with a and a . For simplicity, we
assume a {1, 2,... ,k}, k < n. Observe that

(a.1) bij > O V i, j z such that > j.

In particular, Bn. >_ O. By Corollary 2.3, B E Qo, where/3 {n}. Note that;
from the above observation (3.1), the last row of BZ is nonnegative. By Corollary
2.3, B Qo, where -y {1, 2,..., n- 2}. Thus it can be seen that all the leading
principal submatrices of B are in Qo.

We will now show that B(k+l) 0 which will in turn imply that B.(k+l) 0
leading to the contradiction that B is singular.

Let

Ba Ba(k+) ]B(k+)a 0

M is the leading principal submatrix of B of order (k / 1). From the above argument,
M Qo. If Ba(k+l) has a positive entry, then by Theorem 2.12, M Qo. Hence
Ba(k+l) --0. It follows that A belongs to Po.

We shall now identify a number of subclasses of Eo for which Conjecture 1.1 is
valid.

COROLLARY 3.6. Suppose A 1’n fq Eo
fq o. Then A belongs to Po.

Proof. We prove this by induction on n. If n 1, the result is obviously true.
Hence assume that the result is true for all real square matrices of order less than or
equal to n- 1, n > 1. Suppose A/
Eo fq o for all a n*. By induction hypothesis, A e Po for all a n* with

lal < n. By Theorem 3.5, A belongs to Po.
COROLLARY 3.7. Suppose A Rnxn fq Efo Assume that A satisfies any one of

the following conditions:
(a) A is nonnegative Qo-matrix.
(b) A is a copositive-plus matrix.



1278 G.S.R. MURTHY AND T. PARTHASARATHY

(c) A is a Z-matrix.
(d) A is an E-matrix.
(e) A is symmetric Qo-matrix.

Then A belongs to Po.
Proof. This is a direct consequence of Corollary 3.7 and the fact that if A satisfies

any of the conditions (a)-(e), then A is in Qo; see [4, pp. 181, 196, 201]. El

It is a well-known fact that the set of P-matrices is an open set. Intuitively
one feels that the interior of the set of Eo-matrices in Rnn should coincide with
P-matrices of Rnn. Our aim, here, is to show that this is indeed the case. We are
not aware of a specific mention of this result in the literature. Our main interest here
is to establish this as an application of our Theorem 3.5. The following results are
fairly well known [3], [4].

THEOREM 3.8. Suppose A E I:nn Eo, Then for every positive e, A + eI is in
E and hence in Q.

Proof. One can easily check that if A E Eo, then A + el is in E. The second
assertion follows from Cottle’s result [3], E . []

LEMMA 3.9. Closure (Rnn N P) Rnn Po.
Proof. The proof follows from the fact that if A Po, then A + eI P for all

e>0. El

T.EOIM 3.10. Let {A ’ A E,o}. e.

interior(T) Raxe M P.

Proof. In the light of Lemma 3.9 and the fact that Rnxn P is an open set, it
is sufficient to show that if M is in the interior(T), then M belongs to the interior of
R’ N Po.

Since M interior( T ), there exists a ti > 0 such that

B(M) {A e R’xn I]M- All < 5}

_
T,

where Ii.!! is any norm on Rnxn. We will show that if A E B(M), then A Po.
This will then imply that M is an interior point of (A Rnn A Po}. Observe
that A Bs(M) implies .A + el Bs(M) for all positive e sufficiently small. Also
A + el EoS for all positive e sufficiently small. By Theorem 3.8, A + el ( for all
positive e sufficiently small. By Corollary 3.6, A+el Po for all positive e sufficiently
small. It follows that A Po as RnnMPo is a closed set. Therefore, M is an interior
point of Rn f’l Po. Since interior of R"n fl Po is P, the theorem follows.

THEOREM 3.11. Suppose A Rnn Elo, where n <_ 3. If all the diagonal
entries of A are positive, then A is a Po-matrix.

Proof. If A is a 2 2 Eo/-matrix, then it is easy to check that even with one
diagonal entry positive, A must be a Po-matrix. Now suppose A is a 3 3 matrix
satisfying hypothesis of the theorem. Assume, to the contrary, that A is not a Po-
matrix. Then A is an almost Po-matrix with det A < 0. Let B be the inverse of A.
Then B is an No MEo/-matrix and must have all diagonal entries zero. Also det B < 0.
Since all diagonal entries of A are positive and B is in Eo bij and bji must be positive
for all j. But this implies det B > 0 which is a contradiction. It follows that A
is a Po-matrix. El

From the above theorem a logical question that can arise is that If A is in lnnf"
Eo and aii > 0 for all i, then is it true that A belongs to Po ? Our investigation for
n 4 proved that this is not true for n _> 4. Consider the following example.
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Example 3.12. Let

2 -1 1 2
-2 1 -1 1
-1 2 1 -1
2 -1 -2 2

It can be checked that A is an almost Po-matrix and that all the PPTs of A are

Eo-matrices. Thus, A is an Eo/-matrix with all diagonal entries positive but A Po.
DEFINITION 3.13. Let A E 1nn. Say that A is a fully copositive matrix if A

and all its PPTs are all copositive matrices. This class will be denoted by CIo
Remark 3.14. As Co C_ Eo, it is obvious from the definition that Co-f C_ Eo/. Ob-

serve that positive semidefinite matrices and permutation matrices are Co/-matrices.
Furthermore, if A E Rnn N Co/, then A, Co/ for every n*.

Example 3.15. Let

A-- -1 1 1 0 0 0

Note that A is a P-matrix (and hence Eo but not a fully copositive matrix (A-1
does not belong to Co). B is a fully copositive matrix but not a positive semidefinite
matrix. Last, C is an Eo/-matrix but not a fully copositive matrix.

The following theorem establishes that within the class of symmetric matrices
there is no difference between Co and Eo-f.

THEOREM 3.16. Suppose A Rnn. Assume that A is symmetric. Then A
belongs to CIo iff A belongs to EIo

Proof. Since Co-f c_ Eo-f we need to show that if A e Eo-f, then d e Co/. Suppose
A Eo/. Since A is symmetric, A Co. Let c n* be such that det A,, 0. We
will show that p(A) Co. Let B go.(A). Since A is symmetric
and (A.)t A. Therefore,

1
(B / Bt)

2
(A,,) -1 0 ]0 (A/A,,)

Since A Eo, (A,,) -1, and A/Aa are both Eo-matrices. Observe, also, that
both (A,,) -1, and A/A,, are symmetric. Therefore, (Aaa) -1, and A/A are

X Bt)x, itcopositive matrices. Hence 1/2 (B + Bt) is copositive. Since xtBx (B-F
follows that B Co. Since a was arbitrary, it follows that A

Recall that for n < 3, if A Rnxn 3 Eo and if aii > 0 for all i, then A Po.
In Example 3.12, it was shown that this assertion does not hold good .for n 4.
However, for A in Co we have the following results.

THEOREM 3.17. Suppose A Rnxn3 CIo. Assume that aii > 0 for all ,.
Then A Po.

Proof. We prove this by induction on n. If n 1, then the result is trivially
true. Assume that the result is true for all (n- 1) (n- 1) real matrices. Suppose
A Rnxn3 Co and aii> 0 for every i 5. Observe that for all a C_ 5 with

IcI n- 1, A, satisfies the assumptions of the theorem (see Remark 1.5). Suppose
A Po. By induction hypothesis, A is an almost Po-matrix. Then det A < 0 and
A- E Co-f No. Let B A-1. By Theorem 3.4, there exists a subset a of such
that

#a#fi, B,,<_0, Baa<_0, BaaZ0 and Ba,>_0.
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Since B E Co, we must have B
may assume

0 and Baa 0. Without loss of generality, we

Let k lal. Since B is nonsingular, we must have lal ]1-- k. It is easy to see,
from the structure of B, that if we drop any row and the corresponding column from
B, then the resulting (n- 1) (n- 1) principal submatrix of B must be singular. Let
/3= {1}. Then

det BZ
all 0det B

which contradicts the hypothesis. It follows that A belongs to Po.
COROLLARY 3.18. Suppose A RnnN Cfo Assume that A has at most one

zero diagonal entry. Then A belongs to Po.
Proof. The proof is exactly similar to the proof of the above theorem. Note that

induction hypothesis works because if A has the property that it has at most one zero
diagonal entry, then every principal submatrix of A also has this property.

4. E0/ N Q0-matrices of order less than 7. Before establishing Conjecture 1.1
for 4 4 matrices we prove some theorems on sign patterns of Eo/-matrices which will
be needed in the sequel.

THEOREM 4.1. Suppose A R22 Efo Then SP(A) cannot be equal to any of
the following:

](c)[+ o]O] (b)[ o + + o +
(

Proof. It is easy to check that value of any matrix having the above sign pattern
given by (a) or (b) is negative and hence cannot be an Eo-matrix. If A has the sign
pattern as in (c), then the second diagonal entry of p,(A) is negative, where a {1}.
Hence A cannot have the sign pattern given by (c). Similarly we can show that A
cannot have the sign pattern given by (d).

THEOREM 4.2. Suppose A R33 V EIo Then SP(A) cannot be equal to any of
the following:

(a) + 0 + (b) , 0 + (c) * 0- (d) , 0
+ 0 + + 0 0 0 0 0

Proof. Suppose

SP(A)- + 0 +, / 0

Let M be a PPT of A with respect to a {2,3}.
0 + ].Furthermore,SP((A’)-I + o

Then note that SP(Ma)

SP(Maa) SP(-(Aaa)-lAaa)
Sp(_(Aaa)-l)Sp(Aaa)
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Similarly, SP(Ma) (,,-). Since M is a PPT of an Eo-matrix mll >_ 0. Thus

[ 1SP(M)-= , 0 +
+ 0

Note that SP(M//)= where/ {1 3} This implies that M0 Eof
This shows that SP(A) cannot be equal to the one given by (a). Similarly we can
show that SP(A) cannot be equal to the one given by (b). Suppose SP(A) is given
by (c). It is clear that an x > 0 can be found so that Ax < 0. This contradicts the
fact that A E Eo. A similar argument will show that SP(A) cannot be equal to the
one given by (d). []

COROLLARY 4.3. Suppose A Znxn’l Efo Then no principal submatrix of
A or any of its principal rearrangements can have any of the sign patterns listed in
Theorems 4.1 and 4.2.

Proof. The proof follows from the fact that every principal submatrix of E-
matrix is also in E.

THEOREM 4.4. Suppose A R33. Assume that SP(A) is equal to one of the
following sign pattes:

(a) + 0 + (b) 0 +
+ + 0 + 0

If a2 + a3 > O, then A Eo

Proof. Suppose A Eo and SP(A) is given by (a). Since a2 + a13 > 0, we may
assume, without loss of generality, that a2 > 0. If al > 0, then, by Corollary 4.3,
A E. So al 0. But then the first diagonal entry of p(A) is negative, where
a {2, 3}. This contradicts our supposition that A Eo-f. It follows that A E.
Suppose SP(A)is given by (b). Let B p(A), where a {2, 3}. Then

@ @
SP(B)= + 0 +

+ + 0

Since hi2 + a3 > 0, it can be seen that b12 -+- b3 > 0. From the earlier argument
BCEo

THEOREM 4.5. Suppose A R33 V Eo N Qo. Then A Po.
Proof. In view of Theorem 3.5, it is sufficient to show that Aa E Po for all

a C_ {1,2,3} such that ]a <_ 2. Since A Eo,aii >_ 0 for all i. Suppose there
exists an a C_ {1, 2,3} such that lal 2 and A Po. Since Eo V Qo property is
invariant under principal rearrangements, we may assume, without loss of generality,
that a {2, 3}. Since d e/]22 [ Eo and daa Po (Theorem 4.1),

[+ 1SP(A)= + 0

By Theorem 2.11, we must have either (a21, a3) < 0 or (a2, a31) > 0.
Suppose (a2, a3) > 0. If a2 < 0 or a3 < 0, then A Eo (Corollary 4.3). But

this contradicts Theorem 2.9.
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Suppose (a21, a31) < 0. By Corollary 4.3, a12 and a13 must be nonnegative. But
this contradicts Theorem 2.9. From this contradiction it follows that A belongs to
Poo

We now establish Conjecture 1.1 for 4 x 4 matrices. The outline of the proof is as
follows. We first show that every 2 x 2 principal submatrix of a R44VEo/ VQo-matrix
is in Po (see Lemma 4.7) and then show that every 3 x 3 principal submatrix of an
//44 V Eo/V Qo-matrix is in Po. Then invoking Theorem 3.5, we conclude the result.

LEMMA 4.6. Suppose A E //44 V Qo. Assume that a33 a44 0, and a34
and a43 are positive. Then there exists a PPT B of A such that, subject to principal
rearrangement,

(4.1) b33 b44 0, b31 > 0, b34 > 0 and b43 > 0.

Proof. Let a {3,4}. From Theorem 2.11, it follows that Aa - 0. If Aa
contains a positive entry, then it is easy to see that A or a principal rearrangement
B of it will satisfy (4.1). If Aa has no positive entry, then it must have a negative
entry. Let M pa(A). Then m33 m44 0, and m34 and m43 are positive. Also
M will have a positive entry. Then a principal rearrangement B of M will satisfy
(4.1).

LEMMA 4.7. Suppose A R4x4 E Qo. Assume that a33 a44 0, a34 > 0
and a43 > 0. Then A. and A2. both must have negative entries.

Proof. Let a {2, 3, 4} and J {1, 3, 4}. From the hypothesis, A and AZZ are
not in Po. If A. is nonnegative, then by Corollary 2.3, A /3x3 Eo Qo, and
by Theorem 4.5, A Po. This contradiction implies that A. must have a negative
entry. Similar argument shows that A2. must contain a negative entry.

LEMMA 4.8. Suppose A l:la4 g EIo V Qo. Then every 2 x 2 principal submatrix

of A is in Po.
Proof. Suppose A has a 2 x 2 principal submatrix which is not in Po. Let

a {3, 4}. Without loss of generality assume that A Po. Then we must have
a33 a44 0, and a34 and a43 are positive. In view of Lemma 4.6, we may assume,
without loss of generality, that a31 is positive (see Remark 1.5). By Theorem 4.2 and
Corollary 4.3, we must have a13 _> 0. Since A Eo-f al and a22 are nonnegative. By
Theorem 2.9, a23 < 0 and this in turn implies a32 0 (Corollary 4.3). By Theorem
2.11, we must have

either a41 ::> 0 or a42 > 0.

Suppose a41 > 0. Then by Corollary 4.3, a14

_
0 and by Theorem 2.9, a24 < 0. Since

a24 < 0, a42 --0 (by Theorem 4.1 and Theorem 4.2). Thus,

SP(A)
. @
+ 0 0 +
+ 0 + 0

Note that a12 < 0, as otherwise it would contradict Lemma 4.7 By Theorem 4.4,
a13 a14 0. Then

SP(pa(A))

@ 0 0

0 0 +
0 + 0



SOME PROPERTIES OF FULLY SEMIMONOTONE, Q0-MATRICES 1283

This contradicts Corollary 4.3. So we must have a41 0 and a42 > 0. This in turn
implies a24 0 (Corollary 4.3), a14 < 0 (Theorem 2.9) and a41 0 (Corollary 4.3).
Let/3 { 1, 2, 3} and - {1, 2, 4}. Observe that A3. and A4. are nonnegative. This
implies that A and A are in Po (Corollary 2.3 and Theorem 4.5), which in turn
implies that hi3 a24 0. Thus,

SP(A)
* 0
@ 0

+ 0 0 +
0 + + 0

As A E Qo, by Theorem 2.13, we must have hi2 < 0. Observe that

SP(p(A))

.gff O. + 0
0 0 +

0 + 0

This contradicts Corollary 4.3. Hence every 2 2 principal submatrix of a/a4 V
Eo/V Qo-matrix must be in Po. [3

THEOREM 4.9. Suppose A 1:144 N Eo V Qo. Then A belongs to Po.
Proof. By Lemma 4.8, every 2 2 principal submatrix of A is in Po. If every 3 3

principal submatrix of A is also in Po, then by Theorem 3.5, A Po. Suppose there
exists an a C_ { 1, 2, 3, 4} such that lal 3 and A Po. Since Eo V Qo property is
invariant under principal rearrangements, we may assume, without loss of generality,
that a {2, 3, 4}. Since every 2 2 principal submatrix of A is in Po, we must have
detA < 0 and (A)-1 Eo No. Let B (A). Then B e Eo N Qo. Note
that Ba (A)- Eo V No. By Theorem 3.4 and Remark 1.5, we can assume,
without loss of generality, that

[09 @]SP(Baa)= 0 0 @
@ @ 0

Since Ba is nonsingular, b42 ) 0, b34 > 0, and b23 < 0. Since B E Eo V Qo, all its
2 2 principal submatrices are in Po. This implies b24 b43 0. Thus

SP(B)
. 0 0

* 0 0 +
* + 0 0

From Theorem 2.9, b12 and b14 must both be negative (to see that b12 < 0 examine
the sign pattern of A, observe that a4 < 0 (Theorem 2.9) and compute the sign of
b12). This in turn implies that b21 and b4 are both nonnegative. If b31

_
0, then

we can choose a q e/44 with SP(q) (+, +,-, +)t satisfying F(q,A) and
S(q,A) . So b3 must be positive. But then

SP(A) * 0 0 +
* 0 0

0 + 0
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This contradicts Corollary 4.3. It follows that every 3 3 principal submatrix of A is
in Po. Invoking Theorem 3.5, we conclude that A belongs to Po.

The following result is due to Jeter and Pye [10]. We give an alternative proof of
this using Theorem 4.9 and a result due to Aganagic and Cottle [1].

THEOREM 4.10. Suppose A R44 if)E
o Q. Then A belongs to Ro.

Proof. Since Q c_ Qo, by Theorem 4.9, A Po. Aganagic and Cottle [1] showed
that, if A E Po, then A E Q iff A Ro. Hence A belongs to Ro.

In [14], it was shown that if A R44NEIo vQ and aii > 0 for all i, then A Po.
In this direction we have the following result for A R55.

THEOREM 4.11. Suppose A Rh5NEIo NQo. If ai > 0 for alli {1,2,...,5},
then A belongs to Po.

Proof. Since A Eo and aii > 0 for all i, by Theorem 3.12, every 3 3
principal submatrix of A is a Po-matrix. If every 4 4 principal submatrix of A
is in Po, then by Theorem 3.5, A Po. Suppose A has a 4 4 principal subma-
trix which is not a Po-matrix. Without loss of generality, assume Aaa Po, where
a {1, 2, 3, 4}. Then, by the above observation, detA is negative and
(A)-1 e Eo/V No. Let B (Aa)-1. By Theorem 3.4, there exists a princi-
pal rearrangement of B whose sign pattern is

either

We may assume, without loss of generality, that SP(B) itself is given by either (a) or
(b). Suppose SP(B) is as in (a). Note that det B < 0.

detB where fl {2, 3, 4},Since all detB

all :> 0 = b42 > 0, b34 < 0 and b23 > 0.

Similarly,

a22 > 0==b41 >0, bl3 > 0.

a33 > 0=b24 > 0.

Then

Let D go(A). Then

a44 >0=bs1 > 0, b23 >0, b12 <0.

SP(B)

0 + (9

0 0 + +
+ (9 0
+ + 0 0

SP(D)

0 + (9 ,
0 0 + +
+ (9 0 .
+ + 0 0 .. . . .
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Write D (dij). If d25 _> 0, then D2. >_ 0, andD e Eo n Qo, where- {1, 3, 4, 5}.
But D has a principal submatrix with determinant negative. This contradicts
Theorem 4.9. Hence d25 < O. By Theorem 2.9, a51 < 0. But then v(A) is negative
(observe SP(A)), where /- {1,2, 5}, which contradicts the hypothesis that A is in

Eo-f. Thus B cannot have the sign pattern given by (a). So B must be given by (b).
But this sign pattern is ruled out because it implies that a44 0 which contradicts
the hypothesis. It follows that A is in Po.

COROLLARY 4.12. Suppose A E R55 n Eo N Q. Assume that all the diagonal
entries of A (or any of its PPTs) are positive. Then A belongs to Ro.

Proof. If A (or any of its PPTs) has all diagonal entries positive, then A belongs
to Po. Since A is in Q, A belongs to Ro.

THEOREM 4.13. Suppose A R66 NEo NQo. Suppose A satisfies the following
conditions:

(a) aii > 0 for every e {1,2,...,6},
(b) A has property (D),
(c) for every PPT M of A, v(Mt) > O.

Then A belongs to Po.
Proof. Note that Corollary 2.20 implies Aa Qo for all a c_ {1, 2,..., 6} with

lal 5. By Theorem 4.11, Aa e Po for every a c_ {1,2,..., 6} such that lal 5.
By Theorem 3.5, A belongs to Po.

5. Concluding remarks. Aganagic and Cottle [1] gave a constructive charac-
terization of Po N Qo and showed that Lemke’s algorithm processes (q, A) when A is
in this class. Hence for all the cases for which we have established Conjecture 1.1 this
result will apply. We believe that Conjecture 1.1 can be established even in the case
of 5 5 matrices using proof techniques employed in 4. It can be shown, using sign
patterns, that if A Eo N Qo and every principal submatrix of A of order (n 2) is
in P, then A belongs to Po.
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STABILITY OF LINEAR EQUATIONS SOLVERS IN
INTERIOR-POINT METHODS*

STEPHEN J. WRIGHTt

Abstract. Primal-dual interior-point methods for linear complementarity and linear program-
ming problems solve a linear system of equations to obtain a modified Newton step at each iteration.
These linear systems become increasingly ill-conditioned in the later stages of the algorithm, but
the computed steps are often sufficiently accurate to be useful. We use error analysis techniques
tailored to the special structure of these linear systems to explain this observation and examine how
theoretically superlinear convergence of a path-following algorithm is affected by the roundoff errors.

Key words, primal-dual interior-point methods, error analysis, stability

AMS subject classifications. 65G05, 65F05, 90C33

1. Introduction. The monotone linear complementarity problem (LCP) is the
problem of finding a vector pair (x, y) E Rn Rn such that

(1) y Mx + q, (x,y)

_
0, xTy 0,

where M (a real, n n positive semidefinite matrix) and q (a real vector with n

elements) are given. Note that M need not be symmetric. It is well known that (1)
includes the linear programming problem as a special case. Specifically, for the linear
programming formulation

(2) min cTz subject to Az >_ b, z >_ 0,
z

where A Rmp, we can introduce the dual variable A Rm for the constraint
Az >_ b and obtain the following necessary and sufficient conditions for optimality of
the primal-dual pair (z, A)"

0 -AT z 0 z

(ab) z (c ArA) + ,Xr (Az b) O.

For appropriate definitions of M and q, (3) has the form (1). Little is lost from either
the practical or theoretical point of view by applying interior-point algorithms for (1)
to the special cases of linear and convex quadratic programming, provided that the
special structure of each problem is exploited in the solution of the linear systems at
each iteration.

Interior-point methods for (1) generate a sequence of iterates (xk, yk) that are
strictly positive. Many such methods require a linear system of the form

M -I(4) Y X v -XYe + a#e

Received by the editors December 21, 1993; accepted for publication (in revised form) by N.
Higham December 13, 1994. This work was based on research supported by the Office of Scientific
Computing, U.S. Department of Energy, Contract W-31-109-Eng-38.

Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass
Avenue, Argonne, Illinois 60439 (wright(C)mcs.anl.gov).
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where

X diag(xl, x2,... ,xn),
# xTy/n,

Y=diag(yl,y2,...,yn), e=(1,1,...,1)T,
r y Mx q, a e [O, 1],

to be solved for a search direction (u, v) at each iteration. Affine-scaling methods solve
(4) with a 0 to find a search direction, then step a fraction of the distance along this
direction to the boundary of the nonnegative orthant defined by (x, y) _> 0. Affine-
scaling steps (u, v) are simply Newton steps for the system of nonlinear equations

XYe 0

Path-following methods (see, for example, Monteiro and Adler [10], Zhang [19], Wright
[14]) generate steps by using generally positive values of a in (4). (As we see later, the
algorithm of [14] allows a 0 on some iterates in an attempt to attain the rapid local
convergence associated with Newton’s method.) Potential-reduction methods (see,
for example, Kojima, Mizuno, and Yoshise [6], Kojima, Kurita, and Mizuno [5]) also
determine search directions by solving systems like (4), but they refer to a logarithmic
potential function to decide how far to move along the computed direction. Predictor-
corrector methods (see, for example, Ye and Anstreicher [18], Ji, Potra, and Huang
[4], eotra [12]) take steps with either a 0 or a- 1.

The system (4) is highly structured; since the diagonals of X and Y are strictly
positive, we can rearrange the system to obtain

(6a)
(6b)

(M / X-IY)u r y + a#X-e,
v -X-Yu y + apX-le.

In the case of linear programming (2), equation (6a) contains even more structure.
Its form is

(7) [ Z-YA A- YA uA -Az + b + a#A- e

where Yz and Y are positive diagonal matrices and

Z diag(Zl,... Zp),

The matrix in (7) can be made symmetric indefinite by multiplying the first block
row by -1. This system can be reduced even further by eliminating either uz or u.
For instance, if u is eliminated, we obtain

(8) (Ay-IZAT + A-IY),)u), (b- Az + o#A-e) Ay-Iz(ATA c + o’Z-l{).

Some interior-point codes for linear programming use" the formulation (8), with
modifications for handling dense columns in A and for dealing with nonstandard linear
programming formulations (see Lustig, Marsten, and Shanno [7], [8] and Xu, Hung,
and Ye [17]). Other codes, notably those of Fourer and Mehrotra [1] and Vanderbei
[13], handle the formulation (7). Analysis of algorithms for these formulations are
discussed in another preprint [16]. In this paper, we focus on the system arising from
general monotone LCP (6), and analyze the behavior of Gaussian elimination with
pivoting applied to this system.
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Since for any index 1,..., n, at least one of xi and yi is zero at the solution, we
would expect some of the diagonal elements of X-1y to approach zero and some to
approach -t-oc as the solution set is approached. Hence the coefficient matrix in (6a)
tends to become increasingly ill-conditioned during the later stages of the algorithm.
From the standard error analysis of linear systems, we might therefore expect that
rounding errors in the step (u, v) make it useless in advancing the algorithm towards
convergence. In this paper, we show that while the theoretical superlinear properties
suggested by the exact analysis are not generally observed, implementations of the
algorithms can still exhibit rapid convergence if the parameters are set to appropri-
ate values. For a particular path-following infeasible-interior-point algorithm with
strong theoretical convergence properties, these conclusions are presented in 4 and
confirmed by computational experiments in 5. Section 3 lays the groundwork by
deriving bounds on the rounding errors in the computed values of (u, v), for a wide
class of algorithms that includes the algorithm of 4 and 5. Section 2 presents the
assumptions and a fundamental result from error analysis.

Linear systems that arise in logarithmic barrier methods for constrained opti-
mization methods were analyzed by Poncelebn [11]. The Newton equations for each
logarithmic subproblem are similar to (6a) in that the large elements occur only on the
diagonal. Despite the apparent ill-conditioning of these systems, Poncelebn showed
that their sensitivity to structured perturbations from a certain class is governed by
the conditioning of the underlying problem and does not depend on the current value
of the barrier parameter. Poncelebn’s analysis is somewhat different from that of 3
she looks at the relative error in the components of the solution, rather than starting
with the absolute error but her conclusions are consistent with those obtained in

3.
In subsequent sections, subscripts denote components of a vector, while iteration

indices (usually k) appear as subscripts on scalars and as superscripts on vectors and
matrices. The sets B and N form a partition of the index set {1, 2,..., n} defined in
Assumption 1 below. If x R, then

XB [Xi]iEB, X diag(x) diag(xl, x2,... ,Xn), XB diag(xB),

and so on. For the matrix M E Rnn, we have

MBN [Mij]ieB,jeY,

and similarly for MBB, MNB, and MNN. Given any matrix H [hiy], we define
Igl []hij]] and denote the jth column of H by H.5. The notation ]1" denotes
the 1-, 2-, or c-norm of a vector or matrix, while a(.) denotes the corresponding
condition number.

For any two nonnegative numbers and X, we write p O(X) if there is a
moderate constant T such that p <_ TX. When W is a matrix or vector, we write
W O(X) to denote IIWII O(X). We use t(X to indicate that both , O(X)
and X O().

We use u to denote unit roundoff, which we define implicitly by the statement
that when x and y are any two floating point numbers, op denotes +,-, ,/, and
fl(z) denotes the floating point representation of any real number z, we have

(9) fl(xopy) (xopy)(1 + 5), 151 _< u.

(See aolub and Van Loan [2, 2.4.2].) We assume throughout that u is small enough
that O(u) 1, where 0(.) is the order notation defined above.
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2. Assumptions and basic results. In the remainder of the paper, we focus
on path-following interior-point methods. "Infeasible" variants of these methods are
among the most widely used practical algorithms for linear programming and LCPs
[7], [8] and have also been the subject of extensive theoretical investigations, which
have shown that they can have strong convergence properties under weak assumptions
[19], [15], [14]. The path-following infeasible-interior-point framework stated below
also includes the class of predictor-corrector methods, for appropriate choices of the
initial point and parameters.

Path-following algorithms restrict their iterates (xk, yk) to neighborhoods of the
form

(10)

where R_ denotes the nonnegative orthant in Rn. All iterates generated by the algo-
rithms lie in Af(Tmin), where 7min E (0, 1/2) is a constant. Other quantities needed
to define the general algorithm include

#k (xk)Tyk/n, rk yk Mxk q, /max E (’min, 1/2],
Zk diag(xk), Y diag(yk).

We define the algorithmic framework in what follows.

ALGORITHM PFI
given 70 e [Tmin, /max] and (x, y0) e fir(70)

for k 0, 1,2,...
choose ak [0, 1] and find (uk, vk) that satisfies

(11) yk Xk vk --XYke + ak#ke

choose 7+1 [min, max] and ak > 0 such that

(xk-bl, yk-I-l) (xk, yk)
kand 1-Ij=0(1 -aj) <_ K#k+i/#o when r 0, for some constant K > 0;

end (for)

The decrease in Ilrkll at each iteration is linear- in fact, rk+l 1-[=0(1 -a)r
so the last condition in Algorithm PFI is equivalent to

(12) IIr+llllllrll <
Hence, IIrll o(v) for all k, so the infeasibility is always bounded by a multiple of
the complementarity gap #.

When the initial point is feasible (r 0), predictor-corrector algorithms such as
that of Ji, Potra, and Huang [4] are special cases of Algorithm PFI. This framework
also includes the infeasible-interior-point algorithms of Zhang [19] and Wright [15],
[14]. These algorithms choose /k+l and ak so that a step ak of nontrivial length can
always be taken without violating the required conditions.

In practical implementations of interior-point methods, the framework of Algo-
rithm PFI is usually modified slightly. In linear programming codes, different step
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lengths are usually chosen for the primal and dual components of x, as experience has
shown that this strategy tends to reduce the number of iterations slightly. Moreover,
explicit membership of the neighborhood (10) is usually not enforced. (A more com-
mon strategy, for which there is no supporting theory, is to find the largest value of
a in [0, 1] that keeps (xk, yk) + a(u, v) in the nonnegative orthant and then choose
ak to be a fixed fraction of this length.) The predictor-corrector strategy of Mehrotra
[9], used also in the codes of Lustig, Marsten, and Shanno [8], Vanderbei [13], and
Xu, Hung, and Ye [17], adds extra terms to the lower part of the right-hand side on
"corrector" iterations. Nevertheless, the coefficient matrices used in these practical
algorithms are the same as in (11), and our conclusions about the accuracy of the
computed steps continue to hold, with minor modifications to the analysis of 3.

For most of our analysis, we make the following assumptions about the data for
problem (1).and its solution set.

Assumption 1.

(a) Problem (1) has a unique solution (x*,y*) such that x* + y* > 0 (i.e. strict
complementarity holds). We can define an associated partition B, N of the
index set (1,..., n} such that x* > 0 for all E B and y > 0 for all E N.

(b) The quantities

IIMII, liM  II, IIX ,ll, IIY [I, II(Y )- II

are all moderate in size.
Assumption 1 implies that the coefficient matrix in (11) approaches a nonsingular

limit, since there are 2n 2n permutation matrices P and II such that

(13) P Y* X*
H=

o o o
o o o
-I MBN MBB 0
0 MNN MN --I

and each of the submatrices on the diagonal of (13) is nonsingular.
When the problem (1) is derived from a linear program as in (3), existence, of a

solution implies existence of a strictly complementary solution. However, for both this
special case and the general case of M symmetric positive semidefinite, uniqueness
of the solution and well-conditioning of MBB are often not satisfied in practice, so
Assumption 1 is quite strong. As we see, however, this assumption plays an important
role in showing that the errors in the computed solutions are not disastrous for the
interior-point algorithm, just as well-conditioning of the square coefficient matrix A
in a linear system Az b is needed to ensure that the relative errors in the computed
version of z are not too large. Our computational experience (5) tends to indicate
that Assumption 1 is necessary as well as sufficient for rapid local convergence of the
algorithm.

We make one further assumption on the iterates generated by the basic algorithm.
Assumption 2. The iterates generated by Algorithm PFI satisfy

lim xk, y x* y*

Of course, it is not necessary to make this assumption for any reasonable instance of
Algorithm PFI, since convergence to a solution should be one of the properties implied
by the particular schemes for choosing ak, ak, and ’k. We make this assumption here
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merely to divorce the error estimates of the next section from any particular variant
of Algorithm PFI.

By the implicit function theorem, the nonsingularity of the matrix (13), equation
(11), and litk O(#k), we have

(14) II(uk, vk)ll O(#k), ii(Xk, yk) (X*, Y*)II O(#k).

We also have the following simple result.
LEMMA 2.1. There are positive constants C1 and C2 such that for all k su]ficiently

large, we have

k < C2#k Vi E N,(15a) Cl#k

__
X

(155) Cl#k <_ Yki <_ C2#k Vi B.

Proof. Because of Assumption 2, we can define an index K and positive constants
1 and ’2 such that

Xi
k [2, 1] k >_ K i B,

Therefore, since (xk, yk) > 0, we have for k _> K, i E N, that

k k (xk)Tyk k n#____k < n#k
xiYi < --n#k => xi < yk 2"

Also,

k k
xi yi >_ k#k >_ /mink k > mink > min#k

Therefore (15a) holds with Ct "min/ and C2 n/2. The proof of (15b) is
similar.

Finally, we state a result from the roundoff error analysis of Gaussian elimination,
for reference in the next section.

THEOREM 2.2. Suppose that the m x m linear system Az b is solved by using
Gaussian elimination, possibly with row and/or column pivoting. Let us denote the
row permutation matrix by P, the column permutation matrices by H, the computed
unit lower triangular factor by ,, and the computed upper triangular factor by U.
Then the computed solution solves the perturbed system (A + H) b, where

(16) [PHH

_
era(2 -t-

and m mu/(1 mu) O(u).
Proof. The proof follows immediately from Theorem 6.4 of Higham [3].
During Gaussian elimination, the size of the largest element in each column of

the remaining submatrix may grow as multiples of the pivot rows are added to later
rows in the matrix. We quantify this growth by the growth factor p, defined as the
smallest positive number such that

(17) max I/)jl _< p max I(PAH)jl Vj 1,2,...,m.
i--1,...,m i--1,...,m

We then have the following simple corollary of Theorem 2.2.
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COROLLARY 2.3. Let the system Az b be as in Theorem 2.2, and suppose the
pivots ]jj are chosen so that Iijl < 1 for all i 2,..., m, j 1,..., i- 1. Then

(18) J[H.,yJJ mem(2 + em)pjJA.,JJu.

3. Error bounds for the steps. In this section, we derive estimates for the
difference between the step actually computed by solving (6), which we denote by
(it, ), and the corresponding exact values, denoted by (u, v). We treat the cases in
which (, )) is determined by Gaussian elimination with row partial pivoting and with
complete pivoting.

We start with a purely technical result.
LEMMA 3.1. Let G be a square matrix partitioned as

G21 G22

where Gll and G22 are also square. Suppose that Gll and G22- G21GlG12 are
nonsingular. Then G is nonsingular and G-1 has the form
G- + G-G 2 G22 G21G-IG G G-I

-1-(G22 G21G-(G12)-lG21G11
-G-G12(G22 G21G-G12)-1 ]

(G22 G21G-G2)-1 ]

Our first main result concerning components of is the following.
THEOREM 3.2. Let t be computed by applying Gaussian elimination with row

partial pivoting to (6a), and suppose that the growth factor p is not too large. Then
for all # sufficiently small, we have

limb II-- O(U + ), I1@11-- o().

Proof. We assume that tt is much smaller than all the quantities in Assumption
l(b), so that # << 1. We retain only the lowest-order terms in u and # in the analysis
since, by our assumptions, higher order terms are small enough to be absorbed into
lower-order terms with minor perturbations of the coefficients.

From Theorem 2.2 and (18), we have, by permuting the rows and columns.of (6a),
that

(19)

where

(o)
(2Ob)
(20c)
(20d)

MBB + XIyB + EBB
MNB -+" ENB

MBN+EBN ] [ tB
MNN + XclyN + ENN N J

[ rB--YB--al-txle ]rg YN altX e

[IEBBII < PO(IIMBB + XXYBII + IIMNBII)u,
IIENBII -- PO(IIMBB / XaXYBII + IIMN.II)u,
IIEBNII <-- PO(IIMNN / X;cYNII / IIMBNII)u,
IIENNII < PO(IIMNN / XIYNll + IIMBNII)U.

Now from Assumption l(b) and Lemma 2.1, we have

IIXIyBII 0(), IIXrl yNll O(--1),
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and IIMBBII, IIMBNII, IIMNBII, and IIMNNII are all O(1). Combining these observa-
tions with (20), we obtain

IIEBBII-- O(U), IIENBII----- O(U), IIEBNII O(-lu), IIENNII-- O(t-lu).
Therefore (19) can be rewritten as

(21) MNB

where

liEBBil 0( + U), liENBil O(U),
(22) [IvBNII-- 0(-lu), [[]NN[[-- O(-lu),

bB rB YB r#Xle, bN rN YN ff#Xle.

If we denote the coefficient matrix in (21) by G, with Gll MBB + EBB and so on,
we have from Assumption l(b) and Lemma 3.1 that

GI [I + MBB]-M M+ 0(# + u).

Since

Ila2ll o(1), liar211 o(1 + #-lu),

and since IIXNYII- o() from (15a), we have

c; . G C, 711c;1 X/YN It_ + XNYr MNN + NN XNy G G-IG 2

XYN [I + O(#)O(1 + #-u) + O(#)O(1)O(1)O(1 + #-lu)]
X;YN[I + 0(# + u)].

Hence

(G22 G21G-ll G12 -1 -[- O I,Z At- U)) y xN O Iz).

Substitution in Lemma 3.1, together with Assumption l(b) and some manipulation,
yields

(G-1)11 M + O(# + u), (G-1)12 O(/z -[- U),
(a--l)21 O(,), (G-1)22

We have [[r[[ O(#) in exact arithmetic, but roundoff errors in the calculation of
r y- Mx-q restrict us to assuming that ][r[[ O(# + u). Using this fact together
with Assumption l(b), formula (14), and Lemma 2.1, we have

IIbBII- o( + u), IIbNII- o(1).

Therefore, from (21), we have

ZB (G-1)11bB -I-(G-)12bN O(# -t- u),
N (a-1)lb + (C;-)bN 0(),
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as required.
Our next result bounds the difference between u and
THEOREM 3.3. Suppose the assumptions of Theorem 3.2 hold. Then for all

suj:ficiently small, we have

(23b)
IIu UB 0( + U),
IIN --UNII- 0(( + U)),

and, .for all E N,

(24b)
ui/x -1 + O(a +
i/xi -1 + O(a + # + u).

Proof. The expression (23a) follows immediately from (14) and Theorem 3.2,
since

limB UB < limB + limb 0( / U).

For (23b), note first from (6) and (21) that

MNBUB+(MNN+XI1yN)UN bN (MNBWNB)BW(MNN+XIyNWNN)N

Hence, from (14), (22), (23a), Assumption l(b), and Theorem 3.2, we have

XI1yN(UN g) MNB(B UB) + MNN(N UN) -- NBB r- gNg
o( + u) + o() + O(u) + O(u) o( + u).

From (1ha), we have XNY# O(#) and so (23b) is proved.
From (4), we have

yiui + xivi -xiyi + a#

and therefore

(25) ui i
vi

xi yi xiyi

Because xiyi > "min/, we have #/(xiyi) O(1). Also from Assumption 2 and (14), we
have for i e N that v/y O(#). Hence, (24a) is obtained by using these estimates
in (25). For (24b), we have from (1ha), (23b), and (24a) that for all/e N,

i ui

Xi Xi

1
+ --0(/(# + u)) -1 + 0(# + a) + 0(# + u).

xi

Note that in Theorems 3.2 and 3.3, we have ignored possible errors that are
introduced into the computation during the formation of the right-hand side b from
the vectors r, x, and y, and the scalars a and #. Since the formation process introduces
a relative perturbation of O(u) into each component of b, we lose nothing by ignoring
the perturbations.

We now turn to recovery of the step 0. From the exact formula (6b), we have

(26)
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In the actual computation of ), we have only the computed value available to us.
Moreover, errors are introduced when each of the five or six floating-point operations
on the right-hand side of (26) are performed. The exact nature of these errors will
depend on the order in which the operations in (26) are performed. Two possibilities
are suggested by the parentheses in the expressions

-u,[ + (/x)] + (,)/x,,

We can, however, perform an analysis that takes all the possibilities into account, as
we show in the following theorem.

THEOREM 3.4. Suppose the assumptions of Theorem 3.3 hold and that is com-
puted from the formula (6b)(equivalently, (26)) with t replacing u. Then we have

(27a)
(27b)

and, for all E B,

(:8)
(28b)

limB -VB II- o(( + u)),
IIN VNII o( + u),

vi/yi -1 + O(a + #),
i/Yi -1 + 0(o + # + u).

Proof. In all the formulae of this proof, we use the notation 5j, j 1,2,...,
to represent scalar quantities of order u (We certainly have 5j _< 10u throughout
the proof.) Recall that relative errors of O(u) are incurred whenever a real number is
approximated by a floating-point number and when an arithmetic operation involving
two floating-point numbers is performed (cf. (9)). Therefore,. regardless of the order
in which the operations required to recover Oi are performed, we have

(29) Oi -yi 1 + (1 -[- --(1 + 5) (1 + 5a) + --(1 + (4) (1 + 55).
Xi Xi

By rearranging and combining terms in (29), we obtain

Oi -yi(1 + 56)- Yi--S (1 + 57)+--(1 + 5s)
Xi Xi

yui a# y
-Yi q- q- --(Hi ti) 6Yi 7

yiti
58

Xi Xi Xi Xi

By substituting from (26), we obtain

(30) Iv o1- x
y- lu 1 / O(u) [lyl / Xi

Consider first the case of i E B. From (30) together with Assumption 2, Theorem
3.2, expressions (15) and (23a), and 5j -O(u), we have

Iv ,1 o(( + u)) + O(u)[o() + o(( + u)) + o()1 o(( + u)),

proving (27a). For N, we have from Assumption 2, Theorem 3.2, and expressions
(15) and (23b)that

Y--/ 0(#-), lui til 0(( + u)), Yii 0(1) a 0(1)
Xi Xi Xi
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Therefore we obtain from (30) that

as required.
The inequalities (28) are proved in the same way as (24). rl

Gaussian elimination with complete pivoting is possibly more relevant to practical
algorithms, since sparse elimination algorithms rearrange both rows and columns and
hence can be regarded as approximations to the complete pivoting strategy. The main
error results for complete pivoting are the same as those for partial pivoting. To justify
this claim, we note first that the nonbasic indices will eventually be used as pivots
before any of the basic indices are used, because of the large sizes of y/xi, E N.
Moreover, the error matrices EBN and ENN are O(u) rather than O(#-lu), because
the elements yi/xi, N cannot appear in a pivot row except on the diagonal, so
they cannot "contaminate" other elements in the nonbasic columns of M+X-1Y. In
other words, fi actually solves the system

(31)

MBB -t- X[IyB + EBB
MNB + ENB MNN -t- XIyN + ENN tN

[ rB--YB--a#Xle ]ry YN (r#X e

where

(32b)
(a c)
(32d)

By defining G as the coefficient matrix in (31) and partitioning as before, we obtain
after some manipulation that

(G-1)ll M + O(# + u),
(a-1)21 O(#),

((:;- ), 0(),
(G-1) O(#).

Therefore, using ][bBl[ O(# + u) and [[bN[[ O(1), we have

B (G-1)llbB + (G-1)12bN O(# -t- u),
N (a-1)21bB ’t-((-1)22bN O(),

which is the same error result as the one obtained for partial pivoting in Theorem
3.2. The other results in the section also hold for complete pivoting, with minor
modifications to the proofs.

4. Effect of roundoff error on local convergence. We now consider the al-
gorithm in [14], which can be described as follows. Given parameters 7k+1 (/min, "k]
and fik [0, 1), the step ck is chosen as

(33) Ck arg min #k(a) (x + auk)T(yk + avk)/n,
e(0,1l
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subject to

(34a)
(34b)

(, u) + -(,) e Z(+),
uk(a) >_ (1 -a)(1 k)k, if rk = 0

for all a E [0, ak]. The choices of ak, Y+l, and k at each iteration are made according
to the following scheme.

given e (0, 1), ’min, O/max with 0 < "Ymin < /max < 1/2, 8 e (0, 1/2),
p (0, ), and (x, yO) with o oxy _> Ymax0 > O;

to - 1, ’o -" max;

for k 0, 1, 2,...

if #k 0 then stop;
Find (uk, v) and ak from (11), (33), and (34) with

ak 0, k ,tk, "Yk+l /min -- tk (’max /min);
if pk(Ok)

_
then accept this step; tk+l +-- tk -[- 1; go to next k;
end if
Find (uk, v) and ak from (11), (33), and (34) with

ak [O, 1/2], 3k --0, /k+l
accept this step; tk+l +- tk; gO to next k;

end for.

This algorithm takes two types of steps- "safe" steps, for which a >_ , and
"fast" steps, for which ak 0. Theoretically, the safe steps ensure good global conver-
gence properties and complexity, while the fast steps ensure asymptotic superlinear
convergence. The counter tk keeps track of the number of fast steps taken prior to
iteration k.

The choice of step length ak ensures that [[rTM [[ O(#k+l). To see this, note
from condition (34b) that

#+ (1-- a)(1-- 3k)# [j=o(l aj)(1-- 3j)] #o.

Since

k oo k

H(1 3j)

_
l-I(1 ) > o, r+’ H(1 aj)r,

j=o j=o j=o

we have

+,/0 > DII,’+IlI/II,’II,

so condition (12) holds with K --/-1.
We focus on this algorithm because of its strong theoretical properties, namely,

global convergence from any positive starting point (x, y0), polynomial complexity
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when properly initialized, and superlinear local convergence. Also, the method per-
forms well in computational tests and is quite similar (at least in its "nonsuperlinear"
phase where rk

_
() to the algorithm implemented by Lustig, Marsten, and Shanno

[8]. We assume throughout that finite termination does not occur, that is, the algo-
rithm generates an infinite sequence of strictly positive iterates (xk, yk).

In this section, we examine how the behavior of this algorithm is affected when
the computed steps (k, Ok) are used in place of the exact steps (uk, vk). We start by
showing that near-unit steplengths can eventually be taken by this algorithm without
violating the positivity condition (xk, yk) > 0. Consequently, there exists the possi-
bility of rapid convergence of the sequence of complementarity gaps #k to zero, even
in the presence of roundoff error. We refine the results to show that for the safe steps
(ak _> ), we actually have ak 1 when #k is sufficiently small.

In all the analysis below, our convention is to use the iteration index k in the
statement of each result, but omit it in the proofs.

LEMMA 4.1. For all k sufficiently large, we have

for all a E [0, (k], where

()

(xk + atk, yk + ak) >_ 0

1 (1 O(ak + # + u).

Proof. We consider first the indices i E N. From (27b), we have

I1- Iv, / o( / u) o( / u),

while from Assumption 2 we have for large k that y y* > 0. Hence y + () > 0
for all a [0, 1] and all k sufficiently large. On the other hand, we have from (24b)
that

xi + ai xi + axi(-1 + O(a + # + u)).

Therefore, if xi + aiti 0 for some index i, then we must have

1-a+aO(a+#+u)=O =v [1-a[=O(a+tt+u).

Hence xi + ati >_ 0 for all a [0, (], for ( satisfying (35).
The case of B is proved in a similar way by using (28b).
We now show that near-unit steps produce fast linear convergence of the comple-

mentarity gap to zero.
THEOREM 4.2. If k is sufficiently large, then

( + .)r(u +.) [ .(1 ) + o(, + )](x)ru.
Proof. For any i 1,..., n, we have from the second part of (4) that

( + .)(u + .)
xiyi + ayiui + axivi + ayi(ti ui) + axi(Oi vi) + a2tii

(a) (1 .)xu +,+.u( u) +.( ) +..
Now, by Assumption 2 and relations (15a) and (27), we have

i e N =v Ixi()i vi)l O(#)O(# + u),
i e B = Ixi(i- vi)l O(1)O(#(# + u)).
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A similar result holds for lyi(i- ui)[. For the last term in (36), we have from (14),
(27), and Theorem 3.2 that

N Il O()(Ivl + I- vl) 0(( + u)).

We also have #/(xiyi) <_ 1/min O(1). Using these estimates in (36), we obtain

(37)
(xi + ai)(yi + aOi) xiyi(1 a) + ca# + aO(tt(# + u))

( ) + [ + o( + u)].

By summing over i, we obtain

(38) (x + at)T(y + cO) xTy [(1 a + ca) + cO(# + u)],

which yields the desired result.
We now examine the safe steps, for which k >_ , and show that ak 1 satisfies

the criteria (33) and (34) for large enough k, even when the computed search direction
(tk, )k) is used in place of the exact direction (uk, vk). That is, a unit step is taken.

THEOREM 4.3. Suppose that is substantially larger than u, in a sense to be
defined below. Then for all su]ficiently large k, if a safe step (with (7 >_ , Y+I /,
and O) is computed, the step length parameter satisfying (33) and (34) will be
ok -1.

Proof. From (38), we have

(39) (x + aft)T (y + a0)
xTy (1 a) + a [Or + O(# + U)].

Therefore (34b) will hold for all a e [0, 1] (with (u, v) replaced by (, 9) and flk 0),
provided that the term in square brackets in (39) is nonnegative. But nonnegativity
is guaranteed for u << and # sufficiently small, so ak 1 satisfies this inequality.

Consider now (34a), with /k+l /k. From (37) and (38), we have

(Xi " ai)(Yi "- a)i)
(x + at)T(y + a)/n

(40) >_

(1 -a)xyi + #[(7 + 0(# + u)]
(1 a)# + a#[a + O(# + u)]

xiYi/# z_ [(7 C10(# -- u)]a/(1 a)
1 + [(7 + Cll (# -- u)]o/(1 o)

for some positive constants C10 and Cll. Since xiyi

_
"k# for all 1,..., n, we find

that (34a) is satisfied if

a C0( + u)
O" --Cll (# - u) - max,

or, equivalently,

# + u 1 --’)’max

(7 C10 "- Cll
This last inequality, and therefore (34a), holds provided that # and u are small enough
with respect to , as we have assumed.
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Finally, we show that

f(a) A= (x + a)T(y +
is decreasing on the interval a e [0, 1]. Since from (38), we have

1 a + aa + aO(lz + u),

the derivative/Y(a) is nonpositive provided that

(41) -l+a+O(#+u) <_ 0.

Since <_ a <_ 1/2 and, by our assumptions in the first part of this proof, dominates
the O(# / u) term, we huve that (41) holds.

We have shown that all a e [0, 1] satisfy the conditions (34) with (u, v) replaced
by (, ). Moreover, the function in (33) is decreasing over this interval. We conclude
that ak 1 is the step chosen by the line search procedure, giving the result. D

We turn now to fast step, for which (Tk 0,/k tk, and "k+ ’min-l-’tk (max--
min). The (exact) analysis in Wright [14] shows that fast steps are eventually always
taken by the algorithm. Note that if the fast step is accepted, we have

(42) /k ’k+l (**- "tk)(’)’max /min) t (,-1 1)(max "Ymin) (/k)-

The following theorem gives an estimate for the length of a fast step.
THEOREM 4.4. If a fast step is attempted at iteration k, where k is sufficiently

large and u < 1, then

F
ak >_ [1 + v/k

where k satisfies 0 <_ ?k <_ 0(1).

k "Jr- U 1 -1

Proof. As in (37), we have for rk 0 that

(a3) + .) u) _> .) ,.(, +

where 0 <_ r/(1) <_ O(1). From (38) we have

(X +a)T(y +a)/n #[1-, +cO(# +u)] _< # [1- a +,(# + u),(k2)](44)

where 0 _< T](k2) O(1). Putting (43) and (44) together, we deduce that (34a) holds
provided that

k(l O/) O(/Z -- U)?(k1) "/k+111 O -- O( -[- U)l(k2)],
which in turn is true if

(’)’k ")’k+1)(1 O)

_
O(/Z T U)(?(k1) -I-

This last inequality is implied by the following bound on a"

(45) < [1 (p _t_ U)(r/(kl) _+_ r/(k2)) ]
-1

[ ]-11 -+- (# - U)(T/(kl) "+"
/k k+l ,t (,-1 1)(’)’max min)
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where we have used (42) to derive the final inequality.
Using (44) again, we have

(x + )T(y + c@)/n # [1 c + cO(# + u)] _> # [i c (# + u)7(a)],
where 0 _< (k3) _< O(1), SO the inequality (34b) is satisfied when

+ >

that is, when

-1

Providing we can show that ftk(a) is decreasing on [0, 1], we have from (45) and (46)
that the result holds for k defined by

However,

(--1 1)(’max ")’min) }

/(a) _< -# [1 0(# + u)] < O,

so (a) is certainly decreasing on [0, 11, and the result is proved. 0
This result accurately indicates the behavior of fast steps on later iterations of the

algorithm. The quantity k is typically either extremely small or else quite significant
(that is, k ft(1)), depending on the sign of certain products such as T), fii,
and so on. When k is tiny and #k + u << t, the value of ak is very close to 1,
and the fast step is accepted with a large reduction in #. When ?k is larger, or when
t O(u), the fast step may not lead to a very large decrease in # and may even be
rejected in favor of a safe step.

We summarize the results of this section in the following theorem.
THEOREM 4.5. Suppose that u is much smaller than , in the sense of Theorem

4.3. Then for all sujCficiently large k we have that either
(i) a fast step is taken, and

(47) #k+l <_ P#k,

with

(48) #k+l =0(pk-Iu)t #’

(ii) a safe step is taken, with
or

+ +(49)

Proof. The condition for fast-step acceptance yields (47). The estimate (48)
follows from Theorems 4.2 and 4.4 and the identity ak 0. The safe-step estimate

(49) follows from Theorem 4.2 when we use k 1. []
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TABLE 1
Convergence of the algorithm: Problem type (i), n- nr 20.

k
0
1
2
3

15
16
17
18
19
20
21

log10 k log10 Ilrkll Fast step?
4.0 4.7
3.7 4.3
3.2 3.3
2.7 -11.7

-3.7 -13.4
-4.8 -13.3
-5.7 -13.2
-7.0 -13.1
-9.5 -13.2

-14.5 -13.5
-23.8 -13.4 terminate

5. Computational results. The algorithm of 4 was implemented in double-
precision Fortran, using the LAPACK routines dgetrf and dgetrs to solve the linear
system (6a). Our test problems are of two types.

(i) The matrix M has the form M ADAT, where A is n nr dense with all
elements drawn from a uniform distribution on [-1, 1], while D is diagonal with diag-
onal elements of the form 10, where T is drawn from a uniform distribution on [0, 1].
Since we choose nr <_ n, the rank ofM is nr. (Rank-deficiency ofM is not an artificial
feature; in certain applications of (1), including (3), M is structurally rank-deficient.)
The solutions x* and y* are chosen so that the even-numbered components of x* and
the odd-numbered components of y* are zero, while the remaining components are
uniform on [0, 1].

(ii) The matrix M has the form (3a), where the matrix A is dense with elements
of the form T1102, where TI and T2 are drawn from uniform distributions on [-1/2, 1/2]
and [0, 1], respectively. If p and m denote the dimensions of z and A, respectively,
we choose the even-numbered components 2, 4,..., min(p, m) of both z* and A* to be
nonzero. (It is a consequence of nondegeneracy of the solution of (2) that the same
number of components of z* and )* be nonzero. This requirement is also necessary for
nonsingularity of MBB.) The nonzero components of z*, A* and the complementary
vector pair in (3) are all drawn from [0, 1].

We use the following values for the constants:

(50) min 10--5 ’max 10-2, p /2, ’ 10-1

We choose the centering parameter ak at each safe iteration according to the formula

(51) ak mid(, #k/vf, .2), where --.01.

Though we made no special effort to tune these constants to their optimal values, our
experience indicates that the choices (50), (51) are efficient for these and other types
of problems.

In Tables 1-4 we tabulate the behavior of the algorithm of 4. Many of the
uninteresting safe iterates are omitted. An agterisk in the last column indicates that
a fast step was taken from this iterate. We terminate the algorithm when # falls below
10-20"

These tables indicate rapid convergence of the algorithm during its final stages.
Typically, the algorithm takes only fast steps after it has decreased # below a certain
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TABLE 2
Convergence of the algorithm: Problem type (i), n nr 100

k
0
1
2
3
4

21
22
23
24
25
26
27

loglo/k .,,lOglo,.llr.,l],l ,Fast step?
4.9 6.5
4.6 6.2
4.1 5.5
3.8 4.9
3.3 -9.8

-5.8 -11.6
-6.7 -11.6
-7.8 -11.6
-9.0 -11.6

-10.9 -11.5
-14.7 -11.6
-22.1 -11.8 terminate

TABLE 3
Convergence of the algorithm: Problem type (i), n 100, nr --60.

k

1
2
3
4
5

24
25
26
27
28
29
30
31
32

lOglO/zk lOglo ]lrtlll Fast step?
4.5 6.1
4.3 5.8
4.1 5.5
3.7 5.0
3.2 3.9
2.8 -9.5

-2.8 -11.8
-3.5 -11.7
-4.4 -11.7
-5.6 -11.7
-6.7 -11.7
--8.1 -11.7
-10.1 -11.8
-13.8 -11.8
-20.8 -11.8 terminate

threshold. (The experience of the author and others indicates that this threshold is
quite small for linear and quadratic problems, so that superlinear convergence does not
set in until quite late in the process. Preliminary experience with nonlinear problems
indicates that fast steps are typically taken at an earlier stage, that is, the threshold
is not so small.)

The behavior observed in Tables 1-4 certainly confirms the efficacy of Gaussian
elimination with partial pivoting in the context of this interior-point method. The
linear algebra continues to produce good steps even when # is extremely small. The
convergence of # to zero appears to be superlinear in each case (even quadratic, in
the case of Table 4). These tables do not, however, show the asymptotic behavior
suggested by Theorem 4.5. To see it, we must continue to run the algorithm past
the point of convergence. Table 5 shows what happens when we continue to iterate
on the problem of Table 3 until # is reduced below 10-t. (The late asymptotic
convergence was qualitatively similar on all the problems we tried, so we report just
this one instance.) Note that fast steps are taken on each iteration with decrease



LINEAR EQUATIONS IN INTERIOR-POINT METHODS 1305

TABLE 4
Convergence of the algorithm: Problem type (ii), n 200, matrix A is 40 160.

k
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

log10 uk lo,gl0 Ilrk]l Fast step?
4.0 5.2
3.8 4.9
3.5 4.7
3.1 4.2
2.1 3.1
1.7 2.6
1.4 2.2
1.0 1.7
0.5 1.2
0.2 0.8
-0.7 -0.3
-2.1 -1.8
-4.4 -4.1
-8.3 -7.9

-15.6 -10.2
-28.2 -10.2 terminate

TABLE 5
Later iterates on the problem of Table 3.

k

32
33
34
35
36
37
38
39
4O
41
42

logo uk logo {{rk{{{. Fast step?

-20.8 -11.8
-31.4 -11.9
-42.1 -11.9
-46.8 -11.9
-50.9 -11.8
-61.7 -11.9
-71.9 -11.9
-73.9 -11.9
-78.4 -11.9
-90.5 -11.8

-102.4 -11.9 terminate

factors between 10-4 and 10-12, except for one iteration the 38th on which a
safe step is taken with a decrease ratio of almost exactly ak 10-2. The existence of
these two kinds of steps and their effects on #k are in close accord with the predictions
of Theorem 4.5.

Note that in all the tables the residual norm [Irk decreases to O(u) but no further.
As discussed in the proof of theorem 3.2, this behavior is due to roundoff error in the
calculation of rk via the formula rk yk_ Mxk q.

We experimented with a version of the code in which a modified complete pivoting
strategy was used for solving (6a). The columns of the coefficient matrix were ordered
by decreasing value of {I" Iloo before Gaussian elimination with partial pivoting was
applied. Asymptotically, this strategy has the effect of ordering the nonbasic columns
first, so the analysis at the end of 3 still applies. As predicted in that analysis, this
version of the algorithm behaves only slightly differently from the partial pivoting
version described above.

The assumption that MBB is nonsingular (indeed, well conditioned) plays an
important role in the analysis of 3 and 4. Theoretically, the algorithm of 4 is
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TABLE 6
Convergence in the case of MBB rank-deficient: Problem type (i), n 100, nr 25.

0
1
2
3
4

11
12
13
14
15
16
17

98
99
100

lOglO/Zk lOglO IIrllx Fast step?
4.2 5.9
4.0 5.5
3.6 5.1
2.7 4.2
2.1 3.4

-0.2 0.2
-1.2 -0.9
-3.7 -3.5
-7.3 -7.0
-7.4 -7.1
-7.4 -7.2
-7.6 -7.4

-8.4 -8.2
-8.5 -8.2
-8.5 -8.3

known to have fast local convergence even when MBB is singular and the solution is
not unique. We tested to see whether fast convergence was attainable in practice by
forming a problem from the class (i) with nr 25. Since B contains 50 indices, the
submatrix MBB is certainly rank deficient. The result of this run is summarized in
Table 6. It is clear that the behavior indicated in Theorem 4.5 does not occur. After
taking two fast steps and converging to #k 10-7 by iteration 14, the algorithm stalls
and makes very little progress from that point on. This and other similar examples
suggest that the assumption of MBB nonsingular probably cannot be relaxed.

Acknowledgment. I thank the editor and referees for their insightful comments
on an earlier draft.
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THE ALGEBRAIC RICCATI EQUATION AND INEQUALITY FOR
SYSTEMS WITH UNCONTROLLABLE MODES ON THE

IMAGINARY AXIS *

CARSTEN W. SCHERER

Abstract. If (jr, B) is stabilizable, one pretty well knows algebraic conditions for the solvability
and for the existence of largest solutions of the algebraic Riccati equation and inequality

A*X + XA- XBB*X + Q O and A*X + XA- XBB*X + Q

_
O,

which leads to immediate existence results for positive definite solutions. In this paper we work
out how far these properties may be generalized if (Ji, B) could have uncontrollable modes on the
imaginary axis. Since the relations of the equation and inequality are not as tight any more, we
provide separate conditions for the existence of Hermitian or positive definite solutions and give
a detailed discussion how to verify them. As auxiliary steps we discuss various new aspects for
the corresponding Lyapunov equation/inequality and a complete solvability test for the quadratic
equation

X*RX + SX + (SX)* + T O

with Hermitian R and T. Finally, we briefly point out the consequences of our results for the general
state-feedback Ha-control problem at optimality.

Key words, algebraic Riccati equation, algebraic Riccati inequality, positive definite solutions,
ordering of solutions, state-feedback Ha-optimal control

/kMS subject classifications. 15A06, 15A24, 15A39, 15A45, 93C05, 93C45

1. Introduction. We study the algebraic Riccati equation (ARE)

(1) A*X + XA- :BB*2 + Q 0

and the related nonstrict algebraic Riccati inequality (ARI)

A*X + XA- XBB*X + Q __> 0,

where 4 is an n x n, B an n x m, and Q an n x n Hermitian complex matrix. We call
X a solution of the ARE or ARI if it is a complex Hermitian n x n-matrix satisfying
(1) or (2).

Let us briefly recall the relation of and the algebraic solvability criteria for the
ARE and ARI if (A,B)is stabilizable [1], [3], [4], [7], [10], [11], [13], [15], [24],

(a) If the ARI has a solution A’ then there exists a unique solution A’ of the ARE
such that A- BB*X has all its eigenvalues in the closed left half-plane.

* Received by the editors July 23, 1992; accepted for publication (in revised form) by G. Cybenko
September 15, 1994.

[Mechanical Engineering Systems and Control Group, Delft University of Technology, Mekelweg
2, 2628 CD Delft, The Netherlands (scherer(C)tudw03.tudelft.nl). This work was supported by
Deutsche Forschungsgemeinschaft Sche 402/1-1. This paper was conducted while the author was
affiliated with the Mathematical Institute of the University of Wiirzburg, Germany. The work was
performed while the author was visiting the EECS Department of the University of Michigan, Ann
Arbor, Michigan.
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(b) If A" satisfies the ARE or the ARI then A" _< .
(c) The ARE or the ARI have solutions if and only if (iff) the Jordan blocks

corresponding to the eigenvalues of the Hamiltonian matrix

A -gg* )t := _Q -A*

on the imaginary axis have even size. If existent, the solution , can be computed
using well-defined generalized eigenvectors of 7-/.

Item (a) implies that the solvability of the ARE and the ARI is equivalent. More-
over, in case of solvability, there exists a unique particular solution of the ARE sat-
isfying a certain spectral condition. The existence of this solution can be checked by
identifying the Jordan structure of the Hamiltonian matrix T/, and then computing it
algebraically. Finally, this particular solution has an additional distinguishing prop-
erty of being the largest element of the solution set of both the ARE and the ARI.
These relations reveal that the ARE or the ARI has a positive definite solution iff the
largest solution A’ of (1) exists and is positive definite and this condition is verifiable.

We recall what is known under weaker assumptions. If (4, B) is sign-controllable
(i.e., the set of uncontrollable modes and its reflection on the imaginary axis are
disjoint) then (c) persists to hold [3], [4], [25], [26]. If (4, B) has no uncontrollable
modes on the imaginary axis, then the same algebraic condition characterizes the
existence of a Hermitian solution of the ARI [5]. In this generality, the existence of
positive definite solutions is not characterized in the literature.

Obviously, all these hypotheses explicitly exclude uncontrollable modes of (J[, B)
on the imaginary axis. Our main interest in this paper concerns the problem of how far
the above results can be generalized to systems (j(, B) that may have uncontrollable
modes on the imaginary axis. More precisely, we assume that

(Ji, B) has all its uncontrollable modes in the closed left half-plane,

which is, of course, necessary for the existence of a solution of the ARE as in (a).
Under this assumption, the solvability of the ARE and the ARI is not as tightly

related as for a stabilizable system. If we choose A 0, B 0 then (2) is solvable for
any Q _> 0 whereas (1) is not solvable if Q is nonzero. Hence the solvability of the
ARE and the ARI is generally not equivalent, which leads us to consider the ARE
and the ARI separately.

In 2 we provide generalizations of (a) and (b) for the ARE and give a detailed
discussion how to use this nontrivial result to verify the existence of Hermitian and
positive definite solutions. For the verification procedure it is required to characterize
the existence of a positive definite solution of the Lyapunov equation 4*A’ + A’j( +
Q 0, where 4 has all its eigenvalues on the imaginary axis. Moreover, we need to
check the existence of a not necessarily Hermitian X satisfying the quadratic equation
X*RX + SX + X*S* + T 0 (R, T Hermitian). Complete solvability criteria for this
equation and the corresponding inequality are developed in 3. As a preliminary step
for the ARI, we discuss in 4 new necessary and sufficient conditions for the existence
of arbitrarily large solutions of the nonstrict Lyapunov inequality J[* A’ + A’j[ + Q _> 0,
again assuming that 4 has all its eigenvalues on the imaginary axis. Finally, 5
contains separate necessary and sufficient conditions for the existence of (positive
definite) solutions of the ARI together with a detailed investigation of verifiability
and a discussion of when the gap between necessity and sufficiency disappears. Two
technical proofs are deferred to the Appendix.
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Apart from the interest in providing further steps towards solvability criteria for
the general Riccati equation or inequality without any restriction on (,4, B), our results
do have immediate applications to the general state-feedback Hoo-control problem at
optimMity. We have proved in [16] and [19] that the optimal value is attained iff the
ARI (2) has a positive definite solution where A, B, and Q may be directly determined
from the data matrices and the optimal value. We stress that, by construction, the pair
(4, B) precisely satisfies our hypothesis and, in general, no stronger ones. Therefore,
the most general conditions for the existence of a positive definite solution of (2) or of
(1) provide the best sufficient conditions for the optimum to be attained. To decide
whether the optimal value is not attained, we can falsify the existence of a positive
definite solution of (2) by applying the necessary conditions. In any case, this paper
contains the most general available necessary and sufficient conditions for the optimal
value being attained.

We finally mention that the existence of Hermitian or positive definite solutions
of the strict ARI

(3) A*, + XA- XBB*X + Q > 0

found a complete algebraic characterization in our work [16], [18], where (A, B) is in
no way restricted. For a recent exhaustive discussion of the case Q >_ 0, we refer
to

Notation. The notation is standard. are the real, C C-LJ CO LJ C+ the
complex numbers partitioned into the open left half-plane, the imaginary axis and
the open right half-plane. Any matrix, space, or subspace in this paper is complex.
The matrix A is called basis matrix of the subspace U c C if the columns of A
are linearly independent and span U. A+ denotes the Moore-Penrose inverse, A* the
complex conjugate transpose, and -nn :-- {A E CnnlA A*}. A > B (A _> B)
neans that A,B 7-gnn (for some n) and A- B is positive (semi)definite. For
A ?-l’n,i+(A),i-(A),io(A) denote the numbers of eigenvalues of A in C+,C-,Co

and i(A) := (i+(A), i_ (A), io(A)) is the inertia. If U is any subspace of Ca, we slightly
generalize this notion to the quadratic form Q U 9 x x*Ax T: i(Q) := i(B*AB)
with any basis matrix B of U. Finally, any system k Ax + Bu or pair (A, B) is
identified with the pencil (A-. sI B) and we denote the zeros of this pencil (which are
the uncontrollable nodes) by a(A- sI B) [6].

2. Solvability criteria for the ARE. Suppose that the .ARE (1) has a solu-
tion. If we are seeking for A’ with

(4) A*X + XA- XBB*X + Q 0, a(A- BB*X) c C- u Co,

an obvious necessary condition is a(j(- sI B) c C- U C. The following by no means
obvious result states that this condition is even sufficient for the existence of A’ with
(4). If a(jl- sI B)n CO , there exist infinitely many X satisfying (4). Neverthe-
less, one can always select one out of the multitude of solutions satisfying (4) which
overbounds an arbitrary solution of (1).

THEOREM 1. Suppose the uncontrollable modes of (.4- sI B) are contained in
C- U C. .If the ARE (1) has the solution A’, then there exists a Hermitian , which

satisfies (4) and

(5) x _<
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The set of all X with (4) contains a linear manifold. This set reduces to one point iff
(j- sI B) is stabilizable.

An immediate corollary is important for verifying the existence of positive definite
solutions.

COROLLARY 2. If (1) has a positive definite solution then there exists a Hermitian
positive definite X which satisfies (4).

To test the existence of Hermitian or positive definite solutions it hence suffices
to check the existence of Hermitian or positive definite solutions that satisfy the more
restricting conditions (4), and this simplifies the validation problem considerably.

To be more explicit, we now display the C-zero structure of (4- sI B) by
performing a suitable coordinate change. Indeed, it is well known how to construct a
transformation T such that ,4- :- T-1AT, B:r :- T-1B, and :r :-- T*T admit
the special structures

0 M 0
Qr=

R* S

where
(A- sI B) is stabilizable and a(M) C Co.

Then X satisfies (1) iff XT- 7-* R’7" satisfies JI-XT- +,7-A7-- ,7-/37-B-A’7- + QT- 0.
If partitioning XT- as

(7) y, z

this latter ARE is equivalent to the coupled system of equations

(s)
(9)

A*X + XA- XBB*X + Q O,
(A BB*X)*Y + YM + XF + R 0,

M*Z + ZM + F*Y + Y*F- Y*BB*Y + S O.

Moreover, A:r B-B-k Y-(A- BB*X)T implies a(A B-B. X-) a(A-
BB*X). With (7) and by observing that the diagonal blocks of ,4:r B-B-X are
A- BB*X and M, a(A- BB*X) c C-C is equivalent to

(11) a(A- BB*X) c C- U C.
Whenever necessary we can and do assume without loss of generality 7- I, i.e.,
JI,/3, and Q themselves already have the structures as in (6). Let us finally introduce
the notation {iwi,...,iwt} := a(M) and let Lj,Rj be basis matrices of ker(M-
iwyI)*, ker(M iwjI) for j 1,..., l.

We arrive at the following existence characterizations, which are an immediate
consequence of our main result.

COROLLARY 3. The ARE (1) has a solution iff the (unique) Hermitian solution
X of (8) with (11) exists and (9) has a solution Y such that (10) is solvable. The ARE
(1) has a positive definite solution iff the unique X with (8) and (11) exists, if it is
positive definite, and if there exists a solution Y o.f (9) such that (10) has a solution
Z with Z > Y*X-lY:

For the structure of the whole solution set of (1) it is interesting to prove a little
more which may be done without additional effort.
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THEOREM 4. Suppose that (1) is solvable. Then for any Hermitian solution X
of (8) the linear equation (9) has a solution Y such that (10) is solvable.

The proofs of Theorems 1 and 4 are given in the Appendix.
The consequences of these results are striking if the data matrices satisfy a certain

regularity condition. Let us introduce for any solution X of (8)

f a(A BB*X) a(M).

We first clarify that only depends on the data ,4, B, Q and not on X or the trans-
formation with q- performed above. For this reason we recall

(12) det (A_Q- sI -A*-BB*- sI ) det(A- BB*X sI)det(-(A- BB*X)* sI)

for any X X* satisfying (8) and

det(T/- sI) det(M sI) det(-M* sI) dee ( A sI -BB* )-Q -A* sI

Both relations allow us to define in terms of the given data matrices as follows.
t consists of the set of all iw E a(J(- sI B) whose algebraic multiplicity
viewed as an eigenvalue of 7-/is larger than twice its multiplicity viewed as a
zero of (4- sI B).

The problem is called regular if gt ; otherwise it is called nonregular [7].
2.1. Solvability test. We first check whether (8) has a solution. Since (A-

sI B) is stabilizable, this may be done by looking at the Jordan structure of the
corresponding Hamiltonian matrix. If no solution exists we can stop since (1) cannot
have a solution either. If (1) is solvable, we can proceed and compute the unique
solution ) of (8) and (11). Throughout this section we assume ) to exist.

Now we verify whether the linear equation (9) with X replaced by is solvable,
which can be accomplished by well-known techniques [9]. If no solution exists we can
stop since (1) is not solvable. To proceed we hence assume that a solution exists and
we denote it by 1.

After defining the subspace

3? {YI(A- BB*.)*Y + YM 0},

we must finally test whether there exist8 a Y in the linear manifold + :Y for which
(10) i8 801vable. With g :-- S + F*Z + F- BB*f", :-- F- BB*, we must
hence check

(13) Y 3? Z: M*Z + ZM + -’*Y + Y* Y*BB*Y + g O.

In the general case, we therefore must find Y :Y such that -’*Y+Y*-’-Y*BB*Y+
S, depending quadratically on Y, i8 contained in a certain 8ubspace. This problem i8
easily recast into a convex optimization problem and is hence amenable to powerful
numerical techniques. At the moment, however, no direct and complete algebraic
approach i8 available for this validation problem.

Hence we 80lye this problem only under a mild technical hypothesis. Suppose
that {2 i8 given, without restriction, by {iw,..., iwk}. Let

Kj be a basis matrix of ker((A- BB*X iwjI)*), j 1,..., k.
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Now suppose that Y E Y and Z satisfy (13). Then (A- BB*f( iwjI)*Y + Y(M
iwj I) 0 holds. If we multiply from the right with Rj we infer Y-Rj =_KjYj for some. Similarly, (13) leads to (M iwjX)*Z + Z(M- iwjI) + *Y + Y*F- Y*BB*Y+
S 0. By multiplying R and -Rj from the left and the right, we arrive at

(14) Y*(K]BB*Kj)Yj Yj*(K]Rj) (K]Rj)*] RgRj O.

Hence each Y satisfies a quadratic equation for which we develop a complete solvability
characterization in the following section. Since (A-sI B) is stabilizable, it easily seen
that K]BB*Kj is positive definite. If we now apply Theorem 8 to (14), we infer that
(14) is constructively solvable iff

(15) R[*Kj(K]BB*Kj)-IK] + g]Rj >_ 0 with rank _< rank (K]BB*Kj).

For j > k we similarly obtain YRj 0 and (14) reduces to RRj O. If Kj
is taken to be an empty matrix [23] and if the rank of an empty matrix is defined as
zero, the characterization (15) persists to hold for these indices. We have shown that
(13) implies (15) for all j 1,... ,1.

To reverse these arguments we need to assume that

(16) the t-zero structure of a(A- sI B) is diagonizable

or, in special coordinates and equivalently,

all the Jordan blocks of M associated to iw ft are diagonal.

The importance of this property is stated in the following auxiliary result.
LEMMA 5. Suppose (16) holds. Given arbitrary Y1,... ,Y of compatible size,

there exists a unique Y 32 with YRj KjYj for j- 1,..., k.
Proof. We can assume M diag(M1 M2) with a(M1) t,a(M2)

which yields Rj (/ 0)* for j 1,... ,k. The assumption (16) implies that M1 is

diagonizable and, hence, / (/1"’"/k) is square and nonsingular. If we partition
Y as (Y *) then Y G is equivalent to (A- BB*f()*Y + YM1 0 and 0
(by a((A BB*)*)N a(-M2) ). Hence the only freedom is left in ]Y. However,
the requirement YR (KIY1... KY) uniquely determines ]Y and, obviously, Y
(]Y 0) is contained in 3:. This proves the existence and uniqueness of Y.

Now we are ready to formulate and prove the main result of this section.
THEOREM 6. The existence of X,Y, and (15) for j 1,... ,l is necessary for

the solvability of (1). Suppose that these necessary conditions and, in addition, (16)
are valid. If Yj denote arbitrary solutions of (14), j- 1,... ,k and if we choose the
unique solution Y of (9) with (Y )Rj KjYj, the following equivalences hold.

(a) The ARE (1) has a Hermitian solution iff the Lyapunov equation

(17) M*Z + ZM + F*Y + Y*F Y*BB*Y + S 0

is solvable.
(b) There exists a positive definite solution of (1) iff X is positive definite and

(17) has a solution Z with Z Y*X- y > O.
Proof. By Corollary 3, the sufficiency parts of (a) and (b) need no proof. We

must prove necessity no matter how we choose Y as solutions of (14). Suppose Y1
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is a solution of (9) such that (17) (where Y is replaced with y1) is solvable. Let yj2
be arbitrary solutions of (14) and let y2 denote the corresponding solution of (9).
With the abbreviation P(y) + *Y + Y* Y*BB*Y, we hence know that
M*Z + Z1M + p(y1 y) 0 for some Z and we must prove the existence of Z2

with M*Z + ZM + p(y2 ) O.
For this reason let us use the same notations as in the proof of Lemma 5 and

partition all square matrices as M. Then M*Z + ZM + P 0 is equivalent to

MZ1 + Z1M1 + P1 0, M{ Z12 + Z12M2 + P12 0, and MZ2 + Z2M2 + P2 O.
We first observe that YJ- Y have the structure (* 0) for j 1,2. Therefore,

P2(Y ) P:(Y ). Hence MZ +ZM + Pg.(Y ?) 0 implies MZ +
ZM2 + P(YU Y) 0 forZ := Z. By a(-M)f a(M:) , the equation

MZ2 + Z212M + P12(Y Y) 0 has a solution Z2. Finally, since y2 satisfies

(14), we get RP(Y2 )Rj RjPI(Y ?)/j 0 for all j 1,... ,k. Since M1 is

diagonizable, we can apply Theorem 12 to infer that MZ +Z2M + P1 (y2 ) 0
has a solution Z2. This finishes the proof of (a).

For proving necessity in (b) we can assume, in addition, Z (y1)*-ly1 > 0.
We try to adjust Z2 such that

> 0(18)

Since Z2 Z and by yl_ y2 (* 0), the (2, 2) block of this matrix coincides
with that of Z (y1)*-ly1 > 0 and is hence positive definite. By Theorem 12,
MZ + ZM1 + P1 (Y2 ?) 0 actually has arbitrarily large solutions. Hence we
can choose Z12 large enough to ensure (18). V1

Again the solvability of (17) is checked by standard techniques [9]. The existence
of solutions that satisfy an additional inequality, as required in (b), seems not to
appear in the literature. Let us finally turn to this problem.

If defining M*(Y*f-lY) + (Y*2-Y)M + *Y + Y* Y*BB*Y + ,
we simply must check the existence of a positive definite solution of

(19) M*Z+ZM+;=O.

The last result of this section gives a solution.
THEOREM 7. Suppose a(M) C CO and let T-IMT diag(J1... Jp) be a Jordan

normal form of M with Jordan blocks Jj of size vj. Introduce

}if vj is even
N,j :--

2 if j is odd for j 1,...,p

and partition T (El F1... Ep Fp), where Ej, Fj have aj, j columns, respec-
tively.
Let Z denote any arbit,ury solution of (19). Then (1.9) has a positive definite solution

iff the matrix (EgZEz)a,Z=I p is positive defilfite.

Proof. Without restriction we assume T I. With

Zf f
z’E A

M*Z + ZM 0 is equivalent to

(20) JZ. + z.zgz o
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for a,/ e {1,...,p}.
Necessity now follows, by linearity, from the simple observation M*Z + ZM

0 = zE 0. In the case of a(J,)N a(Jz) this is obvious from (20). Hence
suppose that J and Jz have the same eigenvalue iw. Then (20) implies

(21)

If u is even we have

J + iwI)’" ( O’"I," 00) and //0.o(J, 0\

Hence the (2, 1) block of (21) yields zE 0. A similar argument applies if u is odd.
For proving sufficiency we first choose any Hermitian Z satisfying (19) and then

adjust the diagonal blocks Z by adding D with JD + DJ 0 such that Z +
diag(D1 Dp) is positive definite.

E is positive definite.By assumption, (Zz),Z=I p

Let us prove the central induction step for p 3 which considerably simplifies
the notations but captures the general features. We assume that Z1 has been adjusted
such that the 1 / n2 + n3 dimensional submatrix

of Z is positive definite.
Suppose 2 is odd. It is easily seen that

D(’),) E /’(a2+1+a2) (n2+1+2)

satisfies JD(’y)+ D(’)J2 0 for any - E T. Let Cl,C2,C3, C4 denote the first
columns of ZI, Z, Z2E’, Z3F and ")’0 be the (1, 1) element of Z2g. Consider the
1 + (a2 + 1) + a3 dimensional submatrix

(22) 2
E

c3

c "o

Z2 c4
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of Z. By the shape of D(), the same submatrix of Z+ diag(0,1 D(7) 03) differs from
(22) only in the 1 +a2+ 1 diagonal element which equals 70 +/. This central structural
property allows us to choose a suitably large positive such that this submatrix of
Z +diag(0 D(7) 0) is positive definite. Moreover, these steps can be repeated a2 times
(the number of the remaining diagonal elements of Zff) using solutions D of JD +
DJ2 0, whose lower antidiagonal vectors are given by (+,...,-/, ,,-7,.-.,)
of length 2 2, 2 4,..., 1. Again similar arguments apply if 2 is even.

In any case this gives a successive procedure to determine ZF, Z2RE, Z2F such
that

is positive definite and this finishes the proof of the induction step. E]

2.2. The regular case. In the regular case the situation is much simpler.
Ft implies that Y ]P is the unique solution of (9) and we can directly apply
Theorem 6.

The purpose of this short section is to reveal the structure of the solution set if the
problem is regular and (1) is solvable. By regularity, any solution X of (8) uniquely
determines Y(X) satisfying (9). According to Theorem 4, the solution set of (10) is
then necessarily nonempty and actually a linear manifold L(X) whose determining
subspace is just {ZIM*Z + ZM 0} and hence independent of X. This shows that
the solution set of (1) equals

(( X Y(X)),Xsatisfies(8 ZEL(X)}Y(X)* z

By the stabilizability of (A- sI B), we can apply to (8) the parametrization results
obtained in [17] that provide a detailed picture of the solution set of the ARE (1).
Finally, we note that the set of all Hermitian A’ satisfying (4) not only contains but
actually is a linear manifold.

3. A general quadratic equation and inequality. The explicit test for the
solvability of (1) in the last section required a criterion for the existence of an X
satisfying X*RX + SX + (SX)* + T 0 where R is positive definite. This section
provides a complete discussion for unrestricted matrices.

More precisely, we intend to characterize the existence of X Cnm, which solves
the quadratic equation

(23) X*RX + SX + X’S* + T 0

or the corresponding inequality

(24) X*RX + SX + X*S* + T >_ 0

with R -nXn, S C"x’, and T -mXm. Note that X is generally rectangular and
even for n m it is not required to be symmetric. If n m, the search for symmetric
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solutions would result in discussing the very general ARE XRX + SX +XS* +T 0
or ARI XRX + SX + XS* + T >_ 0, which is far less understood.

It is not difficult to provide a complete algebraic solvability test for both the
equation and the inequality. The proof is constructive and provides a recipe how to
compute solutions.

THEOREM 8. Fix R E ?-/nxn, S E dmxn,T -[rnxrn and define the quadratic
form

Q: [Sker(R)] +/- x x* (SR+S* T)x.
Then the equation X*RX + SX + X*S* + T 0 has a solution X C ’ iff

i+(Q) < i+(R) and i_(Q) <_ i_(R).

There exists a X Cnm with X*RX + SX + X*S* + T > 0 iff

i+ (Q) <_ i+ (R).

If the data matrices satisfy ker(R) c ker(S), which holds in particular if R is non-
singular or ( ST* is positive/negative semidefinite, we infer Sker(R)- {0} and our
characterizations admit the nice form

i+(SR+S* T) < i+(R) and i_(SR+S* T) < i_(R)

directly in terms of the given matrices.
Obviously, the solvability of

(25) X*RX + SX + X’S* + T < 0

is characterized by i_ (Q) _< i_ (R). Note that this leads to the interesting conclusion
that the solvability of both inequalities (24) and (25) imply the solvability of the
equation (23).

Finally, the equation X*RX + SX X*S* + T 0 for skew-Hermitian R and T
is easily recast to the present situation by noting

i[X*RX + SX X’S* + T] (iX)* (iR)(iX) + S(iX) + (iX)*S* + (iT) O.

Proof. Define (r+,r-,ro) i(R), choose a unitary U with / diag(E+
E_ O) URU*, E+, E_ > 0, and introduce S (S+ S_ So) SU* with a column

partition corresponding to that of/. Then X satisfies (23) iff (Y_ Y*_ Y)* UX
satisfies Y_E+Y+ Y*E_Y_ + S+Y+ + S_Y_ + SoYo + (S+Y+ + S-Y_ + SoYo)*+
T- 0, which can be rearranged (by completion of the squares) to

1/2 1/2y. 1/2S, /2IST y+
__
;1/2S;],[1/2x/ /2

1st s- z T]- SoYo (SoYo)
[S +S T]- SoYo

where the last equality follows by computation.
We want to decide the solvability of this equation in Y+, Y_ for any fixed Y0. For

this reason we first prove the following auxiliary result which is intuitively clear.
LEMMA 9. For a given P 7{pxp, the equation V*V- W*W P in V

Cvp, W Cwxp is solvable iff i+(P) < v and i_(P) < w.
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Proof. The "only if" part follows from v >_ i+(V*V) i+(P + W’W) >_ i+(P)
and similarly w >_ i+(W*W) i+(Y*Y- P) i_(P- V’V) >_ i_(P). The "if"
part can be proved constructively by observing that neither the solvability problem
nor our characterization are affected by a congruence transformation on P. Hence we
can assume P diag(Pv Pw 0), where both Pv, Pw are positive semidefinite and
of dimension v, w, respectively. Then Y (vf- 0 0) and W (0 0) are solu-
tions. [:]

Let us return to (26). Since E+ and E_ are nonsingular, (26) has, for any fixed
Y0, solutions Y+ E Cr+ and Y_ E C iff

(27) ij((SR+S* T) SoYo YS) <_ rj for j +,-.

How far can these inequalities be enforced by varying Y0? To decide this question, let
us choose any basis matrix K of the kernel of S. Then there exist L, M such that
M, (L K) are nonsingular and satisfy MS)(L K) (0 o). Clearly, Y0 yields (27) iff

(zlz21 Z12)Z2 := M-*Yo(L K)leads to

ij K* [SR+S* T]K Z2 0 rj

for j +, Now the left-hand side of this inequality is bounded below by ij(K*[SR+
S* -T]K). Since we can obviously achieve this bound by choosing suitable Z1, Z12,
we infer that there exists a Y0 with (27) iff

i+ (K* [SR+S* T]K) <_ r+ and i_ (K* [SR+S* T]K) <_ r_.

Since K is an arbitrary basis matrix of ker(S) im(S0) +/-, the result follows by
noticing im(S0) ker(/) SU*ker(/) Sker(R).

In the same way one proves the algebraic characterization for the solvability of
(24).

4. The Lyapunov inequality. This section serves to investigate the solvability
of the Lyapunov inequality

(28) M*X + XM + S >_ O,

where M is only restricted to having all its eigenvalues in Co and S S* is possi-
bly indefinite. We will give necessary and sufficient conditions for the existence of
arbitrarily large Hermitian solutions of (28) in the following sense.

For all HerInitian X0 there exists a Hermitian solution X of (28) with X > X0.

Recall the following complete result for the strict Lyapunov inequality [16], [18].
THEOREM 10. Suppose a(M) C CO and S S*. Then there exists a Hermitian

solution X of

(29) M*X+XM+S>O

iff any eigenvector x of M satisfies x*Sx > O. If (29) is solvable then it has arbitrarily
large solutions.
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Simple examples show that (28) may be solvable without having arbitrarily large
solutions, which reveals an essential difference between both inequalities. The general
solvability problem for (28) without any requirements on the solutions seems very hard,
and our results provide the weakest general sufficient conditions for the solvability of
(28) that are available.

An obvious necessary condition for the solvability of (28) is

(30) x* Sx >_ 0 for each eigenvector x of M"

just note that x* (M*X + XM + S)x x* Sx. If M is diagonizable, it was observed
in [16] that (30) implies the existence of a Hermitian solution of (28). Moreover, as
for the strict inequality, the solution can be chosen arbitrarily large. However, if M is
not diagonizable, (30) is generally much too weak to imply the solvability of (28) and
far from sufficient, again, in contrast to the strict inequality.

Let us now assume that (28) has arbitrarily large solutions. As expected from the
above discussion, we should derive further necessary conditions by choosing an x with
(M iwI)x 0 for which x*Sx vanishes. We obtain 0 x*Sx x*((M iwI)*X +
X(M iwI) + S)x 0 and, since (28) is equivalent to (M iwI)*X + X(M iwI) +
S _> 0, we infer (M iwI)*Xx + Sx 0. Due to the fact that X can be chosen
arbitrarily large, we claim that x cannot be the starting vector of a Jordan chain of
M: There is no y with (M iwI)y x. Suppose there existed a solution y to this
equation. Then we could infer x*Xx + y* Sx 0, which shows that x*Xx is a fixed
number and this contradicts our assumption. Hence we conclude the existence of a y
with y* (M iwI) 0 such that y*x does not vanish.

As for the strict inequality, it is surprising that these conditions in terms of
eigenvectors turn out to be sufficient and there is no need to consider further Jordan
chain vectors.

THEOREM 11. If a(M) C o and S S*, the following conditions are equivalent.
(a) The Lyapunov inequality M*X +XM + S >_ 0 has arbitrarily large solutions.
(b) Any eigenvector of M satisfies x* Sx >_ 0 and if x* Sx 0 then there exists a

y with y* (M iwI) 0 and y*x O.
(c) RSRj >_ 0 and ker(RSRj) fker(LRj) {0} for all j 1,...,/.
Proof. The equivalence of (b)and (c)is easy to establish and (a) = (b) has been

proved above. Hence we only show (b) (a) by induction. This requires the following
two observations. If (M, S) satisfies (b) then the same is true for (T-1MT, T’ST)
and any nonsingular matrix T. Moreover, suppose that M and S are structured as

0 M2 $21 $2

Since any eigenvector xl of M1 can be trivially extended to an eigenvector x := (x 0)*
of M with x*Sx XSlXl, it is obvious that (M1, $1) and, by symmetry, (M2, S)
satisfy (b) as well.

First we convince ourselves that we only need to prove the theorem under the
assumption that M is nilpotent. Without restriction we can assume M given as
diag(M1... Mq), where a(M() and a(Mz) are singletons having no intersection for
a /3. We partition X (X.) and S (S) accordingly and observe that
(Ms, S) satisfies (b). Clearly, the (a,/3) block of M*X + XM + S equals

(31) MXz + XzMz + S.
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For a : fl we can choose, by r(-M)Y cr(M) ,X such that (31) vanishes.
This fixes the nondiagonal blocks of X with X/ X. If the diagonal blocks X
satisfy

(3) MX +XM +S > 0

then X is a solution of (28) and ifX may be chosen arbitrarily large then X may
be taken arbitrarily large as a solution of (28). Hence we only need to prove the
result for (32) or, equivalently, for (Ms iwI)*X + X(M iwI) + S >_ 0, where
a(M) {iw}. Therefore we assume a(M) {0}. If all kernel vectors of M satisfy
x*Sx > 0 then Theorem 10 finishes the proof. Hence suppose there exists an x : 0
with Mx 0 and x* Sx 0. Without restriction x equals el, the first standard unit
vector, and then we have

M: (0 M12) and S: ( 0 S12)0 M2 S2 S

By (b) there exists a y with y*M 0 and y*x O. Since the first coefficient of y does
not vanish, the row M12 is actually linear dependent on the rows of M.. If we choose
a Z with z’M2 M12 and define T ( *), we infer that T-1MT and T’ST are
given as

(0 0 )and ( 0 S_1)0 M. S S

We can again assume that M and S themselves are already given in this form and
partition X accordingly. Then the (1, 1) block of M*X + XM + S vanishes whereas
the (2, 1) and the (2, 2) blocks are given by

MX21 --[- $21 and MX2 + X2M2 + $2.

We now prove that there exists a X21 with MX21 + S12 0" Any Y2 with M2y 0
can be extended as y (0 y)* such that My 0 and we actually show y*Sx 0
which leads, recalling x el, to yS12 O. If E denotes a basis matrix of the kernel
of M we must show E*Sx 0. Since x is a kernel vector of M there exists a
with x E and we must prove E*SE O. Now we just recall E*SE >_ 0 and

*E*SE x*Sx -0 which gives the desired result.
Let us hence fix X12 with MX21 +SI 0. If we use induction on the dimension

of M we can finish the proof as follows. Since (M2, $2) satisfies (b), the induction
hypothesis implies that MX2 + XM2 + $2 >_ 0 has arbitrarily large solutions. The
block X1 E 7 is free and hence we can choose X1 and X2 such that X becomes as
large as desired and solves (28). V]

It is important to note that the proof gives us a recipe to actually compute
solutions. For any eigenvector x of M with x*Sx 0, it is demonstrated how to
reduce the dimension of M and S by one. The sequential application of this procedure
leads us to a problem where M and S are one dimensional (which is trivial) or where
any eigenvector x of M satisfies x* Sx > 0. Note that it is not required to check (b)
a priori, but one may just start the iteration on (M, S) and verify whether all the
steps can be performed as described. This gives a test for verifying (b). Moreover, the
final structure of the matrices determines the space on which M*X +XM + S can be
rendered positive and on which it necessarily vanishes.
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If M is diagonizable, (b) clearly reduces to (30), and (c) to RSR
_

0. For
reasons of comparison, we finally formulate the analogous result for the Lyapunov
equation, whose proof is now a simple exercise.

THEOREM 12. The Lyapunov equation M*X +XM+ S 0 has arbitrarily large
solutions iff M is diagonizable and x* Sx 0 holds for each eigenvector x of M.

5. Solvability criteria for the ARI. Our solvability tests for the nonstrict
ARI are separated into necessary and sufficient conditions that are formulated in
terms of the transformed versions (6) of .4, B, Q, and the basis matrices Lj, Rj for the
left-kernel, right-kernel of (M- iwjI) as introduced in 2.

THEOREM 13. If (2) has a Uermitian (positive definite) solution then there exist
a Hermitian (positive definite) X and a Y with

(33) a(A BB*X) C C- u Co, A*X + XA XBB*X + Q o,
(A BB*X)*Y + YM + XF + R 0,

/j 1,...,I:R[Y*F + F*Y Y*BB*Y + S]Rj >_ O.

The proof of this result is given in the Appendix.
THEOREM 14. Suppose that there exists a Hermitian X with (33) and a solution

Y of (34) such that (35) and, in addition,

(36) Vj 1,..., l: ker(R [Y*F + F*Y Y*BB*Y 4- S]Rj) f ker(LRj) {0}

hold true. Then (2) is solvable. If X is, in addition, positive definite, then (2) has a
positive definite solution.

Proof. By Theorem 11, M*Z + ZM + Y*F + F*Y- Y*BB*Y + S >_ 0 has
arbitrarily large solutions. For any solution Z of this inequality, (7) obviously satisfies
(2). If X is positive definite we can choose Z large enough to render (7) positive
definite. D

Remark. For reasons of comparison we recall the complete solvability test for the
strict ARI (3) provided in [18]. The inequality (3) has a (positive definite) solution
iff the unique X with (33) exists and satisfies in fact a(A- BB*X) c C- (as well as
X > 0) and the hence unique solution Y of (34) satisfies R [Y*F + F*Y- Y*BB*Y+
S]Rj > 0 for all j 1,...,l.

For the discussion on how to verify the conditions in both theorems, we again
assume that X with (33) exists and that (34) has the solution Y.

If the problem is regular, Y is unique and we just need to check (35) or (36).
Hence we concentrate on the nonregular case ft {iT1,..., iwk} and introduce
J;,,,Kj as in 2.

If we let, for any Y E J;, Yj satisfy YRj KjYj and define

Zj Y (KBB*Kj)-IKRj,
one easily computes
(aT)

R;[(] + Y)*F + F*( + Y) ( + Y)*BB*( + Y)+ S]Rj

R[*Kj(KBB*Kj)-IK + ]Rj Z(KBB*K)IZj.
Hence if there exists a Y with (34) and (35) then

(38) Vj 1,...,I:R[*Ky(KBB*Kj)-IK + ]R >_ O.



1322 CARSTEN W. SCHERER

Moreover, if Y satisfies in addition (36), we infer

(39) ’j= 1,...,/: ker(R{*Kj(KBB*Kj)-IK]q }Rj)Vker(LjRj): {0}.

To reverse the above reasoning, we again need to assume (16). If (38) (and (39)) are
valid we define (motivated by (37) and the definition of Zj) Yj := (KBB*Kj)-1

K]Rj. Lemma 5 allows to construct a Y E J; with YRj KjYj and then, recalling

(37), 1 + Y satisfies (35) (and (36)).
We have proved the following result which reveals how far we are presently able

to verify the necessary (Theorem 13) and sufficient (Theorem 14) conditions for the
existence of (positive definite) solutions of (2) in an algebraic manner.

THEOREM 15. If Y solves (34) then: (35) (and (36)) == (38) (and (39)). If the
f-zero structure of (.4-sI B) is diagonizable, there exists a unique solution Y of (34)
with YRj Rj + Kj(K]BB*Kj)-IK]Rj,j 1,...,l. Then (38) (and (39)) =v
(35) (and (36)).

If the C-zero structure of (.4- sI B) or, equivalently, M is diagonizable, then
the matrices LRj are nonsingular and the above necessary and sufficient conditions
coincide--our characterization is complete.

COROLLARY 16. Suppose that the C-zero structure of (.4-sI B) is diagonizable.
Then the ARI (2) has a (positive definite) solution iff the unique X with (33) exists
(and is positive definite), (34) has a solution , and (38) holds.

6. Conclusions. The results of this paper can be summarized as follows. If the
f-zero structure of (j(- sI B) is diagonizable (with fl encompassing all points in CO
whose algebraic multiplicity viewed as an eigenvalue of T/is larger than twice their
multiplicity viewed as a zero of (,4- sI B)), we obtained a full verifiable characteriza-
tion for the existence of (positive definite) solutions of the ARE (1), and necessary and
slightly stronger sufficient conditions for the existence of (positive definite) solutions
of the ARI (2).
As auxiliary results of independent interest, we provided a new structural property for
the solution set of the ARE (1) (Theorems 1 and 4) with potentials for future applica-
tions, and a complete algebraic solvability tests for the quadratic equation X*RX +
SX + (SX)* + T 0 and inequality X*RX + SX + (SX)* + T >_ 0 with Hermitian R
and T.

Under the assumption a(,4) C CO and with a general indefinite Q, we developed com-
plete algebraic characterizations for the existence of positive definite or arbitrarily
large solutions of the Lyapunov equation ,4*A’ + A’J[ + Q 0 and a complete alge-
braic characterization for the existence of arbitrarily large solutions of the Lyapunov
inequality A*X + XA + Q >_ O.

Appendix.
Proof of Theorems 1 and 4. The essential structural property is provided by the

following auxiliary result.
LEMMA 17. Suppose that ,Y (. ) satisfies (1) and let f( be any solution of

(8). Then there exists a solution A’ of (1) which satisfies the relation

(40) 2-x= v v

for 8om Y.
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Proof. Let us start by transforming A- BB*X with a suitable similarity trans-
formation T :- (T1 T2) to obtain

BB*X)T (A1T-I(A 0 0) _,.: (.1)A2 B2

where
a(A1)nC= and a(A2) cC.

It is easily seen that (A-BB*X)*(-X)+(-X)(A-BB*X)-(-X)BB*(-
X) 0 and we proved in_J17, p. 111] that the C-root subspace of A- BB*X is
contained in the kernel of X X. Hence A T* (f X)T satisfies

(10). (10 A2 +A 0 0)_ (.1) (.1)._0A2 B2 B2

and, due to our particular coordinates, admits the structure

We arrive at

(4) AA1 + AIA1 A1B1BA1 0.

Let us now consider

0/-, / /
0 )0 0 (A-*X) T1 T 0 A F0 0 I

0 0 M

Since A1 and M do not have common eigenvalues, we can clearly find an R with
AR- RM + F 0. If we define the similarity transformation

0 0 I 0 I 0
0 0 I

we infer after a simple computation

A1 0

0 0 0) / := T-B B2
0

Now remember that 2 satisfies (1) iff (A- BB*X)* (2- X)+ (2- X)(A- BB*X)
(- X)BB*( X) 0 iff 1) 7"* (,- X)T satisfies

(42)

Due to the fact that the (1, 3) block in vanishes, the choice

A 0 O)0 0 0
0 0 0
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leads to

AA1 +/klA1 -/%lB1B/k 0

0 0 O)
By (41), T)is a solution of (42).

We can conclude that (8) has a solution with X "Y-*:D’T-. With the
notation

$2
we infer "T-1 2 0

0 I

and thus _
, T_,TT_ / S1

S 0 0 0 $2 0

Since ($1 -oR)-- ($1)(I V*S2 S2 )= T-1 ({z) for some V, we arrive at

k-x- v o
I I

by the definition of A. [:]

Now let A’ be an arbitrary solution of (1). For an arbitrary J satisfying (8),
Lemma 17 implies the existence of a solution A’ of (1) whose left upper block is given
by (J X) + X J. This proves Theorem 4.

Let us now choose " as the unique solution of (8) with a(A- B_B*f() C C- tJC
and construct , as in Lemma 17. Again, the left upper block of A’ is just and,
therefore, a(- B13*,) c C-IJ C. Moreover, since ) is the largest solution of
(8), we get X X > 0. Again by Lemma 17 we arrive at A’ > 0. This proves
Theorem 1.

Proof of Theorem 13. We assume

(43) ( UV* V A,X + XA_ XBB,X + Q > OW ]

and evaluate the equality blockwise as

(44)
(45)
(46)

A*X + XA XBB*X + Q U,
(A- BB*X)*Y + YM + XF + R V,

M*Z + ZM + F*Y + Y*F- Y*BB*Y + S W.

The inequality A*X +XA-XBB*X+Q >_ 0 implies the existence ) satisfying (33).
If A’ is positive definite, we infer X > 0 and hence > 0. We intend to prove the
existence of a Y with

(47) (A- BB*X)*Y + YM 4- XF 4- R- 0

such that

(48) R[F* + *F *BB* + S]Rj > 0
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for all j 1,...,1.
Let us first discuss the regular case . Though we could give a direct

algebraic proof, we prefer the following quicker perturbation approach using the known
results for the strict ARI. After choosing some a > 0 with aI > Q, define

Q(#)’=Q-#(I-Q) for #GO

and partition it as Q. By Q(tt) > Q for tt < 0, X satisfies the strict ARI A*X + A’A-
XBB*X + Q(#) > 0 and hence (see the remark in 5) there exist X(#) and Y(#) with

(49)

a(A BB*X(#)) C C-,A*X(#) + X(#)A X(#)BB*X(#) + Q(#) O,
(A BB*X(#))*Y(#) + Y(#)i + X(#)F + R(#) 0,

1,... ,l" R;[F*Y(#) + Y(#)*F Y(#)*BB*Y(#) + S]Ry > O.

Let us now take the limit # - 0. By Q(#) -- 0, a standard result shows X(#)
4], [18]. Regularityand R(tt) - R imply that Y(tt) converges to the unique solution
Y of (A- BB*X)*Y + YM + JF + R 0. Hence (49) leads by S(#) -- S to the
desired inequality.

In the nonregular case A- BB*X has eigenvalues in CO and we can assume
without loss of generality

(50) . A_ BB, I A1 O)0 A2
with a(A1) C (-, a(A2) C CO

and partition all other matrices similarly. With A X ), it is easily seen that
(44)-(46) can be rewritten as

(51) *A + A.A- ABB*A U,
(A- BB*A)*Y + YM + AF + (2F + R) V,
M*Z + ZM + F*Y + Y*F- Y*BB*Y + S W.

As in the proof of Lemma 17 we can again invoke [17, p. 111] to infer from (50) the
structure

0 0

V (0U1 00). By (. V) - Owe get V (0v1). Using this informationConsequently,
we further rewrite (51)-(53) to

(54) AA1 + A1A1 AIBIBA1 U1,

(55) (nl BIBA1)*Y1 + Y1M + AI(F1 BIBY2) T (XF --[- R)I V1,

(56) A.Y2 + Y2M + (F + R)2 O,
(57) M*Z + ZM + (El B1BY2)*Y + Y(F1 B1BY2) YBIBY1 + W,

with FY2 + YF2 YB2BY2 + S being independent of Y1.
If we fix Y2 and if we concentrate on (54), (55), and (57), we infer that they

belong to an ARI for regular data. Hence we can apply what we have proved in the
first step: Since a(A1) c C- and (A1 sI B1) is stabilizable, the (unique) solution
of (54) with a(A1 BIB*IA) c C- t2 C0 is A1 0. As shown above, the unique



1326 CARSTEN W. SCHERER

solution of AI -t- IM -t- (XF + R)I 0 yields R[(F1 BIBuY2) 1 + Y(F1
BIB_Y2) -~*BIBI + ]Rj >_ 0 for all j 1,..., l. Due to (56), it is easily seen
that Y-- (YI* Y2*)* is as required.
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PERTURBATION BOUNDS FOR THE
GENERALIZED SCHUR DECOMPOSITION*

JI-GUANG SUN

Abstract. This paper uses a technique described by M. M. Konstantinov, P. Hr. Petkov, and
N. D. Christov [SIAM J. Matrix Anal. Appl., 15 (1994), pp. 383-392] to derive perturbation bounds
for the generalized Schur decomposition of a regular matrix pair with distinct eigenvalues.
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1. Introduction. Let A, B be complex n n matrices, and let (A, B) be a
regular matrix pair, i.e., A and B satisfy det(A- AB) 0. The generalized Schur
decomposition of (A, B) is a decomposition of the form

(1.1) A UTVH, B URVH,

where T and R are n n upper triangular matrices, U and V are n n unitary
matrices, YH denotes the conjugate transpose of Y (see [4]). The matrix pair (T, R)
is called the generalized Schur form of the matrix pair (A, B). The diagonal elements
of T (tij) and R (rij) reveal the eigenvalues of the matrix pair (A, B) and they
are the pairs (t, r), or equivalently, ti/r (if r 0) and oo (if r 0).
It is known that the generalized Schur decomposition is an important tool in linear
algebra and control theory (e.g., [1], [2], [7]).

The generalized Schur decomposition of a regular matrix pair (A, B) is obviously
a generalization of the Schur decomposition of a square matrix A A UTUH, where
U is a unitary matrix, and T is an upper triangular matrix (see, e.g., [1], [7]). Recently,
M. M. Konstantinov, P. Hr. Petkov, and N. D. Christov [3] presented a perturbation
analysis of the Schur decomposition. After that, [8] derives new perturbation bounds
of the Schur factors U and T by using the technique described in [3]. The new results
are qualitatively the same, but somewhat simpler than the corresponding results of
[3]. Extending the new results to regular matrix pairs, we get perturbation bounds
for the generalized Schur factors U, V, T, R of a regular matrix pair (A, B). This
paper, as a rewrite and extension of [8, 5-6], presents the perturbation bounds and
illustrates them by some numerical examples.

In 2 we derive perturbation equations. In 3 we discuss basic properties of
the operator L (defined below by (2.9)) and the function I(T,R) (defined below by
(3.9)) that are important for studying perturbation bounds for the generalized Schur
decomposition. In 4, a perturbation theorem for the generalized Schur decomposition
is proved. Numerical results are given in 5.

Throughout this paper the symbol Cmn denotes the set of complex m n ma-
trices, and Cn Cn 1. The matrix AT is the transpose of A. I is the identity matrix,
and 0 is the null matrix./xn(/x) denotes the set of n x n upper (strictly upper)
triangular matrices, tx the set of n x n strictly lower triangular matrices, and T)n xn
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Department of Computing Science, Ume University, S-901 87 Ume, Sweden. This work was
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the set of n n diagonal matrices. 112 denotes the Euclidean vector norm and the
spectral matrix norm, and IIF the Frobenius matrix norm.

It is evident that any X E C,n can be split uniquely as

X XL-I-XD -{-Xu, XL E xn, XD )nxn, XU /:xn.

As in [3], the matrices XL, XD, Xu of (1.2) will be denoted by

(1.3) XL low(X), XD diag(X), Xu up(X).

The relation (1.3) gives the definition of the operators low(), diag(), and up( defined
on nxn.

2. Perturbation equations. Let (A, B) and (A, B) be two regular matrix pairs
of order n. Let (1.1) be the generalized Schur decomposition of (A, B), and let

(2.1)

be the generalized Schur decomposition of (, ). Write

(2.2) E=A-A, F=h-B,

Then the perturbation matrices W, Z, G, H satisfy the equations

(2.3) E" + AZ WT + G, F + BZ WR + rH.

Let

k--UEft, P=DHF, X----UHW, Y-Vuz.
Then from (2.3) we get

(2.5) G + HU(TY- XT), H + HU(RY XR)

and

where

(2.6) 0T=II(I(R)T, TT(R)1)112 01:t=[l(I(R)R, RT(R)1)[12,
in which A (R) B (aijB) is a Kronecker product.

Thus, the problem is reduced to investigating perturbation bounds of the unitary
factors U and V of the generalized Schur decomposition (1.1) of (A, B), i.e., to seek
upper bounds of II(W, Z)IIF --II(X, Y)IlF-

Combining the relation DHu (I + X)n with (2.5) we get

TY XT G + XHXT- XHTy ,,
RY XR H + XHXR- XHRy- ".

Moreover, the matrices X, Y satisfy

(2.8) X + XH --[- xHx 0, y + yH + yHy O.
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Let (X, Y) be a solution to (2.7)-(2.8). Define the matrices XL, YL, XD, YD, Zu, Yu
by (1.2)-(1.3), and define the operator L t:n i:snn --. Esnxn /:snn by

(2.9) L(XL, YL) (low(TYL XLT), low(RYL XLR)).

Then from (2.7)

(2.10)
L(XL, YL) (low(XHXT xHTy), low(XHXR XHRy))

(low(E), low(F)).

Choose a generalized Schur decomposition of (,/) expressed by (2.1) so that the
diagonal elements of uH) and vH are real. Then from (2.8)

(2.11) (XD, YD) --1 (diag(XHX), diag(yHy)).

Furthermore, the relation (2.8) gives

(2.12) (Xu, Yu)=--(XLH, YLH) --(up(XHX), up(yHy)).

In 4 we use the perturbation equations (2.10)-(2.12) to seek an upper bound of
ll(x, Y)II.

3. The operator L and function l(T, R). Before we go on to derive pertur-
bation bounds of the unitary factors U, V in the generalized Schur decomposition of
(A, B) from (2.10)-(2.12), it will be necessary to determine when the operator L de-
fined by (2.9) is nonsingular.

THEOREM 3.1. Let L be the operator defined by (2.9), where

tll t12 tin rll r12 rln
0 t22 t2n 0 r22 r2n

T- R=

0 0 tun 0 0 rnn

and (T, R) is a regular matrix pair. Then L is nonsingular if and only if all the
eigenvalues (tii, rii) of the matrix pair (T, R) are simple, i.e.,

(3.1) ?0 Vij, i,j= l,...,n.

Proof. First suppose that the condition (3.1) is satisfied. We must show that for
any fixed P (p,...,pn), Q (ql,..., qn) _.n the system

(3.2) low(TYL XLT) P, low(RYL XLR) Q

has a unique solution XL (xl,..., xn), YL (Yl,..., Yn) E gn.
For any v (Ul,..., un)w E Cn, define the column vector

lowk(v) (k) v(k) (b,k+l,... ’/]n)T _,n-k k=l,...,n-1.
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Then the kth columns pk, qk, xk, Yk of P, Q, XL, YL can be expressed by

Pk: qk-" Xk’- yk
p q X y

where p(kk), q(kk), X(k), y(kk) E Cn-k, k 1,... ,n- 1. Moreover, let

tk+1,k+ tk+1,k+2 tk+1,n
0 tk+2k+2 tk+2,n

T(k)

0 0 tnn

rkTl,kT1 rkTl,k+2 rkTl,n
0 rk+2,k+2 rk+2,n

R()

0 0 rn

for k 1,..., n- 1. Then the first columns of the two equations of the system (3.2)
can be expressed by

(3.3) lowl(Tyl tllXl) pl, lowl(Ryl r11x1) ql,

which is equivalent to

(:)T(1)Y1) tllX1)
Pl R(1)yil)- r11xl1) =q’).

Since rit r:t::: 70 Vi> 1, thematrix R(:) -r::I
system (3.3) has a unique solution Xl, Yl.

Now suppose that xl,yl,... ,Xk-l,Yk-1 are uniquely determined. From (3.2)

(3.4) lowk Tyk tzkxz Pk, lowk Ryk rzkx qk,

/=1 /--1

which is equivalent to

T(k)y(kk) tkkX(kk) P(kk) - /--1-k-1 tlkx}k)

Since rt rkktk 7 0 for all i > k, the matrix R() --rkkI
Hence the system (3.4) has a unique solution xk, Yk. Thus, we have proved that the
system (3.2) has a unique solution XL, YL E 2xn for any fixed P, Q

Conversely, we can prove that the operator L is singular without the condition
(3.1).

Let (j, i) be an index-pair satisfying the following conditions: (i) 1 <_ j < i <_ n,
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tii(ii)[ v r ]--O, (iii)there is no any another index-pair (l, k)so that j <_ <

k _< i, (1, k) : (j, i), and ruts rkktkk I-- O. Now we are going to prove that there exist

matrices XL, YL E /:nn with the form

XL 0 X(Lj’i) 0 YL 0 0
0 0 0 0 0 0

where

0 0 0 0
gj+, 0 0 0

X(Lj’i)-- j+2,j j+2,j+X 0 0

ij i,j+l i,i- 0

0 0 0 0
j+l,j 0 0 0

y(Lj’i) ?j+2,j T]j+2,j+ 0 0

Tlij i,j+ i,i--1 0

and (X(Lj’i), Y(L’i)) # (0, O)such that

 ow(TY X T) 0, low(RY X R) O.

Write

T- 0 T(j’i) R= 0 R(j#)

0 0 0 0

where

tjoj tj,j+

T(J,i)
tj+l,j+ tj-b l,i

0 0

rj rj,j+l rji

R(J,i) rj+l,j+l rj+l,i

0 0 rii

Then the system (3.5) is equivalent to

(3.6)
low(T(’i) Y(Lj’i) X(L’i)T(j’i) O,

low(R(j’i) YL(’i) XL(’’) R(J,i)) O.

Observing the (i- j + 1, 1)-elements of the two matrix equations of (3.6), we have

(3.7) tiilij tjjij O, riirlij rjjij O.
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Since rt ri

ti 0, we can take a nonzero solution (ij, /q)to (3.7). Furthermore,
observing the (i- j + 1, 2)-elements of the two matrix equations of (3.6), we have

Since t+l,i+x
rj+l,j+l

can get

tiili,j+ tj+l,j+li,j+

rii?]i,j+l rj+l,j+li,j+l rj,j+lij.

t # 0, we get a solution (i,j+i,?i,j+l) to (3.8). After that we
rii

successively. This means that without the condition (3.1) there exists a nonzero
solution (XL, YL) to (3.5), and so the operator L is singular. []

Let T, R 6/gnn, and let L be the operator defined by (2.9). Now we define the
function I(T,R) by

(3.9) l(T, R) min
XL, YL 6 /snx
II(XL, YL)IIF 1

It is easy to verify that if L is nonsingular then

(3.10)

where IIL-II is defined by

(3.11) IIL-1II

l(T, R) IlL-111 -,

max
YL f_.,xn

IIL- (XL, YL)IIF.

It is worthwhile to point out that if the generalized Schur form (T, R) ((tij), (rii))
of a regular matrix pair (A, B) is known, then the function l(T, R) is computable. Now
we show how to compute l(T, R). Let Z (ij), Y (r/iy) e C"n, and let

(3.12) (P, Q) L(XL, YL),

where L is the operator defined by (2.9), and P (pij), Q (q,j) e x=. Let

XL)

and

XL)

x(L)"

--1

/i+,J /yJL)

ytL)"

Yn--

Then from (3.12)and (2.9)

(3.13)

Pj+I,j I
ptL)"

(L)
/-’n--

p(L) x(L)
q(L) ) =L(y(L) ) with -Lp,xL -LQ,x

qj+l,j I(jL
qnj

q(L)’"

n--

LQ,y
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where Lp,x and LQ,x are block lower triangular matrices, Lp,y and LQ,y are block
diagonal matrices. For example, for n 5 the matrices Lp,x and Lp,y have the forms

Lp,x

[ tll 0 0 0 0 0 0 0 0
0 tl 0 0 0 0 0 0 0 0
0 0 tll 0 0 0 0 0 0 0
0 0 0 t 0 0 0 0 0 0
0 t12 0 0 t22 0 0 0 0 0
0 0 t12 0 0 $22 0 0 0 0
0 0 0 t12 0 0 t22 0 0 0
0 0 t13 0 0 t23 0 t33 0 0
0 0 0 t13 0 0 t23 0 t33 0
0 0 0 t14 0 0 t24 0 t34 t44

and

( t22 t23 t24 t25 0 0 0 0 0 0
0 t33 t34 t35 0 0 0 0 0 0
0 0 t44 t45 0 0 0 0 0 0
0 0 0 t55 0 0 0 0 0 0
0 0 0 0 t33 t34 t35 0 0 0
0 0 0 0 0 t44 t45 0 0 0
0 0 0 0 0 0 tbS 0 0 0
0 0 0 0 0 0 0 t44 ta5 0
0 0 0 0 0 0 0 0 t55 0

\ 0 0 0 0 0 0 0 0 0 t

The matrices LQ,X and LQ,y have the same forms as Lp,x and Lp,y. Moreover,
the elements tij are replaced by rij. The relation (3.13) shows that L is the matrix
representation of the operator L. Combining with (3.10) and (3.11) we know
that the function l(T, R) can be computed by

(3.14) I(T,R) ]IL-1II 1.

The following result shows that the function l(T, R) is insensitive with respect to
perturbations of T, R. The proof is similar to those of [6, Whm. 4.6] and [8, Thm. 3.4].

THEOREM 3.2. Let T, R, M, K E /[nn. Then

(3.15) l(T, R) 0M,K <_ l(T + M, R + K) <_ l(T, R) + OM,K,

where

I(R)M MT (R)I )I(R)K KT(R)I < x/ (llMIl + IIKII )
2

Proof. By the definition (3.9), we have

I(T,R)= min{IIL(XL, YL)IIF XL,YL e _n, II(XL, YL)IIF 1}

II(low(TY XT), low(RY XR))I[F,
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and

l(T + M, R + K)

min (ll(low((T + M)YL XL(T + M)), low((R + K)YL XL(R + K)))IIF

<_ II(low((T + M)Y X(T + M)), low((R / K)Y X(R +

_< II(low(TY XT), low(nYt: XR))IIF

+ll(low(My XM), low(KY XK))IIF

< l(T, R) + OM,KII(X[,

l(T, R) + 0M,K.

Similarly, we can prove the first inequality of (3.15).
Remark 3.3. Let (A, B) be a regular matrix pair. Note that the value of the

function l(T, R) is dependent on the choice of the generalized Schur form (T, R) of
(A, B). For example, we consider a matrix pair

3 O0 1 O0
(A,B)= 1 2 0 0 1 0

0 1 1 0 0 1

Take two .different generalized Schur decompositions of (A, B) A UjTjVjT, B
UjRjYjT, j 1, 2, where

U= 0 1 0 VI=UI, (T,R)- 0 2 1 0 1 0
1 0 0 0 0 3 0 0 1

and

1) ((21(T2,R2)- 0 1

0 0 1) (1 i)).
By (3.14) we have

t(T1, n)

-1 0 0 2 1 0
0-1 0030
0 -1 2 0 0 3

-1 0 0 1 0 0
0 -1 0 0 1 0
0 0 -1 0 0 1

-1 --1

0.218
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and

Z(T, R)

-2 0 0 1 0
0 -2 0 0 3 0
0 -1 -1 0 0 3

-1 0 0 1 0 0
0 -1 0 0 1 0
0 0 -1 0 0 1

-1 -1

0.192.

Obviously, l(T1, RI # l(T2, R2).

4. Perturbation theorem. Now we are going to derive upper bounds of the
solution (Z, Y) to (2.10)-.(2.12) under the assumption that all the eigenvalues of (T, R)
are simple.

By Theorem 3.1, the operator L defined by (2.9) is nonsingular. Thus, (2.10)-
(2.12) can be rewritten as a continuous mapping C"n x Cnn Cnn X Cnn
expressed by

(4.1)

and

we get

(XL, YL) L-(low(XHXT XHTy),low(XHXR XHRy))
-L- (low(/), low()),
1
(diag(XHX), diag(yny)),(XD, YD) --(Xu, Yu) -(XH, yH) (up(XHX), up(yHy)).

Observe the following facts:

1. By (3.10), I1-11-- /Z(T, R).

2. From

1II(Iw(XI-ITy),Iw(XHRy))IIF <-- -V/ilAII / [IBIIII(X,Y)II

II(Iw(XHXT)’ Iw(XHXR))IIF <-- 2n (IIA[I / IIBII)II(X, z)IIF

I](low(XHTy XHXT), low(XHRy XuXR))IIF

1 n-1 V/< -+) ]IA]I+"B]II’(X,Y)"2
F"

3. From (2.4)

[l(low(J), low())ll < II(E, F)IIF.
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4. We have

II(diag(XHX), diag(YHY))llF < II(X, Y)II =

II(up(X"X) up(yHy))IIF <-II(X, Y)II 2

Hence, if we let

2

T, R) fl,n 2Tt
o - + [.1,n T, R)

then the mapping (I) expressed by (4.1) satisfies

II(X, Y)llr < ll(X, Y)II + ,,
2II(XD, YD)IIF 1/211(X, Y)IIF,

II(Xu, YU)IIF [I(XL, YL)IIF -" nll(X, Y)ll.

Let z (1, 2, 3)T E C3. Consider the system

(4.4)

From the first two equations of (4.4)

(4.5)

and from the last two equations of (4.4)

(4.6) 3 1 " 2tn2.

Substituting (4.5)-(4.6) into the second equation of (4.4) we know that 2 satisfies
the equation

(4.7) ()= + = 0,

where

(4.8) [(2. + ,.) ]= } +’n+ (e) 1 2e(2a + #n).

Let

(4.9) 6(e) ((e))2 42.
If 6() _> O, then

(4.10)
2
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is a solution to (4.7). Thus from (4.10) and (4.5)-(4.6) we get a solution z*
(,,)w to the system (4.4).

Let

Obviously, Sz. is a bounded closed convex set of Cnxn, and the relation (4.3) shows
that the continuous mapping (I) maps 8z* into Sz.. By the Brouwer fixed-point
theorem (see, e.g., [5, p. 161]), the mapping (I) has a fixed point X* e Sz., i.e., (I) has
a fixed point X* satisfying

Moreover, observe that the function 5(e) defined by (4.9) can be expressed by

5(e) 1 4(2a + #n) 2(2#2n -- 1)52,

and 5(e) >_ 0 is equivalent to

1
(4.11) e

_
2(20 -- #n) -- V/4(2a +ttn)2 + 2(2/2n + 1) -= "

Hence, we have proved the following result.

THEOREM 4.1. Let (A, B) be a regular matrix pair of order n with distinct eigen-
values, and let A UTVH, B URVH be the generalized Schur decomposition of
(A,B). Moreover, let t A + E, B + F, and let e,#n and c be defined
by (4.2). /f e satisfies (4.11), then (t,[) has a generalized Schur decomposition
n, J0 0"/In such that

II(U u, v v)IIF

2

V/1 2(2a + #n)e + V/1 4(2a + #n)e 2(2#2n + 1)e2

bv,v (e),

and

(4.13)
I1 TiIF

_
liEIIF / Owbv,v(e) bw(e),

[IR- RIIF <_ IIFIIF + 01<bu,v(e) bp.o(e),

where T,R are defined by (2.6).
Remark 4.2. For small e the upper bound bv,v(e) defined by (4.12) has the Taylor

expansion

(4.14) bu,v(e) ve + /(2a + #)e2 + O(e.3), --. 0.

Combining (4.14) with (4.12)-(4.13) and (4.2) we see that the quantity 1/l(T, R) can
be regarded as a condition number of the generalized Schur decomposition of (A, B).
Note that by Remark 3.3 the condition number is dependent on the choice of the
generalized Schur form (T, R).
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Let ’, ,,/ be the computed generalized Schur factors of a regular matrix
pair (A,B) by the QZ algorithm [4]. (Note. MATLAB supplies a function qz to
compute the generalized Schur factors. The qz function is an implementation of the
QZ algorithm.) It is known that the computed factors U, V,T,R are exactly the
generalized Schur factors of a slightly perturbed regular matrix pair (A + E, B + F)
[4]. Consequently, from (4.12)-(4.14) we see that the condition number 1/I(T,R)
enables us to estimate the accuracy of the computed generalized Schur factors.

5. Numerical examples.
Example 5.1. Let

-20 -0.1 0 0 0 1 0.01 0 0 0
0 -10 -0.1 0 0 0 1 0.01 0 0

A- 0 0 0 -0.1 0 B- 0 0 1 0.01 0
0 0 0 10 -0.1 0 0 0 1 0.01
0 0 0 0 20 0 0 0 0 1

3-2 6 4 -1 1 2 3 -2 7
1 8 -5 9 2 -2 9 -8 3 0

E0- -4 7-3 5 1 F0- 6 -2 4 7 1
-1 0 3-4 7 -6 8-3 1 2
7 8 9 0-2 0-5 3-I 1

and let i A + "rEo, B + TFo, where T is a real parameter. The eigenvalues
of the matrix pair (A, B) are -20,-10, 0, 10, and 20. We take T A, R B, and
U V I in the decomposition (1.1). Computation gives

1/l(T, R) 2.24, 2.44e- 03,

where is defined by (4.11). By (4.2), we have

e II(TEo, TFo)IIF/I(T,R).

Consequently, from the restriction (4.11) in Theorem 4.1 it follows that in order to
apply the estimates (4.12)-(4.13) the parameter T must satisfy

I’,1 < l(T, R)III(Eo, Fo)ll , 3.30e 05.

By using MATLAB we get the generalized Schur decomposition . .I:H,
/n, and the upper bounds in Theorem 4.1. Some numerical results are listed in
Table 1, where e, bv,v(e),bw(e), and bR(e) are defined by (4.2), (4.12), and (4.13),
respectively.

Example 5.2. Let A,B, U, V, T,R, and T be as in Example 5.1 but the (5, 5)-
element of A is changed from 20 to 9.999. The eigenvalues of the matrix pair (A, B)
are -20,-10, 0, 10, and 9.999. Computation gives

lll(T, R) " 14215 >> 1, g 3.88e 07,

where g is defined by (4.11). In order to apply the estimates (4.12)-(4.13) the param-
eter T must satisfy

I’,-I <_ e-I(T,R)IIIEo, Fo)ll " 8.24e- 13.
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Taking T 1.00e-13 and by using MATLAB we get the generalized Schur decompo-
sition t’7H URVH, and

II(0- u, V)IIF 2.09e 09, I1’ TIIF 1.83e 10, II/ RIIF ..80e 1.

bu,v(e) 6.87e 08, bT (e) 1.94e 06, bp(e) 9.80e 08.

The numerical results show that the sharpness of the upper bounds of (4.12)-(4.13)
may be weakened in the ill-conditioned case (i.e., in the case 1/I(T,R) >> 1). This is
due to the fact that the condition number 1/l(T, R), as the condition numbers of usual
matrix computation problems [1], [7], is defined by the "worst case" perturbations.

TABLE 1.

I1(0 u, 9 V)ll,
bu,v(e)
I1- TIIF

,’r ()
I1 RII F

bR(e)

1.00e-05 1.00e-07

1.71e-0.4 1.71e-06
1.14e-03 1.05e-05
1.66e-03 1.66e-05
3.26e-02 2.99e-04
2.39e-04 2.39e-06
1.85e-03 1.72e-05

1.00e-09 1.00e-ll 1.00e-13

1.71eo08
1.05e-07
1.66e-07
2.99e-06
2.39e-08
1.71e-07

1.71e-10
1.05e-09
1.66eo09
2.99e-08
2.39eo10
1.71e-09

1.71e-12
1.05e-ll
1.66e-ll
2.99e-10
2.39e-12
1.71e-ll
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APPLICATION OF VECTOR-VALUED RATIONAL
APPROXIMATIONS TO THE MATRIX EIGENVALUE PROBLEM
AND CONNECTIONS WITH KRYLOV SUBSPACE METHODS *

AVRAM SIDI

Abstract. Let F(z) be a vector-valued function F C CN, which is analytic at z 0
and meromorphic in a neighborhood of z 0, and let its Maclaurin series be given. In a recent
work [J. Approx. Theory, 76 (1994), pp. 89-111] by the author, vector-valued rational approximation
procedures for F(z) that are based on its Maclaurin series, were developed, and some of their conver-
gence properties were analyzed in detail. In particular, a Koenig-type theorem concerning their poles
and a de Montessus-type theorem concerning their uniform convergence in the complex plane were
given. With the help of these theorems it was shown how optimal approximations to the poles of
F(z) and the principal parts of the corresponding Laurent series expansions can be obtained. In this
work we use these rational approximation procedures in conjunction with power iterations to develop
bona fide generalizations of the power method for an arbitrary N N matrix that may or may not
be diagonalizable. These generalizations can be used to obtain simultaneously several of the largest
distinct eigenvalues and corresponding eigenvectors and other vectors in the invariant subspaces. We
provide interesting constructions for both nondefective and defective eigenvalues and the correspond-
ing invariant subspaces, and present a detailed convergence theory for them. This is made possible
by the observation that vectors obtained by power iterations with a matrix are actually coefficients
of the Maclaurin series of a vector-valued rational function, whose poles are the reciprocals of some
or all of the nonzero eigenvalues of the matrix being considered, while the coefficients in the principal
parts of the Laurent expansions of this rational function are vectors in the corresponding invariant
subspaces. In addition, it is shown that the generalized power methods of this work are equivalent
to some Krylov subspace methods, among them the methods of Arnoldi and Lanczos. Thus, the the-
ory of the present work provides a set of completely new results and constructions for these Krylov
subspace methods. At the same time this theory suggests a new mode of usage for these Krylov
subspace methods that has been observed to possess computational advantages over their common
mode of usage in some cases. We illustrate some of the theory and conclusions derived from it with
numerical examples.

Key words. Krylov subspace methods, method of Arnoldi, method of Lanczos, power itera-
tions, generalized power methods, diagonalizable matrices, defective matrices, eigenvalues, invariant
subspaces, vector-valued rational approximations

AMS subject classifications. 30E10, 41A20, 65F15, 65F30, 65F50

1. Introduction. Let F(z) be a vector-valued function, F C - CN, which is
analytic at z 0 and meromorphic in a neighborhood of z 0, and let its Maclaurin
series be given as

(1.1) F(z)- E umzm’
m-----0

where u. are fixed vectors in CN.
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Centenary Conference, Raleigh, North Carolina, December 1993.

Computer Science Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
and Institute for Computational Mechanics in Propulsion, NASA Lewis Research Center, Cleveland,
Ohio 44135 (asidiOcs. technion, ac. il).
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In a recent work by the author [Si6] three types of vector-valued rational approx-
imation procedures, entirely based on the expansion in (1.1), were proposed. For each
of these procedures the rational approximations have two indices, n and k, attached
to them, and thus form a two-dimensional table akin to the Pad6 table or the Walsh
array. Let us denote the (n, k) entry of this table by F,,a(z). Then Fn,a(z), if it exists,
is defined to be of the form

(1.2) E (n,k)
=0 Cj zk-JFn+v+j(z) P,,a(z) (,a)

k _(n,k) nl;- with ca Qn,a(O)= 1,
j=0 cj za-J

where v is an arbitrary but otherwise fixed integer >_ -1, and

(1.3) F,(z) E uzi’ m 0, 1,2,... Fm(z) =_ 0 for m < 0,
i=0

(n,a)and the cj are scalars that depend on the approximation procedure being used.
If we denote the three approximation procedures by SMPE, SMMPE, and STEA,

then the cj

_
cj for each of the three procedures, are defined such that they satisfy

a linear system of equations of the form

k-1

(1.4) Euijcj -uia’ O <_ k-1; ca=l,
j=0

where uij are scalars defined as

(1.5)
(Unwi, UnWj)

u,j (qi+. Un+j

for SMPE,
for SMMPE,
for STEA.

Here (.,.) is an inner product---not necessarily the standard Euclidean inner
product--whose homogeneity property is such that (ox, fly) 6fl(x, y) for x, y in
CN and c, fl in C. The vectors q., q,..., form a linearly independent set, and the
vector q is nonzero. Obviously, Fn,a(z) exists if the linear system in (1.4) has a solution
for co, Cl k--1.

It is easy to verify that for SMPE the equations in (1.4) involving co, c,..., ca-1
are the normal equations for the least squares problem

(1.6) min
0CI ...Ck--i

k-I

E CjUnTj UnWk
j=O

where the norm II" is that induced by the inner product (., .), namely, Ilxll v/, x).
As is clear from (1.2) and (1.3), the numerator of Fn,a(z) is a vector-valued

polynomial of degree at most n+ + k, whereas its denominator is a scalar polynomial
of degree at most k.

As can be seen from (1.4) and (1.5), the denoninator polynomial Qn,a(z) is
constructed from u,,u+,...,u,+ for SMPE and SMMPE, and from u,,u+,

u+2a..- for STEA. Once the denomina:tors have been determined, the numer-
ators involve u0, u,..., u++a: :for all. three approximation procedures.
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The approximation procedures above are very closely related to sone vector ex-
trapolation methods. In fact, as is stated in Theorem 2.3 in Section 2 of [Si6], Fn,k(z)
for SMPE, SMMPE, and STEA are obtained by applying sone generalized versions
of the minimal polynomial extrapolation (MPE), the modified minimal polynomial
extrapolation (MMPE), and the topological epsilon algorithm (TEA), respectively, to
the vector sequence Fm(z),m 0, 1,2, For early references pertaining to these
methods and their description, see the survey paper of Smith, Ford, and Sidi [SmFSi],
and for recent developments pertaining to their convergence, stability, implementa-
tion, and other additional properties, see the papers by Sidi [Sill, [Si2], [Sih], Sidi and
Bridger [SiB], Sidi, Ford, and Smith [SiFSm], and Ford and Sidi [FSi]. The above
mentioned generalizations of vector extrapolation methods are given in [SiB, (1.16)
and (1.17)].

A detailed convergence analysis for the approximations Fn,k(z) as n x was

given in [Si6], whose main results can be verbally summarized as follows: (i) Under
certain conditions the denominators Qn,(z) converge, and their zeros, k in number,
tend to the k poles of F(z) that are closest to the origin. This is a Koenig-type
result and is proved in Theorems 4.1 and 4.5 of [Si6], where the precise rates of
convergence are also given for both simple and nmltiple poles of F(z), and optimal
approximations to multiple poles are constructed in a simple way. (ii) Under the same
conditions F,(z) converges to F(z) uniformly in any compact subset of the circle
containing the above-mentioned k poles of F(z) with these poles excluded. This is
a de Montessus-type result and is proved in Theorem 4.2 of [Si6]. (iii) The principal
parts of the Laurent expansions of F(z) about its poles, simple or multiple, can be
constructed from Fn,k(z) only. This construction, along with its convergence theory,
is provided in Theorem 4.3 of [Si6].

It turns out that tile denominator polynomials Q.,(z) are very closely related
to some recent extensions of the power method for the matrix eigenvalue problem,
see [SiB, 6] and [Si3]. Specifically, if the vectors u, of (1.1) are obtained from
Um= Au,-I, m 1, 2,..., with u0 arbitrary, and A being a complex N N and, in
general, nondiagonMizable matrix, then the reciprocals of tile zeros of the polynomiM
Qn,t(z) are approximations to the k largest distinct and, in general, defective eigen-
values of A, counted according to their multiplicities, under certain conditions. In 3
of this work we provide precise error bounds for these approximations for n - c that
are based on the results of Theorems 4.1. and 4.5 of [Si6]. While the approximations
to nondefective eigenvMues have optimal accuracy in some sense, those that corre-
spond to defective eigenvMues do not. In this paper we also show how approximations
of optimal accuracy to defective eigenvMues can be constructed solely from Qn,k(z),
providing their convergence theory for n --, c at the same time. We then extend the
treatment of [SiB] and [Si3] to cover the corresponding invariant subspaces in general,
and the corresponding eigenvectors in particular. For example, we actually show how
the eigenvectors corresponding to the largest distinct eigenvalues, whether these are
defective or not, can be approximated solely in terms of the vectors uj, and provide
precise rates of convergence for them. The key to these results is the observation
that the vector-valued power series .,=0 umzm actually represents a vector-valued
rational function F(z) whose poles are the reciprocals of some or all of the nonzero
eigenvalues of A, depending on the spectral decomposition of u0, and that correspond-
ing eigenvectors (and certain combinations of eigenvectors and principal vectors) are
related to corresponding principal parts of the Laurent expansions of the function
F(z). The main results of 3 pertaining to eigenvalues are given in Theorem 3.1, while
those pertaining to eigenvectors and invariant subspaces are given in Theorem 3.2
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and the subsequent paragraphs. A detailed description of the properties of the power
iterations Um Au,-I, m-- 1, 2,..., is provided in 2.

In 4 we present a short review of general projection methods and Krylov sub-
space methods for the matrix eigenvalue problem. Of particular interest to us are the
methods of Arnoldi [A] and Lanczos ILl, which are described in this section.

In 5 we show that the extensions of the power method developed and analyzed
in 3 are very closely related to Krylov subspace methods. In particular, we show
that the reciprocals of the k poles and the corresponding residues of the rational
approximations Fn,k(z) (with -1) obtained from the SMPE, SMMPE, and STEA
procedures are the Ritz values and the Ritz vectors, respectively, of certain Krylov
subspace methods of order k.for the matrix A starting with the power iteration un.
Specifically, the methods of Arnoldi and Lanczos are related to the F,,(z) obtained
from the SMPE and STEA procedures, respectively, precisely in this sense when (., .)
in (1.5) is the standard Euclidean inner product. The main results of 5 concerning
this are summarized in Theorem 5.4 and Corollary 5.5. In addition, Theorem 5.6 gives
some optimality properties of the Arnoldi method.

Now the Ritz values and Ritz vectors obtained from Krylov subspace methods
are normMly used as approximations to nondefective eigenpairs. They are not very
effective for defective eigenpairs. Since we know that the generalized power methods
based on the SMPE, SMMPE, and STEA procedures are related to Krylov subspace
methods, the constructions for approximating defective eigenvalues and their corre-
sponding invariant subspaces that originate from generalized power methods and that
are given in 3 are entirely new as far as Krylov subspace methods are concerned.
Similarly, all of the .convergence results of 3, whether they pertain to defective or
nondefective eigenvalues and their corresponding invariant subspaces, are new and to-
tally different from the known analyses provided by Kaniel IN], Paige [Pail, and Shad
[Sal], [Sa2]. Some of these analyses can also be found in Parlett [Par2] and Golub
and Van Loan [GV]. The last two references also give a very thorough treatment of
the computational aspects of Krylov subspace methods.

In 6 we show how the Ritz values and Ritz vectors obtained in a stable way from
the common implementations of the Arnoldi and Lanczos methods can be used in
constructing the approximations to the defective eigenvalues and their corresponding
invariant subspaces in general and eigenvectors in particular.

In 7 we illustrate some of the theoretical results and claims of the paper with
numerical examples.

In view of the connection between (1) the Krylov subspace methods and (2)
the vector-valued rational approximations of [Si6] and the corresponding generalized
power methods of the present work, we now summarize the main contributions of this
paper.

(i) It is shown that Krylov subspace methods for the matrix eigenvalue problem
are completely equivalent to methods founded on analytic function theory and rational
approximations in the complex plane.

(ii) A mode of usage of Krylov subspace methods akin to the power method, in
which one first iterates on an arbitrary initial vector many times and only then applies
Krylov subspace methods, is proposed. This mode produces approximations only to
the largest eigenvalues and their corresponding invariant subspaces.

(iii) The output from Krylov subspace methods, namely, the Ritz values and
Ritz vectors, are used in constructing optimal approximations to defective eigenvalues
and the corresponding eigenvectors and invariant subspaces. (The Ritz values and
Ritz vectors by themselves are not good approximations to defective eigenvalues and
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corresponding eivenvectors and invariant subspaces.)
(iv) A complete convergence theory for the generalized power methods is pro-

vided.
(v) This author’s numerical experience suggests that at least in some cases the

mode of usage proposed in this work and mentioned in (ii) above may produce the
accuracy that is achieved by applying the Arnoldi method in the commonly known
way using less storage and less computational work when the matrix being treated is
large and sparse.

Before closing this section we note that the eigenvalue problem for defective ma-
trices has received some attention in the literature. The problem of approximating the
largest eigenvalue of a matrix when this eigenvalue is defective has been considered
by Ostrowski [O], who proposes an extension of the Rayleigh quotient and inverse
iteration and gives a thorough analysis for this extension. Parlett and Poole [ParPo]
consider the properties of a wide range of projection methods within the framework
of defective matrices. The convergence of the QR method for defective Hessenberg
matrices has been analyzed in detail by Parlett [Parl]. The problem of determining
the Jordan canonical form of defective matrices has been treated in Golub and Wilkin-
son [GW]. The use of power iterations in approximating defective eigenvalues is also
treated to some extent in Wilkinson [W, Chap. 7] and Householder [H, Chap. 7].

Finally, we mention that the results of [Si6], as well as the application of vector-
valued rational approximations to the matrix eigenvalue problem, were motivated by
the developments in a recent work by the author [Si4] on the classical Pad6 approxi-
mants.

2. Properties of power iterations. Let A be an N x N matrix, which, in
general, is complex and nondiagonalizable. Let u0 be a given arbitrary vector in CN,
and generate the vectors ul, u2,..., according to

(2.1) Uj+I Auj, j >_ O.

Denote by s the index of A, i.e., the size of the largest Jordan block of A with zero
eigenvalue. Then u, is of the form

(2.2) u ajl A for m > s,
"= k/=0

where Aj are some or all of the distinct nonzero eigenvalues of A, which we choose to
order such that

(2.3)

pj + 1 wj are positive integers less than or equal to the dimension of the invari-
ant subspace of A belonging to the eigenvalue Aj, and , 0 <_ <_ pj, are linearly
independent vectors in this invariant subspace. It turns out that the vector jpj is an
eigenvector of A corresponding to Aj, while the vectors gji, 0, 1,..., pj 1, are com-
binations of eigenvectors and principal vectors of A corresponding to the eigenvalue
,k. What is more, the subspaces

Y span{tjl, i < <_ pj }, O, 1,..., pj,

are invariant subspaces of A corresponding to the eigenvalue/j, and satisfy Y0 D Y1 D
Dgpj.
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Whether all distinct nonzero eigenvalues are present among )1,,2,... ,AM, the
exact values of the wj, and the precise composition of the vectors jt, all depend on
the spectral decomposition of the initial vector u0. For a detailed derivation of the
above see [SiB, 2].

Before we go on, we will only mention how to determine the maximum value that
wj can assume. Suppose that the Jordan canonical form of A has several Jordan blocks
whose eigenvalues are all equal to Aj. Then the largest value that wj can assume is the
size of the largest of these blocks. In general, for a randomly chosen vector u0, wj will
take on its maximum value. In cases where wj is theoretically less than this maximum
value, rounding errors on a computer will ultimately force wj to take on its maximum
value.

It is obvious from the above that

(2.4)
M M

+ <_
j--1 j=l

and

5ji, 0

_
<_ pj, 1 <_ j

_
M, are linearly independent.

Also the minimal polynomial of the matrix A with respect to the vector us has degree
k0 M i.e.j=l .dj

If defined as a monic polynomial, this polynomial is unique and divides the min-
imal polynomial of A, which, in turn, divides the characteristic polynomial of A.
Furthermore, the minimal polynomial of A with respect to us is also the minimal
polynomial of A with respect to u, for all m >_ s. Consequently, any set of vectors
{Urn, Urn+l,... ,Um+k} is linearly independent for m >_ s provided k < k0.

Now applying Lemma 3.1 of [Si6] in conjunction with (2.2), we conclude that the
vector-valued power series =ou,z’ represents the vector-vMued rational function

M pj
aji(2.6) F(z) (I- zA)-luo

in which the vectors aji are uniquely determined in terms of the 5jr from

(2.7) 5j E aj, O <_. <_ pj, I <_ j <_ M,
i--i

and hence form a linearly independent set, and G(z) is a vector-valued polynomial of
degree at most s- 1. In fact, G(z) is in the invariant subspace of A corresponding to
the zero eigenvalue. Also, ajp tjpj, i.e., ajpj is an eigenvector of A corresponding
to the eigenvalue Aj, while for each i,O <_ <_ pj-- 1,aji is some other vector in
the invariant subspace Y corresponding to the eigenvalue Aj, and involves principal.
vectors as well as eigenvectors.
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When the matrix A is diagonalizable, pj 0 for all j in (2.2) and hence in (2.6).
If, in addition, A is normal, then its eigenvectors form an orthogonal set with respect
to the standard Euclidean inner product, namely, (x, y) x’y, where x* stands for
the hermitian conjugate of x. Consequently, the vectors gj0 ajo in (2.2) and (2.6)
are orthogonal with respect to this inner product when A is normal.

Now that we have shown that the power series =o UmZ’ represents a rational
function F(z) that is analytic at z 0 and has poles zj .k- of respective mul-
tiplicities wj pj + 1,j 1, 2,..., M, we can apply any one of the approximation
procedures SMPE, SMMPE, or STEA to the power series =ou’zm to obtain the
vector-valued rational approximations F,,k(z) to F(z). We can then apply the theo-
rems of 4 and 5 of [Si6] to construct approximations to the eigenvalues Aj and the
vectors aji in (2.6) and (2.7).

It is important to note that the linear independence of the vectors ajl is an
important condition for the convergence of the SMPE and SMMPE procedures, but
is not needed for the STEA procedure. In addition, we assume throughout that

(e.8)
(ql,a 0) a pl (ql,at0) atpt

(qk,alO) (qk,alpl) (qk,ato) (qk,atpt)
for SMMPE,

where k Ej=I Wj, and that

H(q, ajpj 0 for STEA.
j--1

No additional assumption is needed for SMPE.
In order for (2.8) to hold it is necessary (but not sufficient) that the two sets of

vectors {aj 0

_
i

_
pj, 1

_
j <_ t} and {q,..., qk}, each be linearly independent,

as has already been assumed.

3. Theoretical development of generalized power methods. In light of
the developments of 2 and Theorems 4.1, 4.3, and 4.5 of [Si6] and the developments
of 5 in the same paper, we approach the matrix eigenvalue problem as follows.

Given the vector u0 that is picked arbitrarily, we generate the vectors Ul, u2,...,

according to (2.1). We then fix the integers n and k, and determine the coefficients

,j 0, 1,... ,k, of the denominator polynomial of Fn,a(z) for one of the pro-
cedures SMPE, SMMPE, and STEA, by using u,,,Un+l,...,u,+k for SMPE and
SMMPE, and Un, Un+l,...,Un+2k-1, for STEA. By Theorem 4.1 of [Si6] the zeros

of the polynomial (n,k(A) A-aQn,a(A-1) j=ok (JAn’k)AJ are approximations to
the k largest /j in (2.2), counted according to their multiplicities wj, provided the
conditions stated in this theorem are satisfied. In case the matrix A is normal, the
zeros of the polynomial (,k(/k), obtained from SMPE and STEA with the standard
Euclidean inner product, are even better approximations to the eigenvalues /j of A
as follows from Theorem 4.5 of [Si6].

3.1. Treatment of eigenvalue approximations. Theorem 3.1 below, which is
of constructive nature, summarizes all the relevant results concerning the approxina-
tions to the Aj. The corresponding approximations to eigenvectors and other vectors
in the invariant subspaces are subsequently obtained with the help of the developments
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in 5 of [Si6], and the relevant results for this problem are summarized in Theorem
3.2 below.

We note that in this section we have adopted all of the notation of the previous
sections.

THEOREM 3.1. Let the matrix A and the vector sequence u,, rn 0, 1, 2,..., be
as described in the preceding section. Let the positive integers t and k be such that

(3.1) IAtl > Itq-ll and k E (PJ + 1)= E wj.
j--1 j--1

_(,,k)Determine the coefficients (j ,j 0, 1,...,k, for one of the procedures SMPE,
SMMPE, and STEA, by utilizing un, Un+l,..., as described in (1.4) and (1.5). Then,
under the additional conditions given in (2.8) and (2.9),

(3.2)
k

(n,k)Aj II(A_ Aj)j + O(e(n)) as n - oc,n,k() Cj
j--0 j--1

where

(3.3) (n) n
)t+l

( being some nonnegative integer. In fact, if the )j whose moduli are I,Xt[ are simple,
then , where/3 max{pj" I/yl- ])t+ll}. Consequently, the polynomial n,k())
forn c, has wj zeros )jt(n), 1 < <_ wj, that tend to )j,j- 1,2,...,t. For each j
and we have

(3.4) /jl(n) /j O(Sj(n) 1/wj as n -- (x),

where

(3.5)
,t+l
Aj

Let us denote

(3.6) Jy(n) w-. E )j,(n) or y(n) 1
j/(n)_l

/--1 /--1

Then

(3.7) j(n) -/j O(Sj(n)) as n -- oc.

Also, the pjth derivative of n,k()) has exactly one zero Xj(n) that tends to )j and
satisfies

(3.8) j(n) Aj O(Sj(n)) as n oc.
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Let the matrix A be normal, i.e., AA* A*A. Then pj 0 hence wj 1 for
_(n,k)all j. If the cj are determined through the procedures SMPE and STEA with the

standard Euclidean inner product, and k is such that

and provided q tn for STEA, then (3.2) and (3.4) are substantially improved to
read, respectively,

(3.10)
j--1

ash--.

and, for j 1,...,k,

(3.11) Aj(n) Aj 0 ( /k+l
Aj

as n-- oc

where )j(n) is the unique zero of 0n,k(/) that tends to )j.
We note again that the result in (3.2) and (3.3) was originally given in [SiB, 6,

Thin. 6.1], and those in (3.10) and (3.11) were originally given for SMPE in [Si3].
The rest of Theorem 3.1 is new in that it has appeared only recently in [Si6].

One important aspect of Theorem 3.1 is the construction of optimal approxima-
tions to defective eigenvalues through (3.6) and (3.7). From (3.4) it is clear that when
pj 0 hence wj 1, which occurs automatically if/kj is a nondefective eigenvMue,
the rate of convergence of the approximation corresponding to Aj is optimal. In case
that Aj is a defective eigenvalue and pj > 0, the rate of convergence of each of its wj

corresponding approximations is 1/wj of the optimal rate. For this case (3.6) and (3.7)
show how the poor approximations Ajt(n) can be combined in a simple way to give
an optimal approximation, namely j(n). Similarly, (3.8) shows that j(n), the zero
of the pjth derivative of (n,k(A) that tends to/, has the same optimal convergence
rate as j(n). The results in (3.10) and (3.11) show that the approximations obtained
from SMPE and STEA for a normal matrix converge twice as fast as those obtained
for a nonnormM diagonMizable matrix having the same spectrum.

Another important aspect of Theorem 3.1 is that it shows clearly that the quality
of the approximations to A1, A2,..., is better when k is larger. To see this let us
consider the two different cases in which (k, t) (k’, t’) and (k, t) (k", t") in (3.1)
of Theorem 3.1, where t’ < t". Obviously, IA,I > [A,,I, and also
Consequently, [At,,+x/Aj[ < [At,+I/Aj[ for j 1,2, The validity of our claim now
follows by comparing the outcomes of (3.2)-(3.11) with (k,t) (k’,t’) and (k,t)
(k,,,t,,).

Finally, as has already been mentioned in [SiB], the methods contained in The-
orem 3.1 reduce precisely to the classical power methods when k 1. Specifi-
cMly, solving (1.4) with k 1, we have (n,(/) A- UOl/UOO, from which there
follows p(n) UOl/UOO as the approximation to the largest eigenvalue of A. Now
p(n) (un, Un+l)/(Un, Un) (Un, Aun)/(Un, Un) for SMPE procedure and this is sim-
ply the Rayleigh quotient for Un. Similarly, p(n) (ql,Au)/(q,un) and p(n)
(q, Aun)/(q, Un), respectively, for SMMPE and STEA procedures, and this is how the
standard power method is defined.



1350 AVRAM SIDI

3.2. Treatment of invariant subspace approximations. For the treatment
of the eigenvectors and invariant subspaces we need some preliminary work.

Let us rewrite (2.6) in the form

M Pj
dji(3.12) F(z) EE (z zj)+1 + G(z),

j----1 i--0

where

(3.13) zj -1 and dji (-zj)i+laji for all j,i.

Thus the dji are the coefficients of the principal part of the Laurent expansion of F(z)
about the pole zy, j 1,..., M.

Consider the rational function

F(z) En+.(z)(3.14)
zn-4-,+

which is analytic at z 0 and has the Maclaurin series expansion

(3.15) (z) E tnA-’4-iA-1zi"
i=0

By (3.12) we can write

(3.16) (z) E (Z__Zj)i+l
"3t-dJ(Z)’

i=0

where

(3.17)

and j(z) is analytic at zj, i.e., as above, the j are coefficients of the principal part
of the Laurent expansion of (z) about the pole zj, j 1,..., M. Unlike before, both

/(z) and the dji depend on n, in addition. The vector jpj, being a scalar multiple of
the constant vector djpj, is an eigenvector of A corresponding to the eigenvalue Aj. For

p.i, the vector yi, being a linear combination of the constant vectors djt, <_

_
pj,

is in the invariant subspace Y, and, as is obvious from (3.17), the coefficients of the
djt in this linear combination are polynomials in n, up to the common multiplicative
factor z’--.

Following now the.developments in 5 of [Si6], we obtain the following constructive

result for the ji.
THEOREM 3.2. With the notation and conditions of Theorem 3.1, let us define,

for l _<_j < t,

(3.18) j(n)- 1/y(n) or (y(n)= 1/.(n),
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and, for 0 <_ <_ pj and 1

_(n,k) zk_ Erm(3.19) 3ji,l(n) (Z Cj(n)) Ekr:l Gr tn+,+mZm-1

k )(k_r)zk_r_
and

(3.20) ji(n) E ji,t(n).
/=1

Then, for 0 <_ i <_ pj, ji(n) is an approximation to ji in (3.17) in the sense

(3.21) limsup [j(n) jil 1In <_ [/t-f-l[-
oo

z=l/Ajt(n)

We note that Theorem 3.2 actually contains the basic ingredients of a poten-
tially bona fide numerical method for approximating the eigenvectors and other vec-
tors in invariant subspaces corresponding to largest eigenvalues of A. The resulting
method, which is described below, (i) makes use of only Un, Un+l,..., disregarding
U0, Ul,..., Un--1 entirely, and (ii) enables us to construct optimal approximations to
the vectors aj,O < i < pj, forpj 0 as well aspj > 0. We now turn to these
constructions.

3.2.1. Approximation of the eigenvector aipj.
result of Theorem 3.2 to the case pj. We have

(3.22) pj A+’+ldp,
so that (3.21) can also be written as

(3.23) lim sup IAj-n-’-ljpj (n) djp ll/n <

Let us first specialize the

)t+l
Aj

direction with varying n.
Let us now rewrite (3.17) in the form

dj0
djl

z+t+(3.24) T(n)

3.2.2. Approximation of the vectors aji, 0

_
i

_
pj 1. Although the

vector ajp (up to a multiplicative constant) can be determined from jp (n) in a rather
painless manner, the determination of the remaining ayi from the djt(n) becomes
somewhat involved. The reason for this is that the vectors ji, apart from the scalar
multiplicative factor zn--I are linear combinations of the djt hence of the ajt, i <

<_ pj, with coefficients that vary as functions of n, as can be seen from (3.17) and
(3.13), and as has been mentioned before. This means that the j do not have a fixed

This clearly shows that the vector jpj (n), as n --+ cx, aligns itself with the constant
vector dips, which is proportional to the eigenvector ayp, practically at the rate of
IXt+i/Ajln. It is thus sufficient to compute the vectors [lji,t(n), 1 < < wj, by (3.19),
and then to form ji(n) by (3.20) as our approximation to the (appropriately normal-
ized) eigenvector ayp, and this is valid whether pj 0 or pj > O.
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where T(n) is the upper triangular matrix

(.e) T()=

TOO T01 TOpj
T11 Tlpj

".o
q-pj pj

-n- ,- 1 1 l-Fi all and l.

Obviously, T(n) is invertible since its diagonal elements are unity. Thus,

djo (jo

(3.26)
djl

T(lt)
jl

-1 Z+U+

where T(n) -1 is also upper triangular, its diagonal elements being unity.
Now since all elements of T(n) are polynomials in n, and since its determinant is

unity, the elements of T(n) -1 turn out to be polynomials in n, i.e., the matrix T(n) -1
can grow at most polynomially as n -- c. If we denote the nonzero elements of
T(n) -1 by pit, <_

_
pj, 0 <_ <_ pj, then we can write (3.26) in the form

Pj

(3.27) dji z+’l E Piljl, 0

_ _
pj.

l--i

Let us replace ajt in (3.27) by [(jt jt(n)) + jt(n)], and invoke (3.21). After
some manipulation we obtain

(3.28) lim sup
Pj

dji z-9’-F1 E pitjl(Tt)
t--i

1/n
/t+l

P (jt(n) aligns itself with the fixed vector dji asThis implies that the vector -t=i pit

n -- c practically at the rate of I/kt+ 1//kj n. We leave the details of the proof of (3.28)
to the reader.

We note that (3.28) shows how to construct a good approximation to dji from
the (jt(n) and/kj, provided/kj is known. Since/kj is not known, however, the vector

Pjt=iPitjl(n) cannot be constructed. We, therefore, propose to replace Aj in the
matrix T(n) -1 by the known approximations j(n). Also, in this case, it can be shown
that (3.28) remains valid. Again, we leave the details of the proof to the reader.

Before closing this section, we must mention that the developments of this section
are meant to be theoretical in general. Although they can be used for computational
purposes for small values of k, their use for large k is likely to introduce numerical
instabilities in many cases. These instabilities are mainly a result of our direct use
of the power iterations Un+i Aiun, i 0, 1, They exhibit themselves first of all
through the poor computed approximations to the )j, which ultimately affect the com-
puted eigenvector approximations. This problem can be remedied by observing that
the approximations Fn,(z) that we developed and applied to the matrix eigenvalue
problem are very tightly connected with Krylov subspace methods for some of which
there exist computationally stable implementations. In particular, the SMPE and
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STEA procedures are related to the method of Arnoldi and the method of Lanczos,
respectively, as we show in detail in the next two sections.

4. General projection methods and the methods of Arnoldi and Lanc-
zos for the matrix eigenproblem.

4.1. General projection methods. Let {vl,..., vk} and {wl,..., wk} be two
linearly independent sets of vectors in CN, and define the N k matrices V and W
by

(4.1) w [v Iv21--. Iv] and W [Wl IW2[ IWk].

In addition, let us agree to denote the subspaces span {Vl,..., vk} and span {Wl,...,
wa } by V and W, respectively. For simplicity, let us also take (x, y) to be the standard
Euclidean inner product x*y.

In projection methods one looks for an approximate eigenvalue-eigenvector pair
(A, x) with x E V that satisfies the condition

(4.2) (y, Ax-Ax)=0 for allyEW,

which can also be written in the equivalent form

(4.3) W*(A- )I)V 0 for some C.
Here we have used the fact that x G V implies that x V for some C. Of
course, (4.3) holds if and only if/ is an eigenvalue of the matrix pencil (W*AV, W* V),
i.e., it satisfies the characteristic equation

(4.4) det(W*AV iW*V) O.

In general, (4.4) has k solutions for , which are known as Ritz values in the literature.
Given that /V is a Ritz value, the corresponding eigenvector is a solution of the
homogeneous system in (4.3). The eigenvector approximation corresponding to is
now x V, and is known as a Ritz vector.

The different projection methods are characterized by the subspaces V and W
that they employ. (Note that V and W are also called, respectively, the right and left
subspaces.)

4.2. The method of Arnoldi. In this method V and W are Krylov subspaces
given by

(4.5) V-- Uk-1 span{uo, Auo,...,Ak-luo} and W Wk-1 Uk-1,

for some arbitrary vector u0.
Arnoldi has given a very successful implementation of this method. In this imple-

mentation the vectors Aiuo, i 0, 1,..., are orthogonalized by a very special Gram-
Schmidt process as follows:

Step O. Let Vl uo/lluoll.
Step 1. Forj=l,...,k-l, do

(4.6) Determine the scalar hj+l,j > 0 and the vector Vj+l, such that

hj+l,jVj+l Avj- -J hijvi hij (vi Avj) 1 < < j, andi--1

IlvJ+l 1.
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Thus the N k matrix V Iv1 Iv21 Ivk] is unitary in the sense that V*V is the
k k identity matrix. As a result, W*V V*V I, and the generalized eigenvalue
problem of (4.3) now becomes

(4.7) H
where H is the k k upper Hessenberg matrix

(4.8) H

h h12 hk
h2 h22 h2k

h32 h3k

hk,k-1 hkk

i.e., the Ritz values are the eigenvalues of H.

4.3. The method of Lanczos. In this method V and W are the Krylov sub-
spaces

(4.9)
V Va_ span{u0, Au0,...,Ak-lu0} and

W W-I span{q,A*q,..., (A*)-lq},

for some arbitrary vectors u0 and q.
The algorithm given by Lanczos generates one set of vectors {Vl,..., va } from the

Aiuo, i 0, 1,..., k 1, and another set of vectors {Wl,..., wk} from the (A*)q, i
0, 1,..., k- 1, that satisfy the biorthogonality condition

(4.10) (wi, vj) &j,

as long as the process does not break down. This is achieved by the following algo-
rithm.

Step O. Set vl auo and w Tq such that (wl, v) 1.
Stepl. Forj=l,...,k-l, do

(a) Compute )j+l and @j+l by
(4.11) )d+l Avd-ajvj-fldvd_ and @j+l A*wy-6jwj--6jwj-1, with

ay (w, Avj). (When j 1 take fllV0 5w0 0.)
(b) Choose 6j+ and flj+ such that
j+flj+ (ff;j+, )j+), and set

vd+ j+/Sj+l and Wd+l ff;d+/flj+l.
By (4.10) the matrices V and W satisfy W*V I. As a result, the generalized
eigenvalue problem of (4.3) becomes

(4.12) H ,
where H is the k k tridiagonal matrix

(4.13) H

f12
2

6 f14

k
flk
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and the Ritz values are the eigenvalues of H.

4.4. The case of Hermitian A. The subspaces V in (4.5) and (4.9) are iden-
tical. When A is Hermitian, i.e., A* A, and q u0, the subspaces W in (4.5)
and (4.9) become identical too. Thus the methods of Arnoldi and Lanczos become
equivalent for the case under consideration. Furthermore, it can be shown that the
elements hij of the matrix H in the method of Arnoldi satisfy hi,+l h+l, so that
h,i+l hi+l, > 0 for i 1, 2,..., k- 1, while hij 0 for j >_ + 2. The diagonal
elements h are all real. That is to say, in the absence of roundoff, the matrix H is
real symmetric tridiagonal. If we pick q u0 and choose 5j j V/()y, y) in the
method of Lanczos, then the matrix H in (4.13) turns out to be real symmetric and
is exactly the same as the one produced by the method of Arnoldi.

The properties of the Ritz values and Ritz vectors of the Lanczos method, as
applied to Hermitian matrices, have been analyzed by Kaniel [K], Paige [Pail, and
Saad [Sal]. The paper [Sa2] gives results for non-Hermitian matrices.

5. Equivalence of rational approximation procedures and Krylov sub-
space methods. We now go back to the rational approximation procedures SMPE,
SMMPE, and STEA. In particular, we concentrate on the poles and residues of the
rational functions Fn,(z).

5.1. Poles of F,,k (z) vs. Ritz values. From the determinant representations
of F,,(z) that are given in Theorem 2.2 of [Si6], it follows that the denominator
Qn,(z) of Fn,(z) is a constant multiple of the determinant

(5.1) D(A)

1 A Ak
U00 U01 UOk

Ul0 Ull Ulk

Uk-l,0 Uk-l,1 tk-l,k

where A z-1 and uj are as defined in (1.5). This implies that the zeros of the
polynomial D(A) are the reciprocals of the zeros of Qn,(z), or, equivalently, the
reciprocals of the poles of Fn,(z). In addition, they are the roots of a generalized
eigenvalue problem as we show next.

THEOREM 5.1. Whatever the uj, the zeros of the polynomial D()) in (5.1) are
the eigenvalues of the matrix pencil (X, T), where

t01 t02 UOk UO0

tll t12 Ulk tl0
X- and T-

Uk-l,1 tk-l,2 tk-l,k Uk-l,O

U01 UO,k-1
Ull tl,k-1

Uk-l,1 Uk-l,k-1

i.e., they satisfy the equation

(5.3) det(X AT) 0.

Proof. Multiply the (j- 1)st column of D(A) by and subtract from the jth
column for j k + 1, k,..., 2, in this order. This results in
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(5.4) D(A)
U00

Ul0

tk-l,0

X- AT det(X AT),

thus proving the claim. [:]

In the remainder of this section we take (x, y) x*y.
When uj are as in (1.5), Theorem 5.1 takes on the following interesting form.
THEOREM 5.2. Define the N k matrices V and W by

V [’tin I’ttn-t-1 I’’" Itn+k-1]

and

W V for SMPE,
W [ql[q21 [qk] for SMMPE,
W [qlA*q[... ](A*)k-lq] for STEA.

Then, with uj as defined by (1.5), the zeros of D(A) are the eigenvalues of the matrix

pencil (W*AV, W’V), i.e., they satisfy

(5.s) det(W*AV AT*V) O.

Consequently, the reciprocals of the poles of the rational approximations Fn,k(z) ob-
tained from the SMPE or SMMPE or STEA procedures are the Ritz values of the
Krylov subspace methods whose right and left subspaces are column spaces of V and
W, respectively.

Proof. Since Theorem 5.1 applies, all we need to show is that X W*AV and
T W*V there. That T W*Y follows from (1.5), (5.2), (5.5), and (5.6). From (1.5),
(5.2), and (5.6), we similarly have X W*[un+ll"" lug+k]. Now using the fact that

Uj+l Auj,j > O, we also have [Un+ll lUn+] AV. Consequently, X W*AV.
Again, from Uy+l Any, j > O, we realize, in addition, that the right subspace for all
three methods is none other than the Krylov subspace span {un,Au,... ,A-lu}.
This completes the proof.

5.2. Residues of F,k(Z) vs. Ritz vectors. Turning Theorem 5.2 around,
what we have is that the Ritz values obtained by applying the Krylov subspace meth-
ods whose left and right subspaces are column spaces of V and W, respectively, are, in

fact, the reciprocals of the poles of the corresponding rational approximations F,(z)
to the meromorphic function F(z) ouz" An immediate question that arises is,
of course, whether there is any connection between the Ritz vectors and the Fn,(z).
The answer, which is in the affirmative, is provided in Theorem 5.3 below.

THEOREM 5.3. Let be a Ritz value of the Krylov subspace methods whose right
and left subspaces are column spaces of, respectively, V and W in Theorem 5.2. De-
note the corresponding Ritz vector by 5. Let -1 in the corresponding rational
approximation Fn,k(z), cf. (1.2). Provided is simple, c is a constant multiple of the

residue of Fn,k(z) at the pole 1/.



RATIONAL APPROXIMATIONS AND KRYLOV SUBSPACE METHODS 1357

Proof. Let us first determine the residue of Fn,(z) at the pole 1/. With

’ o Cr;k Fn+ -1(5.8) aes Fn,(Z)lz=e Qn,() Q,()

since Q’n,k (;) 0 that follows from the assumption that is simple, which implies

that is a simple pole. By Fn+s(z) Fn-1 (z) + V"n+s u,z and Er=0 cr 0
Tn---n

we can rewrite (5.8) in the form

n+k-1 k-1

Q’n, () o= ?mtn+m,

where

k

(5.10) m= E c-’-1’ m-0,1,...,k-1.
r=m+l

Let us now denote /- (0, ?1,..., k-1)T. Then (5.9) implies that Res Fn,a(Z)lz= is

a scalar multiple of V. Recall that the Ritz vector corresponding to is V, where
E Ca and satisfies W*(A- I)V 0, which, on account of Theorem 5.2, is the

same as (X- T) 0. Thus in order to show that Res Fn,a(z)]z=e is a constant
multiple of the Ritz vector corresponding to the Ritz value , it is sufficient to show
that

(5.11) (X T) 0.

From (5.2), the (i + 1)st component of the k-dimensional vector T (X T),
0, 1,...,k- 1, is

a-1

(5.12) T E (u,,+l Ui,)m,
m--0

which, by (5.10), becomes

k-1 k

(5.13) Ti E (ti,m+l tirn) E
m:O r:m+l

Crr--m--1

Expanding and rearranging this summation, we obtain

(5.14) --uo c + E UmC,.

r=l rn=l

kRecalling that ’r=0c 0, we can rewrite (5.14) as

a
(5.15) i E ui,c,.

m----0
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Finally, from the assumption that c 1 and from the fact that co, Cl,..., Ck--1 satisfy
the. linear equations in (1.4), we conclude that

(5.16) T=0, i=0,1,...,k-1.

This completes the proof.

5.3. Summary of Fn,k(z) vs. Krylov subspace methods. We now combine
the results of Theorems 5.2 and 5.3 to state the following equivalence theorem, which
forms the main result of this section, and one of the main results of this work.

THEOREM 5.4. Let Fn,k(z) be the rational approximation obtained by applying the
SMPE or SMMPE or STEA procedure to the vector-valued power series -=o u’zm,
where Um A’uo, m 0, 1,..., are power iterations. Denote the reciprocals of the
poles of Fn,a(z) by 1,... ,. Setting -1 in..the numerator of Fn,k(z), denote
the corresponding residues of Fn,(z) by x,... ,x. Next, denote by ik’,... , and
x{,. x, respectively, the Ritz values and corresponding Ritz vectors produced by the
Krylov subspace methods whose right subspace is span{un,Au,... ,Ak-lun} and left
subspaces are the column spaces of the matrices W in (5.6). Then

II(5.17) Aj Aj, j 1,...,k,

and

(5.18) ’ providedxj (x xj, )j is simple.

More can be said about the SMPE and STEA procedures versus the methods of
Arnoldi and Lanczos, and this is done in Corollary 5.5 below.

II IICOROLLARY 5.5. With Fn,k(Z),)j,xj,j 1,... ,k, as in Theorem 5.4, let j ,xj
j 1,..., k, be the Ritz values and Ritz vectors produced by applying the k-step Arnoldi
or Lanczos methods to the matrix A, starting with the vector un Auo. (That is
to say, replace the initial vector uo in Step 0 of (4.6) or (4.11) by the nth power
iteration u,.) In addition, let q be the same vector for the STEA procedure and the
Lanczos method. Then the SMPE and STEA procedures are equivalent to the methods
of Arnoldi and Lanczos, respectively, precisely in the sense of (5.17) and (5.18).

Now that we have shown the equivalence of the methods of Arnoldi and Lanczos
with the generalized power methods based on the SMPE and STEA approximation
procedures, we realize that those results we proved in 3 for the latter and which
pertain to the nondefective as well as defective eigenvalues of A are, in fact, new
results for the former. That is to say, if we apply the methods of Arnoldi or Lanczos
of order k to the matrix A starting with the nth power iteration u Anuo for
large n, then the Ritz values are approximations to the k largest distinct eigenvalues
of A counted according to the multiplicities that appear in (2.2). Similarly, the Ritz
vectors can be used for constructing the approximations to the corresponding invariant
subspaces. These points will be considered in greater detail in the next section.

Judging from Theorems 3.1 and 3.2, we conclude that applying Krylov subspace
methods beginning with Un Auo, n > 0, rather than with u0, may be advantageous,
especially when the eigenvalues that are largest in modulus and the corresponding
eigenvectors and invariant subspaces are needed. Specifically, a given level of accuracy
may be achieved for smaller values of k as n is increased. We recall that k is also the
number of vectors Vl,V2,..., in (4.1) that need to be saved. Thus we see that the
strategy in which Krylov subspace methods are applied to Un with n sufficiently large
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may result in substantial savings in storage. In addition, smaller k means savings
in the computational overhead caused by the arithmetic operations that lead to the
matrices V and W, and, subsequently, to the Ritz vectors. (For a detailed discussion
of this point we refer the reader to 7 Example 7.2.) All this was observed to be the
case in various examples done by the author.

5.4. Optimality properties of the Arnoldi method. In 1 we mentioned
that the coefficients of c of the denominator polynomial Qn,k(z) of Fn,k(z) for the
SMPE procedure are the solution to the optimization problem given, in (1.6). If we
now pick the vectors Um as the power iterations Um Amuo, m O, 1,..., then (1.6)
reads

CO,C1 Ck--1

kj’-’0

Exploiting the fact that the method of Arnoldi is equivalent to the generalized power
method based on the SMPE approximation procedure, we can state the following
optimality properties for the Arnoldi method as applied to a general matrix A.

THEOREM 5.6. Let Aj xj j 1, 2,..., k, be the Ritz values and appropriately
normalized Ritz vectors, respectively, produced by applying the k-step Arnoldi method
to the matrix A starting with the power iteration Un Anuo. Let 7k denote the set
of monic polynomials of degree exactly k, while r denotes the set of polynomials of
degree at most k. Then for k < ko, cf. (2.4),

min IIf(A)unll =_ n,k,

(5.21) xj (A- ,I ?n,
i=1

’I)x} _(n,k)Ai + A (n,k)(5.22) (A j c un c
\i--0 i--0

UnTi t_ Un-t-k

(5.23)

and

(5.24) ((A AjI)zj, g(A)un) 0

For k k0, we have Ax} Ajxj:

all g E -1.
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Proof. We start by noting that (5.24) is nothing but a restatement of the require-
ment that Ax} x} be orthogonal to the left subspace of the Arnoldi method, which
is also its right subspace Y {g(A)un’g E rk-1}.

k are the zeros of the monic polynomialSince the Ritz values .j,j 1,

i=0 ci we can write

k

II( -
i=1

Thus

k-1 k

(5.26) n,k(d)---- E(i
i-0 i-1

Combining (5.26) with (5.19), we obtain (5.20).
Provided x} is as given by (5.21), the proofs of (5.22) and (5.23) are immediate.
To prove the validity of .(5.21) it is sufficient to show that xj E V and that

(A- .k}I)x} is orthogonal to all the vectors in V. That x V is obvious from (5.21)
itself. The fact that cn’k), 0, 1,..., k- 1, are the solution of the optimization
problem in (5.19) implies that the vector Qn,(A)un is orthogonM to every vector in

V. But Q,k(A)u (A- ,I)x}, as can be seen from (5.26). This completes the
proof.

Note that the proofs of (5.20) and (5.21) for Hermitian matrices can also be found
in [Par2, Chap. 12, pp. 239-240].

A few historical notes on the methods of Arnoldi and Lanczos are now in order.
Following the work of Arnoldi the equivalent form in (5.19) was suggested in

a paper by Erdelyi [E], in the book by Wilkinson [W, pp. 583-584], and in the
papers by Manteuffel [M] and Sidi and Bridger [SiB]. The equivalence of the different
approaches does not seem to have been noticed, however. For instance, [W] discusses
both approaches without any attempt to explore the connection between them. With
the exception of [SiB], these works all consider the case n 0. The case n > 0 and
the limit as n -- cx are considered in [SiB] and [Si3].

In his discussion of the power iterations in [H, Chap. 7], Householder gives de-
terminantM representations of certain polynomials whose zeros are approximations to
the largest eigenvMues of the matrix being considered. One of these representations,
namely, the one given in (16) in [H, p. 186], coincides with the determinant D(A)
in (5.1) of the present work pertaining to the STEA approximation procedure with
n _> 0. It is shown there that the zeros of D(A) tend to the k largest eigenvMues of the
matrix A as n -- oc, but a theorem as detailed as our Theorem 3.1 is not given. It is
also mentioned in the same place that, apart from a constant multiplicative factor, the
polynomials D(A) with n 0 are precisely the so-called Lanczos polynomials given
in (10) of [H, p. 23] that are simply det(M- H) with H as given in (4.13). As we
pointed out in this section, up to a constant multiplicative factor, D(A) with n > 0 is
itself the Lanczos polynomial det(AI- H) when the LanCzos method is being applied
with u0 replaced by un Auo. It is not clear to the author whether this connection
between D(A) with n > 0 and the Lanczos method has been observed before or not.

6. Stable numerical implementations. In this section we concentrate on the
implementation of the generalized power methods based on the SMPE and the STEA
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approximation procedures as these are related to the methods of Arnoldi and Lanczos,
respectively, and as good implementations for the latter are known. For example, the
implementations in (4.6) and (4.11) are usually quite stable.

6.1. General computational considerations. The theoretical results of 3
all involve the limiting procedure n - c. When I11 is larger (smaller) than 1, we

may have difficulties in implementing the procedures above due to possible overflow
(underflow) in the computation of the vectors u, for large m. This situation can be
remedied easily as will be shown below.

We first observe that the denominator polynomial Qn,k(z) of the vector-valued ra-
tional approximation Fn,k(z) remains unchanged when the vectors Un, Un+l, Un+2,

are all multiplied by the same scalar, say c, and so do its zeros. Consequently, the
vectors dji(n) defined in Theorem 3.2 remain the same up to the multiplicative factor
a. That is to say, as far as the matrix eigenvalue problem is concerned, multiplica-
tion of the vectors un, Un+l,..., by the scalar ( leaves the eigenvalue approximations
unchanged and multiplies the eigenvector approximations by

For the purpose of numerical implementation we propose to pick
and we achieve this by the following simple algorithm that is also used in the classical
power method.

Step 0. Pick u0 arbitrarily such that Ilu011 1.

(6.1)
Step 1. For m 1, 2,...,n, do

Wm= Aum-1

6.2. Treatment of defective eigenvalues. When the eigenvalue /j is defec-
tive and has 02j > 1 in (2.2), then, under the conditions of Theorem 3.1, there are
precisely 02j Ritz values ,jl(n), 1 <_ <_ wj, that tend to Aj, each with the rate of
convergence O([nPlAtT1//jln]l/wj) as n - c. That is to say, the Ritz values for a
defective eigenvalue are not as effective as the ones for nondefective eigenvalues. How-
ever, j(n) and j(n) that are defined in Theorem 3.1 do enjoy the property that they
tend to/kj with the optimal rate of convergence O(nPlAt+i/jl) as n -- c, as in the
case of a nondefective eigenvalue.

As for the invariant subspaces Y/, 0, 1,..., pj, pj wj 1, the most basic result
to use is Theorem 3.2. According to this theorem and the sub.sequent developments,
the building blocks for the invariant subspaces are the vectors dji,t(n) that are defined

by (3.19). Now the vector j,(n) is a constant multiple of Res F,,(Z)lz=zj(,), where
zjt(n) 1/,kit(n), which, when -1, is a constant multiple of the Ritz vector
corresponding to /jl(n) by Theorem 5.4. That is, once the Ritz vectors have been
computed, they can be used to construct the vectors ji,l(n) which, in turn, are used
in constructing the approximate invariant subspaces Y with optimal accuracy.

Let us now show how the vector ji,l(n) is expressed in terms of the corresponding
Ritz vector. For simplicity of notation we shall write zjt(n) 1//jl(,). The Ritz

vector corresponding to )jl(n) is Eik_=_l ivi, where Vl Un and (Un, Un) 1
by (6.1). We recall that for the method of Arnoldi the vectors Vl,V2,...,v are

actually the ones that would be obtained by orthogonalizing the power iterations
Un, Ann,... ,Ak-lun by the Gram-Schmidt process. For the method of Lanczos the
vectors v, v2,..., v are obtained by biorthogonalizing u, Au,,....., Ak-lun against
the vectors q,A*q,..., (A*)t-lq. In both cases we have

(6.2) AV VH + R,
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where H is the upper Hessenberg matrix of (4.8) for the Arnoldi method or the
tridiagonal matrix of (4.13) for the Lanczos method, and thus it is upper Hessenberg
in both cases. The matrix R has all of its first k- 1 columns equal to zero, and its
kth column is hk+l,kVk+l.

From the way the vectors vl, v2,..., vk are constructed it is easy to see that

V [unlAurl.’.

where B is the upper triangular matrix

(6.4) B

/12
/22

whose entries Dj are required Substituting (6.3) in (6.2), we have

(6.5) [AunlA2unl IAcu,]B [un[Aunl ]Ac-lu,]BH + R.

By equating the jth columns of both sides of (6.5) for j < k, we obtain

J J
(6.6) E(Aun)j E(Aun)(BH)i+,j

i-I i--0

as the matrices B and BH are upper triangular and upper Hessenberg, respectively.
From. the linear independence of the vectors Au,, i 0, 1,..., k 1, (6.6) reduces to

(6.7) /j (BH)+I,j, O <_ i <_ j 0j_=0allj_>l.

Now/11 1 since Vl Un. These equations can be solved in the order i 0, 1,...,
j,j 1, 2,..., k- 1, which amounts to computing the 1st, 2nd,... ,kth columns of
the matrix B, in this order. This can be accomplished as hj+l,j 0 for all j. Thus
by letting 0 in (6.7) we obtain V’Y+l rhrj 0, which we solve for/l,j+l Next,Z-r--1

,j+lletting i 1, we obtain Dlj z_r=t D2rhj, which we solve for D2,j+. By letting
i 2,3,...,j, we obtain i+l,j+l,i- 2,3,...,j, in this order.

kSuppose that the Ritz vector 2 has been computed in the form =iv and
that the have been saved. Then, recalling also that Un+ Au,, i 0, 1,..., k 1,

k-1

(6.8)
i--0

and the coefficient of Un is given by

(6.9)
k

j=l

Similarly, from (3.19), the coefficient of u, in ji,t(n) (setting u -1 there) is given
by

(6.10) a ( y (n)) Ekr= c(’’)2k- -( J (n)) c0(,)2k
k )(k n,k()Er:0 cn’k r)k-r-1 Q’
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Now if we denote the Ritz values by ,,..., ,
we can show that

’= 1/A,and set zi i= 1 k then

(6.11) a -( j(n))

so that

(6.12) j,t(n) a 2
( J(n))

0"0 Hr=l (1 z/) Ej=I

which is the desired result.
With this we can now go on to compute the approximations to the eigenvector

ajp and the vectors aj, 0 <_ < pj 1, precisely as described in 3.2.1 and 3.2.2,
respectively. For example, the vector (jp (n) }-1 (jp,t(n) is the approximation to
the eigenvector ajpy the error in which is, roughly speaking,

7. Numerical examples. In this section we demonstrate by numerical exam-
ples the validity of some of the theory and claims of the previous sections. The
computations for this section were done in double precision arithmetic on an IBM-370
machine.

Example 7.1. Consider the 11 11 real symmetric matrix

(7.1) A 0.06 x

-5 2 1 1
2 6 3 1 1
1 3 6 3 1 1
1 1 3 6 3 1 1

1 1 3 6 3 1 1
1 1 3 6 3 1

1 1 3 6 3
1 1 3 6

1 1 3
1 1

1

1
1 1
3 1 1
6 3 1
3 6 2
1 2 5

This matrix has 10 distinct positive eigenvalues, the smallest and largest being 0.0313
and 0.896 ..., respectively. We applied the SMPE and SMMPE procedures to

approximate its eigenvalues. With u0 (1, 1,..., 1)T, only 6 of the 10 eigenvalues
appear in the spectral decomposition of u, for all rn. To five-digit accuracy these
eigenvalues are ,1 0.89651, A2 0.52971, ,3 0.26440,/4 0.24775, A5 0.19029,
and A6 0.031337.

In Tables 7.1.1 and 7.1.2 we give the errors ej(n) j j(n) in the approxi-
mations Aj(n),j 1,2,3, that were obtained by, respectively, the SMMPE and the
SMPE procedures with k 3. Here j(n) stands for Ajl(n), and we know that coy 1
for all j. Recall that for the SMPE procedure these Aj(n) are simply the Ritz val-
ues obtained by the Arnoldi method of order k 3 as this method is being ap-
plied to un. They are Mso the Ritz values obtained by the Lanczos method of order
k 3 as this method is being applied to Un with q Un in (4.9). (The j(n)

k An,k),k 0 withwere actually obtained by solving the polynomial equation i=o ci
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Table 7.1.1.
Errors in Aj(n) obtained from

SMMPE procedure with k 3 on the ma-
trix A in Example 7.1. The vector uo is

(1, 1,..., 1)T. Here ej(n) Aj Aj(n),
1,2,3.

i()
2.01D-02
5.02D-03
1.30D-03
3.38D-04
8.57D-05

5
6
7
8
9
10
11
12
13
14
15

2.15D-05
5.37D-06
1.35D-06
3.44D-07
8.84D-08
2.31D-08
6.10D-09
1.63D-09
4.42D-10
1.21D-10
3.32D-11

() ()
1.15D-01
4.31D-02
1.82D-02
7.87D-03
3.39D-03
1.45D-03
6.21D-04
2.68D-04
1.17D-04
5.13D-05
2.29D-05
1.03D-05
4.72D-06
2.18D-06
1.01D-06
4.74D-07

6.54D-02
3.78D-02
3.03D-02
2.61D-02
2.28D-02
2.00D-02
1.77D-02
1..58D-02
1.42D-02
1.29D-02
1.18D-02
1.09D-02
1.02D-02
9.54D-03
8.99D-03
8.52D-03

Table 7.1.2.
Errors in Aj(n) obtained from

SMPE procedure with k 3 on the ma-

trix A in Example 7.1. The vector uo is

(1, 1,..., 1)T. Here ej(n) Aj Aj(n),
j 1,2,3.

n

0
1
2
3
4
5
6
7
8
9
10

i() () ()
7.01D-05
1.11D-06
5.43D-08
2.91D-09
1.65D-10
9.93D-12
6.41D-13
4.42D-14
3.62D-15
1.11D-15
6.25D-16

6.92D-03
3.64D-04
5.23D-05
8.15D-06
1.34D-06
2.36D-07
4.41D-08
8.73D-09
1.80D-09
3.81D-10
8.21D-11

2.26D-02
9.64D-03
6.84D-03
5.18D-03
4.11D-03
3.40D-03
2.88D-03
2.50D-03
2.18D-03
1.92D-03
1.70D-03

An,k)the ci-(n’k) determined from (1.6) and % 1.) Note that the errors are all posi-
tive, and, for the SMPE procedure, this is consistent with the asymptotic result of
[Si3, Thin. 2.1]. In addition, we have ej(n) O(IA4/Ajln) as n -, c for SMMPE
procedure (el. (3.4)) and ej(n) O(IA4/Ajl2) as n --, oe for SMPE procedure (el.
(3.11)). These can be verified numerically by computing rj(n) ej(n + 1)/ej(n), for
which, lim,_o rj(n) 4/j for SMMPE procedure and limn-o rj(n) (4/j)
for SMPE procedure. Indeed, r(n) do approach their respective limits with increas-

ing n.
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The vectors ql,...,qk in the SMMPE procedure were taken to be the first k
standard basis vectors for this example.

We should note, of course, that as n is increased, roundoff errors cause the vectors
Un, Un+l,..., to have contributions from all eigenvalues of A. With the precision we
are using, at n 15 the roundoff errors are still not sufficiently effective to cause this
to happen in appreciable amounts.

Finally, if the above is repeated with k 4, a significant improvement in the
convergence rates of the .j(n) is observed, as predicted by the theory of 3. This
point has been explained in the third paragraph following the statement of Theo-
rem 3.1.

Example 7.2. Consider the rn2 rn2 block tridiagonal matrix

-I

where I is the m rn identity matrix, B is the rn rn real nonsymmetric tridiagonal
matrix given by

4 a
b 4 a

(7.3) B- "-. ".. ".. a--l+2(m+l, b--1-
2(m 1)"+

b 4
b

This matrix, with "y 1, appears in [Sal, Example 4.2.2], where it is treated
with the help of the Arnoldi method when rn 15. It arises from central differ-
ence discretization of the elliptic operator -(O2/Ox2 + O2/Oy2) + (O/Ox) on the unit
square with Dirichlet boundary conditions, the number of points of discretization
interior to the unit square being rn in each direction.

It can be shown that A is diagonalizable and that its eigenvalues are given by

(7.4) Ap,q(7) 4- 2cos
q

2 1 "Y
rn+l 2(rn+l)

cos p,q=l 2 rn.
rn+l’

To be able to compare our numerical results with those of [Sal], we also applied
the Arnoldi method to the matrix A with 1 and m 15. In this case all eigenvalues
of A are real and positive. In Table 7.2.1 we give the errors in the Ritz values/k and

that are approximations to the first two largest eigenvalues of A, namely, Am,m (1)
and A,-I,, (1), for k 1, 2,..., obtained by applying the Arnoldi method of order k
to a randomly generated vector u0, as is commonly done. We also give the/2-norms

is the Ritz vector corresponding to /jof the residuals Ax} -/jxj,j 1, 2, where xj
and (x}, xj) 1. These norms are computed precisely in the way described in [Sal,
Eq. (3.14)]. In Tables 7.2.2 and 7.2.3 we do the same, except that we now apply the
Arnoldi method to Un Anuo, with n 100 and n 200, respectively, u0 being
again a randomly generated vector.

Comparison of the results in Tables 7.2.1-7.2.3 shows first of all that the largest
Ritz values converge much faster in k for n 100 and n 200 than for n 0. Also the
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TABLE 7.2.1.
Errors in the two largest Ritz values and 12-

norms of the residuals of corresponding Ritz vectors
obtained from the Arnoldi method on the matrix A
of Example 7.2 with " 1 and m 15. The method
is applied to the randomly generated vector uo. Here

e(’k)3 IXJ Xj’ and -.wj
() Ilnx} Ayxy’ ’11, (}, xy’)

being pairs of Ritz values and Ritz vectors obtained

from the Arnoldi method of order k, and IIx 1.

k ek)

1 6.70D+00
2 2.54D+00
3 1.19D+00
4 6.56D-01
5 3.88D-01
6 2.44D-01
7 1.62D-01
8 1.16D-01
9 8.34D-02
10 5.85D-02
11 4.10D-02
12 2.74D-02
13 1.86D-02
14 1.31D-02
15 9.18D-03
16 6.71D-03
17 4.37D-03
18 2.42D-03
19 1.22D-03
20 5.72D-04
21 2.28D-04
22 1.00D-04
23 5.02D-05
24 2.86D-05
25 1.85D-05
26 1.16D-05
27 7.95D-06
28 6.46D-06
29 5.60D-06
30 4.80D-06

1.89D+00
1.72D+00
1.16D+00
7.62D-01
5.77D-01
4.41D-01
3o30D-01
2.61D-01
2.28D-01
2.08D-01
1.77D-01
1.57D-01
1.23D-01
9.71D-02
8.89D-02
7.18D-02
7.78D-02
6.91D-02
5.30D-02
3.88D-02
2.92D-02
1.87D-02
1.27D-02
7.78D-03
5.48D-03
4.83D-03
3.12D-03
1.58D-03
9.05D-04
5.57D-04

7.44D+00
4.55D+00
3.03D+00
2.02D+00
1.40D+00
1.03D+00
7.82D-01
5.78D-01
4.13D-01
3.04D-01
2.24D-01
1.74D-01
1.40D-01
1.12D-01
8.98D-02
6.34D-02
3.77D-02
2.08D-02
1.11D-02
5.32D-03
2.74D-03
1.42D-03
7.01D-04
3.02D-04
1.53D-06
1.63D-04
2.15D-04
2.19D-04
2.06D-04

7.78D-01
1.44D+00
1.24D+00
1.06D+00
8.75D-01
6.94D-01
6.08D-01
5.63D-01
5.06D-01
4.16D-01
3.60D-01
2.83D-01
2.31D-01
2.26D-01
1.97D-01
2.32D-01
2.12D-01
1.65D-01
1.24D-01
9.84D-02
6.73D-02
4.94D-02
3.25D-02
2.48D-02
2.43D-02
1.73D-02
9.42D-03
5.73D-03
3.75D-03

cost, both storagewise and computational, of obtaining a high level accuracy is larger
when n 0 than when n > 0 and is sufficiently large. For instance, the accuracy
attained for A with n 0 and k 30 can be attained with n 100 and k 5. In
the former we must store 30 vectors, whereas in the latter we need to store 5 vectors.
Roughly speaking, the computational effort in the former case is the equivalent of
about 232 matrix-vector products, whereas in the latter this number is 144.

We determine computational cost in the following way. First of all, if we are
interested only in the eigenvalues, then the computational cost is the sum of (i) the
n matrix-vector products to get to Un along with the n normalizations for u0, Ul,...,

Un-i, cf. (6.1), and (ii) the cost of forming the matrix Va-1, cf. (4.6). The cost of
(i) is n matrix-vector products, n scalar products, and n scalar-vector multiplications.

ik(k+ 1)k( -- 1) scalar products,The cost of (ii) is k- 1 matrix-vector products,
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TABLE 7.2.2.
Errors in the two largest Ritz values and 12-

norms of the residuals of corresponding Ritz vectors
obtained from the Arnoldi method on the matrix A
of Example 7.2 with 1 and m 15. The method
is applied to the vector un Anuo with n 100,

uo is a randomly generated vector. Here ewhere

IAj )1 and-wj(k) iiAx Axll, (), x) being
pairs of Ritz values and Ritz vectors obtained from
the Arnoldi method of order k, and Ilxj II-- 1.

k ek)

1 1.46D-02
2 1.58D-03
3 8.74D-06
4 2.14D-06
5 2.79D-06
6 2.33D-06
7 4.30D-07
8 1.29D-06
9 8.28D-06
10 1.60D-06
11 9.04D-09
12 2.09D-07
13 2.56D-09
14 1.16D-07
15 1.88D-08
16 2.14D-08
17 1.10D-08
18 3.90D-09
19 3.93D-09
20 8.85D- 10

4.98D-02
1.97D-02
5.19D-03
6.15D-04
9.87D-05
3.64D-05
1.62D-05
3.19D-06
1.02D-06
7.35D-08
1.64D-07
5.17D-08
5.06D-08
5.36D-08
4.49D-08
1.28D-08
2.01D-08
5.96D-09
6.15D-09
2.74D-09

1.65D-02
1.56D-05
1.33D-04
1.61D-04
1.17D-04
2.45D-05
1.86D-05
6.39D-05
2.19D-05
7.99D-06
1.02D-05
7.76D-06
1.04D-05
5.33D-06
9.42D-06
9.72D-08
7.69D-06
1.42D-05
1.09D-05

(k)
W2

7.12D-02
2.59D-02
4.26D-03
8.65D-04
4.66D-04
3.12D-04
7.40D-05
2.78D-05
2.06D-06
5.23D-06
1.85D-06
2.48D-06
3.96D-06
1.22D-05
5.25D-06
3.00D-05
2.06D-05
6.70D-05
2.05D-04

scalar-vector multiplications, and 1/2k(k 1) vector additions. If we agree to consider
a scalar product as consisting of a scalar-vector multiplication and a vector addition,
the total number of operations will be n + k 1 matrix-vector products, 2n + k2 + k
scalar-vector multiplications, and n + k2 vector additions. Finally, let us make the
simplification that addition and multiplication have the same cost. All this, of course,
is not most accurate, but gives a reasonable account of the cost. In our example, one
matrix-vector product is very nearly equivalent to five scalar-vector multiplications
and four vector additions.

The approximation that corresponds to n 100 and k 20 in Table 7.2.2 has
about the same accuracy as that given in [Sal]. But the way the approximation of
[Sal] is obtained is much more complicated and also more expensive computationally.

Now with ’ --- 1, the matrix A is close to being symmetric, and one may attribute
the good results shown in Tables 7.2.2 and 7.2.3 to this fact. We, therefore, applied the
Arnoldi method with larger values of that cause A to become highly nonsymmetric.
Our results and conclusions were invariably the same. Actually, when the Arnoldi
method was applied with large values of /, e.g., " 10, the quality of the Ritz values
with n 0 deteriorated, whereas the quality of those with n 100 remained almost
the same.

1A with 0Finally, we have also applied the Arnoldi method to M I- "
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TABLE 7.2.3.
Errors in the two largest Ritz values and

norms of the residuals of corresponding Ritz vectors
obtained from the Arnoldi method on the matrix A
of Example 7.2 with /- 1 and m 15. The method
is applied to the vector Un Anuo with n 200,

uo is a randomly generated vector. Here e)here

pairs of Ritz values and Ritz vectors obtained from
the mrnoldi method of order k, and IIx II-- 1.

k .ek)
1 5.61D-02
2 8.43D-05
3 3.57D-06
4 6.00D-07
5 2.10D-07
6 1.56D-07
7 5.25D-07
8 5.23D-07
9 1.03D-08
10 1.03D-08
11 2.86D-09
12 3.58D- 10
13 2.56D-10
14 1.96D-10
15 4.51D-11
16 1.94D-11
17 1.99D-11
18 1.01D-11
19 5.32D-12
20 4.67D- 12

(k)
W

5.76D-02
4.08D-02
1.61D-03
1.15D-04
2.48D-05
1.01D-06
2.53D-07
1.56D-08
8.23D-08
4.88D-09
8.36D-09
1.08D-09
3.96D-10
6.09D-10
1.94D-10
5.69D-11
6.86D-11
5.74D-11
2.48D-11
2.84D- 11

7.03D-05
7.28D-05
2.49D-05
5.51D-05
5.53D-05
4.72D-05
6.31D-05
5.09D-05
6.12D-05
2.13D-05
2.96D-05
3.47D-06
5.71D-06
1.98D-06
7.79D-07
1.65D-06
6.09D-07
8.41D-07
2.44D-07

8.33D-03
5.34D-04
6.79D-05
2.24D-05
1.14D-06
7.12D-07
5.12D-08
6.30D-06
6.02D-07
2.02D-05
1.28D-05
1.31D-05
2.25D-05
1.01D-05
3.21D-06
4.12D-06
4.05D-06
1.87D-06
2.44D-06

This matrix is real symmetric and its spectrum is in (-1, 1) and is symmetric with
respect to the origin. Again the results obtained from the Arnoldi (now equivalent
to symmetric Lanczos) method with n > 0 and large were superior to those obtained
with n 0.
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